On‐Chip Plasmonic Vortex Interferometers
Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in th...
Saved in:
Published in | Laser & photonics reviews Vol. 16; no. 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike.
A new form of optical interferometers is realized by customizing the plasmonic vortex generation from two spin channels. Based on the interference among different plasmonic vortices, the light beam information including polarization state, spin and orbital angular momentum can be broken down at spin‐basis and captured in an ultra‐compact interferogram, exhibiting versatility and superior performance. |
---|---|
AbstractList | Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike.
A new form of optical interferometers is realized by customizing the plasmonic vortex generation from two spin channels. Based on the interference among different plasmonic vortices, the light beam information including polarization state, spin and orbital angular momentum can be broken down at spin‐basis and captured in an ultra‐compact interferogram, exhibiting versatility and superior performance. Since the late 19 th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike. Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike. |
Author | Lang, Yuanhao Xu, Yuehong Zhang, Weili Zhang, Xueqian Chen, Xieyu Jiang, Xiaohan Alù, Andrea Kang, Ming Han, Jiaguang Han, Jie Xu, Quan |
Author_xml | – sequence: 1 givenname: Yuanhao surname: Lang fullname: Lang, Yuanhao organization: Tianjin University – sequence: 2 givenname: Quan orcidid: 0000-0001-9246-3253 surname: Xu fullname: Xu, Quan email: quanxu@tju.edu.cn organization: Tianjin University – sequence: 3 givenname: Xieyu surname: Chen fullname: Chen, Xieyu organization: Tianjin University – sequence: 4 givenname: Jie surname: Han fullname: Han, Jie organization: Tianjin University – sequence: 5 givenname: Xiaohan surname: Jiang fullname: Jiang, Xiaohan organization: Tianjin University – sequence: 6 givenname: Yuehong surname: Xu fullname: Xu, Yuehong organization: Tianjin University – sequence: 7 givenname: Ming surname: Kang fullname: Kang, Ming organization: Tianjin Normal University – sequence: 8 givenname: Xueqian surname: Zhang fullname: Zhang, Xueqian organization: Tianjin University – sequence: 9 givenname: Andrea surname: Alù fullname: Alù, Andrea organization: City University of New York – sequence: 10 givenname: Jiaguang orcidid: 0000-0001-9425-9635 surname: Han fullname: Han, Jiaguang email: jiaghan@tju.edu.cn organization: Guilin University of Electronic Technology – sequence: 11 givenname: Weili orcidid: 0000-0002-8591-0200 surname: Zhang fullname: Zhang, Weili email: weili.zhang@okstate.edu organization: Oklahoma State University |
BookMark | eNqFkM9KAzEQxoNUsK1ePRe8CVuzk3Q3OUrRWii0iHoNaf7glm2yJlu0Nx_BZ_RJTKlUEMS5zDfw_WaGr4c6zjuD0HmOhznGcFU3PgwBA6SBwhHq5qwgGWOcdw6a4RPUi3GF8ShV0UWXc_f5_jF-rprBopZx7V2lBk8-tOZtMHWtCdYEvzZJxFN0bGUdzdl376PH25uH8V02m0-m4-tZpggjkGmrOBjg5aiwmhY6_YZztcxLJq2iykqiFSstGKNhSSlIjRXF2hBuOFNLTfroYr-3Cf5lY2IrVn4TXDopoARSEAolSS66d6ngYwzGClW1sq28a4OsapFjsUtF7FIRh1QSNvyFNaFay7D9G-B74LWqzfYft5gt5vc_7BfGcHiN |
CitedBy_id | crossref_primary_10_29026_oea_2025_240250 crossref_primary_10_12677_MOS_2023_123262 crossref_primary_10_1364_OME_552046 crossref_primary_10_1364_AO_545039 crossref_primary_10_1088_1367_2630_ad5df0 crossref_primary_10_1364_OE_502028 crossref_primary_10_29026_oea_2023_220133 crossref_primary_10_1016_j_diamond_2023_110210 crossref_primary_10_1364_PRJ_519701 crossref_primary_10_3788_PI_2023_R02 crossref_primary_10_1021_acsnano_4c05724 crossref_primary_10_1364_PRJ_537944 crossref_primary_10_1002_adom_202301860 crossref_primary_10_1364_OE_507614 crossref_primary_10_3788_LOP231273 crossref_primary_10_1063_5_0144421 crossref_primary_10_1364_PRJ_527697 crossref_primary_10_3390_photonics12020125 crossref_primary_10_1002_lpor_202300428 crossref_primary_10_1063_5_0220446 crossref_primary_10_3788_LOP231640 crossref_primary_10_1364_OE_509574 crossref_primary_10_1002_lpor_202401281 |
Cites_doi | 10.1515/nanoph-2016-0121 10.1038/ncomms7407 10.1126/science.1233746 10.1038/s41567-019-0487-7 10.1364/AO.16.003200 10.1021/acs.nanolett.0c02699 10.1126/science.aaj1699 10.1364/OPTICA.2.000716 10.1364/PRJ.420665 10.1021/nl203325s 10.1002/lpor.202000581 10.1038/nphoton.2015.201 10.1021/acs.nanolett.0c04948 10.1002/lpor.201600212 10.1038/nphoton.2016.162 10.1021/acs.nanolett.9b01343 10.1038/nnano.2013.150 10.1002/adom.202000854 10.1126/sciadv.abg5571 10.1017/CBO9781139644181 10.1063/5.0027950 10.1002/adma.201502008 10.1364/OPTICA.6.001190 10.1038/s41377-019-0194-2 10.1080/713820903 10.1038/s41377-021-00497-7 10.1126/science.aaf1112 10.1002/lpor.202000180 10.1021/acs.nanolett.1c00625 10.1038/s41586-018-0028-z 10.1021/nl903380j 10.1002/lpor.201900182 10.1364/OPTICA.3.000042 10.1021/nl403608a 10.1038/s41566-021-00780-4 10.1063/1.4926967 10.1017/CBO9780511794193 10.1021/acsphotonics.9b01437 10.1109/LPT.2020.3006231 10.1364/OE.17.017483 10.1103/PhysRevApplied.5.064015 10.1038/s41467-017-02434-y 10.1038/s41377-020-0330-z 10.1039/C7NR00124J 10.1515/nanoph-2020-0112 10.1103/PhysRevLett.116.061102 10.1021/nl2004835 10.1002/lpor.201700297 10.1038/s41377-021-00474-0 10.1515/nanoph-2019-0479 10.1002/lpor.201700331 10.1002/lpor.202100011 10.1364/OPTICA.2.001045 10.1021/nl100340w 10.1364/OE.27.019119 10.1038/s41467-018-06952-1 10.1038/s41467-021-22462-z 10.1002/adom.201801328 10.1021/acsphotonics.9b00551 10.1103/PhysRevLett.101.043903 10.1126/science.aao5392 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202200242 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202200242 LPOR202200242 |
Genre | article |
GrantInformation_xml | – fundername: Simons Foundation – fundername: Air Force Office of Scientific Research – fundername: National Natural Science Foundation of China funderid: 62005193; 62025504; 62075158; 61935015; 61735012 – fundername: Tianjin Municipal Fund for Distinguished Young Scholars funderid: 18JCJQJC45600 – fundername: National Science Foundation funderid: 2114013 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3832-dfc92e29756fd46d10001cb178afc4cfa3dc87f2eed2b442ad0c40de39e98cbd3 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:26:53 EDT 2025 Tue Jul 01 04:32:38 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Wed Jan 22 16:24:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3832-dfc92e29756fd46d10001cb178afc4cfa3dc87f2eed2b442ad0c40de39e98cbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9246-3253 0000-0002-8591-0200 0000-0001-9425-9635 |
PQID | 2723634273 |
PQPubID | 1016358 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2723634273 crossref_citationtrail_10_1002_lpor_202200242 crossref_primary_10_1002_lpor_202200242 wiley_primary_10_1002_lpor_202200242_LPOR202200242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2010; 10 2021; 21 2020; 20 2019; 13 2019; 15 2011; 11 2019; 19 2020; 14 2015; 107 2008; 101 2013; 8 2012; 12 2017; 355 2017; 9 2017; 358 2018; 7 2020; 8 2018; 9 1982; 29 2020; 9 2019; 27 2014; 14 2016; 352 2016; 116 2009; 17 2015; 2 2019; 8 2021; 9 2019; 7 2021; 7 2019; 9 2015; 6 2019; 6 2012 2016; 10 2006 2013; 340 2020; 32 2015; 9 1999 2016; 5 2021; 15 2021; 10 2015; 27 2021; 12 2016; 3 2018; 556 1977; 16 2017; 11 2020; 117 2018; 12 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Hariharan P. (e_1_2_11_1_1) 2006 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Spektor G. (e_1_2_11_19_1) 2019; 9 |
References_xml | – volume: 17 year: 2009 publication-title: Opt. Express – volume: 6 start-page: 215 year: 2017 publication-title: Nanophotonics – volume: 6 start-page: 6407 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 5571 year: 2021 publication-title: Sci. Adv. – volume: 6 start-page: 1840 year: 2019 publication-title: ACS Photonics – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 14 start-page: 547 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 796 year: 2015 publication-title: Nat. Photonics – volume: 6 start-page: 1190 year: 2019 publication-title: Optica – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 358 start-page: 896 year: 2017 publication-title: Science – volume: 355 start-page: 1187 year: 2017 publication-title: Science – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 32 start-page: 944 year: 2020 publication-title: IEEE Photonics Technol. Lett. – volume: 9 start-page: 3393 year: 2020 publication-title: Nanophotonics – volume: 9 start-page: 1003 year: 2020 publication-title: Nanophotonics – volume: 14 year: 2020 publication-title: Laser Photonics Rev. – volume: 7 start-page: 212 year: 2019 publication-title: ACS Photonics – volume: 352 start-page: 805 year: 2016 publication-title: Science – volume: 3 start-page: 42 year: 2016 publication-title: Optica – volume: 12 year: 2018 publication-title: Laser Photonics Rev. – volume: 12 start-page: 2230 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 4944 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 182 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 59 year: 2021 publication-title: Light: Sci. Appl. – volume: 5 year: 2016 publication-title: Phys. Rev. Appl. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 27 year: 2019 publication-title: Opt. Express – volume: 27 start-page: 7123 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 716 year: 2015 publication-title: Optica – volume: 9 start-page: 95 year: 2020 publication-title: Light: Sci. Appl. – volume: 20 start-page: 6774 year: 2020 publication-title: Nano Lett. – volume: 9 year: 2019 publication-title: Phys. Rev. X – volume: 10 start-page: 63 year: 2021 publication-title: Light: Sci. Appl. – volume: 12 start-page: 602 year: 2012 publication-title: Nano Lett. – volume: 15 start-page: 650 year: 2019 publication-title: Nat. Phys. – volume: 10 start-page: 529 year: 2010 publication-title: Nano Lett. – volume: 21 start-page: 3410 year: 2021 publication-title: Nano Lett. – volume: 16 start-page: 3200 year: 1977 publication-title: Appl. Opt. – year: 2012 – volume: 8 start-page: 719 year: 2013 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 2075 year: 2010 publication-title: Nano Lett. – volume: 340 start-page: 331 year: 2013 publication-title: Science – volume: 7 year: 2018 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 4413 year: 2018 publication-title: Nat. Commun. – volume: 29 start-page: 685 year: 1982 publication-title: Opt. Acta: Int. J. Opt. – volume: 2 start-page: 1045 year: 2015 publication-title: Optica – year: 2006 – volume: 19 start-page: 4010 year: 2019 publication-title: Nano Lett. – volume: 8 start-page: 90 year: 2019 publication-title: Light: Sci. Appl. – volume: 21 start-page: 3941 year: 2021 publication-title: Nano Lett. – volume: 11 year: 2017 publication-title: Laser Photonics Rev. – volume: 10 start-page: 681 year: 2016 publication-title: Nat. Photonics – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 556 start-page: 349 year: 2018 publication-title: Nature – volume: 15 start-page: 253 year: 2021 publication-title: Nat. Photonics – volume: 11 start-page: 2038 year: 2011 publication-title: Nano Lett. – volume: 9 start-page: 1019 year: 2021 publication-title: Photonics Res. – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – year: 1999 – ident: e_1_2_11_31_1 doi: 10.1515/nanoph-2016-0121 – ident: e_1_2_11_5_1 doi: 10.1038/ncomms7407 – ident: e_1_2_11_24_1 doi: 10.1126/science.1233746 – ident: e_1_2_11_11_1 doi: 10.1038/s41567-019-0487-7 – ident: e_1_2_11_38_1 doi: 10.1364/AO.16.003200 – ident: e_1_2_11_15_1 doi: 10.1021/acs.nanolett.0c02699 – ident: e_1_2_11_18_1 doi: 10.1126/science.aaj1699 – ident: e_1_2_11_41_1 doi: 10.1364/OPTICA.2.000716 – ident: e_1_2_11_37_1 doi: 10.1364/PRJ.420665 – ident: e_1_2_11_7_1 doi: 10.1021/nl203325s – ident: e_1_2_11_61_1 doi: 10.1002/lpor.202000581 – ident: e_1_2_11_30_1 doi: 10.1038/nphoton.2015.201 – ident: e_1_2_11_58_1 doi: 10.1021/acs.nanolett.0c04948 – ident: e_1_2_11_33_1 doi: 10.1002/lpor.201600212 – ident: e_1_2_11_8_1 doi: 10.1038/nphoton.2016.162 – ident: e_1_2_11_12_1 doi: 10.1021/acs.nanolett.9b01343 – ident: e_1_2_11_6_1 doi: 10.1038/nnano.2013.150 – ident: e_1_2_11_59_1 doi: 10.1002/adom.202000854 – ident: e_1_2_11_21_1 doi: 10.1126/sciadv.abg5571 – ident: e_1_2_11_2_1 doi: 10.1017/CBO9781139644181 – ident: e_1_2_11_26_1 doi: 10.1063/5.0027950 – ident: e_1_2_11_32_1 doi: 10.1002/adma.201502008 – ident: e_1_2_11_44_1 doi: 10.1364/OPTICA.6.001190 – ident: e_1_2_11_22_1 doi: 10.1038/s41377-019-0194-2 – ident: e_1_2_11_39_1 doi: 10.1080/713820903 – ident: e_1_2_11_46_1 doi: 10.1038/s41377-021-00497-7 – ident: e_1_2_11_13_1 doi: 10.1126/science.aaf1112 – ident: e_1_2_11_62_1 doi: 10.1002/lpor.202000180 – ident: e_1_2_11_25_1 doi: 10.1021/acs.nanolett.1c00625 – ident: e_1_2_11_60_1 doi: 10.1038/s41586-018-0028-z – ident: e_1_2_11_16_1 doi: 10.1021/nl903380j – ident: e_1_2_11_36_1 doi: 10.1002/lpor.201900182 – ident: e_1_2_11_40_1 doi: 10.1364/OPTICA.3.000042 – ident: e_1_2_11_20_1 doi: 10.1021/nl403608a – ident: e_1_2_11_53_1 doi: 10.1038/s41566-021-00780-4 – ident: e_1_2_11_34_1 doi: 10.1063/1.4926967 – ident: e_1_2_11_4_1 doi: 10.1017/CBO9780511794193 – ident: e_1_2_11_48_1 doi: 10.1021/acsphotonics.9b01437 – volume-title: Basics of Interferometry year: 2006 ident: e_1_2_11_1_1 – ident: e_1_2_11_51_1 doi: 10.1109/LPT.2020.3006231 – ident: e_1_2_11_35_1 doi: 10.1364/OE.17.017483 – ident: e_1_2_11_42_1 doi: 10.1103/PhysRevApplied.5.064015 – ident: e_1_2_11_63_1 doi: 10.1038/s41467-017-02434-y – ident: e_1_2_11_47_1 doi: 10.1038/s41377-020-0330-z – ident: e_1_2_11_27_1 doi: 10.1039/C7NR00124J – ident: e_1_2_11_55_1 doi: 10.1515/nanoph-2020-0112 – ident: e_1_2_11_3_1 doi: 10.1103/PhysRevLett.116.061102 – ident: e_1_2_11_10_1 doi: 10.1021/nl2004835 – ident: e_1_2_11_43_1 doi: 10.1002/lpor.201700297 – ident: e_1_2_11_23_1 doi: 10.1038/s41377-021-00474-0 – ident: e_1_2_11_45_1 doi: 10.1515/nanoph-2019-0479 – ident: e_1_2_11_49_1 doi: 10.1002/lpor.201700331 – ident: e_1_2_11_57_1 doi: 10.1002/lpor.202100011 – ident: e_1_2_11_14_1 doi: 10.1364/OPTICA.2.001045 – ident: e_1_2_11_17_1 doi: 10.1021/nl100340w – ident: e_1_2_11_29_1 doi: 10.1364/OE.27.019119 – ident: e_1_2_11_50_1 doi: 10.1038/s41467-018-06952-1 – ident: e_1_2_11_56_1 doi: 10.1038/s41467-021-22462-z – ident: e_1_2_11_28_1 doi: 10.1002/adom.201801328 – ident: e_1_2_11_52_1 doi: 10.1021/acsphotonics.9b00551 – ident: e_1_2_11_9_1 doi: 10.1103/PhysRevLett.101.043903 – volume: 9 start-page: 021031 year: 2019 ident: e_1_2_11_19_1 publication-title: Phys. Rev. X – ident: e_1_2_11_54_1 doi: 10.1126/science.aao5392 |
SSID | ssj0055556 |
Score | 2.4628491 |
Snippet | Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices... Since the late 19 th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Angular momentum Interference Interferometers on‐chip interferometers optical spin‐orbit conversion plasmonic vortices Plasmonics polarimeters Polarization (spin alignment) Vortices |
Title | On‐Chip Plasmonic Vortex Interferometers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200242 https://www.proquest.com/docview/2723634273 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SkxfrE6tV9iAIQtrdJPs6SrEUUVuKld6WPFGsa3FbEE_-BH-jv8Qk-2griKB7ykKy7E4ymW9mZ74AcBIpwjztVMPYJyEkHqOQYUkhDlSAqPSlb38XXN8EvRG5HPvjpSr-nB-iCrgZzbD7tVFwyrL2gjR0ovGp9u8QsmZGb8ImYcugomHFH-Xry5YXRQGG2tVzS9ZGF7VXh69apQXUXAas1uJ064CW75onmjy25jPW4m_faBz_8zGbYKOAo855vn62wJpMt0G9gKZOofjZDjjrp5_vH537h6kz0Hj7yRDqOncmUffVsUFFJQ3vgaHq3AWj7sVtpweLYxYg1-4pgkLxGElTYRsoQQJhIv4eZ14YUcUJVxQLHoUKaWuKGCGICpcTV0gcyzjiTOA9UEufU7kPHBnGCDEqiUlYJKFizIs58UOPaKAifNYAsBRzwgsOcnMUxiTJ2ZNRYgSRVIJogNOq_zRn3_ixZ7OctaTQwixBIcIBJhqhNQCy4v_lKcnVoD-s7g7-MugQrJt2nu_XBLXZy1weadwyY8d2bX4ByYvk1w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvRifWK1ag6CIGxtdjevo1RL1b4orXgL2c0uijUW24J48if4G_0l7uZVK4iguSXshuxkJ_PNZOYbgCNXUmYqpxp5FnUQNVmAGBEBIra0cSAsYcW_C1ptuzGgV7dWlk2oa2ESfog84KY1I_5eawXXAenTGWvoUAFU5eBhHNuZRVjSbb01ff55L2eQstQRFxi5NkHK2atmvI1VfDo_f94uzcDmV8ga25x6EVj2tEmqyUNlOmEV_vqNyPFfy1mD1RSRGmfJFlqHBRFtQDFFp0aq--NNOOlEH2_vtbv7kdFVkPtRc-oaNzpX98WI44pSaOoDzda5BYP6Rb_WQGmnBcSVh4pRKLmHhS6ytWVI7VAH_U3OTMcNJKdcBiTkriOxMqiYUYqDsMppNRTEE57LWUi2oRA9RWIHDOF4GLNAUJ2zSB3JmOlxajkmVVgltFgJUCZnn6c05LobxtBPCJSxrwXh54IowXE-fpQQcPw4spy9Nj9VxLGPHUxsQhVIKwGO5f_LXfxmt9PLz3b_MukQlhv9VtNvXrav92BFX0_S_8pQmDxPxb6CMRN2EG_UTyhG6PM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnixPrFaNQdBELZNNpvXUVpL1dqWYqW3kH2hWGuxLYgnf4K_0V_ibpKmrSCC5pawG7KTncw3k5lvAE58SailnGoUOMRDxKIRoraIkO1KF0fCEU78u-Cm6da75Krn9Oaq-BN-iCzgpjUj_l5rBR9yWZ6RhvYVPlX-HcaxmVmGFeKagW7eUO1kBFKOOuL6It-1kfL1zClto4nLi_MXzdIMa84j1tjk1PIQTR82yTR5LE3GtMTevvE4_mc1G7Ce4lHjPNlAm7AkBluQT7GpkWr-aBvOWoPP94_K_cPQaCvA_aQZdY07nan7asRRRSk08YHm6tyBbu3itlJHaZ8FxJR_ihGXLMBCl9i6khOX65C_xajl-ZFkhMnI5sz3JFbmFFNCcMRNRkwu7EAEPqPc3oXc4Hkg9sAQXoAxjQTRGYvEk5RaASOOZxGFVLhDC4CmYg5ZSkKue2H0w4Q-GYdaEGEmiAKcZuOHCf3GjyOL07cWpmo4CrGHbdcmCqIVAMfi_-UuYaPd6mRn-3-ZdAyr7WotbFw2rw9gTV9Ocv-KkBu_TMShwjBjehRv0y98o-ei |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On%E2%80%90Chip+Plasmonic+Vortex+Interferometers&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Lang%2C+Yuanhao&rft.au=Xu%2C+Quan&rft.au=Chen%2C+Xieyu&rft.au=Han%2C+Jie&rft.date=2022-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.202200242&rft.externalDBID=10.1002%252Flpor.202200242&rft.externalDocID=LPOR202200242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |