Metal‐Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic w...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.
A metal‐free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne on a 3D graphdiyne nanosheet array (g‐C3N4/GDY) is constructed for improving the hole transfer kinetics of g‐C3N4, in which g‐C3N4/GDY shows much higher photoelectron catalytic performance for water splitting than g‐C3N4 due to the high hole transfer rate in graphdiyne and ultrathin 2D/2D heterojunction of g‐C3N4/GDY. |
---|---|
AbstractList | The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C
3
N
4
restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C
3
N
4
to construct a metal‐free 2D/2D heterojunction of g‐C
3
N
4
/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C
3
N
4
/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C
3
N
4
/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C
3
N
4
(88 μs), and a threefold increase in photocurrent density (−98 μA cm
−2
) compared to that of g‐C
3
N
4
photocathode (−32 μA cm
−2
) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C
3
N
4
/GDY, which displays an photocurrent of −133 μA cm
−2
at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting. The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting. A metal‐free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne on a 3D graphdiyne nanosheet array (g‐C3N4/GDY) is constructed for improving the hole transfer kinetics of g‐C3N4, in which g‐C3N4/GDY shows much higher photoelectron catalytic performance for water splitting than g‐C3N4 due to the high hole transfer rate in graphdiyne and ultrathin 2D/2D heterojunction of g‐C3N4/GDY. The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting. |
Author | Tang, Shang‐Feng Lu, Xiu‐Li Lu, Tong‐Bu Wei, Zhen‐Wei Yin, Xue‐Peng Han, Ying‐Ying |
Author_xml | – sequence: 1 givenname: Ying‐Ying surname: Han fullname: Han, Ying‐Ying organization: Tianjin University of Technology – sequence: 2 givenname: Xiu‐Li surname: Lu fullname: Lu, Xiu‐Li email: luxiuli@email.tjut.edu.cn organization: Tianjin University of Technology – sequence: 3 givenname: Shang‐Feng surname: Tang fullname: Tang, Shang‐Feng organization: Tianjin University of Technology – sequence: 4 givenname: Xue‐Peng surname: Yin fullname: Yin, Xue‐Peng organization: Tianjin University of Technology – sequence: 5 givenname: Zhen‐Wei surname: Wei fullname: Wei, Zhen‐Wei organization: Tianjin University of Technology – sequence: 6 givenname: Tong‐Bu orcidid: 0000-0002-6087-4880 surname: Lu fullname: Lu, Tong‐Bu email: lutongbu@tjut.edu.cn organization: Tianjin University of Technology |
BookMark | eNqFkLtOwzAUhi1UJErpymyJOa0vqROPVe9SWxaYI8dxqKs0Lo4LysbAA_CMPAkORUVCArzY8vm_c46-S9AqTakAuMaohxEifaHKXY8gHCHCOTkDbcxwGLA4RK3Tm5IL0K2qLfIn5BhR2gavK-VE8f7yNrVKQTLukzGcK6es2R5K6bQpocnhzIr9Rjst4UjY1P-ttbM6U_3PQqbrUsHcWLjY7a150uUDdBsF56ZQcGVSXWhX_9XmCpznoqhU9-vugPvp5G40D5a3s8VouAwk9csHMSYkTDHBmVQDmRLOGI1QFIYIxRHHIqc44jzOmJAsz2VToEykKYkHBAtGaAfcHPv6LR8PqnLJ1hxs6UcmxBvhiGNCfSo8pqQ1VWVVnkjtRKPCWaGLBKOkUZ40ypOTco_1fmB7q3fC1r8D_Ag860LV_6ST4WS9-mY_AN07llo |
CitedBy_id | crossref_primary_10_1039_D1CS00592H crossref_primary_10_1002_asia_202100579 crossref_primary_10_3390_photochem2020020 crossref_primary_10_1021_acsami_8b03326 crossref_primary_10_1021_acs_inorgchem_4c01333 crossref_primary_10_1016_j_pmatsci_2024_101386 crossref_primary_10_1007_s12598_021_01784_3 crossref_primary_10_1039_D2RA01797K crossref_primary_10_1002_cctc_201901173 crossref_primary_10_1021_acs_jpcc_9b06744 crossref_primary_10_1016_j_ijhydene_2020_08_252 crossref_primary_10_1002_solr_202400600 crossref_primary_10_1021_acs_chemmater_4c00113 crossref_primary_10_1088_2053_1583_ac2a73 crossref_primary_10_1021_acs_chemrev_8b00288 crossref_primary_10_1021_acscatal_1c04279 crossref_primary_10_1039_C9TA13836F crossref_primary_10_1007_s10854_020_03414_7 crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1016_j_solmat_2020_110516 crossref_primary_10_1002_anie_202208163 crossref_primary_10_1002_solr_201900395 crossref_primary_10_1039_D3EY00123G crossref_primary_10_1016_j_apcatb_2024_124836 crossref_primary_10_1021_acs_langmuir_1c01009 crossref_primary_10_1039_C9CP05344A crossref_primary_10_1002_advs_201800959 crossref_primary_10_1016_j_jcis_2019_06_097 crossref_primary_10_1038_s41598_022_13457_x crossref_primary_10_1016_j_ijhydene_2020_05_171 crossref_primary_10_1016_j_jcat_2023_115131 crossref_primary_10_1016_j_apsusc_2020_148673 crossref_primary_10_1021_acsaem_1c02874 crossref_primary_10_1002_smll_202105089 crossref_primary_10_1021_acs_energyfuels_1c00503 crossref_primary_10_1039_D4RA07087A crossref_primary_10_1021_acsomega_1c00840 crossref_primary_10_1016_j_jallcom_2024_174679 crossref_primary_10_1016_j_cej_2020_125150 crossref_primary_10_1016_j_seppur_2023_123431 crossref_primary_10_1039_D1CY02311J crossref_primary_10_1002_advs_201900796 crossref_primary_10_1039_D0SE00394H crossref_primary_10_1021_jacs_9b13678 crossref_primary_10_1002_ange_201904978 crossref_primary_10_3390_nano13233066 crossref_primary_10_1016_j_seppur_2023_124411 crossref_primary_10_1016_j_apcatb_2023_122493 crossref_primary_10_1002_adma_201803101 crossref_primary_10_1016_j_cej_2021_133617 crossref_primary_10_1016_j_cej_2019_122870 crossref_primary_10_1016_j_jcat_2019_09_007 crossref_primary_10_1021_acs_chemrev_1c00165 crossref_primary_10_1088_1361_6528_abf7ed crossref_primary_10_1016_j_apsusc_2018_08_131 crossref_primary_10_1039_D3TA02598E crossref_primary_10_1002_cjoc_202000743 crossref_primary_10_1002_anie_201902634 crossref_primary_10_1016_j_cis_2019_101999 crossref_primary_10_1002_ange_202304694 crossref_primary_10_1039_D1QM00834J crossref_primary_10_1002_adma_201804863 crossref_primary_10_1016_j_jece_2020_103666 crossref_primary_10_1016_j_diamond_2023_110658 crossref_primary_10_1016_j_gee_2020_07_011 crossref_primary_10_1016_j_seppur_2018_09_075 crossref_primary_10_1002_smll_201904587 crossref_primary_10_1002_smll_202200407 crossref_primary_10_1002_solr_202000339 crossref_primary_10_1016_j_jechem_2020_06_040 crossref_primary_10_1039_C8CS00773J crossref_primary_10_1002_ange_201905803 crossref_primary_10_1002_adom_202000067 crossref_primary_10_1016_j_jechem_2021_01_005 crossref_primary_10_1016_j_jcis_2024_02_045 crossref_primary_10_1016_j_jallcom_2024_174323 crossref_primary_10_1002_adma_201803762 crossref_primary_10_1002_tcr_202200110 crossref_primary_10_1039_D2TC02533G crossref_primary_10_1002_chem_201903297 crossref_primary_10_1016_j_electacta_2020_136607 crossref_primary_10_1002_adma_202416337 crossref_primary_10_1002_adfm_202100923 crossref_primary_10_1039_D0TA07345H crossref_primary_10_1016_j_cej_2021_131591 crossref_primary_10_1002_inf2_12279 crossref_primary_10_1016_j_jmat_2021_01_008 crossref_primary_10_1002_adfm_201904256 crossref_primary_10_1016_j_cattod_2020_12_037 crossref_primary_10_1039_C9TC02841B crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_1021_acs_chemrev_1c00971 crossref_primary_10_1016_j_jcat_2021_09_032 crossref_primary_10_1007_s40820_020_00545_8 crossref_primary_10_1021_acs_inorgchem_1c03223 crossref_primary_10_1016_j_seppur_2022_121564 crossref_primary_10_1021_acs_inorgchem_9b02309 crossref_primary_10_1016_j_ccr_2019_05_018 crossref_primary_10_1039_C9EE03558C crossref_primary_10_1039_D1QM01079D crossref_primary_10_1007_s11467_020_0992_2 crossref_primary_10_1039_D3QM00245D crossref_primary_10_1002_ange_201902634 crossref_primary_10_1016_j_jallcom_2024_177852 crossref_primary_10_1002_cey2_105 crossref_primary_10_1002_aenm_201801139 crossref_primary_10_1002_solr_201900538 crossref_primary_10_1002_smtd_202300418 crossref_primary_10_1039_D0TA02256J crossref_primary_10_1039_D3CY00054K crossref_primary_10_1039_C8TA07307D crossref_primary_10_1016_j_mcat_2021_111441 crossref_primary_10_1002_adma_202002486 crossref_primary_10_1002_adma_202405664 crossref_primary_10_1073_pnas_2318777121 crossref_primary_10_1002_sstr_202100086 crossref_primary_10_1007_s12274_023_5574_5 crossref_primary_10_1021_jacs_9b10476 crossref_primary_10_1002_anie_201904978 crossref_primary_10_1021_acsanm_3c01701 crossref_primary_10_1002_ange_202301384 crossref_primary_10_1007_s40242_021_1337_6 crossref_primary_10_1002_asia_202100858 crossref_primary_10_1002_aenm_202000177 crossref_primary_10_1039_D1MH01490K crossref_primary_10_1002_cctc_201802021 crossref_primary_10_1007_s11426_020_9763_9 crossref_primary_10_1038_s41467_024_48349_3 crossref_primary_10_1016_j_ijhydene_2018_09_047 crossref_primary_10_1002_anie_202104469 crossref_primary_10_1039_C9NR06222J crossref_primary_10_1002_cptc_202200240 crossref_primary_10_1002_aenm_202100234 crossref_primary_10_1016_j_ijhydene_2019_03_247 crossref_primary_10_1021_acscatal_0c03594 crossref_primary_10_1002_cey2_527 crossref_primary_10_1016_j_cej_2023_145771 crossref_primary_10_1002_aenm_202001275 crossref_primary_10_1002_anie_201806514 crossref_primary_10_1016_j_jallcom_2023_172000 crossref_primary_10_1002_anie_202304694 crossref_primary_10_1021_acs_jpclett_4c03605 crossref_primary_10_1021_acs_jpclett_3c02784 crossref_primary_10_1021_acsanm_9b01639 crossref_primary_10_1039_D0CC00522C crossref_primary_10_1002_chem_202402930 crossref_primary_10_1002_ange_202208163 crossref_primary_10_1039_D0TA07705D crossref_primary_10_1002_anie_201905803 crossref_primary_10_1016_j_cej_2022_137789 crossref_primary_10_1007_s40242_021_1336_7 crossref_primary_10_1080_0144235X_2022_2218153 crossref_primary_10_1021_acsami_0c15159 crossref_primary_10_1002_adma_201900961 crossref_primary_10_1016_j_seppur_2018_10_062 crossref_primary_10_1016_j_seppur_2021_120097 crossref_primary_10_1039_D3SE00780D crossref_primary_10_1063_1_5093542 crossref_primary_10_1016_j_apsusc_2021_150082 crossref_primary_10_1002_cctc_201902405 crossref_primary_10_1039_D3RA01370G crossref_primary_10_1016_j_jes_2023_01_020 crossref_primary_10_1016_j_cej_2020_127284 crossref_primary_10_1021_acs_chemmater_1c03166 crossref_primary_10_1002_adma_201801446 crossref_primary_10_1016_j_nanoen_2023_108228 crossref_primary_10_1021_acsanm_0c01355 crossref_primary_10_1039_D4QI01005A crossref_primary_10_1002_solr_202300809 crossref_primary_10_1016_j_chemosphere_2020_127955 crossref_primary_10_1002_admi_201801488 crossref_primary_10_1016_j_seppur_2024_128068 crossref_primary_10_1039_C8TA10317H crossref_primary_10_1021_prechem_4c00087 crossref_primary_10_1002_adfm_202111875 crossref_primary_10_1039_D1DT01810H crossref_primary_10_1002_adma_201905679 crossref_primary_10_1016_j_cej_2021_131621 crossref_primary_10_1021_acscatal_9b00313 crossref_primary_10_1021_acscatal_1c05967 crossref_primary_10_1002_cctc_201900967 crossref_primary_10_1016_j_susmat_2018_e00089 crossref_primary_10_1039_C9TA06589J crossref_primary_10_1007_s40843_024_2885_0 crossref_primary_10_1021_acs_iecr_3c02523 crossref_primary_10_1002_cssc_201902730 crossref_primary_10_1016_j_jcis_2024_06_065 crossref_primary_10_1016_j_nanoen_2022_107938 crossref_primary_10_1039_C8TA02061B crossref_primary_10_1016_j_carbon_2019_04_104 crossref_primary_10_1021_acs_chemmater_0c01856 crossref_primary_10_1039_D3NJ00094J crossref_primary_10_1002_anie_202301384 crossref_primary_10_1002_admi_201902083 crossref_primary_10_1021_acs_chemmater_8b04629 crossref_primary_10_1039_D3NR06677K crossref_primary_10_1016_j_surfin_2023_102809 crossref_primary_10_1021_acsami_8b05051 crossref_primary_10_1039_D2CY01090A crossref_primary_10_1016_j_cis_2023_102969 crossref_primary_10_1002_ange_202104469 crossref_primary_10_1016_j_jcis_2023_07_155 crossref_primary_10_1039_C9TA03621K crossref_primary_10_1016_j_ijhydene_2019_11_180 crossref_primary_10_1002_ange_201806514 crossref_primary_10_1016_j_cej_2021_130317 crossref_primary_10_1002_cctc_201901598 crossref_primary_10_1016_j_jssc_2020_121187 crossref_primary_10_1039_D0NJ05647B crossref_primary_10_1039_D1TC04932A crossref_primary_10_1039_D0QI01026J crossref_primary_10_1021_acsami_0c14826 crossref_primary_10_1039_D2TA09918G crossref_primary_10_1016_j_cej_2019_123088 crossref_primary_10_1039_D3TA07230D crossref_primary_10_7567_1347_4065_aafa6b crossref_primary_10_1007_s40242_021_1323_z crossref_primary_10_1039_D0CP04739B crossref_primary_10_1007_s12274_022_4780_x |
Cites_doi | 10.1002/adfm.201000274 10.1126/science.aaa3145 10.1002/adma.201505281 10.1002/adma.201605776 10.1016/j.apsusc.2016.07.030 10.1002/adfm.201503221 10.1002/anie.201706467 10.1002/aenm.201601273 10.1021/ja205325v 10.1021/ja809307s 10.1021/nl203901m 10.1002/anie.201608453 10.1039/C5RA23265A 10.1038/nchem.141 10.1038/nmat4049 10.1021/acs.chemrev.6b00075 10.1038/srep02163 10.1002/adma.201204453 10.1126/science.1209816 10.1039/C4CS00448E 10.1039/C7SC01747B 10.1021/jacs.5b12758 10.1016/j.nanoen.2016.05.031 10.1002/adma.201702428 10.1002/smll.201101660 10.1039/b922733d 10.1021/jacs.6b12776 10.1021/jacs.5b04057 10.1002/anie.201407319 10.1039/C5TA03845F 10.1002/anie.201106656 10.1002/chem.201303446 10.1038/ncomms9647 10.1002/adma.201605308 10.1039/C4TA06778A 10.1038/nmat2317 10.1021/acsnano.5b07831 10.1002/adma.201301207 10.1021/jacs.7b08416 10.1039/c2ee03479d 10.1002/anie.201705926 10.1021/ja101749y 10.1021/jacs.6b11878 10.1039/C5SC03551A 10.1002/aenm.201500296 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201702992 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201702992 AENM201702992 |
Genre | article |
GrantInformation_xml | – fundername: NSFC funderid: 21790052; 1331007 – fundername: 973 Project of China funderid: 2014CB845602 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3832-81224b121dce5cb2966370744008791af317998d6ac6ffc744036abb28521a623 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:08 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Tue Jul 01 01:43:23 EDT 2025 Wed Aug 20 07:27:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3832-81224b121dce5cb2966370744008791af317998d6ac6ffc744036abb28521a623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6087-4880 |
PQID | 2049909123 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2049909123 crossref_citationtrail_10_1002_aenm_201702992 crossref_primary_10_1002_aenm_201702992 wiley_primary_10_1002_aenm_201702992_AENM201702992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 5, 2018 |
PublicationDateYYYYMMDD | 2018-06-05 |
PublicationDate_xml | – month: 06 year: 2018 text: June 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2017; 8 2015; 6 2013; 3 2013; 25 2015; 5 2015; 3 2015; 347 2016; 10 2017; 391 2017; 29 2009; 131 2012; 12 2011; 133 2017; 139 2016; 55 2012; 51 2014; 20 2016; 6 2010; 20 2015; 25 2016; 7 2010; 46 2015; 137 2015; 44 2017; 56 2010; 132 2009; 8 2014; 13 2016; 116 2016; 138 2016; 28 2009; 1 2012; 5 2016; 26 2012; 8 2014; 53 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 139 start-page: 13234 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 7 year: 2009 publication-title: Nat. Chem. – volume: 5 start-page: 1500296 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 18521 year: 2015 publication-title: J. Mater. Chem. A – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 5261 year: 2017 publication-title: Chem. Sci. – volume: 139 start-page: 3145 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 248 year: 2016 publication-title: Nano Energy – volume: 25 start-page: 3820 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 2163 year: 2013 publication-title: Sci. Rep. – volume: 25 start-page: 6885 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 5126 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6717 year: 2012 publication-title: Energy Environ. Sci. – volume: 46 start-page: 3256 year: 2010 publication-title: Chem. Commun. – volume: 334 start-page: 645 year: 2011 publication-title: Science – volume: 29 start-page: 1605776 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 2452 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 133 start-page: 14868 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7596 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1605308 year: 2017 publication-title: Adv. Mater. – volume: 116 start-page: 7159 year: 2016 publication-title: Chem. Rev. – volume: 29 start-page: 1702428 year: 2017 publication-title: Adv. Mater. – volume: 132 start-page: 6294 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 11926 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 12191 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 1601273 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 8647 year: 2015 publication-title: Nat. Commun. – volume: 56 start-page: 10905 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 2427 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 2745 year: 2016 publication-title: ACS Nano – volume: 55 start-page: 14693 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 37 year: 2012 publication-title: Small – volume: 131 start-page: 1680 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 347 start-page: 970 year: 2015 publication-title: Science – volume: 391 start-page: 72 year: 2017 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 1013 year: 2014 publication-title: Nat. Mater. – volume: 12 start-page: 479 year: 2012 publication-title: Nano Lett. – volume: 139 start-page: 3021 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 3954 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 3183 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 2255 year: 2010 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1462 year: 2016 publication-title: Chem. Sci. – volume: 6 start-page: 7465 year: 2016 publication-title: RSC Adv. – volume: 20 start-page: 1176 year: 2014 publication-title: Chem. Eur. J. – ident: e_1_2_4_4_1 doi: 10.1002/adfm.201000274 – ident: e_1_2_4_14_1 doi: 10.1126/science.aaa3145 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201505281 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201605776 – ident: e_1_2_4_17_1 doi: 10.1016/j.apsusc.2016.07.030 – ident: e_1_2_4_30_1 doi: 10.1002/adfm.201503221 – ident: e_1_2_4_13_1 doi: 10.1002/anie.201706467 – ident: e_1_2_4_33_1 doi: 10.1002/aenm.201601273 – ident: e_1_2_4_19_1 doi: 10.1021/ja205325v – ident: e_1_2_4_40_1 doi: 10.1021/ja809307s – ident: e_1_2_4_36_1 doi: 10.1021/nl203901m – ident: e_1_2_4_32_1 doi: 10.1002/anie.201608453 – ident: e_1_2_4_37_1 doi: 10.1039/C5RA23265A – ident: e_1_2_4_1_1 doi: 10.1038/nchem.141 – ident: e_1_2_4_20_1 doi: 10.1038/nmat4049 – ident: e_1_2_4_9_1 doi: 10.1021/acs.chemrev.6b00075 – ident: e_1_2_4_38_1 doi: 10.1038/srep02163 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201204453 – ident: e_1_2_4_21_1 doi: 10.1126/science.1209816 – ident: e_1_2_4_2_1 doi: 10.1039/C4CS00448E – ident: e_1_2_4_12_1 doi: 10.1039/C7SC01747B – ident: e_1_2_4_22_1 doi: 10.1021/jacs.5b12758 – ident: e_1_2_4_46_1 doi: 10.1016/j.nanoen.2016.05.031 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201702428 – ident: e_1_2_4_35_1 doi: 10.1002/smll.201101660 – ident: e_1_2_4_26_1 doi: 10.1039/b922733d – ident: e_1_2_4_27_1 doi: 10.1021/jacs.6b12776 – ident: e_1_2_4_24_1 doi: 10.1021/jacs.5b04057 – ident: e_1_2_4_43_1 doi: 10.1002/anie.201407319 – ident: e_1_2_4_34_1 doi: 10.1039/C5TA03845F – ident: e_1_2_4_42_1 doi: 10.1002/anie.201106656 – ident: e_1_2_4_47_1 doi: 10.1002/chem.201303446 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201204453 – ident: e_1_2_4_18_1 doi: 10.1038/ncomms9647 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201605308 – ident: e_1_2_4_39_1 doi: 10.1039/C4TA06778A – ident: e_1_2_4_10_1 doi: 10.1038/nmat2317 – ident: e_1_2_4_16_1 doi: 10.1021/acsnano.5b07831 – ident: e_1_2_4_3_1 doi: 10.1002/adma.201301207 – ident: e_1_2_4_7_1 doi: 10.1021/jacs.7b08416 – ident: e_1_2_4_11_1 doi: 10.1039/c2ee03479d – ident: e_1_2_4_15_1 doi: 10.1002/anie.201705926 – ident: e_1_2_4_41_1 doi: 10.1021/ja101749y – ident: e_1_2_4_8_1 doi: 10.1021/jacs.6b11878 – ident: e_1_2_4_31_1 doi: 10.1039/C5SC03551A – ident: e_1_2_4_44_1 doi: 10.1021/jacs.6b11878 – ident: e_1_2_4_45_1 doi: 10.1002/anie.201608453 – ident: e_1_2_4_28_1 doi: 10.1002/aenm.201500296 |
SSID | ssj0000491033 |
Score | 2.6336818 |
Snippet | The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aqueous solutions Carbon Carbon nitride Catalysis graphdiyne graphitic carbon nitride Heterojunctions Hole mobility hole transfer Photoelectric effect Photoelectric emission photoelectrocatalysts Water splitting |
Title | Metal‐Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201702992 https://www.proquest.com/docview/2049909123 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wKHFb-iy4J8QOKAQhM7TdJjRbZUaFMhsSu1pyh2HCkIpag0h-XEgQfghXgZnoSZOHZSVJaFS9V6ErfxfPV8dma-EPJcZCh6NlGO5-e-46sicKJAKMfPClZMi9ATHAuFk2WwuPTfriarweBHL2up3olX8svBupL_8Sq0gV-xSvYfPGs7hQZ4D_6FV_AwvN7Ix4kC6mzTFeZbpV6yGIsvYggnMGCbDxC1DCV8g9LUmOuGSR4C2pblblui6u68MeXlVaUVwLuNBmSlC8w_TDZNEu3VdR31ee7MpBYoXVsIvFgPSDfjNdPdGuutzQWsTRjFBKEazauyttbzsttlaPe4m81ue_mqO3utlRFWtbLmd8bcbnF4UZOKNenNysAhnCBqN0JVv01rPZmpPOojNjgYIbTibKYqlCHwQhfCMetiobn__1uItImLWuSZpXh-as-_RY4YrFLYkBzN4uT8vd3kg-WX5_KmyMNcghEOddl4_0fsE6NutdNfMzWk5-IuOW5XK3SmoXePDFR1n9zpaVg-IN8aEP78-h3hR1k8ZjHdBx_dFNRihmrM0BYz4w56FKBHLfQoQI8i9KiB3nXdPCSX87OL1wunfbSHIzkMghPhDV3hMS-XaiIFg0U3D10Uq3SjcOplBUelwigPMhkUhUQDDzIhWAR0MwPK_ogMq02lHhPKw1B5IQ_9QuY-sKtIogwh55mUAjovRsQx45rKVvceH7_yMT3szBF5YY__pBVf_njkqXFT2s4Kn8HqA8GbAiEcEda47i-9pLOzZWI_ndz425-Q291_5ZQMd9taPQWCvBPPWhj-AlaNswk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Free+2D%2F2D+Heterojunction+of+Graphitic+Carbon+Nitride%2FGraphdiyne+for+Improving+the+Hole+Mobility+of+Graphitic+Carbon+Nitride&rft.jtitle=Advanced+energy+materials&rft.au=Han%2C+Ying%E2%80%90Ying&rft.au=Lu%2C+Xiu%E2%80%90Li&rft.au=Tang%2C+Shang%E2%80%90Feng&rft.au=Yin%2C+Xue%E2%80%90Peng&rft.date=2018-06-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=16&rft_id=info:doi/10.1002%2Faenm.201702992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201702992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |