On‐Chip Plasmonic Vortex Interferometers

Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in th...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 16; no. 10
Main Authors Lang, Yuanhao, Xu, Quan, Chen, Xieyu, Han, Jie, Jiang, Xiaohan, Xu, Yuehong, Kang, Ming, Zhang, Xueqian, Alù, Andrea, Han, Jiaguang, Zhang, Weili
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike. A new form of optical interferometers is realized by customizing the plasmonic vortex generation from two spin channels. Based on the interference among different plasmonic vortices, the light beam information including polarization state, spin and orbital angular momentum can be broken down at spin‐basis and captured in an ultra‐compact interferogram, exhibiting versatility and superior performance.
AbstractList Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike. A new form of optical interferometers is realized by customizing the plasmonic vortex generation from two spin channels. Based on the interference among different plasmonic vortices, the light beam information including polarization state, spin and orbital angular momentum can be broken down at spin‐basis and captured in an ultra‐compact interferogram, exhibiting versatility and superior performance.
Since the late 19 th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike.
Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices that strongly confine the orbital angular momentum to surface have attracted considerable attention. However, current research interests in this area have focused on the mechanisms and dynamics of polarization‐dependent single plasmonic vortex generation and evolution, while the interference between different plasmonic vortices for practical applications has been unexplored. Here, a method for flexible on‐chip spin‐to‐orbital angular momentum conversion is introduced, resulting in exotic interferograms. Based on this method, a new form of interferometers that is realized by the interference between customized plasmonic vortices is demonstrated. Within wavelength‐scale dimension, the proposed plasmonic vortex interferometers exhibit superior performance to directly measure the polarization state, spin and orbital angular momentum of incident beams. The proposed interferometry is straightforward and robust, and can be expected to be applied to different scenarios, fueling fundamental advances and applications alike.
Author Lang, Yuanhao
Xu, Yuehong
Zhang, Weili
Zhang, Xueqian
Chen, Xieyu
Jiang, Xiaohan
Alù, Andrea
Kang, Ming
Han, Jiaguang
Han, Jie
Xu, Quan
Author_xml – sequence: 1
  givenname: Yuanhao
  surname: Lang
  fullname: Lang, Yuanhao
  organization: Tianjin University
– sequence: 2
  givenname: Quan
  orcidid: 0000-0001-9246-3253
  surname: Xu
  fullname: Xu, Quan
  email: quanxu@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Xieyu
  surname: Chen
  fullname: Chen, Xieyu
  organization: Tianjin University
– sequence: 4
  givenname: Jie
  surname: Han
  fullname: Han, Jie
  organization: Tianjin University
– sequence: 5
  givenname: Xiaohan
  surname: Jiang
  fullname: Jiang, Xiaohan
  organization: Tianjin University
– sequence: 6
  givenname: Yuehong
  surname: Xu
  fullname: Xu, Yuehong
  organization: Tianjin University
– sequence: 7
  givenname: Ming
  surname: Kang
  fullname: Kang, Ming
  organization: Tianjin Normal University
– sequence: 8
  givenname: Xueqian
  surname: Zhang
  fullname: Zhang, Xueqian
  organization: Tianjin University
– sequence: 9
  givenname: Andrea
  surname: Alù
  fullname: Alù, Andrea
  organization: City University of New York
– sequence: 10
  givenname: Jiaguang
  orcidid: 0000-0001-9425-9635
  surname: Han
  fullname: Han, Jiaguang
  email: jiaghan@tju.edu.cn
  organization: Guilin University of Electronic Technology
– sequence: 11
  givenname: Weili
  orcidid: 0000-0002-8591-0200
  surname: Zhang
  fullname: Zhang, Weili
  email: weili.zhang@okstate.edu
  organization: Oklahoma State University
BookMark eNqFkM9KAzEQxoNUsK1ePRe8CVuzk3Q3OUrRWii0iHoNaf7glm2yJlu0Nx_BZ_RJTKlUEMS5zDfw_WaGr4c6zjuD0HmOhznGcFU3PgwBA6SBwhHq5qwgGWOcdw6a4RPUi3GF8ShV0UWXc_f5_jF-rprBopZx7V2lBk8-tOZtMHWtCdYEvzZJxFN0bGUdzdl376PH25uH8V02m0-m4-tZpggjkGmrOBjg5aiwmhY6_YZztcxLJq2iykqiFSstGKNhSSlIjRXF2hBuOFNLTfroYr-3Cf5lY2IrVn4TXDopoARSEAolSS66d6ngYwzGClW1sq28a4OsapFjsUtF7FIRh1QSNvyFNaFay7D9G-B74LWqzfYft5gt5vc_7BfGcHiN
CitedBy_id crossref_primary_10_29026_oea_2025_240250
crossref_primary_10_12677_MOS_2023_123262
crossref_primary_10_1364_OME_552046
crossref_primary_10_1364_AO_545039
crossref_primary_10_1088_1367_2630_ad5df0
crossref_primary_10_1364_OE_502028
crossref_primary_10_29026_oea_2023_220133
crossref_primary_10_1016_j_diamond_2023_110210
crossref_primary_10_1364_PRJ_519701
crossref_primary_10_3788_PI_2023_R02
crossref_primary_10_1021_acsnano_4c05724
crossref_primary_10_1364_PRJ_537944
crossref_primary_10_1002_adom_202301860
crossref_primary_10_1364_OE_507614
crossref_primary_10_3788_LOP231273
crossref_primary_10_1063_5_0144421
crossref_primary_10_1364_PRJ_527697
crossref_primary_10_3390_photonics12020125
crossref_primary_10_1002_lpor_202300428
crossref_primary_10_1063_5_0220446
crossref_primary_10_3788_LOP231640
crossref_primary_10_1364_OE_509574
crossref_primary_10_1002_lpor_202401281
Cites_doi 10.1515/nanoph-2016-0121
10.1038/ncomms7407
10.1126/science.1233746
10.1038/s41567-019-0487-7
10.1364/AO.16.003200
10.1021/acs.nanolett.0c02699
10.1126/science.aaj1699
10.1364/OPTICA.2.000716
10.1364/PRJ.420665
10.1021/nl203325s
10.1002/lpor.202000581
10.1038/nphoton.2015.201
10.1021/acs.nanolett.0c04948
10.1002/lpor.201600212
10.1038/nphoton.2016.162
10.1021/acs.nanolett.9b01343
10.1038/nnano.2013.150
10.1002/adom.202000854
10.1126/sciadv.abg5571
10.1017/CBO9781139644181
10.1063/5.0027950
10.1002/adma.201502008
10.1364/OPTICA.6.001190
10.1038/s41377-019-0194-2
10.1080/713820903
10.1038/s41377-021-00497-7
10.1126/science.aaf1112
10.1002/lpor.202000180
10.1021/acs.nanolett.1c00625
10.1038/s41586-018-0028-z
10.1021/nl903380j
10.1002/lpor.201900182
10.1364/OPTICA.3.000042
10.1021/nl403608a
10.1038/s41566-021-00780-4
10.1063/1.4926967
10.1017/CBO9780511794193
10.1021/acsphotonics.9b01437
10.1109/LPT.2020.3006231
10.1364/OE.17.017483
10.1103/PhysRevApplied.5.064015
10.1038/s41467-017-02434-y
10.1038/s41377-020-0330-z
10.1039/C7NR00124J
10.1515/nanoph-2020-0112
10.1103/PhysRevLett.116.061102
10.1021/nl2004835
10.1002/lpor.201700297
10.1038/s41377-021-00474-0
10.1515/nanoph-2019-0479
10.1002/lpor.201700331
10.1002/lpor.202100011
10.1364/OPTICA.2.001045
10.1021/nl100340w
10.1364/OE.27.019119
10.1038/s41467-018-06952-1
10.1038/s41467-021-22462-z
10.1002/adom.201801328
10.1021/acsphotonics.9b00551
10.1103/PhysRevLett.101.043903
10.1126/science.aao5392
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202200242
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202200242
LPOR202200242
Genre article
GrantInformation_xml – fundername: Simons Foundation
– fundername: Air Force Office of Scientific Research
– fundername: National Natural Science Foundation of China
  funderid: 62005193; 62025504; 62075158; 61935015; 61735012
– fundername: Tianjin Municipal Fund for Distinguished Young Scholars
  funderid: 18JCJQJC45600
– fundername: National Science Foundation
  funderid: 2114013
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3832-dfc92e29756fd46d10001cb178afc4cfa3dc87f2eed2b442ad0c40de39e98cbd3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:26:53 EDT 2025
Tue Jul 01 04:32:38 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Wed Jan 22 16:24:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3832-dfc92e29756fd46d10001cb178afc4cfa3dc87f2eed2b442ad0c40de39e98cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9246-3253
0000-0002-8591-0200
0000-0001-9425-9635
PQID 2723634273
PQPubID 1016358
PageCount 9
ParticipantIDs proquest_journals_2723634273
crossref_citationtrail_10_1002_lpor_202200242
crossref_primary_10_1002_lpor_202200242
wiley_primary_10_1002_lpor_202200242_LPOR202200242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2010; 10
2021; 21
2020; 20
2019; 13
2019; 15
2011; 11
2019; 19
2020; 14
2015; 107
2008; 101
2013; 8
2012; 12
2017; 355
2017; 9
2017; 358
2018; 7
2020; 8
2018; 9
1982; 29
2020; 9
2019; 27
2014; 14
2016; 352
2016; 116
2009; 17
2015; 2
2019; 8
2021; 9
2019; 7
2021; 7
2019; 9
2015; 6
2019; 6
2012
2016; 10
2006
2013; 340
2020; 32
2015; 9
1999
2016; 5
2021; 15
2021; 10
2015; 27
2021; 12
2016; 3
2018; 556
1977; 16
2017; 11
2020; 117
2018; 12
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Hariharan P. (e_1_2_11_1_1) 2006
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Spektor G. (e_1_2_11_19_1) 2019; 9
References_xml – volume: 17
  year: 2009
  publication-title: Opt. Express
– volume: 6
  start-page: 215
  year: 2017
  publication-title: Nanophotonics
– volume: 6
  start-page: 6407
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 5571
  year: 2021
  publication-title: Sci. Adv.
– volume: 6
  start-page: 1840
  year: 2019
  publication-title: ACS Photonics
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 14
  start-page: 547
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 796
  year: 2015
  publication-title: Nat. Photonics
– volume: 6
  start-page: 1190
  year: 2019
  publication-title: Optica
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 358
  start-page: 896
  year: 2017
  publication-title: Science
– volume: 355
  start-page: 1187
  year: 2017
  publication-title: Science
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 944
  year: 2020
  publication-title: IEEE Photonics Technol. Lett.
– volume: 9
  start-page: 3393
  year: 2020
  publication-title: Nanophotonics
– volume: 9
  start-page: 1003
  year: 2020
  publication-title: Nanophotonics
– volume: 14
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 7
  start-page: 212
  year: 2019
  publication-title: ACS Photonics
– volume: 352
  start-page: 805
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 42
  year: 2016
  publication-title: Optica
– volume: 12
  year: 2018
  publication-title: Laser Photonics Rev.
– volume: 12
  start-page: 2230
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 4944
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 182
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 59
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 5
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 27
  start-page: 7123
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 716
  year: 2015
  publication-title: Optica
– volume: 9
  start-page: 95
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 20
  start-page: 6774
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  year: 2019
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 63
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 12
  start-page: 602
  year: 2012
  publication-title: Nano Lett.
– volume: 15
  start-page: 650
  year: 2019
  publication-title: Nat. Phys.
– volume: 10
  start-page: 529
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 3410
  year: 2021
  publication-title: Nano Lett.
– volume: 16
  start-page: 3200
  year: 1977
  publication-title: Appl. Opt.
– year: 2012
– volume: 8
  start-page: 719
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 2075
  year: 2010
  publication-title: Nano Lett.
– volume: 340
  start-page: 331
  year: 2013
  publication-title: Science
– volume: 7
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 9
  start-page: 4413
  year: 2018
  publication-title: Nat. Commun.
– volume: 29
  start-page: 685
  year: 1982
  publication-title: Opt. Acta: Int. J. Opt.
– volume: 2
  start-page: 1045
  year: 2015
  publication-title: Optica
– year: 2006
– volume: 19
  start-page: 4010
  year: 2019
  publication-title: Nano Lett.
– volume: 8
  start-page: 90
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 21
  start-page: 3941
  year: 2021
  publication-title: Nano Lett.
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 10
  start-page: 681
  year: 2016
  publication-title: Nat. Photonics
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 556
  start-page: 349
  year: 2018
  publication-title: Nature
– volume: 15
  start-page: 253
  year: 2021
  publication-title: Nat. Photonics
– volume: 11
  start-page: 2038
  year: 2011
  publication-title: Nano Lett.
– volume: 9
  start-page: 1019
  year: 2021
  publication-title: Photonics Res.
– volume: 116
  year: 2016
  publication-title: Phys. Rev. Lett.
– year: 1999
– ident: e_1_2_11_31_1
  doi: 10.1515/nanoph-2016-0121
– ident: e_1_2_11_5_1
  doi: 10.1038/ncomms7407
– ident: e_1_2_11_24_1
  doi: 10.1126/science.1233746
– ident: e_1_2_11_11_1
  doi: 10.1038/s41567-019-0487-7
– ident: e_1_2_11_38_1
  doi: 10.1364/AO.16.003200
– ident: e_1_2_11_15_1
  doi: 10.1021/acs.nanolett.0c02699
– ident: e_1_2_11_18_1
  doi: 10.1126/science.aaj1699
– ident: e_1_2_11_41_1
  doi: 10.1364/OPTICA.2.000716
– ident: e_1_2_11_37_1
  doi: 10.1364/PRJ.420665
– ident: e_1_2_11_7_1
  doi: 10.1021/nl203325s
– ident: e_1_2_11_61_1
  doi: 10.1002/lpor.202000581
– ident: e_1_2_11_30_1
  doi: 10.1038/nphoton.2015.201
– ident: e_1_2_11_58_1
  doi: 10.1021/acs.nanolett.0c04948
– ident: e_1_2_11_33_1
  doi: 10.1002/lpor.201600212
– ident: e_1_2_11_8_1
  doi: 10.1038/nphoton.2016.162
– ident: e_1_2_11_12_1
  doi: 10.1021/acs.nanolett.9b01343
– ident: e_1_2_11_6_1
  doi: 10.1038/nnano.2013.150
– ident: e_1_2_11_59_1
  doi: 10.1002/adom.202000854
– ident: e_1_2_11_21_1
  doi: 10.1126/sciadv.abg5571
– ident: e_1_2_11_2_1
  doi: 10.1017/CBO9781139644181
– ident: e_1_2_11_26_1
  doi: 10.1063/5.0027950
– ident: e_1_2_11_32_1
  doi: 10.1002/adma.201502008
– ident: e_1_2_11_44_1
  doi: 10.1364/OPTICA.6.001190
– ident: e_1_2_11_22_1
  doi: 10.1038/s41377-019-0194-2
– ident: e_1_2_11_39_1
  doi: 10.1080/713820903
– ident: e_1_2_11_46_1
  doi: 10.1038/s41377-021-00497-7
– ident: e_1_2_11_13_1
  doi: 10.1126/science.aaf1112
– ident: e_1_2_11_62_1
  doi: 10.1002/lpor.202000180
– ident: e_1_2_11_25_1
  doi: 10.1021/acs.nanolett.1c00625
– ident: e_1_2_11_60_1
  doi: 10.1038/s41586-018-0028-z
– ident: e_1_2_11_16_1
  doi: 10.1021/nl903380j
– ident: e_1_2_11_36_1
  doi: 10.1002/lpor.201900182
– ident: e_1_2_11_40_1
  doi: 10.1364/OPTICA.3.000042
– ident: e_1_2_11_20_1
  doi: 10.1021/nl403608a
– ident: e_1_2_11_53_1
  doi: 10.1038/s41566-021-00780-4
– ident: e_1_2_11_34_1
  doi: 10.1063/1.4926967
– ident: e_1_2_11_4_1
  doi: 10.1017/CBO9780511794193
– ident: e_1_2_11_48_1
  doi: 10.1021/acsphotonics.9b01437
– volume-title: Basics of Interferometry
  year: 2006
  ident: e_1_2_11_1_1
– ident: e_1_2_11_51_1
  doi: 10.1109/LPT.2020.3006231
– ident: e_1_2_11_35_1
  doi: 10.1364/OE.17.017483
– ident: e_1_2_11_42_1
  doi: 10.1103/PhysRevApplied.5.064015
– ident: e_1_2_11_63_1
  doi: 10.1038/s41467-017-02434-y
– ident: e_1_2_11_47_1
  doi: 10.1038/s41377-020-0330-z
– ident: e_1_2_11_27_1
  doi: 10.1039/C7NR00124J
– ident: e_1_2_11_55_1
  doi: 10.1515/nanoph-2020-0112
– ident: e_1_2_11_3_1
  doi: 10.1103/PhysRevLett.116.061102
– ident: e_1_2_11_10_1
  doi: 10.1021/nl2004835
– ident: e_1_2_11_43_1
  doi: 10.1002/lpor.201700297
– ident: e_1_2_11_23_1
  doi: 10.1038/s41377-021-00474-0
– ident: e_1_2_11_45_1
  doi: 10.1515/nanoph-2019-0479
– ident: e_1_2_11_49_1
  doi: 10.1002/lpor.201700331
– ident: e_1_2_11_57_1
  doi: 10.1002/lpor.202100011
– ident: e_1_2_11_14_1
  doi: 10.1364/OPTICA.2.001045
– ident: e_1_2_11_17_1
  doi: 10.1021/nl100340w
– ident: e_1_2_11_29_1
  doi: 10.1364/OE.27.019119
– ident: e_1_2_11_50_1
  doi: 10.1038/s41467-018-06952-1
– ident: e_1_2_11_56_1
  doi: 10.1038/s41467-021-22462-z
– ident: e_1_2_11_28_1
  doi: 10.1002/adom.201801328
– ident: e_1_2_11_52_1
  doi: 10.1021/acsphotonics.9b00551
– ident: e_1_2_11_9_1
  doi: 10.1103/PhysRevLett.101.043903
– volume: 9
  start-page: 021031
  year: 2019
  ident: e_1_2_11_19_1
  publication-title: Phys. Rev. X
– ident: e_1_2_11_54_1
  doi: 10.1126/science.aao5392
SSID ssj0055556
Score 2.4628491
Snippet Since the late 19th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices...
Since the late 19 th century, enormous endeavors have been made in extending the scope and capability of optical interferometers. Recently, plasmonic vortices...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Angular momentum
Interference
Interferometers
on‐chip interferometers
optical spin‐orbit conversion
plasmonic vortices
Plasmonics
polarimeters
Polarization (spin alignment)
Vortices
Title On‐Chip Plasmonic Vortex Interferometers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200242
https://www.proquest.com/docview/2723634273
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SkxfrE6tV9iAIQtrdJPs6SrEUUVuKld6WPFGsa3FbEE_-BH-jv8Qk-2griKB7ykKy7E4ymW9mZ74AcBIpwjztVMPYJyEkHqOQYUkhDlSAqPSlb38XXN8EvRG5HPvjpSr-nB-iCrgZzbD7tVFwyrL2gjR0ovGp9u8QsmZGb8ImYcugomHFH-Xry5YXRQGG2tVzS9ZGF7VXh69apQXUXAas1uJ064CW75onmjy25jPW4m_faBz_8zGbYKOAo855vn62wJpMt0G9gKZOofjZDjjrp5_vH537h6kz0Hj7yRDqOncmUffVsUFFJQ3vgaHq3AWj7sVtpweLYxYg1-4pgkLxGElTYRsoQQJhIv4eZ14YUcUJVxQLHoUKaWuKGCGICpcTV0gcyzjiTOA9UEufU7kPHBnGCDEqiUlYJKFizIs58UOPaKAifNYAsBRzwgsOcnMUxiTJ2ZNRYgSRVIJogNOq_zRn3_ixZ7OctaTQwixBIcIBJhqhNQCy4v_lKcnVoD-s7g7-MugQrJt2nu_XBLXZy1weadwyY8d2bX4ByYvk1w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HvRifWK1ag6CIGxtdjevo1RL1b4orXgL2c0uijUW24J48if4G_0l7uZVK4iguSXshuxkJ_PNZOYbgCNXUmYqpxp5FnUQNVmAGBEBIra0cSAsYcW_C1ptuzGgV7dWlk2oa2ESfog84KY1I_5eawXXAenTGWvoUAFU5eBhHNuZRVjSbb01ff55L2eQstQRFxi5NkHK2atmvI1VfDo_f94uzcDmV8ga25x6EVj2tEmqyUNlOmEV_vqNyPFfy1mD1RSRGmfJFlqHBRFtQDFFp0aq--NNOOlEH2_vtbv7kdFVkPtRc-oaNzpX98WI44pSaOoDzda5BYP6Rb_WQGmnBcSVh4pRKLmHhS6ytWVI7VAH_U3OTMcNJKdcBiTkriOxMqiYUYqDsMppNRTEE57LWUi2oRA9RWIHDOF4GLNAUJ2zSB3JmOlxajkmVVgltFgJUCZnn6c05LobxtBPCJSxrwXh54IowXE-fpQQcPw4spy9Nj9VxLGPHUxsQhVIKwGO5f_LXfxmt9PLz3b_MukQlhv9VtNvXrav92BFX0_S_8pQmDxPxb6CMRN2EG_UTyhG6PM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnixPrFaNQdBELZNNpvXUVpL1dqWYqW3kH2hWGuxLYgnf4K_0V_ibpKmrSCC5pawG7KTncw3k5lvAE58SailnGoUOMRDxKIRoraIkO1KF0fCEU78u-Cm6da75Krn9Oaq-BN-iCzgpjUj_l5rBR9yWZ6RhvYVPlX-HcaxmVmGFeKagW7eUO1kBFKOOuL6It-1kfL1zClto4nLi_MXzdIMa84j1tjk1PIQTR82yTR5LE3GtMTevvE4_mc1G7Ce4lHjPNlAm7AkBluQT7GpkWr-aBvOWoPP94_K_cPQaCvA_aQZdY07nan7asRRRSk08YHm6tyBbu3itlJHaZ8FxJR_ihGXLMBCl9i6khOX65C_xajl-ZFkhMnI5sz3JFbmFFNCcMRNRkwu7EAEPqPc3oXc4Hkg9sAQXoAxjQTRGYvEk5RaASOOZxGFVLhDC4CmYg5ZSkKue2H0w4Q-GYdaEGEmiAKcZuOHCf3GjyOL07cWpmo4CrGHbdcmCqIVAMfi_-UuYaPd6mRn-3-ZdAyr7WotbFw2rw9gTV9Ocv-KkBu_TMShwjBjehRv0y98o-ei
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On%E2%80%90Chip+Plasmonic+Vortex+Interferometers&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Lang%2C+Yuanhao&rft.au=Xu%2C+Quan&rft.au=Chen%2C+Xieyu&rft.au=Han%2C+Jie&rft.date=2022-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.202200242&rft.externalDBID=10.1002%252Flpor.202200242&rft.externalDocID=LPOR202200242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon