Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication

Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 14; no. 3
Main Authors Li, Yang, Hong, Minghui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials. Photolithography is the most commonly used technique in semiconductor manufacturing, which relies on photomask. The maskless method can directly fabricate the micro/nano‐structure, including the photomask. However, this faces a technical bottleneck regarding fabrication speed. Parallel laser processing methods are developed for high speed functional device fabrication, which is the direction of future micro/nano‐fabrication.
AbstractList Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials.
Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials. Photolithography is the most commonly used technique in semiconductor manufacturing, which relies on photomask. The maskless method can directly fabricate the micro/nano‐structure, including the photomask. However, this faces a technical bottleneck regarding fabrication speed. Parallel laser processing methods are developed for high speed functional device fabrication, which is the direction of future micro/nano‐fabrication.
Author Hong, Minghui
Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: National University of Singapore
– sequence: 2
  givenname: Minghui
  orcidid: 0000-0001-7141-636X
  surname: Hong
  fullname: Hong, Minghui
  email: elehmh@nus.edu.sg
  organization: National University of Singapore
BookMark eNqFkMFKAzEQhoNUsK1ePS943naS3abZo1RrhdUW0XPITrOSEjc1aZXefASf0ScxtVJBEOcyw_B_wz9_h7Qa12hCTin0KADr26XzPQa0AADODkibCp6lQhRFaz8LOCKdEBYAg1i8TSYz5ZW12ialCtonNwa969-qxn28vc-8Qx2CaR6T2vlkvG5wZVyjbHKhXwzqZKwqb1Btl8fksFY26JPv3iUP48v70SQtp1fXo_MyxUxkLEVd6YrSnA7nyLCmAhXmFUWmFBW5QA4Ya85RcyFYXDBBaygKPqD5kLMq65Kz3d2ld89rHVZy4dY-egqSZVEBYpizqMp3qvhNCF7XEs3qy-fKK2MlBbnNTG4zk_vMItb7hS29eVJ-8zdQ7IBXY_XmH7UsZ9O7H_YTY-yCuA
CitedBy_id crossref_primary_10_3390_mi15060674
crossref_primary_10_1016_j_optlastec_2021_107012
crossref_primary_10_54939_1859_1043_j_mst_98_2024_132_138
crossref_primary_10_1002_adfm_202405457
crossref_primary_10_35848_1882_0786_acc3db
crossref_primary_10_35848_1882_0786_acfa62
crossref_primary_10_1021_acsami_2c14642
crossref_primary_10_1016_j_mne_2023_100215
crossref_primary_10_1016_j_jmrt_2025_02_057
crossref_primary_10_1016_j_optlastec_2023_110264
crossref_primary_10_1007_s00170_022_10228_w
crossref_primary_10_1007_s11771_022_5145_z
crossref_primary_10_1016_j_optlaseng_2022_107239
crossref_primary_10_29026_oea_2021_210008
crossref_primary_10_1002_admt_202200125
crossref_primary_10_3390_photonics12030207
crossref_primary_10_3390_pr11030931
crossref_primary_10_1007_s11801_022_2034_5
crossref_primary_10_1140_epjp_s13360_023_04193_w
crossref_primary_10_1002_admi_202001610
crossref_primary_10_34133_2021_9783514
crossref_primary_10_1515_ntrev_2021_0073
crossref_primary_10_3390_mi14040824
crossref_primary_10_1002_adom_202001194
crossref_primary_10_1021_acs_langmuir_4c02305
crossref_primary_10_1063_5_0020398
crossref_primary_10_1364_AO_518847
crossref_primary_10_1080_2374068X_2022_2101322
crossref_primary_10_1364_OPTICA_472730
crossref_primary_10_1002_adom_202302685
crossref_primary_10_1002_admt_202201186
crossref_primary_10_1016_j_nanoen_2020_105517
crossref_primary_10_1016_j_optcom_2022_128948
crossref_primary_10_1002_adfm_202311235
crossref_primary_10_1021_acsami_2c16914
crossref_primary_10_1016_j_optlaseng_2022_107405
crossref_primary_10_29026_oes_2023_230028
crossref_primary_10_1016_j_ensm_2022_06_044
crossref_primary_10_1038_s41377_021_00596_5
crossref_primary_10_1016_j_optlastec_2023_109828
crossref_primary_10_1007_s11431_023_2420_x
crossref_primary_10_1002_lpor_202401742
crossref_primary_10_1016_j_nanoen_2023_109182
crossref_primary_10_3390_coatings13071150
crossref_primary_10_1002_smll_202100140
crossref_primary_10_3390_polym16223174
crossref_primary_10_1016_j_optlastec_2024_112305
crossref_primary_10_1016_j_porgcoat_2023_107840
crossref_primary_10_1016_j_vacuum_2023_112595
crossref_primary_10_1016_j_optcom_2022_129249
crossref_primary_10_1021_acsnano_2c11577
crossref_primary_10_1364_OE_403437
crossref_primary_10_1063_5_0131518
crossref_primary_10_1016_j_jmat_2022_08_009
crossref_primary_10_1007_s40820_024_01554_7
crossref_primary_10_1016_j_optlastec_2021_106988
crossref_primary_10_1002_smtd_202402075
crossref_primary_10_1002_lpor_202200232
crossref_primary_10_1016_j_jnoncrysol_2023_122531
crossref_primary_10_1038_s41378_024_00806_1
crossref_primary_10_1088_2631_7990_ac466e
crossref_primary_10_1002_lpor_202400546
crossref_primary_10_1016_j_eng_2025_03_017
crossref_primary_10_3390_mi13122098
crossref_primary_10_1016_j_apsusc_2024_159997
crossref_primary_10_3788_gzxb20235207_0752306
crossref_primary_10_1021_acsami_2c12808
crossref_primary_10_1002_adfm_202211272
crossref_primary_10_1016_j_optlaseng_2022_107182
crossref_primary_10_1021_acsphotonics_1c02017
crossref_primary_10_1016_j_optlastec_2024_111348
crossref_primary_10_1016_j_optlastec_2025_112738
crossref_primary_10_1364_OE_533674
crossref_primary_10_1016_j_optlastec_2023_109481
crossref_primary_10_3390_mi12060611
crossref_primary_10_1002_adma_202402907
crossref_primary_10_1002_adma_202307586
crossref_primary_10_1364_OE_506590
crossref_primary_10_1007_s11801_023_2184_0
crossref_primary_10_1063_5_0149624
crossref_primary_10_29026_oea_2023_230029
crossref_primary_10_1088_2631_7990_ada7a7
crossref_primary_10_1364_OL_398682
crossref_primary_10_1039_D1NR02814F
Cites_doi 10.1364/OME.2.001571
10.1364/OL.36.000406
10.1002/adma.201290000
10.1143/APEX.2.126502
10.1364/OE.21.026227
10.1088/0960-1317/19/5/054002
10.1016/j.jallcom.2006.02.115
10.1016/j.optcom.2014.05.051
10.1364/OE.19.006990
10.1088/0957-4484/8/3A/004
10.1166/jnn.2014.9199
10.1063/1.1855404
10.1088/0957-4484/27/49/49LT01
10.1007/s00339-010-5807-9
10.1364/OL.39.000606
10.29026/oea.2018.180005
10.1116/1.1408957
10.1016/j.mee.2015.04.033
10.1002/smll.201000079
10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V
10.1007/s11433-015-5688-1
10.1002/adma.200600882
10.1063/1.2235855
10.1364/OE.18.012421
10.1063/1.1519329
10.1063/1.1589167
10.1088/0957-4484/21/20/205305
10.1364/OME.1.000151
10.1063/1.1765734
10.1063/1.2993231
10.1364/OE.16.010701
10.1016/j.snb.2008.06.039
10.29026/oea.2018.180008
10.1088/0957-4484/11/3/304
10.1038/nnano.2008.150
10.2961/jlmn.2014.03.0006
10.2351/1.4849715
10.1021/nl802295n
10.3390/mi2020221
10.1063/1.1947369
10.1039/b416951d
10.1088/0957-4484/8/2/002
10.1002/352760846X
10.1007/s11468-015-9979-1
10.1039/C7NR08905H
10.1201/9781420028270
10.1126/science.1125907
10.1021/cr960069i
10.1007/s11051-014-2470-7
10.1038/17989
10.1364/AO.28.003754
10.29026/oea.2018.180014
10.1038/lsa.2014.66
10.1016/j.jmatprotec.2007.04.088
10.1109/LPT.2002.1021970
10.1016/j.cirp.2010.03.038
10.1134/S1063784211080214
10.1063/1.1760221
10.1002/lpor.201600115
10.1063/1.115297
10.1016/j.physletb.2007.05.006
10.1088/0022-3727/43/30/305302
10.1557/mrs2001.158
10.1007/s00339-009-5275-2
10.1016/j.apsusc.2013.05.042
10.1116/1.2890972
10.1063/1.1886896
10.1364/AO.50.006536
10.1021/acssensors.6b00444
10.1364/OL.36.003305
10.1364/OL.42.000743
10.1117/1.602092
10.1002/adfm.201001058
10.1088/0957-4484/17/17/025
10.1142/9789812777515_0003
10.1002/elps.201100309
10.1021/acsphotonics.8b00437
10.1023/A:1013387015192
10.1103/PhysRevLett.92.043905
10.1088/0957-4484/20/11/115303
10.1109/CLEOPR.2003.1277242
10.1364/OE.16.012899
10.1063/1.4876298
10.1364/OE.17.003640
10.1063/1.4794030
10.3788/COL201412.080501
10.1364/OE.19.025632
10.1016/j.optcom.2011.01.042
10.1038/187493a0
10.1088/0957-4484/21/21/215301
10.1017/CBO9781139644181
10.1364/OL.34.001702
10.1143/JJAP.39.L735
10.1016/j.carbon.2011.12.011
10.1103/PhysRevE.56.6494
10.1364/AO.50.000G74
10.1007/s003390101030
10.1039/c3nr33498h
10.1088/0031-8949/2007/T129/008
10.15407/spqeo18.04.438
10.1023/A:1026198130745
10.1063/1.4936088
10.1364/OL.26.000277
10.1088/1367-2630/8/10/250
10.1063/1.1565682
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.201900062
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_201900062
LPOR201900062
Genre reviewArticle
GrantInformation_xml – fundername: Agency for Science, Technology and Research
  funderid: A1883c0010
– fundername: Fujian Institute of Research on the Structure of Matter
  funderid: SKLA‐2018‐09
– fundername: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3832-cebeb11417dc2cf18cac4b1c2aa1848c60ccccd6ce688248c281f0996514762b3
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:19:59 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Tue Jul 01 04:32:33 EDT 2025
Wed Jan 22 16:34:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3832-cebeb11417dc2cf18cac4b1c2aa1848c60ccccd6ce688248c281f0996514762b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7141-636X
PQID 2376208742
PQPubID 1016358
PageCount 17
ParticipantIDs proquest_journals_2376208742
crossref_citationtrail_10_1002_lpor_201900062
crossref_primary_10_1002_lpor_201900062
wiley_primary_10_1002_lpor_201900062_LPOR201900062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2010; 18
2010; 101
2015; 143
2014; 26
2011; 56
2013; 5
1997; 8
2010; 21
2010; 20
2009; 96
2018; 5
2018; 1
2000; 11
1997; 56
2014; 16
2008; 26
2014; 14
2009; 19
2012; 24
2014; 12
2010; 6
2009; 17
2007; 19
2015; 58
2011; 2
2011; 1
2002; 74
2005; 86
2005; 87
2013; 102
2002; 81
2001; 26
2007; T129
1999
2012; 50
2010; 43
2016; 1
1999; 38
2005; 5
2014; 39
2008; 134
2016; 27
2018; 10
2017; 42
2010; 59
2013; 21
2017; 44
2003; 14
2008; 8
2008; 3
2015; 107
2008; 1
2014; 331
2011; 19
2013; 282
2017; 9
2007; 653
2014; 3
1997; 97
1995; 67
2001; 19
2014; 9
2003; 82
2011; 284
2001; 13
2004; 84
2015; 16
2009; 20
2015; 18
2012
2002; 34
2008; 19
2006; 17
2008; 16
2015; 10
2008; 449
2006; 8
2006
2011; 32
2005
2004
2003
2002
2011; 36
1959
2008; 93
2014; 115
1989; 28
2006; 312
2007; 192‐193
2009; 34
2012; 2
2004; 92
2000; 39
2006; 89
2006; 88
2017; 11
1960; 187
2011; 50
1999; 398
2009; 2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Pelletier M. J. (e_1_2_8_9_1) 1999
e_1_2_8_5_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Lv J. (e_1_2_8_100_1) 2015; 16
e_1_2_8_25_1
e_1_2_8_48_1
Zhong Y. C. (e_1_2_8_74_1) 2005; 87
Agrawal G. P. (e_1_2_8_7_1) 2012
Guang‐wei W. (e_1_2_8_14_1) 2008; 1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
Luk'yanchuk B. S. (e_1_2_8_40_1) 2002
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
Wang X. (e_1_2_8_81_1) 2006; 88
e_1_2_8_24_1
Gould R. G. (e_1_2_8_2_1) 1959
e_1_2_8_3_1
e_1_2_8_111_1
Lin Z. (e_1_2_8_47_1) 2017; 9
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Van Zant P. (e_1_2_8_16_1) 2004
Xie Q. (e_1_2_8_58_1) 2003
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_103_1
Guo W. (e_1_2_8_44_1) 2008; 19
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Xu K. (e_1_2_8_98_1) 2017; 44
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 12
  year: 2014
  publication-title: Chin. Opt. Lett.
– volume: 67
  start-page: 3859
  year: 1995
  publication-title: Appl. Phys. Lett.
– year: 2005
– volume: 19
  start-page: 2612
  year: 2001
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
– volume: 19
  start-page: 8
  year: 2008
  publication-title: Nanotechnology
– volume: 6
  start-page: 984
  year: 2010
  publication-title: Small
– volume: 84
  start-page: 5434
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 50
  start-page: 6536
  year: 2011
  publication-title: Appl. Opt.
– volume: 101
  start-page: 237
  year: 2010
  publication-title: Appl. Phys. A
– volume: 20
  start-page: 3484
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 645
  year: 2003
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 10
  start-page: 1675
  year: 2015
  publication-title: Plasmonics
– volume: 58
  year: 2015
  publication-title: Sci. China: Phys., Mech. Astron.
– volume: 16
  start-page: 2470
  year: 2014
  publication-title: J. Nanopart. Res.
– volume: 2
  year: 2009
  publication-title: Appl. Phys. Express
– start-page: 702
  year: 2003
– volume: 43
  year: 2010
  publication-title: J. Phys. D: Appl. Phys.
– volume: 3
  year: 2014
  publication-title: Light: Sci. Appl.
– volume: 28
  start-page: 3754
  year: 1989
  publication-title: Appl. Opt.
– volume: 26
  start-page: 632
  year: 2001
  publication-title: MRS Bull.
– volume: 24
  start-page: 143
  year: 2012
  publication-title: Adv. Mater.
– volume: 19
  year: 2011
  publication-title: Opt. Express
– volume: 81
  start-page: 3663
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 495
  year: 2007
  publication-title: Adv. Mater.
– volume: 192‐193
  start-page: 328
  year: 2007
  publication-title: J. Mater. Process. Technol.
– volume: 17
  start-page: 3640
  year: 2009
  publication-title: Opt. Express
– volume: 82
  start-page: 2212
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 84
  start-page: 4780
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 3378
  year: 2011
  publication-title: Electrophoresis
– volume: 2
  start-page: 221
  year: 2011
  publication-title: Micromachines
– volume: 16
  year: 2008
  publication-title: Opt. Express
– volume: 19
  year: 2009
  publication-title: J. Micromech. Microeng.
– volume: 56
  start-page: 1061
  year: 2011
  publication-title: Tech. Phys.
– volume: 143
  start-page: 91
  year: 2015
  publication-title: Microelectron. Eng.
– volume: 3
  start-page: 413
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 42
  start-page: 743
  year: 2017
  publication-title: Opt. Lett.
– volume: 5
  start-page: 492
  year: 2005
  publication-title: Lab Chip
– volume: 134
  start-page: 940
  year: 2008
  publication-title: Sens. Actuators, B
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 8
  start-page: A15
  year: 1997
  publication-title: Nanotechnology
– volume: 1
  start-page: 5
  year: 2008
  publication-title: J. Tianjin Univ. Technol. Educ.
– volume: 59
  start-page: 543
  year: 2010
  publication-title: CIRP Ann.
– volume: 88
  start-page: 1
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 26
  year: 2014
  publication-title: J. Laser Appl.
– volume: 19
  start-page: 6990
  year: 2011
  publication-title: Opt. Express
– volume: 34
  start-page: 3
  year: 2002
  publication-title: Opt. Quantum Electron.
– volume: 50
  start-page: 1667
  year: 2012
  publication-title: Carbon
– volume: 8
  start-page: 250
  year: 2006
  publication-title: New J. Phys.
– volume: 18
  start-page: 438
  year: 2015
  publication-title: Semicond. Phys., Quantum Electron. Optoelectron.
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 1836
  year: 2013
  publication-title: Nanoscale
– volume: 449
  start-page: 261
  year: 2008
  publication-title: J. Alloys Compd.
– volume: 653
  start-page: 88
  year: 2007
  publication-title: Phys. Lett. B
– volume: 97
  start-page: 1195
  year: 1997
  publication-title: Chem. Rev.
– volume: 1
  start-page: 151
  year: 2011
  publication-title: Opt. Mater. Express
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: T129
  start-page: 35
  year: 2007
  publication-title: Phys. Scr.
– volume: 9
  start-page: 213
  year: 2014
  publication-title: J. Laser Micro/Nanoeng.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 185
  year: 2017
  publication-title: Opto‐Electronic Eng.
– volume: 9
  start-page: 1
  year: 2017
  publication-title: IEEE Photonics J.
– year: 2004
– volume: 14
  start-page: 1521
  year: 2014
  publication-title: J. Nanosci. Nanotechnol.
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 87
  start-page: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 331
  start-page: 82
  year: 2014
  publication-title: Opt. Commun.
– volume: 187
  start-page: 493
  year: 1960
  publication-title: Nature
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 36
  start-page: 3305
  year: 2011
  publication-title: Opt. Lett.
– volume: 11
  start-page: 161
  year: 2000
  publication-title: Nanotechnology
– volume: 17
  start-page: 4436
  year: 2006
  publication-title: Nanotechnology
– volume: 8
  start-page: 53
  year: 1997
  publication-title: Nanotechnology
– volume: 5
  start-page: 3198
  year: 2018
  publication-title: ACS Photonics
– volume: 2
  start-page: 1571
  year: 2012
  publication-title: Opt. Mater. Express
– volume: 26
  start-page: 458
  year: 2008
  publication-title: J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
– volume: 56
  start-page: 6494
  year: 1997
  publication-title: Phys. Rev. E
– volume: 39
  start-page: L735
  year: 2000
  publication-title: Jpn. J. Appl. Phys.
– volume: 282
  start-page: 67
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 38
  start-page: 334
  year: 1999
  publication-title: Opt. Eng.
– volume: 96
  start-page: 459
  year: 2009
  publication-title: Appl. Phys. A
– volume: 36
  start-page: 406
  year: 2011
  publication-title: Opt. Lett.
– volume: 1
  year: 2018
  publication-title: Opto‐Electron. Adv.
– volume: 34
  start-page: 1702
  year: 2009
  publication-title: Opt. Lett.
– volume: 92
  start-page: 4
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 398
  start-page: 51
  year: 1999
  publication-title: Nature
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 115
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 74
  start-page: 493
  year: 2002
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 1
  start-page: 1148
  year: 2016
  publication-title: ACS Sens.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– year: 2012
– volume: 18
  year: 2010
  publication-title: Opt. Express
– volume: 14
  start-page: 1064
  year: 2002
  publication-title: IEEE Photonics Technol. Lett.
– volume: 284
  start-page: 2608
  year: 2011
  publication-title: Opt. Commun.
– volume: 16
  start-page: 369
  year: 2015
  publication-title: J. Nanomater.
– volume: 8
  start-page: 3865
  year: 2008
  publication-title: Nano Lett.
– year: 2006
– volume: 26
  start-page: 277
  year: 2001
  publication-title: Opt. Lett.
– volume: 20
  year: 2009
  publication-title: Nanotechnology
– volume: 82
  start-page: 4809
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 50
  start-page: G74
  year: 2011
  publication-title: Appl. Opt.
– volume: 13
  start-page: 1551
  year: 2001
  publication-title: Adv. Mater.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– start-page: 103
  year: 2002
  end-page: 178
– volume: 39
  start-page: 606
  year: 2014
  publication-title: Opt. Lett.
– start-page: 128
  year: 1959
– year: 1999
– volume-title: Fiber‐Optic Communication Systems
  year: 2012
  ident: e_1_2_8_7_1
– ident: e_1_2_8_57_1
  doi: 10.1364/OME.2.001571
– ident: e_1_2_8_89_1
  doi: 10.1364/OL.36.000406
– ident: e_1_2_8_116_1
  doi: 10.1002/adma.201290000
– ident: e_1_2_8_32_1
  doi: 10.1143/APEX.2.126502
– ident: e_1_2_8_87_1
  doi: 10.1364/OE.21.026227
– ident: e_1_2_8_49_1
  doi: 10.1088/0960-1317/19/5/054002
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jallcom.2006.02.115
– ident: e_1_2_8_88_1
  doi: 10.1016/j.optcom.2014.05.051
– ident: e_1_2_8_115_1
  doi: 10.1364/OE.19.006990
– ident: e_1_2_8_25_1
  doi: 10.1088/0957-4484/8/3A/004
– ident: e_1_2_8_55_1
  doi: 10.1166/jnn.2014.9199
– ident: e_1_2_8_86_1
  doi: 10.1063/1.1855404
– volume: 19
  start-page: 8
  year: 2008
  ident: e_1_2_8_44_1
  publication-title: Nanotechnology
– ident: e_1_2_8_95_1
  doi: 10.1088/0957-4484/27/49/49LT01
– ident: e_1_2_8_62_1
  doi: 10.1007/s00339-010-5807-9
– ident: e_1_2_8_37_1
  doi: 10.1364/OL.39.000606
– ident: e_1_2_8_8_1
  doi: 10.29026/oea.2018.180005
– ident: e_1_2_8_20_1
  doi: 10.1116/1.1408957
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mee.2015.04.033
– ident: e_1_2_8_104_1
  doi: 10.1002/smll.201000079
– ident: e_1_2_8_53_1
  doi: 10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V
– ident: e_1_2_8_18_1
  doi: 10.1007/s11433-015-5688-1
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.200600882
– ident: e_1_2_8_85_1
  doi: 10.1063/1.2235855
– ident: e_1_2_8_113_1
  doi: 10.1364/OE.18.012421
– ident: e_1_2_8_24_1
  doi: 10.1063/1.1519329
– ident: e_1_2_8_41_1
  doi: 10.1063/1.1589167
– ident: e_1_2_8_63_1
  doi: 10.1088/0957-4484/21/20/205305
– volume-title: Analytical Applications of Raman Spectroscopy
  year: 1999
  ident: e_1_2_8_9_1
– ident: e_1_2_8_114_1
  doi: 10.1364/OME.1.000151
– ident: e_1_2_8_79_1
  doi: 10.1063/1.1765734
– ident: e_1_2_8_109_1
  doi: 10.1063/1.2993231
– ident: e_1_2_8_61_1
  doi: 10.1364/OE.16.010701
– start-page: 128
  volume-title: Ann Arbor Conf. of Optical Pumping
  year: 1959
  ident: e_1_2_8_2_1
– ident: e_1_2_8_70_1
  doi: 10.1016/j.snb.2008.06.039
– volume: 16
  start-page: 369
  year: 2015
  ident: e_1_2_8_100_1
  publication-title: J. Nanomater.
– ident: e_1_2_8_4_1
  doi: 10.29026/oea.2018.180008
– ident: e_1_2_8_106_1
  doi: 10.1088/0957-4484/11/3/304
– ident: e_1_2_8_43_1
  doi: 10.1038/nnano.2008.150
– ident: e_1_2_8_34_1
  doi: 10.2961/jlmn.2014.03.0006
– ident: e_1_2_8_66_1
  doi: 10.2351/1.4849715
– ident: e_1_2_8_10_1
  doi: 10.1021/nl802295n
– volume: 9
  start-page: 1
  year: 2017
  ident: e_1_2_8_47_1
  publication-title: IEEE Photonics J.
– ident: e_1_2_8_52_1
  doi: 10.3390/mi2020221
– ident: e_1_2_8_76_1
  doi: 10.1063/1.1947369
– ident: e_1_2_8_13_1
  doi: 10.1039/b416951d
– ident: e_1_2_8_108_1
  doi: 10.1088/0957-4484/8/2/002
– ident: e_1_2_8_6_1
  doi: 10.1002/352760846X
– ident: e_1_2_8_94_1
  doi: 10.1007/s11468-015-9979-1
– ident: e_1_2_8_97_1
  doi: 10.1039/C7NR08905H
– ident: e_1_2_8_3_1
  doi: 10.1201/9781420028270
– ident: e_1_2_8_112_1
  doi: 10.1126/science.1125907
– ident: e_1_2_8_26_1
  doi: 10.1021/cr960069i
– ident: e_1_2_8_93_1
  doi: 10.1007/s11051-014-2470-7
– ident: e_1_2_8_30_1
  doi: 10.1038/17989
– ident: e_1_2_8_33_1
  doi: 10.1364/AO.28.003754
– ident: e_1_2_8_5_1
  doi: 10.29026/oea.2018.180014
– ident: e_1_2_8_72_1
  doi: 10.1038/lsa.2014.66
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jmatprotec.2007.04.088
– ident: e_1_2_8_110_1
  doi: 10.1109/LPT.2002.1021970
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cirp.2010.03.038
– ident: e_1_2_8_15_1
  doi: 10.1134/S1063784211080214
– ident: e_1_2_8_28_1
  doi: 10.1063/1.1760221
– ident: e_1_2_8_38_1
  doi: 10.1002/lpor.201600115
– volume-title: Microchip Fabrication
  year: 2004
  ident: e_1_2_8_16_1
– ident: e_1_2_8_27_1
  doi: 10.1063/1.115297
– ident: e_1_2_8_48_1
  doi: 10.1016/j.physletb.2007.05.006
– ident: e_1_2_8_50_1
  doi: 10.1088/0022-3727/43/30/305302
– ident: e_1_2_8_73_1
  doi: 10.1557/mrs2001.158
– ident: e_1_2_8_45_1
  doi: 10.1007/s00339-009-5275-2
– volume: 88
  start-page: 1
  year: 2006
  ident: e_1_2_8_81_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_69_1
  doi: 10.1016/j.apsusc.2013.05.042
– ident: e_1_2_8_11_1
  doi: 10.1116/1.2890972
– volume: 44
  start-page: 185
  year: 2017
  ident: e_1_2_8_98_1
  publication-title: Opto‐Electronic Eng.
– ident: e_1_2_8_46_1
  doi: 10.1063/1.1886896
– ident: e_1_2_8_84_1
  doi: 10.1364/AO.50.006536
– ident: e_1_2_8_71_1
  doi: 10.1021/acssensors.6b00444
– ident: e_1_2_8_68_1
  doi: 10.1364/OL.36.003305
– ident: e_1_2_8_91_1
  doi: 10.1364/OL.42.000743
– ident: e_1_2_8_31_1
  doi: 10.1117/1.602092
– ident: e_1_2_8_67_1
  doi: 10.1002/adfm.201001058
– ident: e_1_2_8_54_1
  doi: 10.1088/0957-4484/17/17/025
– start-page: 103
  volume-title: Laser Clean
  year: 2002
  ident: e_1_2_8_40_1
  doi: 10.1142/9789812777515_0003
– ident: e_1_2_8_99_1
  doi: 10.1002/elps.201100309
– ident: e_1_2_8_29_1
  doi: 10.1021/acsphotonics.8b00437
– ident: e_1_2_8_75_1
  doi: 10.1023/A:1013387015192
– volume: 87
  start-page: 87
  year: 2005
  ident: e_1_2_8_74_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_8_80_1
  doi: 10.1103/PhysRevLett.92.043905
– ident: e_1_2_8_51_1
  doi: 10.1088/0957-4484/20/11/115303
– start-page: 702
  volume-title: CLEO/Pacific Rim 2003: The 5th Pacific Rim Conf. on Lasers and Electro‐Optics
  year: 2003
  ident: e_1_2_8_58_1
  doi: 10.1109/CLEOPR.2003.1277242
– ident: e_1_2_8_78_1
  doi: 10.1364/OE.16.012899
– ident: e_1_2_8_105_1
  doi: 10.1063/1.4876298
– ident: e_1_2_8_39_1
  doi: 10.1364/OE.17.003640
– ident: e_1_2_8_90_1
  doi: 10.1063/1.4794030
– ident: e_1_2_8_92_1
  doi: 10.3788/COL201412.080501
– ident: e_1_2_8_35_1
  doi: 10.1364/OE.19.025632
– ident: e_1_2_8_103_1
  doi: 10.1016/j.optcom.2011.01.042
– ident: e_1_2_8_1_1
  doi: 10.1038/187493a0
– ident: e_1_2_8_56_1
  doi: 10.1088/0957-4484/21/21/215301
– ident: e_1_2_8_17_1
  doi: 10.1017/CBO9781139644181
– ident: e_1_2_8_107_1
  doi: 10.1364/OL.34.001702
– ident: e_1_2_8_111_1
  doi: 10.1143/JJAP.39.L735
– ident: e_1_2_8_102_1
  doi: 10.1016/j.carbon.2011.12.011
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevE.56.6494
– ident: e_1_2_8_64_1
  doi: 10.1364/AO.50.000G74
– ident: e_1_2_8_21_1
  doi: 10.1007/s003390101030
– ident: e_1_2_8_96_1
  doi: 10.1039/c3nr33498h
– ident: e_1_2_8_59_1
  doi: 10.1088/0031-8949/2007/T129/008
– ident: e_1_2_8_101_1
  doi: 10.15407/spqeo18.04.438
– volume: 1
  start-page: 5
  year: 2008
  ident: e_1_2_8_14_1
  publication-title: J. Tianjin Univ. Technol. Educ.
– ident: e_1_2_8_23_1
  doi: 10.1023/A:1026198130745
– ident: e_1_2_8_65_1
  doi: 10.1063/1.4936088
– ident: e_1_2_8_36_1
  doi: 10.1364/OL.26.000277
– ident: e_1_2_8_77_1
  doi: 10.1088/1367-2630/8/10/250
– ident: e_1_2_8_82_1
  doi: 10.1063/1.1565682
SSID ssj0055556
Score 2.54585
SecondaryResourceType review_article
Snippet Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Direct laser writing
Lasers
Metamaterials
micro/nano‐fabrication
Microspheres
Parallel processing
Patterning
Photolithography
Photomasks
Photovoltaic cells
Solar cells
Title Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900062
https://www.proquest.com/docview/2376208742
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQJxbKrygU5AGJya3jJK47IiCqUAtVRaVuke04C1WL0nZh4hF4Rp6Ec-KkLRJCgmxx7Cjx2XffWXffIXTFbJqy7weES5qQQHFBRNqlRPopNTQNVCe0ycmDR94bBw-TcLKRxV_wQ1QHbnZn5PrabnCpFu01aegU8KkNzbJVL3MlbAO2LCoaVfxRIVx5epHgPgFXj5asjZS1t4dvW6U11NwErLnFiepIlt9aBJq8tFZL1dJv32gc__Mz-2jPwVF8U6yfA7RjZoeo7qApdht_cYR6Q5nZqitT3Aezl-GBjeNrg2qef75_uGQDMIIYIDCOwFQWJ4z4zlhFhCOpMnc2eIzG0f3zbY-4IgxEg_PKiAYpK3CavE6imU49oaUOlKeZlOAcCs2phivh2nAA69DAhJcC7OSAxEDRKv8E1WbzmTlF2PNDLQy48gBJAYWlXWYSgBjQIn2ppGggUgoh1o6h3BbKmMYFtzKL7TTF1TQ10HXV_7Xg5vixZ7OUaez26CK28UCMik4Aj1kunF_eEveHT6Pq7uwvg87RLrMOex7E1kS1ZbYyF4BqluoyX7lfJqfvnA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V29TsMwED4VGGDhH_GPBxCTaeKkrhkYEKUq0EJVgcQWbNdZqApqixBMPAKvwqvwCDwJ58QJFAkhITHgLX9WkrPvvjvdfQewyWyZchCElEuvTUPFBRXxrkdlEHvGi0NVLtni5MYpr12Ex5elywK8ZLUwKT9EHnCzOyPR13aD24B08YM1tIMA1eZm2baXnLm8yhPzcI9eW3_vqIIi3mKsenh-UKOusQDV6JAxqvHNFToCfrmtmY59oaUOla-ZlOjwCM09jaPNteEIQPEEE36MUIojukDloQKcdwTGbBtxS9dfaeWMVSUcSUGT4AFF59LLeCI9Vhx-32E7-AFuP0PkxMZVp-A1-ztpasv1zt1A7ejHL8SR_-r3TcOkQ9xkP90iM1Aw3VmYcuibON3Wn4NaU_ZsY5kOqaNl75GGTVUsovW5eXt6dvUUaOcJonxSRTSQBlFJxVhdS6pS9Vz4cx4u_uR7FmC0e9M1i0D8oKSFMYoh6kagGe8y00YUhWdkIJUUS0AzqUfakbDbXiCdKKWPZpEVS5SLZQm28_tvU_qRb-9czRZR5NRQP7IpT8wT5RAvs2Q1_DBLVG-etfKj5d88tAHjtfNGPaofnZ6swASz8YkkZ28VRge9O7OGIG6g1pNtQ-DqrxfaO8DATms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BlRCXbikgtoXiQytOZh0n6_UeekBsowUWWCGQuAXbcS6sFrQ_QvTEI_AovAqv0CdhnDihIFVISBzqWxzHcjz2zDej-QH4zl2YchhGVCiW0kgLSWXWZlSFGbMsi3Sr6YKTDw5F9zTaO2uezcB9GQtT5IeoDG7uZuT82l3wqzRrPCUNHSA-da5Zruql4N6tct_eXKPSNv6520EK_-A8_nWy06W-rgA1qI9xanDhGvWAoJUabrJAGmUiHRiuFOo70ghmsKXCWIH4Ezu4DDJEUgLBBfIOHeK8s_AhEqztikV0jquEVU1seTyTFCFF3ZKVaSIZbzxf73Mx-IRt_0bIuYiLa_BQbk7h2XKxNZ3oLfP7Rd7I_2n3PsFHj7fJdnFBFmHGDj9DzWNv4jnbeAm6fTVyZWUGpIdyfUQOnKNiA2XP5Z_bOx9NgVKeIMYnMWKBwoRKOtZxWhIrPfLGz2U4fZf_WYG54eXQrgIJwqaR1mqOmBthZtbmNkUMhT0qVFrJOtCS6InxKdhdJZBBUiSP5okjS1KRpQ6b1firIvnIP0eulWco8UxonDiHJ85kK8LXPD8Mr8yS9PpHx9XTl7d8tAHz_U6c9HYP97_CAnfGidxhbw3mJqOpXUcEN9Hf8ktD4Py9z9kjaUZNGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Laser+Micro%2FNano%E2%80%90Processing+for+Functional+Device+Fabrication&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Li%2C+Yang&rft.au=Hong%2C+Minghui&rft.date=2020-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=3&rft_id=info:doi/10.1002%2Flpor.201900062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_201900062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon