Amine Functionalization Within Hierarchically‐Porous Zeotype Framework for Plasmonic Catalysis over PdAu Nanoparticles
Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the effect of tertiary amine (‐NR3) functionalization on the surface of hierarchically‐porous zeotype (HP‐AlPO‐5) materials to enhance the plasmo...
Saved in:
Published in | ChemCatChem Vol. 15; no. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the effect of tertiary amine (‐NR3) functionalization on the surface of hierarchically‐porous zeotype (HP‐AlPO‐5) materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna (Au) and catalytic reactor (Pd) nanoparticles (NPs) was investigated. The catalysts have been characterized using enhanced techniques such as HAADF‐STEM, FT‐EXAFS, and probe‐based FT‐IR to reveal the proximity and interaction between bimetallic NPs, and thermal stability of amines in the presence of Au or PdAu NPs. Interestingly, a four‐fold enhancement in the Suzuki‐Miyaura coupling reaction product yield was obtained over PdAu/HP‐AlPO‐5‐NR3 when compared with the analogous plasmonic catalyst with no amine functionalization under visible light irradiation. A range of amines were functionalized and their influence in the nucleation, uniform growth and stabilization of catalytic active site (Pd) and formation of electron‐rich species under visible light irradiation has also been investigated. The presence of tertiary amine in the nanostructured catalyst enhanced the turnover number (TON) significantly under light irradiation conditions in comparison to dark conditions. This study provides an enriched understanding of plasmon‐driven chemistry, where the maximized reaction rate enhancement requires the existence of active metal species and the formation of electron‐enriched species under light irradiation conditions.
Plasmonic catalysis: Influence of tertiary amine functionalization on the surface of hierarchically‐porous zeotype materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna and catalytic reactor nanoparticles. |
---|---|
AbstractList | Abstract
Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the effect of tertiary amine (‐NR
3
) functionalization on the surface of hierarchically‐porous zeotype (HP‐AlPO‐5) materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna (Au) and catalytic reactor (Pd) nanoparticles (NPs) was investigated. The catalysts have been characterized using enhanced techniques such as HAADF‐STEM, FT‐EXAFS, and probe‐based FT‐IR to reveal the proximity and interaction between bimetallic NPs, and thermal stability of amines in the presence of Au or PdAu NPs. Interestingly, a four‐fold enhancement in the Suzuki‐Miyaura coupling reaction product yield was obtained over PdAu/HP‐AlPO‐5‐NR
3
when compared with the analogous plasmonic catalyst with no amine functionalization under visible light irradiation. A range of amines were functionalized and their influence in the nucleation, uniform growth and stabilization of catalytic active site (Pd) and formation of electron‐rich species under visible light irradiation has also been investigated. The presence of tertiary amine in the nanostructured catalyst enhanced the turnover number (TON) significantly under light irradiation conditions in comparison to dark conditions. This study provides an enriched understanding of plasmon‐driven chemistry, where the maximized reaction rate enhancement requires the existence of active metal species and the formation of electron‐enriched species under light irradiation conditions. Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the effect of tertiary amine (‐NR3) functionalization on the surface of hierarchically‐porous zeotype (HP‐AlPO‐5) materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna (Au) and catalytic reactor (Pd) nanoparticles (NPs) was investigated. The catalysts have been characterized using enhanced techniques such as HAADF‐STEM, FT‐EXAFS, and probe‐based FT‐IR to reveal the proximity and interaction between bimetallic NPs, and thermal stability of amines in the presence of Au or PdAu NPs. Interestingly, a four‐fold enhancement in the Suzuki‐Miyaura coupling reaction product yield was obtained over PdAu/HP‐AlPO‐5‐NR3 when compared with the analogous plasmonic catalyst with no amine functionalization under visible light irradiation. A range of amines were functionalized and their influence in the nucleation, uniform growth and stabilization of catalytic active site (Pd) and formation of electron‐rich species under visible light irradiation has also been investigated. The presence of tertiary amine in the nanostructured catalyst enhanced the turnover number (TON) significantly under light irradiation conditions in comparison to dark conditions. This study provides an enriched understanding of plasmon‐driven chemistry, where the maximized reaction rate enhancement requires the existence of active metal species and the formation of electron‐enriched species under light irradiation conditions. Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the effect of tertiary amine (‐NR3) functionalization on the surface of hierarchically‐porous zeotype (HP‐AlPO‐5) materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna (Au) and catalytic reactor (Pd) nanoparticles (NPs) was investigated. The catalysts have been characterized using enhanced techniques such as HAADF‐STEM, FT‐EXAFS, and probe‐based FT‐IR to reveal the proximity and interaction between bimetallic NPs, and thermal stability of amines in the presence of Au or PdAu NPs. Interestingly, a four‐fold enhancement in the Suzuki‐Miyaura coupling reaction product yield was obtained over PdAu/HP‐AlPO‐5‐NR3 when compared with the analogous plasmonic catalyst with no amine functionalization under visible light irradiation. A range of amines were functionalized and their influence in the nucleation, uniform growth and stabilization of catalytic active site (Pd) and formation of electron‐rich species under visible light irradiation has also been investigated. The presence of tertiary amine in the nanostructured catalyst enhanced the turnover number (TON) significantly under light irradiation conditions in comparison to dark conditions. This study provides an enriched understanding of plasmon‐driven chemistry, where the maximized reaction rate enhancement requires the existence of active metal species and the formation of electron‐enriched species under light irradiation conditions. Plasmonic catalysis: Influence of tertiary amine functionalization on the surface of hierarchically‐porous zeotype materials to enhance the plasmon‐mediated catalysis, utilizing a combination of the plasmonic antenna and catalytic reactor nanoparticles. |
Author | Manzoli, Maela Fukuhara, Choji Raja, Robert Yamashita, Hiromi Morandi, Sara Kuwahara, Yasutaka Verma, Priyanka Mori, Kohsuke |
Author_xml | – sequence: 1 givenname: Priyanka orcidid: 0000-0002-2616-0489 surname: Verma fullname: Verma, Priyanka email: yamashita@mat.eng.osaka-u.ac.jp organization: Shizuoka University – sequence: 2 givenname: Kohsuke surname: Mori fullname: Mori, Kohsuke organization: Osaka University – sequence: 3 givenname: Yasutaka surname: Kuwahara fullname: Kuwahara, Yasutaka organization: Osaka University – sequence: 4 givenname: Maela surname: Manzoli fullname: Manzoli, Maela organization: University of Torino – sequence: 5 givenname: Sara surname: Morandi fullname: Morandi, Sara organization: University of Torino – sequence: 6 givenname: Choji surname: Fukuhara fullname: Fukuhara, Choji organization: Shizuoka University – sequence: 7 givenname: Robert surname: Raja fullname: Raja, Robert email: r.raja@soton.ac.uk organization: University of Southampton – sequence: 8 givenname: Hiromi surname: Yamashita fullname: Yamashita, Hiromi email: verma.priyanka@shizuoka.ac.jp organization: Osaka University |
BookMark | eNqFkE1PwkAQhjcGEwG9et7EM7gfLNseSSNiQpQDxsRLMyzTsFi6uNuK9eRP8Df6SyzB4NHTvMm8zyTzdEircAUScslZnzMmro0pTV8wIRjnkTghbR4NdU9Gcdw65oidkU4Ia8aGsdSqTd5HG1sgHVeFKa0rILcfsA_0yZYrW9CJRQ_erKyBPK-_P79mzrsq0Gd0Zb1tQA8b3Dn_QjPn6SyHsHGFNTSBEvI62EDdGzaL5aii91C4LfjSmhzDOTnNIA948Tu75HF8M08mvenD7V0ymvaMjKTo4RAHioHmQoMaLJZcDkEtQHClYh0ZyVWGy2iQiUxmUkshDC4aAaABl6g0k11ydbi79e61wlCma1f55tGQCq11HMdK8qbVP7SMdyF4zNKttxvwdcpZureb7u2mR7sNEB-Anc2x_qedJsk8-WN_AFNkg2I |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_135880 crossref_primary_10_1002_cctc_202300643 crossref_primary_10_1021_acs_energyfuels_3c02341 |
Cites_doi | 10.1021/acscatal.5b01173 10.1021/ja310501y 10.1021/nn900242v 10.1038/s41929-018-0138-x 10.1021/jz501201p 10.1098/rspa.2016.0095 10.1002/chem.201604712 10.1038/s41598-019-56847-4 10.1039/C6CS00829A 10.1016/j.jcat.2021.03.020 10.1021/acs.organomet.2c00197 10.1016/j.apcatb.2015.06.020 10.1016/j.apcatb.2021.120140 10.1039/C4GC00588K 10.1021/acs.jpclett.9b00351 10.1021/acs.langmuir.0c00812 10.1021/cr00039a007 10.1039/C5TA04818D 10.1039/C7NR01950E 10.1021/jo040147z 10.1038/s41467-019-12018-7 10.1021/nl070648a 10.1002/chem.201501361 10.1016/j.apcatb.2017.05.017 10.1088/1742-6596/430/1/012052 10.1039/D0MA00761G 10.1039/C5CY01190F 10.1016/S0020-1693(03)00031-8 10.1246/bcsj.20180244 10.1002/anie.201301096 10.1021/acs.accounts.1c00093 10.1002/aoc.5648 10.1016/j.jhazmat.2019.02.027 10.1016/j.jcis.2020.11.033 10.1039/C5NR03841C 10.1039/C6TA01664B 10.1039/C7CC00864C 10.1039/C3GC42088D 10.1063/5.0023623 10.1007/s12039-017-1364-5 10.1021/acscatal.5b01595 10.3390/nano11020350 10.1039/C9CY00798A 10.1039/C7CY00321H 10.1002/ange.201301096 10.1021/jacs.7b08903 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cctc.202201182 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cctc_202201182 CCTC202201182 |
Genre | article |
GrantInformation_xml | – fundername: JSPS funderid: P21042 – fundername: Royal Society for Newton International Fellowship funderid: NIF\R1\180185 – fundername: JSPS (Japan Society for the Promotion of Science) funderid: 19K15311; 22K21326 – fundername: Cooperative Research Program of the “Network Joint Research Center for Materials and Devices” funderid: 20201097; 20211069 – fundername: Elements Strategy Initiative of MEXT funderid: JPMEXTP0112101003 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3832-e6e450a7127a54bd136a5ba2155978c315fed84f2f3f37322ceb201a7aede5703 |
ISSN | 1867-3880 |
IngestDate | Thu Oct 10 20:29:45 EDT 2024 Fri Aug 23 03:42:54 EDT 2024 Sat Aug 24 01:01:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3832-e6e450a7127a54bd136a5ba2155978c315fed84f2f3f37322ceb201a7aede5703 |
ORCID | 0000-0002-2616-0489 |
PQID | 2777999531 |
PQPubID | 986343 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2777999531 crossref_primary_10_1002_cctc_202201182 wiley_primary_10_1002_cctc_202201182_CCTC202201182 |
PublicationCentury | 2000 |
PublicationDate | February 20, 2023 |
PublicationDateYYYYMMDD | 2023-02-20 |
PublicationDate_xml | – month: 02 year: 2023 text: February 20, 2023 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 1995; 95 2019; 9 2019; 92 2015; 5 2021; 2 2015; 3 2019; 10 2017; 27 2021; 587 2018; 223 2004; 69 2017; 46 2017; 23 2019; 369 2020; 128 2020; 36 2022; 41 2020; 34 2004 2020; 10 2016; 180 2015; 7 2017; 9 2013 2013; 52 125 2017; 139 2016; 4 2016; 6 2017; 53 2014; 5 2021; 54 2003; 349 2021; 11 2018; 1 2015; 21 2014; 16 2013; 430 2021; 291 2007; 7 2013; 135 2021; 397 2009; 3 2016; 472 2010; 96 2017; 129 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 Gianotti E. (e_1_2_8_27_1) 2004 e_1_2_8_43_1 Socrates G. (e_1_2_8_25_1) 2004 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 Zhu X. (e_1_2_8_45_1) 2017; 27 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 Liu F. (e_1_2_8_29_1) 2010; 96 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 397 start-page: 205 year: 2021 end-page: 211 publication-title: J. Catal. – volume: 36 start-page: 7844 year: 2020 end-page: 7849 publication-title: Langmuir – volume: 7 start-page: 1947 year: 2007 end-page: 1952 publication-title: Nano Lett. – volume: 23 start-page: 3616 year: 2017 end-page: 3622 publication-title: Chem. Eur. J. – volume: 5 start-page: 6587 year: 2015 end-page: 6593 publication-title: ACS Catal. – volume: 7 start-page: 12435 year: 2015 end-page: 12444 publication-title: Nanoscale – volume: 180 start-page: 53 year: 2016 end-page: 64 publication-title: Appl. Catal. B – volume: 5 start-page: 6481 year: 2015 end-page: 6488 publication-title: ACS Catal. – volume: 95 start-page: 2457 year: 1995 end-page: 2483 publication-title: Chem. Rev. – volume: 11 start-page: 350 year: 2021 publication-title: Nanomaterials – volume: 9 start-page: 6026 year: 2017 end-page: 6032 publication-title: Nanoscale – volume: 135 start-page: 5588 year: 2013 end-page: 5601 publication-title: J. Am. Chem. Soc. – volume: 472 year: 2016 publication-title: Proc. R. Soc. A – year: 2004 – volume: 10 start-page: 4094 year: 2019 publication-title: Nat. Commun. – volume: 349 start-page: 259 year: 2003 end-page: 264 publication-title: Inorg. Chim. Acta – volume: 10 start-page: 1 year: 2020 end-page: 14 publication-title: Sci. Rep. – start-page: 1498 year: 2004 end-page: 1504 – volume: 54 start-page: 2477 year: 2021 end-page: 2487 publication-title: Acc. Chem. Res. – volume: 2 start-page: 880 year: 2021 end-page: 906 publication-title: Mater Adv – volume: 7 start-page: 2551 year: 2017 end-page: 2558 publication-title: Catal. Sci. Technol. – volume: 16 start-page: 4272 year: 2014 end-page: 4285 publication-title: Green Chem. – volume: 41 start-page: 1269 year: 2022 end-page: 1274 publication-title: Organometallics – volume: 3 start-page: 18889 year: 2015 end-page: 18897 publication-title: J. Mater. Chem. A – volume: 129 start-page: 1661 year: 2017 end-page: 1669 publication-title: J. Chem. Sci. – volume: 52 125 start-page: 6063 6179 year: 2013 2013 end-page: 6067 6183 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 3127 year: 2009 end-page: 3137 publication-title: ACS Nano – volume: 291 year: 2021 publication-title: Appl. Catal. B – volume: 430 year: 2013 publication-title: J. Phys. Conf. Ser. – volume: 4 start-page: 10142 year: 2016 end-page: 10150 publication-title: J. Mater. Chem. A – volume: 46 start-page: 481 year: 2017 end-page: 558 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 4677 year: 2017 end-page: 4680 publication-title: Chem. Commun. – volume: 9 start-page: 3820 year: 2019 end-page: 3827 publication-title: Catal. Sci. Technol. – volume: 139 start-page: 17964 year: 2017 end-page: 17972 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 656 year: 2018 end-page: 665 publication-title: Nat. Catal. – volume: 69 start-page: 4330 year: 2004 end-page: 4335 publication-title: J. Org. Chem. – volume: 587 start-page: 736 year: 2021 end-page: 742 publication-title: J. Colloid Interface Sci. – volume: 92 start-page: 19 year: 2019 end-page: 29 publication-title: Bull. Chem. Soc. Jpn. – volume: 6 start-page: 869 year: 2016 end-page: 874 publication-title: Catal. Sci. Technol. – volume: 10 start-page: 1286 year: 2019 end-page: 1291 publication-title: J. Phys. Chem. Lett. – volume: 96 start-page: 2008 year: 2010 end-page: 2011 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 1198 year: 2014 end-page: 1201 publication-title: Green Chem. – volume: 34 start-page: 1 year: 2020 end-page: 11 publication-title: Appl. Organomet. Chem. – volume: 369 start-page: 96 year: 2019 end-page: 107 publication-title: J. Hazard. Mater. – volume: 5 start-page: 2594 year: 2014 end-page: 2600 publication-title: J. Phys. Chem. Lett. – volume: 223 start-page: 10 year: 2018 end-page: 15 publication-title: Appl. Catal. B – volume: 27 start-page: 1 year: 2017 end-page: 15 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 11885 year: 2015 end-page: 11893 publication-title: Chem. Eur. J. – volume: 128 year: 2020 publication-title: J. Appl. Phys. – ident: e_1_2_8_20_1 doi: 10.1021/acscatal.5b01173 – ident: e_1_2_8_21_1 doi: 10.1021/ja310501y – ident: e_1_2_8_30_1 doi: 10.1021/nn900242v – ident: e_1_2_8_4_1 doi: 10.1038/s41929-018-0138-x – ident: e_1_2_8_2_1 doi: 10.1021/jz501201p – volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts year: 2004 ident: e_1_2_8_25_1 contributor: fullname: Socrates G. – volume: 96 start-page: 2008 year: 2010 ident: e_1_2_8_29_1 publication-title: Appl. Phys. Lett. contributor: fullname: Liu F. – ident: e_1_2_8_14_1 doi: 10.1098/rspa.2016.0095 – ident: e_1_2_8_11_1 doi: 10.1002/chem.201604712 – ident: e_1_2_8_37_1 doi: 10.1038/s41598-019-56847-4 – ident: e_1_2_8_16_1 doi: 10.1039/C6CS00829A – ident: e_1_2_8_23_1 doi: 10.1016/j.jcat.2021.03.020 – ident: e_1_2_8_36_1 doi: 10.1021/acs.organomet.2c00197 – ident: e_1_2_8_28_1 doi: 10.1016/j.apcatb.2015.06.020 – ident: e_1_2_8_32_1 doi: 10.1016/j.apcatb.2021.120140 – ident: e_1_2_8_46_1 doi: 10.1039/C4GC00588K – ident: e_1_2_8_22_1 doi: 10.1021/acs.jpclett.9b00351 – ident: e_1_2_8_19_1 doi: 10.1039/C4GC00588K – ident: e_1_2_8_41_1 doi: 10.1021/acs.langmuir.0c00812 – ident: e_1_2_8_34_1 doi: 10.1021/cr00039a007 – ident: e_1_2_8_8_1 doi: 10.1039/C5TA04818D – ident: e_1_2_8_42_1 doi: 10.1039/C7NR01950E – volume: 27 start-page: 1 year: 2017 ident: e_1_2_8_45_1 publication-title: Adv. Funct. Mater. contributor: fullname: Zhu X. – ident: e_1_2_8_35_1 doi: 10.1021/jo040147z – ident: e_1_2_8_38_1 doi: 10.1038/s41467-019-12018-7 – ident: e_1_2_8_3_1 doi: 10.1021/nl070648a – ident: e_1_2_8_7_1 doi: 10.1002/chem.201501361 – ident: e_1_2_8_12_1 doi: 10.1016/j.apcatb.2017.05.017 – ident: e_1_2_8_31_1 doi: 10.1088/1742-6596/430/1/012052 – ident: e_1_2_8_5_1 doi: 10.1039/D0MA00761G – ident: e_1_2_8_33_1 doi: 10.1039/C5CY01190F – ident: e_1_2_8_26_1 doi: 10.1016/S0020-1693(03)00031-8 – ident: e_1_2_8_1_1 doi: 10.1246/bcsj.20180244 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201301096 – ident: e_1_2_8_6_1 doi: 10.1021/acs.accounts.1c00093 – ident: e_1_2_8_24_1 doi: 10.1002/aoc.5648 – ident: e_1_2_8_40_1 doi: 10.1016/j.jhazmat.2019.02.027 – ident: e_1_2_8_50_1 doi: 10.1016/j.jcis.2020.11.033 – ident: e_1_2_8_48_1 doi: 10.1039/C5NR03841C – ident: e_1_2_8_9_1 doi: 10.1039/C6TA01664B – ident: e_1_2_8_39_1 doi: 10.1039/C7CC00864C – ident: e_1_2_8_49_1 doi: 10.1039/C3GC42088D – ident: e_1_2_8_47_1 doi: 10.1063/5.0023623 – start-page: 1498 volume-title: Studies in Surface Science and Catalysis, Vol. 154 year: 2004 ident: e_1_2_8_27_1 contributor: fullname: Gianotti E. – ident: e_1_2_8_13_1 doi: 10.1007/s12039-017-1364-5 – ident: e_1_2_8_15_1 doi: 10.1021/acscatal.5b01595 – ident: e_1_2_8_17_1 doi: 10.3390/nano11020350 – ident: e_1_2_8_43_1 doi: 10.1039/C9CY00798A – ident: e_1_2_8_10_1 doi: 10.1039/C7CY00321H – ident: e_1_2_8_18_2 doi: 10.1002/ange.201301096 – ident: e_1_2_8_44_1 doi: 10.1021/jacs.7b08903 |
SSID | ssj0069375 |
Score | 2.42724 |
Snippet | Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this report, the... Abstract Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions over the past decade. In this... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | amine functionalization Amines Bimetals Catalysis Catalysts Chemical reactions Gold hierarchical porosity Light irradiation Nanoparticles Nucleation Palladium plasmonic catalysis Plasmonics Reaction products Selectivity Thermal stability visible-light irradiation |
Title | Amine Functionalization Within Hierarchically‐Porous Zeotype Framework for Plasmonic Catalysis over PdAu Nanoparticles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202201182 https://www.proquest.com/docview/2777999531 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdgE3E7-iMJAvkLhAgdRx7HDZBaqJqagXHZq4iRzH0aZtDWoTDbjiEXgGHo0n4Rw78RIN8bObtHLjVD3n8_mO3fNDyLMkBiIwmgc6LHXAzSQJciNYoPKJiGUkDLPp0fP3Yv-QvzuKj0ajH72opabOX-qvv80ruY5WYQz0ilmy_6FZ_1AYgPegX7iChuH6TzqenqOPOANqcid6bU4lLPX6GGtYnWB2sW12gg2lu7CGRbXGuNePprLnr7MuPMtGHC7Amz63XXFSPNhx9UpAMC8WxbRBWwyb7DaWru_XYt0BmIAvnQo_oM23Tur65ItanXr7P69cdvtBdbxpTj2wDpoLhdWjLSmoTVOr3hTwYCuXyD1X5kz1zypYZHO_w555TcAsY_kZxz79MdcmydvkuIc93mNnz11XTL8rJau1LUzJ0K9xXY2GNbb9nfGf77UMn6bL1H9-g2wzMGZgRbene2_2Zh3fC3DwMFDW_7auNGjIXg2_Yej6XO5n-rsi69Ysb5Oddj9Cp06nd8jIrO6Sm2nXBvAe-WxBRq-AjDqQ0SHIfn777uBFW3hRDy8K8KIeXtTDiyK8KMKLDuB1nxzO3i7T_aBt1xHoCHghMMLwOFRywqSKeV5MIqHiXDH841smOprEpSkSXrIyKiMJRKJNDoJRUpnCYCG4B2RrVa3MQ0K14JLnQoXYjoiXhYo0U4XIXycCKUePyfNOktknV5Ulc_W3WYYyz7zMx2S3E3TWrtxNxqSUsDEC-hkTZoX_l6dkAyQ8us6kx-TW5YrYJVv1ujFPwJ-t86ctoH4BK8ieKQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amine+Functionalization+Within+Hierarchically%E2%80%90Porous+Zeotype+Framework+for+Plasmonic+Catalysis+over+PdAu+Nanoparticles&rft.jtitle=ChemCatChem&rft.au=Verma%2C+Priyanka&rft.au=Mori%2C+Kohsuke&rft.au=Kuwahara%2C+Yasutaka&rft.au=Manzoli%2C+Maela&rft.date=2023-02-20&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=15&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcctc.202201182&rft.externalDBID=10.1002%252Fcctc.202201182&rft.externalDocID=CCTC202201182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |