Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication
Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The...
Saved in:
Published in | Laser & photonics reviews Vol. 14; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials.
Photolithography is the most commonly used technique in semiconductor manufacturing, which relies on photomask. The maskless method can directly fabricate the micro/nano‐structure, including the photomask. However, this faces a technical bottleneck regarding fabrication speed. Parallel laser processing methods are developed for high speed functional device fabrication, which is the direction of future micro/nano‐fabrication. |
---|---|
AbstractList | Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials. Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials. Photolithography is the most commonly used technique in semiconductor manufacturing, which relies on photomask. The maskless method can directly fabricate the micro/nano‐structure, including the photomask. However, this faces a technical bottleneck regarding fabrication speed. Parallel laser processing methods are developed for high speed functional device fabrication, which is the direction of future micro/nano‐fabrication. |
Author | Hong, Minghui Li, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: National University of Singapore – sequence: 2 givenname: Minghui orcidid: 0000-0001-7141-636X surname: Hong fullname: Hong, Minghui email: elehmh@nus.edu.sg organization: National University of Singapore |
BookMark | eNqFkMFKAzEQhoNUsK1ePS943naS3abZo1RrhdUW0XPITrOSEjc1aZXefASf0ScxtVJBEOcyw_B_wz9_h7Qa12hCTin0KADr26XzPQa0AADODkibCp6lQhRFaz8LOCKdEBYAg1i8TSYz5ZW12ialCtonNwa969-qxn28vc-8Qx2CaR6T2vlkvG5wZVyjbHKhXwzqZKwqb1Btl8fksFY26JPv3iUP48v70SQtp1fXo_MyxUxkLEVd6YrSnA7nyLCmAhXmFUWmFBW5QA4Ya85RcyFYXDBBaygKPqD5kLMq65Kz3d2ld89rHVZy4dY-egqSZVEBYpizqMp3qvhNCF7XEs3qy-fKK2MlBbnNTG4zk_vMItb7hS29eVJ-8zdQ7IBXY_XmH7UsZ9O7H_YTY-yCuA |
CitedBy_id | crossref_primary_10_3390_mi15060674 crossref_primary_10_1016_j_optlastec_2021_107012 crossref_primary_10_54939_1859_1043_j_mst_98_2024_132_138 crossref_primary_10_1002_adfm_202405457 crossref_primary_10_35848_1882_0786_acc3db crossref_primary_10_35848_1882_0786_acfa62 crossref_primary_10_1021_acsami_2c14642 crossref_primary_10_1016_j_mne_2023_100215 crossref_primary_10_1016_j_jmrt_2025_02_057 crossref_primary_10_1016_j_optlastec_2023_110264 crossref_primary_10_1007_s00170_022_10228_w crossref_primary_10_1007_s11771_022_5145_z crossref_primary_10_1016_j_optlaseng_2022_107239 crossref_primary_10_29026_oea_2021_210008 crossref_primary_10_1002_admt_202200125 crossref_primary_10_3390_photonics12030207 crossref_primary_10_3390_pr11030931 crossref_primary_10_1007_s11801_022_2034_5 crossref_primary_10_1140_epjp_s13360_023_04193_w crossref_primary_10_1002_admi_202001610 crossref_primary_10_34133_2021_9783514 crossref_primary_10_1515_ntrev_2021_0073 crossref_primary_10_3390_mi14040824 crossref_primary_10_1002_adom_202001194 crossref_primary_10_1021_acs_langmuir_4c02305 crossref_primary_10_1063_5_0020398 crossref_primary_10_1364_AO_518847 crossref_primary_10_1080_2374068X_2022_2101322 crossref_primary_10_1364_OPTICA_472730 crossref_primary_10_1002_adom_202302685 crossref_primary_10_1002_admt_202201186 crossref_primary_10_1016_j_nanoen_2020_105517 crossref_primary_10_1016_j_optcom_2022_128948 crossref_primary_10_1002_adfm_202311235 crossref_primary_10_1021_acsami_2c16914 crossref_primary_10_1016_j_optlaseng_2022_107405 crossref_primary_10_29026_oes_2023_230028 crossref_primary_10_1016_j_ensm_2022_06_044 crossref_primary_10_1038_s41377_021_00596_5 crossref_primary_10_1016_j_optlastec_2023_109828 crossref_primary_10_1007_s11431_023_2420_x crossref_primary_10_1002_lpor_202401742 crossref_primary_10_1016_j_nanoen_2023_109182 crossref_primary_10_3390_coatings13071150 crossref_primary_10_1002_smll_202100140 crossref_primary_10_3390_polym16223174 crossref_primary_10_1016_j_optlastec_2024_112305 crossref_primary_10_1016_j_porgcoat_2023_107840 crossref_primary_10_1016_j_vacuum_2023_112595 crossref_primary_10_1016_j_optcom_2022_129249 crossref_primary_10_1021_acsnano_2c11577 crossref_primary_10_1364_OE_403437 crossref_primary_10_1063_5_0131518 crossref_primary_10_1016_j_jmat_2022_08_009 crossref_primary_10_1007_s40820_024_01554_7 crossref_primary_10_1016_j_optlastec_2021_106988 crossref_primary_10_1002_smtd_202402075 crossref_primary_10_1002_lpor_202200232 crossref_primary_10_1016_j_jnoncrysol_2023_122531 crossref_primary_10_1038_s41378_024_00806_1 crossref_primary_10_1088_2631_7990_ac466e crossref_primary_10_1002_lpor_202400546 crossref_primary_10_1016_j_eng_2025_03_017 crossref_primary_10_3390_mi13122098 crossref_primary_10_1016_j_apsusc_2024_159997 crossref_primary_10_3788_gzxb20235207_0752306 crossref_primary_10_1021_acsami_2c12808 crossref_primary_10_1002_adfm_202211272 crossref_primary_10_1016_j_optlaseng_2022_107182 crossref_primary_10_1021_acsphotonics_1c02017 crossref_primary_10_1016_j_optlastec_2024_111348 crossref_primary_10_1016_j_optlastec_2025_112738 crossref_primary_10_1364_OE_533674 crossref_primary_10_1016_j_optlastec_2023_109481 crossref_primary_10_3390_mi12060611 crossref_primary_10_1002_adma_202402907 crossref_primary_10_1002_adma_202307586 crossref_primary_10_1364_OE_506590 crossref_primary_10_1007_s11801_023_2184_0 crossref_primary_10_1063_5_0149624 crossref_primary_10_29026_oea_2023_230029 crossref_primary_10_1088_2631_7990_ada7a7 crossref_primary_10_1364_OL_398682 crossref_primary_10_1039_D1NR02814F |
Cites_doi | 10.1364/OME.2.001571 10.1364/OL.36.000406 10.1002/adma.201290000 10.1143/APEX.2.126502 10.1364/OE.21.026227 10.1088/0960-1317/19/5/054002 10.1016/j.jallcom.2006.02.115 10.1016/j.optcom.2014.05.051 10.1364/OE.19.006990 10.1088/0957-4484/8/3A/004 10.1166/jnn.2014.9199 10.1063/1.1855404 10.1088/0957-4484/27/49/49LT01 10.1007/s00339-010-5807-9 10.1364/OL.39.000606 10.29026/oea.2018.180005 10.1116/1.1408957 10.1016/j.mee.2015.04.033 10.1002/smll.201000079 10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V 10.1007/s11433-015-5688-1 10.1002/adma.200600882 10.1063/1.2235855 10.1364/OE.18.012421 10.1063/1.1519329 10.1063/1.1589167 10.1088/0957-4484/21/20/205305 10.1364/OME.1.000151 10.1063/1.1765734 10.1063/1.2993231 10.1364/OE.16.010701 10.1016/j.snb.2008.06.039 10.29026/oea.2018.180008 10.1088/0957-4484/11/3/304 10.1038/nnano.2008.150 10.2961/jlmn.2014.03.0006 10.2351/1.4849715 10.1021/nl802295n 10.3390/mi2020221 10.1063/1.1947369 10.1039/b416951d 10.1088/0957-4484/8/2/002 10.1002/352760846X 10.1007/s11468-015-9979-1 10.1039/C7NR08905H 10.1201/9781420028270 10.1126/science.1125907 10.1021/cr960069i 10.1007/s11051-014-2470-7 10.1038/17989 10.1364/AO.28.003754 10.29026/oea.2018.180014 10.1038/lsa.2014.66 10.1016/j.jmatprotec.2007.04.088 10.1109/LPT.2002.1021970 10.1016/j.cirp.2010.03.038 10.1134/S1063784211080214 10.1063/1.1760221 10.1002/lpor.201600115 10.1063/1.115297 10.1016/j.physletb.2007.05.006 10.1088/0022-3727/43/30/305302 10.1557/mrs2001.158 10.1007/s00339-009-5275-2 10.1016/j.apsusc.2013.05.042 10.1116/1.2890972 10.1063/1.1886896 10.1364/AO.50.006536 10.1021/acssensors.6b00444 10.1364/OL.36.003305 10.1364/OL.42.000743 10.1117/1.602092 10.1002/adfm.201001058 10.1088/0957-4484/17/17/025 10.1142/9789812777515_0003 10.1002/elps.201100309 10.1021/acsphotonics.8b00437 10.1023/A:1013387015192 10.1103/PhysRevLett.92.043905 10.1088/0957-4484/20/11/115303 10.1109/CLEOPR.2003.1277242 10.1364/OE.16.012899 10.1063/1.4876298 10.1364/OE.17.003640 10.1063/1.4794030 10.3788/COL201412.080501 10.1364/OE.19.025632 10.1016/j.optcom.2011.01.042 10.1038/187493a0 10.1088/0957-4484/21/21/215301 10.1017/CBO9781139644181 10.1364/OL.34.001702 10.1143/JJAP.39.L735 10.1016/j.carbon.2011.12.011 10.1103/PhysRevE.56.6494 10.1364/AO.50.000G74 10.1007/s003390101030 10.1039/c3nr33498h 10.1088/0031-8949/2007/T129/008 10.15407/spqeo18.04.438 10.1023/A:1026198130745 10.1063/1.4936088 10.1364/OL.26.000277 10.1088/1367-2630/8/10/250 10.1063/1.1565682 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.201900062 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_201900062 LPOR201900062 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research funderid: A1883c0010 – fundername: Fujian Institute of Research on the Structure of Matter funderid: SKLA‐2018‐09 – fundername: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3832-cebeb11417dc2cf18cac4b1c2aa1848c60ccccd6ce688248c281f0996514762b3 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:19:59 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Tue Jul 01 04:32:33 EDT 2025 Wed Jan 22 16:34:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3832-cebeb11417dc2cf18cac4b1c2aa1848c60ccccd6ce688248c281f0996514762b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7141-636X |
PQID | 2376208742 |
PQPubID | 1016358 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2376208742 crossref_citationtrail_10_1002_lpor_201900062 crossref_primary_10_1002_lpor_201900062 wiley_primary_10_1002_lpor_201900062_LPOR201900062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 14 2010; 18 2010; 101 2015; 143 2014; 26 2011; 56 2013; 5 1997; 8 2010; 21 2010; 20 2009; 96 2018; 5 2018; 1 2000; 11 1997; 56 2014; 16 2008; 26 2014; 14 2009; 19 2012; 24 2014; 12 2010; 6 2009; 17 2007; 19 2015; 58 2011; 2 2011; 1 2002; 74 2005; 86 2005; 87 2013; 102 2002; 81 2001; 26 2007; T129 1999 2012; 50 2010; 43 2016; 1 1999; 38 2005; 5 2014; 39 2008; 134 2016; 27 2018; 10 2017; 42 2010; 59 2013; 21 2017; 44 2003; 14 2008; 8 2008; 3 2015; 107 2008; 1 2014; 331 2011; 19 2013; 282 2017; 9 2007; 653 2014; 3 1997; 97 1995; 67 2001; 19 2014; 9 2003; 82 2011; 284 2001; 13 2004; 84 2015; 16 2009; 20 2015; 18 2012 2002; 34 2008; 19 2006; 17 2008; 16 2015; 10 2008; 449 2006; 8 2006 2011; 32 2005 2004 2003 2002 2011; 36 1959 2008; 93 2014; 115 1989; 28 2006; 312 2007; 192‐193 2009; 34 2012; 2 2004; 92 2000; 39 2006; 89 2006; 88 2017; 11 1960; 187 2011; 50 1999; 398 2009; 2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Pelletier M. J. (e_1_2_8_9_1) 1999 e_1_2_8_5_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 Lv J. (e_1_2_8_100_1) 2015; 16 e_1_2_8_25_1 e_1_2_8_48_1 Zhong Y. C. (e_1_2_8_74_1) 2005; 87 Agrawal G. P. (e_1_2_8_7_1) 2012 Guang‐wei W. (e_1_2_8_14_1) 2008; 1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 Luk'yanchuk B. S. (e_1_2_8_40_1) 2002 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 Wang X. (e_1_2_8_81_1) 2006; 88 e_1_2_8_24_1 Gould R. G. (e_1_2_8_2_1) 1959 e_1_2_8_3_1 e_1_2_8_111_1 Lin Z. (e_1_2_8_47_1) 2017; 9 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Van Zant P. (e_1_2_8_16_1) 2004 Xie Q. (e_1_2_8_58_1) 2003 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_103_1 Guo W. (e_1_2_8_44_1) 2008; 19 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Xu K. (e_1_2_8_98_1) 2017; 44 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 12 year: 2014 publication-title: Chin. Opt. Lett. – volume: 67 start-page: 3859 year: 1995 publication-title: Appl. Phys. Lett. – year: 2005 – volume: 19 start-page: 2612 year: 2001 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. – volume: 19 start-page: 8 year: 2008 publication-title: Nanotechnology – volume: 6 start-page: 984 year: 2010 publication-title: Small – volume: 84 start-page: 5434 year: 2004 publication-title: Appl. Phys. Lett. – volume: 50 start-page: 6536 year: 2011 publication-title: Appl. Opt. – volume: 101 start-page: 237 year: 2010 publication-title: Appl. Phys. A – volume: 20 start-page: 3484 year: 2010 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 645 year: 2003 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 10 start-page: 1675 year: 2015 publication-title: Plasmonics – volume: 58 year: 2015 publication-title: Sci. China: Phys., Mech. Astron. – volume: 16 start-page: 2470 year: 2014 publication-title: J. Nanopart. Res. – volume: 2 year: 2009 publication-title: Appl. Phys. Express – start-page: 702 year: 2003 – volume: 43 year: 2010 publication-title: J. Phys. D: Appl. Phys. – volume: 3 year: 2014 publication-title: Light: Sci. Appl. – volume: 28 start-page: 3754 year: 1989 publication-title: Appl. Opt. – volume: 26 start-page: 632 year: 2001 publication-title: MRS Bull. – volume: 24 start-page: 143 year: 2012 publication-title: Adv. Mater. – volume: 19 year: 2011 publication-title: Opt. Express – volume: 81 start-page: 3663 year: 2002 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 495 year: 2007 publication-title: Adv. Mater. – volume: 192‐193 start-page: 328 year: 2007 publication-title: J. Mater. Process. Technol. – volume: 17 start-page: 3640 year: 2009 publication-title: Opt. Express – volume: 82 start-page: 2212 year: 2003 publication-title: Appl. Phys. Lett. – volume: 84 start-page: 4780 year: 2004 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 3378 year: 2011 publication-title: Electrophoresis – volume: 2 start-page: 221 year: 2011 publication-title: Micromachines – volume: 16 year: 2008 publication-title: Opt. Express – volume: 19 year: 2009 publication-title: J. Micromech. Microeng. – volume: 56 start-page: 1061 year: 2011 publication-title: Tech. Phys. – volume: 143 start-page: 91 year: 2015 publication-title: Microelectron. Eng. – volume: 3 start-page: 413 year: 2008 publication-title: Nat. Nanotechnol. – volume: 42 start-page: 743 year: 2017 publication-title: Opt. Lett. – volume: 5 start-page: 492 year: 2005 publication-title: Lab Chip – volume: 134 start-page: 940 year: 2008 publication-title: Sens. Actuators, B – volume: 21 year: 2013 publication-title: Opt. Express – volume: 8 start-page: A15 year: 1997 publication-title: Nanotechnology – volume: 1 start-page: 5 year: 2008 publication-title: J. Tianjin Univ. Technol. Educ. – volume: 59 start-page: 543 year: 2010 publication-title: CIRP Ann. – volume: 88 start-page: 1 year: 2006 publication-title: Appl. Phys. Lett. – volume: 11 year: 2017 publication-title: Laser Photonics Rev. – volume: 26 year: 2014 publication-title: J. Laser Appl. – volume: 19 start-page: 6990 year: 2011 publication-title: Opt. Express – volume: 34 start-page: 3 year: 2002 publication-title: Opt. Quantum Electron. – volume: 50 start-page: 1667 year: 2012 publication-title: Carbon – volume: 8 start-page: 250 year: 2006 publication-title: New J. Phys. – volume: 18 start-page: 438 year: 2015 publication-title: Semicond. Phys., Quantum Electron. Optoelectron. – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 1836 year: 2013 publication-title: Nanoscale – volume: 449 start-page: 261 year: 2008 publication-title: J. Alloys Compd. – volume: 653 start-page: 88 year: 2007 publication-title: Phys. Lett. B – volume: 97 start-page: 1195 year: 1997 publication-title: Chem. Rev. – volume: 1 start-page: 151 year: 2011 publication-title: Opt. Mater. Express – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: T129 start-page: 35 year: 2007 publication-title: Phys. Scr. – volume: 9 start-page: 213 year: 2014 publication-title: J. Laser Micro/Nanoeng. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 44 start-page: 185 year: 2017 publication-title: Opto‐Electronic Eng. – volume: 9 start-page: 1 year: 2017 publication-title: IEEE Photonics J. – year: 2004 – volume: 14 start-page: 1521 year: 2014 publication-title: J. Nanosci. Nanotechnol. – volume: 21 year: 2010 publication-title: Nanotechnology – volume: 87 start-page: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 331 start-page: 82 year: 2014 publication-title: Opt. Commun. – volume: 187 start-page: 493 year: 1960 publication-title: Nature – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 36 start-page: 3305 year: 2011 publication-title: Opt. Lett. – volume: 11 start-page: 161 year: 2000 publication-title: Nanotechnology – volume: 17 start-page: 4436 year: 2006 publication-title: Nanotechnology – volume: 8 start-page: 53 year: 1997 publication-title: Nanotechnology – volume: 5 start-page: 3198 year: 2018 publication-title: ACS Photonics – volume: 2 start-page: 1571 year: 2012 publication-title: Opt. Mater. Express – volume: 26 start-page: 458 year: 2008 publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. – volume: 56 start-page: 6494 year: 1997 publication-title: Phys. Rev. E – volume: 39 start-page: L735 year: 2000 publication-title: Jpn. J. Appl. Phys. – volume: 282 start-page: 67 year: 2013 publication-title: Appl. Surf. Sci. – volume: 38 start-page: 334 year: 1999 publication-title: Opt. Eng. – volume: 96 start-page: 459 year: 2009 publication-title: Appl. Phys. A – volume: 36 start-page: 406 year: 2011 publication-title: Opt. Lett. – volume: 1 year: 2018 publication-title: Opto‐Electron. Adv. – volume: 34 start-page: 1702 year: 2009 publication-title: Opt. Lett. – volume: 92 start-page: 4 year: 2004 publication-title: Phys. Rev. Lett. – volume: 398 start-page: 51 year: 1999 publication-title: Nature – volume: 10 year: 2018 publication-title: Nanoscale – volume: 115 year: 2014 publication-title: J. Appl. Phys. – volume: 74 start-page: 493 year: 2002 publication-title: Appl. Phys. A: Mater. Sci. Process. – volume: 1 start-page: 1148 year: 2016 publication-title: ACS Sens. – volume: 27 year: 2016 publication-title: Nanotechnology – year: 2012 – volume: 18 year: 2010 publication-title: Opt. Express – volume: 14 start-page: 1064 year: 2002 publication-title: IEEE Photonics Technol. Lett. – volume: 284 start-page: 2608 year: 2011 publication-title: Opt. Commun. – volume: 16 start-page: 369 year: 2015 publication-title: J. Nanomater. – volume: 8 start-page: 3865 year: 2008 publication-title: Nano Lett. – year: 2006 – volume: 26 start-page: 277 year: 2001 publication-title: Opt. Lett. – volume: 20 year: 2009 publication-title: Nanotechnology – volume: 82 start-page: 4809 year: 2003 publication-title: Appl. Phys. Lett. – volume: 50 start-page: G74 year: 2011 publication-title: Appl. Opt. – volume: 13 start-page: 1551 year: 2001 publication-title: Adv. Mater. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – start-page: 103 year: 2002 end-page: 178 – volume: 39 start-page: 606 year: 2014 publication-title: Opt. Lett. – start-page: 128 year: 1959 – year: 1999 – volume-title: Fiber‐Optic Communication Systems year: 2012 ident: e_1_2_8_7_1 – ident: e_1_2_8_57_1 doi: 10.1364/OME.2.001571 – ident: e_1_2_8_89_1 doi: 10.1364/OL.36.000406 – ident: e_1_2_8_116_1 doi: 10.1002/adma.201290000 – ident: e_1_2_8_32_1 doi: 10.1143/APEX.2.126502 – ident: e_1_2_8_87_1 doi: 10.1364/OE.21.026227 – ident: e_1_2_8_49_1 doi: 10.1088/0960-1317/19/5/054002 – ident: e_1_2_8_60_1 doi: 10.1016/j.jallcom.2006.02.115 – ident: e_1_2_8_88_1 doi: 10.1016/j.optcom.2014.05.051 – ident: e_1_2_8_115_1 doi: 10.1364/OE.19.006990 – ident: e_1_2_8_25_1 doi: 10.1088/0957-4484/8/3A/004 – ident: e_1_2_8_55_1 doi: 10.1166/jnn.2014.9199 – ident: e_1_2_8_86_1 doi: 10.1063/1.1855404 – volume: 19 start-page: 8 year: 2008 ident: e_1_2_8_44_1 publication-title: Nanotechnology – ident: e_1_2_8_95_1 doi: 10.1088/0957-4484/27/49/49LT01 – ident: e_1_2_8_62_1 doi: 10.1007/s00339-010-5807-9 – ident: e_1_2_8_37_1 doi: 10.1364/OL.39.000606 – ident: e_1_2_8_8_1 doi: 10.29026/oea.2018.180005 – ident: e_1_2_8_20_1 doi: 10.1116/1.1408957 – ident: e_1_2_8_19_1 doi: 10.1016/j.mee.2015.04.033 – ident: e_1_2_8_104_1 doi: 10.1002/smll.201000079 – ident: e_1_2_8_53_1 doi: 10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V – ident: e_1_2_8_18_1 doi: 10.1007/s11433-015-5688-1 – ident: e_1_2_8_12_1 doi: 10.1002/adma.200600882 – ident: e_1_2_8_85_1 doi: 10.1063/1.2235855 – ident: e_1_2_8_113_1 doi: 10.1364/OE.18.012421 – ident: e_1_2_8_24_1 doi: 10.1063/1.1519329 – ident: e_1_2_8_41_1 doi: 10.1063/1.1589167 – ident: e_1_2_8_63_1 doi: 10.1088/0957-4484/21/20/205305 – volume-title: Analytical Applications of Raman Spectroscopy year: 1999 ident: e_1_2_8_9_1 – ident: e_1_2_8_114_1 doi: 10.1364/OME.1.000151 – ident: e_1_2_8_79_1 doi: 10.1063/1.1765734 – ident: e_1_2_8_109_1 doi: 10.1063/1.2993231 – ident: e_1_2_8_61_1 doi: 10.1364/OE.16.010701 – start-page: 128 volume-title: Ann Arbor Conf. of Optical Pumping year: 1959 ident: e_1_2_8_2_1 – ident: e_1_2_8_70_1 doi: 10.1016/j.snb.2008.06.039 – volume: 16 start-page: 369 year: 2015 ident: e_1_2_8_100_1 publication-title: J. Nanomater. – ident: e_1_2_8_4_1 doi: 10.29026/oea.2018.180008 – ident: e_1_2_8_106_1 doi: 10.1088/0957-4484/11/3/304 – ident: e_1_2_8_43_1 doi: 10.1038/nnano.2008.150 – ident: e_1_2_8_34_1 doi: 10.2961/jlmn.2014.03.0006 – ident: e_1_2_8_66_1 doi: 10.2351/1.4849715 – ident: e_1_2_8_10_1 doi: 10.1021/nl802295n – volume: 9 start-page: 1 year: 2017 ident: e_1_2_8_47_1 publication-title: IEEE Photonics J. – ident: e_1_2_8_52_1 doi: 10.3390/mi2020221 – ident: e_1_2_8_76_1 doi: 10.1063/1.1947369 – ident: e_1_2_8_13_1 doi: 10.1039/b416951d – ident: e_1_2_8_108_1 doi: 10.1088/0957-4484/8/2/002 – ident: e_1_2_8_6_1 doi: 10.1002/352760846X – ident: e_1_2_8_94_1 doi: 10.1007/s11468-015-9979-1 – ident: e_1_2_8_97_1 doi: 10.1039/C7NR08905H – ident: e_1_2_8_3_1 doi: 10.1201/9781420028270 – ident: e_1_2_8_112_1 doi: 10.1126/science.1125907 – ident: e_1_2_8_26_1 doi: 10.1021/cr960069i – ident: e_1_2_8_93_1 doi: 10.1007/s11051-014-2470-7 – ident: e_1_2_8_30_1 doi: 10.1038/17989 – ident: e_1_2_8_33_1 doi: 10.1364/AO.28.003754 – ident: e_1_2_8_5_1 doi: 10.29026/oea.2018.180014 – ident: e_1_2_8_72_1 doi: 10.1038/lsa.2014.66 – ident: e_1_2_8_83_1 doi: 10.1016/j.jmatprotec.2007.04.088 – ident: e_1_2_8_110_1 doi: 10.1109/LPT.2002.1021970 – ident: e_1_2_8_22_1 doi: 10.1016/j.cirp.2010.03.038 – ident: e_1_2_8_15_1 doi: 10.1134/S1063784211080214 – ident: e_1_2_8_28_1 doi: 10.1063/1.1760221 – ident: e_1_2_8_38_1 doi: 10.1002/lpor.201600115 – volume-title: Microchip Fabrication year: 2004 ident: e_1_2_8_16_1 – ident: e_1_2_8_27_1 doi: 10.1063/1.115297 – ident: e_1_2_8_48_1 doi: 10.1016/j.physletb.2007.05.006 – ident: e_1_2_8_50_1 doi: 10.1088/0022-3727/43/30/305302 – ident: e_1_2_8_73_1 doi: 10.1557/mrs2001.158 – ident: e_1_2_8_45_1 doi: 10.1007/s00339-009-5275-2 – volume: 88 start-page: 1 year: 2006 ident: e_1_2_8_81_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_69_1 doi: 10.1016/j.apsusc.2013.05.042 – ident: e_1_2_8_11_1 doi: 10.1116/1.2890972 – volume: 44 start-page: 185 year: 2017 ident: e_1_2_8_98_1 publication-title: Opto‐Electronic Eng. – ident: e_1_2_8_46_1 doi: 10.1063/1.1886896 – ident: e_1_2_8_84_1 doi: 10.1364/AO.50.006536 – ident: e_1_2_8_71_1 doi: 10.1021/acssensors.6b00444 – ident: e_1_2_8_68_1 doi: 10.1364/OL.36.003305 – ident: e_1_2_8_91_1 doi: 10.1364/OL.42.000743 – ident: e_1_2_8_31_1 doi: 10.1117/1.602092 – ident: e_1_2_8_67_1 doi: 10.1002/adfm.201001058 – ident: e_1_2_8_54_1 doi: 10.1088/0957-4484/17/17/025 – start-page: 103 volume-title: Laser Clean year: 2002 ident: e_1_2_8_40_1 doi: 10.1142/9789812777515_0003 – ident: e_1_2_8_99_1 doi: 10.1002/elps.201100309 – ident: e_1_2_8_29_1 doi: 10.1021/acsphotonics.8b00437 – ident: e_1_2_8_75_1 doi: 10.1023/A:1013387015192 – volume: 87 start-page: 87 year: 2005 ident: e_1_2_8_74_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_8_80_1 doi: 10.1103/PhysRevLett.92.043905 – ident: e_1_2_8_51_1 doi: 10.1088/0957-4484/20/11/115303 – start-page: 702 volume-title: CLEO/Pacific Rim 2003: The 5th Pacific Rim Conf. on Lasers and Electro‐Optics year: 2003 ident: e_1_2_8_58_1 doi: 10.1109/CLEOPR.2003.1277242 – ident: e_1_2_8_78_1 doi: 10.1364/OE.16.012899 – ident: e_1_2_8_105_1 doi: 10.1063/1.4876298 – ident: e_1_2_8_39_1 doi: 10.1364/OE.17.003640 – ident: e_1_2_8_90_1 doi: 10.1063/1.4794030 – ident: e_1_2_8_92_1 doi: 10.3788/COL201412.080501 – ident: e_1_2_8_35_1 doi: 10.1364/OE.19.025632 – ident: e_1_2_8_103_1 doi: 10.1016/j.optcom.2011.01.042 – ident: e_1_2_8_1_1 doi: 10.1038/187493a0 – ident: e_1_2_8_56_1 doi: 10.1088/0957-4484/21/21/215301 – ident: e_1_2_8_17_1 doi: 10.1017/CBO9781139644181 – ident: e_1_2_8_107_1 doi: 10.1364/OL.34.001702 – ident: e_1_2_8_111_1 doi: 10.1143/JJAP.39.L735 – ident: e_1_2_8_102_1 doi: 10.1016/j.carbon.2011.12.011 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevE.56.6494 – ident: e_1_2_8_64_1 doi: 10.1364/AO.50.000G74 – ident: e_1_2_8_21_1 doi: 10.1007/s003390101030 – ident: e_1_2_8_96_1 doi: 10.1039/c3nr33498h – ident: e_1_2_8_59_1 doi: 10.1088/0031-8949/2007/T129/008 – ident: e_1_2_8_101_1 doi: 10.15407/spqeo18.04.438 – volume: 1 start-page: 5 year: 2008 ident: e_1_2_8_14_1 publication-title: J. Tianjin Univ. Technol. Educ. – ident: e_1_2_8_23_1 doi: 10.1023/A:1026198130745 – ident: e_1_2_8_65_1 doi: 10.1063/1.4936088 – ident: e_1_2_8_36_1 doi: 10.1364/OL.26.000277 – ident: e_1_2_8_77_1 doi: 10.1088/1367-2630/8/10/250 – ident: e_1_2_8_82_1 doi: 10.1063/1.1565682 |
SSID | ssj0055556 |
Score | 2.54585 |
SecondaryResourceType | review_article |
Snippet | Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Direct laser writing Lasers Metamaterials micro/nano‐fabrication Microspheres Parallel processing Patterning Photolithography Photomasks Photovoltaic cells Solar cells |
Title | Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900062 https://www.proquest.com/docview/2376208742 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxbKrygU5AGJya3jJK47IiCqUAtVRaVuke04C1WL0nZh4hF4Rp6Ec-KkLRJCgmxx7Cjx2XffWXffIXTFbJqy7weES5qQQHFBRNqlRPopNTQNVCe0ycmDR94bBw-TcLKRxV_wQ1QHbnZn5PrabnCpFu01aegU8KkNzbJVL3MlbAO2LCoaVfxRIVx5epHgPgFXj5asjZS1t4dvW6U11NwErLnFiepIlt9aBJq8tFZL1dJv32gc__Mz-2jPwVF8U6yfA7RjZoeo7qApdht_cYR6Q5nZqitT3Aezl-GBjeNrg2qef75_uGQDMIIYIDCOwFQWJ4z4zlhFhCOpMnc2eIzG0f3zbY-4IgxEg_PKiAYpK3CavE6imU49oaUOlKeZlOAcCs2phivh2nAA69DAhJcC7OSAxEDRKv8E1WbzmTlF2PNDLQy48gBJAYWlXWYSgBjQIn2ppGggUgoh1o6h3BbKmMYFtzKL7TTF1TQ10HXV_7Xg5vixZ7OUaez26CK28UCMik4Aj1kunF_eEveHT6Pq7uwvg87RLrMOex7E1kS1ZbYyF4BqluoyX7lfJqfvnA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V29TsMwED4VGGDhH_GPBxCTaeKkrhkYEKUq0EJVgcQWbNdZqApqixBMPAKvwqvwCDwJ58QJFAkhITHgLX9WkrPvvjvdfQewyWyZchCElEuvTUPFBRXxrkdlEHvGi0NVLtni5MYpr12Ex5elywK8ZLUwKT9EHnCzOyPR13aD24B08YM1tIMA1eZm2baXnLm8yhPzcI9eW3_vqIIi3mKsenh-UKOusQDV6JAxqvHNFToCfrmtmY59oaUOla-ZlOjwCM09jaPNteEIQPEEE36MUIojukDloQKcdwTGbBtxS9dfaeWMVSUcSUGT4AFF59LLeCI9Vhx-32E7-AFuP0PkxMZVp-A1-ztpasv1zt1A7ejHL8SR_-r3TcOkQ9xkP90iM1Aw3VmYcuibON3Wn4NaU_ZsY5kOqaNl75GGTVUsovW5eXt6dvUUaOcJonxSRTSQBlFJxVhdS6pS9Vz4cx4u_uR7FmC0e9M1i0D8oKSFMYoh6kagGe8y00YUhWdkIJUUS0AzqUfakbDbXiCdKKWPZpEVS5SLZQm28_tvU_qRb-9czRZR5NRQP7IpT8wT5RAvs2Q1_DBLVG-etfKj5d88tAHjtfNGPaofnZ6swASz8YkkZ28VRge9O7OGIG6g1pNtQ-DqrxfaO8DATms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlRCXbikgtoXiQytOZh0n6_UeekBsowUWWCGQuAXbcS6sFrQ_QvTEI_AovAqv0CdhnDihIFVISBzqWxzHcjz2zDej-QH4zl2YchhGVCiW0kgLSWXWZlSFGbMsi3Sr6YKTDw5F9zTaO2uezcB9GQtT5IeoDG7uZuT82l3wqzRrPCUNHSA-da5Zruql4N6tct_eXKPSNv6520EK_-A8_nWy06W-rgA1qI9xanDhGvWAoJUabrJAGmUiHRiuFOo70ghmsKXCWIH4Ezu4DDJEUgLBBfIOHeK8s_AhEqztikV0jquEVU1seTyTFCFF3ZKVaSIZbzxf73Mx-IRt_0bIuYiLa_BQbk7h2XKxNZ3oLfP7Rd7I_2n3PsFHj7fJdnFBFmHGDj9DzWNv4jnbeAm6fTVyZWUGpIdyfUQOnKNiA2XP5Z_bOx9NgVKeIMYnMWKBwoRKOtZxWhIrPfLGz2U4fZf_WYG54eXQrgIJwqaR1mqOmBthZtbmNkUMhT0qVFrJOtCS6InxKdhdJZBBUiSP5okjS1KRpQ6b1firIvnIP0eulWco8UxonDiHJ85kK8LXPD8Mr8yS9PpHx9XTl7d8tAHz_U6c9HYP97_CAnfGidxhbw3mJqOpXUcEN9Hf8ktD4Py9z9kjaUZNGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Laser+Micro%2FNano%E2%80%90Processing+for+Functional+Device+Fabrication&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Li%2C+Yang&rft.au=Hong%2C+Minghui&rft.date=2020-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=3&rft_id=info:doi/10.1002%2Flpor.201900062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_201900062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |