Metal‐Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride

The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic w...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 8; no. 16
Main Authors Han, Ying‐Ying, Lu, Xiu‐Li, Tang, Shang‐Feng, Yin, Xue‐Peng, Wei, Zhen‐Wei, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting. A metal‐free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne on a 3D graphdiyne nanosheet array (g‐C3N4/GDY) is constructed for improving the hole transfer kinetics of g‐C3N4, in which g‐C3N4/GDY shows much higher photoelectron catalytic performance for water splitting than g‐C3N4 due to the high hole transfer rate in graphdiyne and ultrathin 2D/2D heterojunction of g‐C3N4/GDY.
AbstractList The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C 3 N 4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C 3 N 4 to construct a metal‐free 2D/2D heterojunction of g‐C 3 N 4 /GDY as an efficient photoelectrocatalyst for water splitting. The g‐C 3 N 4 /GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C 3 N 4 /GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C 3 N 4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm −2 ) compared to that of g‐C 3 N 4 photocathode (−32 μA cm −2 ) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C 3 N 4 /GDY, which displays an photocurrent of −133 μA cm −2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting. A metal‐free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne on a 3D graphdiyne nanosheet array (g‐C3N4/GDY) is constructed for improving the hole transfer kinetics of g‐C3N4, in which g‐C3N4/GDY shows much higher photoelectron catalytic performance for water splitting than g‐C3N4 due to the high hole transfer rate in graphdiyne and ultrathin 2D/2D heterojunction of g‐C3N4/GDY.
The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth abundant and environment friendly. As a typical metal‐free semiconductor, g‐C3N4 has received much attention in the field of photocatalytic water splitting. However, the poor photoinduced hole mobility of g‐C3N4 restrains its catalytic performance. Herein, for the first time, graphdiyne (GDY) is used to interact with g‐C3N4 to construct a metal‐free 2D/2D heterojunction of g‐C3N4/GDY as an efficient photoelectrocatalyst for water splitting. The g‐C3N4/GDY photocathode exhibits enhanced photocarriers separation due to excellent hole transfer nature of graphdiyne and the structure of 2D/2D heterojunction of g‐C3N4/GDY, realizing a sevenfold increase in electron life time (610 μs) compared to that of g‐C3N4 (88 μs), and a threefold increase in photocurrent density (−98 μA cm−2) compared to that of g‐C3N4 photocathode (−32 μA cm−2) at a potential of 0 V versus normal hydrogen electrode (NHE) in neutral aqueous solution. The photoelectrocatalytic performance can be further improved by fabricating Pt@g‐C3N4/GDY, which displays an photocurrent of −133 μA cm−2 at a potential of 0 V versus NHE in neutral aqueous solution. This work provides a new strategy for the design of efficient metal‐free photoelectrocatalysts for water splitting.
Author Tang, Shang‐Feng
Lu, Xiu‐Li
Lu, Tong‐Bu
Wei, Zhen‐Wei
Yin, Xue‐Peng
Han, Ying‐Ying
Author_xml – sequence: 1
  givenname: Ying‐Ying
  surname: Han
  fullname: Han, Ying‐Ying
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Xiu‐Li
  surname: Lu
  fullname: Lu, Xiu‐Li
  email: luxiuli@email.tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 3
  givenname: Shang‐Feng
  surname: Tang
  fullname: Tang, Shang‐Feng
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Xue‐Peng
  surname: Yin
  fullname: Yin, Xue‐Peng
  organization: Tianjin University of Technology
– sequence: 5
  givenname: Zhen‐Wei
  surname: Wei
  fullname: Wei, Zhen‐Wei
  organization: Tianjin University of Technology
– sequence: 6
  givenname: Tong‐Bu
  orcidid: 0000-0002-6087-4880
  surname: Lu
  fullname: Lu, Tong‐Bu
  email: lutongbu@tjut.edu.cn
  organization: Tianjin University of Technology
BookMark eNqFkLtOwzAUhi1UJErpymyJOa0vqROPVe9SWxaYI8dxqKs0Lo4LysbAA_CMPAkORUVCArzY8vm_c46-S9AqTakAuMaohxEifaHKXY8gHCHCOTkDbcxwGLA4RK3Tm5IL0K2qLfIn5BhR2gavK-VE8f7yNrVKQTLukzGcK6es2R5K6bQpocnhzIr9Rjst4UjY1P-ttbM6U_3PQqbrUsHcWLjY7a150uUDdBsF56ZQcGVSXWhX_9XmCpznoqhU9-vugPvp5G40D5a3s8VouAwk9csHMSYkTDHBmVQDmRLOGI1QFIYIxRHHIqc44jzOmJAsz2VToEykKYkHBAtGaAfcHPv6LR8PqnLJ1hxs6UcmxBvhiGNCfSo8pqQ1VWVVnkjtRKPCWaGLBKOkUZ40ypOTco_1fmB7q3fC1r8D_Ag860LV_6ST4WS9-mY_AN07llo
CitedBy_id crossref_primary_10_1039_D1CS00592H
crossref_primary_10_1002_asia_202100579
crossref_primary_10_3390_photochem2020020
crossref_primary_10_1021_acsami_8b03326
crossref_primary_10_1021_acs_inorgchem_4c01333
crossref_primary_10_1016_j_pmatsci_2024_101386
crossref_primary_10_1007_s12598_021_01784_3
crossref_primary_10_1039_D2RA01797K
crossref_primary_10_1002_cctc_201901173
crossref_primary_10_1021_acs_jpcc_9b06744
crossref_primary_10_1016_j_ijhydene_2020_08_252
crossref_primary_10_1002_solr_202400600
crossref_primary_10_1021_acs_chemmater_4c00113
crossref_primary_10_1088_2053_1583_ac2a73
crossref_primary_10_1021_acs_chemrev_8b00288
crossref_primary_10_1021_acscatal_1c04279
crossref_primary_10_1039_C9TA13836F
crossref_primary_10_1007_s10854_020_03414_7
crossref_primary_10_1016_j_mattod_2023_02_004
crossref_primary_10_1016_j_solmat_2020_110516
crossref_primary_10_1002_anie_202208163
crossref_primary_10_1002_solr_201900395
crossref_primary_10_1039_D3EY00123G
crossref_primary_10_1016_j_apcatb_2024_124836
crossref_primary_10_1021_acs_langmuir_1c01009
crossref_primary_10_1039_C9CP05344A
crossref_primary_10_1002_advs_201800959
crossref_primary_10_1016_j_jcis_2019_06_097
crossref_primary_10_1038_s41598_022_13457_x
crossref_primary_10_1016_j_ijhydene_2020_05_171
crossref_primary_10_1016_j_jcat_2023_115131
crossref_primary_10_1016_j_apsusc_2020_148673
crossref_primary_10_1021_acsaem_1c02874
crossref_primary_10_1002_smll_202105089
crossref_primary_10_1021_acs_energyfuels_1c00503
crossref_primary_10_1039_D4RA07087A
crossref_primary_10_1021_acsomega_1c00840
crossref_primary_10_1016_j_jallcom_2024_174679
crossref_primary_10_1016_j_cej_2020_125150
crossref_primary_10_1016_j_seppur_2023_123431
crossref_primary_10_1039_D1CY02311J
crossref_primary_10_1002_advs_201900796
crossref_primary_10_1039_D0SE00394H
crossref_primary_10_1021_jacs_9b13678
crossref_primary_10_1002_ange_201904978
crossref_primary_10_3390_nano13233066
crossref_primary_10_1016_j_seppur_2023_124411
crossref_primary_10_1016_j_apcatb_2023_122493
crossref_primary_10_1002_adma_201803101
crossref_primary_10_1016_j_cej_2021_133617
crossref_primary_10_1016_j_cej_2019_122870
crossref_primary_10_1016_j_jcat_2019_09_007
crossref_primary_10_1021_acs_chemrev_1c00165
crossref_primary_10_1088_1361_6528_abf7ed
crossref_primary_10_1016_j_apsusc_2018_08_131
crossref_primary_10_1039_D3TA02598E
crossref_primary_10_1002_cjoc_202000743
crossref_primary_10_1002_anie_201902634
crossref_primary_10_1016_j_cis_2019_101999
crossref_primary_10_1002_ange_202304694
crossref_primary_10_1039_D1QM00834J
crossref_primary_10_1002_adma_201804863
crossref_primary_10_1016_j_jece_2020_103666
crossref_primary_10_1016_j_diamond_2023_110658
crossref_primary_10_1016_j_gee_2020_07_011
crossref_primary_10_1016_j_seppur_2018_09_075
crossref_primary_10_1002_smll_201904587
crossref_primary_10_1002_smll_202200407
crossref_primary_10_1002_solr_202000339
crossref_primary_10_1016_j_jechem_2020_06_040
crossref_primary_10_1039_C8CS00773J
crossref_primary_10_1002_ange_201905803
crossref_primary_10_1002_adom_202000067
crossref_primary_10_1016_j_jechem_2021_01_005
crossref_primary_10_1016_j_jcis_2024_02_045
crossref_primary_10_1016_j_jallcom_2024_174323
crossref_primary_10_1002_adma_201803762
crossref_primary_10_1002_tcr_202200110
crossref_primary_10_1039_D2TC02533G
crossref_primary_10_1002_chem_201903297
crossref_primary_10_1016_j_electacta_2020_136607
crossref_primary_10_1002_adma_202416337
crossref_primary_10_1002_adfm_202100923
crossref_primary_10_1039_D0TA07345H
crossref_primary_10_1016_j_cej_2021_131591
crossref_primary_10_1002_inf2_12279
crossref_primary_10_1016_j_jmat_2021_01_008
crossref_primary_10_1002_adfm_201904256
crossref_primary_10_1016_j_cattod_2020_12_037
crossref_primary_10_1039_C9TC02841B
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_1021_acs_chemrev_1c00971
crossref_primary_10_1016_j_jcat_2021_09_032
crossref_primary_10_1007_s40820_020_00545_8
crossref_primary_10_1021_acs_inorgchem_1c03223
crossref_primary_10_1016_j_seppur_2022_121564
crossref_primary_10_1021_acs_inorgchem_9b02309
crossref_primary_10_1016_j_ccr_2019_05_018
crossref_primary_10_1039_C9EE03558C
crossref_primary_10_1039_D1QM01079D
crossref_primary_10_1007_s11467_020_0992_2
crossref_primary_10_1039_D3QM00245D
crossref_primary_10_1002_ange_201902634
crossref_primary_10_1016_j_jallcom_2024_177852
crossref_primary_10_1002_cey2_105
crossref_primary_10_1002_aenm_201801139
crossref_primary_10_1002_solr_201900538
crossref_primary_10_1002_smtd_202300418
crossref_primary_10_1039_D0TA02256J
crossref_primary_10_1039_D3CY00054K
crossref_primary_10_1039_C8TA07307D
crossref_primary_10_1016_j_mcat_2021_111441
crossref_primary_10_1002_adma_202002486
crossref_primary_10_1002_adma_202405664
crossref_primary_10_1073_pnas_2318777121
crossref_primary_10_1002_sstr_202100086
crossref_primary_10_1007_s12274_023_5574_5
crossref_primary_10_1021_jacs_9b10476
crossref_primary_10_1002_anie_201904978
crossref_primary_10_1021_acsanm_3c01701
crossref_primary_10_1002_ange_202301384
crossref_primary_10_1007_s40242_021_1337_6
crossref_primary_10_1002_asia_202100858
crossref_primary_10_1002_aenm_202000177
crossref_primary_10_1039_D1MH01490K
crossref_primary_10_1002_cctc_201802021
crossref_primary_10_1007_s11426_020_9763_9
crossref_primary_10_1038_s41467_024_48349_3
crossref_primary_10_1016_j_ijhydene_2018_09_047
crossref_primary_10_1002_anie_202104469
crossref_primary_10_1039_C9NR06222J
crossref_primary_10_1002_cptc_202200240
crossref_primary_10_1002_aenm_202100234
crossref_primary_10_1016_j_ijhydene_2019_03_247
crossref_primary_10_1021_acscatal_0c03594
crossref_primary_10_1002_cey2_527
crossref_primary_10_1016_j_cej_2023_145771
crossref_primary_10_1002_aenm_202001275
crossref_primary_10_1002_anie_201806514
crossref_primary_10_1016_j_jallcom_2023_172000
crossref_primary_10_1002_anie_202304694
crossref_primary_10_1021_acs_jpclett_4c03605
crossref_primary_10_1021_acs_jpclett_3c02784
crossref_primary_10_1021_acsanm_9b01639
crossref_primary_10_1039_D0CC00522C
crossref_primary_10_1002_chem_202402930
crossref_primary_10_1002_ange_202208163
crossref_primary_10_1039_D0TA07705D
crossref_primary_10_1002_anie_201905803
crossref_primary_10_1016_j_cej_2022_137789
crossref_primary_10_1007_s40242_021_1336_7
crossref_primary_10_1080_0144235X_2022_2218153
crossref_primary_10_1021_acsami_0c15159
crossref_primary_10_1002_adma_201900961
crossref_primary_10_1016_j_seppur_2018_10_062
crossref_primary_10_1016_j_seppur_2021_120097
crossref_primary_10_1039_D3SE00780D
crossref_primary_10_1063_1_5093542
crossref_primary_10_1016_j_apsusc_2021_150082
crossref_primary_10_1002_cctc_201902405
crossref_primary_10_1039_D3RA01370G
crossref_primary_10_1016_j_jes_2023_01_020
crossref_primary_10_1016_j_cej_2020_127284
crossref_primary_10_1021_acs_chemmater_1c03166
crossref_primary_10_1002_adma_201801446
crossref_primary_10_1016_j_nanoen_2023_108228
crossref_primary_10_1021_acsanm_0c01355
crossref_primary_10_1039_D4QI01005A
crossref_primary_10_1002_solr_202300809
crossref_primary_10_1016_j_chemosphere_2020_127955
crossref_primary_10_1002_admi_201801488
crossref_primary_10_1016_j_seppur_2024_128068
crossref_primary_10_1039_C8TA10317H
crossref_primary_10_1021_prechem_4c00087
crossref_primary_10_1002_adfm_202111875
crossref_primary_10_1039_D1DT01810H
crossref_primary_10_1002_adma_201905679
crossref_primary_10_1016_j_cej_2021_131621
crossref_primary_10_1021_acscatal_9b00313
crossref_primary_10_1021_acscatal_1c05967
crossref_primary_10_1002_cctc_201900967
crossref_primary_10_1016_j_susmat_2018_e00089
crossref_primary_10_1039_C9TA06589J
crossref_primary_10_1007_s40843_024_2885_0
crossref_primary_10_1021_acs_iecr_3c02523
crossref_primary_10_1002_cssc_201902730
crossref_primary_10_1016_j_jcis_2024_06_065
crossref_primary_10_1016_j_nanoen_2022_107938
crossref_primary_10_1039_C8TA02061B
crossref_primary_10_1016_j_carbon_2019_04_104
crossref_primary_10_1021_acs_chemmater_0c01856
crossref_primary_10_1039_D3NJ00094J
crossref_primary_10_1002_anie_202301384
crossref_primary_10_1002_admi_201902083
crossref_primary_10_1021_acs_chemmater_8b04629
crossref_primary_10_1039_D3NR06677K
crossref_primary_10_1016_j_surfin_2023_102809
crossref_primary_10_1021_acsami_8b05051
crossref_primary_10_1039_D2CY01090A
crossref_primary_10_1016_j_cis_2023_102969
crossref_primary_10_1002_ange_202104469
crossref_primary_10_1016_j_jcis_2023_07_155
crossref_primary_10_1039_C9TA03621K
crossref_primary_10_1016_j_ijhydene_2019_11_180
crossref_primary_10_1002_ange_201806514
crossref_primary_10_1016_j_cej_2021_130317
crossref_primary_10_1002_cctc_201901598
crossref_primary_10_1016_j_jssc_2020_121187
crossref_primary_10_1039_D0NJ05647B
crossref_primary_10_1039_D1TC04932A
crossref_primary_10_1039_D0QI01026J
crossref_primary_10_1021_acsami_0c14826
crossref_primary_10_1039_D2TA09918G
crossref_primary_10_1016_j_cej_2019_123088
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_7567_1347_4065_aafa6b
crossref_primary_10_1007_s40242_021_1323_z
crossref_primary_10_1039_D0CP04739B
crossref_primary_10_1007_s12274_022_4780_x
Cites_doi 10.1002/adfm.201000274
10.1126/science.aaa3145
10.1002/adma.201505281
10.1002/adma.201605776
10.1016/j.apsusc.2016.07.030
10.1002/adfm.201503221
10.1002/anie.201706467
10.1002/aenm.201601273
10.1021/ja205325v
10.1021/ja809307s
10.1021/nl203901m
10.1002/anie.201608453
10.1039/C5RA23265A
10.1038/nchem.141
10.1038/nmat4049
10.1021/acs.chemrev.6b00075
10.1038/srep02163
10.1002/adma.201204453
10.1126/science.1209816
10.1039/C4CS00448E
10.1039/C7SC01747B
10.1021/jacs.5b12758
10.1016/j.nanoen.2016.05.031
10.1002/adma.201702428
10.1002/smll.201101660
10.1039/b922733d
10.1021/jacs.6b12776
10.1021/jacs.5b04057
10.1002/anie.201407319
10.1039/C5TA03845F
10.1002/anie.201106656
10.1002/chem.201303446
10.1038/ncomms9647
10.1002/adma.201605308
10.1039/C4TA06778A
10.1038/nmat2317
10.1021/acsnano.5b07831
10.1002/adma.201301207
10.1021/jacs.7b08416
10.1039/c2ee03479d
10.1002/anie.201705926
10.1021/ja101749y
10.1021/jacs.6b11878
10.1039/C5SC03551A
10.1002/aenm.201500296
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201702992
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201702992
AENM201702992
Genre article
GrantInformation_xml – fundername: NSFC
  funderid: 21790052; 1331007
– fundername: 973 Project of China
  funderid: 2014CB845602
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3832-81224b121dce5cb2966370744008791af317998d6ac6ffc744036abb28521a623
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:08 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 01:43:23 EDT 2025
Wed Aug 20 07:27:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3832-81224b121dce5cb2966370744008791af317998d6ac6ffc744036abb28521a623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6087-4880
PQID 2049909123
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2049909123
crossref_citationtrail_10_1002_aenm_201702992
crossref_primary_10_1002_aenm_201702992
wiley_primary_10_1002_aenm_201702992_AENM201702992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 5, 2018
PublicationDateYYYYMMDD 2018-06-05
PublicationDate_xml – month: 06
  year: 2018
  text: June 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2017; 8
2015; 6
2013; 3
2013; 25
2015; 5
2015; 3
2015; 347
2016; 10
2017; 391
2017; 29
2009; 131
2012; 12
2011; 133
2017; 139
2016; 55
2012; 51
2014; 20
2016; 6
2010; 20
2015; 25
2016; 7
2010; 46
2015; 137
2015; 44
2017; 56
2010; 132
2009; 8
2014; 13
2016; 116
2016; 138
2016; 28
2009; 1
2012; 5
2016; 26
2012; 8
2014; 53
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 139
  start-page: 13234
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 7
  year: 2009
  publication-title: Nat. Chem.
– volume: 5
  start-page: 1500296
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 18521
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 5261
  year: 2017
  publication-title: Chem. Sci.
– volume: 139
  start-page: 3145
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 248
  year: 2016
  publication-title: Nano Energy
– volume: 25
  start-page: 3820
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2163
  year: 2013
  publication-title: Sci. Rep.
– volume: 25
  start-page: 6885
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 5126
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6717
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 3256
  year: 2010
  publication-title: Chem. Commun.
– volume: 334
  start-page: 645
  year: 2011
  publication-title: Science
– volume: 29
  start-page: 1605776
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2452
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 133
  start-page: 14868
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7596
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1605308
  year: 2017
  publication-title: Adv. Mater.
– volume: 116
  start-page: 7159
  year: 2016
  publication-title: Chem. Rev.
– volume: 29
  start-page: 1702428
  year: 2017
  publication-title: Adv. Mater.
– volume: 132
  start-page: 6294
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 11926
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 12191
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1601273
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 8647
  year: 2015
  publication-title: Nat. Commun.
– volume: 56
  start-page: 10905
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 2427
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2745
  year: 2016
  publication-title: ACS Nano
– volume: 55
  start-page: 14693
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 37
  year: 2012
  publication-title: Small
– volume: 131
  start-page: 1680
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 970
  year: 2015
  publication-title: Science
– volume: 391
  start-page: 72
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 1013
  year: 2014
  publication-title: Nat. Mater.
– volume: 12
  start-page: 479
  year: 2012
  publication-title: Nano Lett.
– volume: 139
  start-page: 3021
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 3954
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 3183
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 2255
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1462
  year: 2016
  publication-title: Chem. Sci.
– volume: 6
  start-page: 7465
  year: 2016
  publication-title: RSC Adv.
– volume: 20
  start-page: 1176
  year: 2014
  publication-title: Chem. Eur. J.
– ident: e_1_2_4_4_1
  doi: 10.1002/adfm.201000274
– ident: e_1_2_4_14_1
  doi: 10.1126/science.aaa3145
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201505281
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201605776
– ident: e_1_2_4_17_1
  doi: 10.1016/j.apsusc.2016.07.030
– ident: e_1_2_4_30_1
  doi: 10.1002/adfm.201503221
– ident: e_1_2_4_13_1
  doi: 10.1002/anie.201706467
– ident: e_1_2_4_33_1
  doi: 10.1002/aenm.201601273
– ident: e_1_2_4_19_1
  doi: 10.1021/ja205325v
– ident: e_1_2_4_40_1
  doi: 10.1021/ja809307s
– ident: e_1_2_4_36_1
  doi: 10.1021/nl203901m
– ident: e_1_2_4_32_1
  doi: 10.1002/anie.201608453
– ident: e_1_2_4_37_1
  doi: 10.1039/C5RA23265A
– ident: e_1_2_4_1_1
  doi: 10.1038/nchem.141
– ident: e_1_2_4_20_1
  doi: 10.1038/nmat4049
– ident: e_1_2_4_9_1
  doi: 10.1021/acs.chemrev.6b00075
– ident: e_1_2_4_38_1
  doi: 10.1038/srep02163
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_4_21_1
  doi: 10.1126/science.1209816
– ident: e_1_2_4_2_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_4_12_1
  doi: 10.1039/C7SC01747B
– ident: e_1_2_4_22_1
  doi: 10.1021/jacs.5b12758
– ident: e_1_2_4_46_1
  doi: 10.1016/j.nanoen.2016.05.031
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201702428
– ident: e_1_2_4_35_1
  doi: 10.1002/smll.201101660
– ident: e_1_2_4_26_1
  doi: 10.1039/b922733d
– ident: e_1_2_4_27_1
  doi: 10.1021/jacs.6b12776
– ident: e_1_2_4_24_1
  doi: 10.1021/jacs.5b04057
– ident: e_1_2_4_43_1
  doi: 10.1002/anie.201407319
– ident: e_1_2_4_34_1
  doi: 10.1039/C5TA03845F
– ident: e_1_2_4_42_1
  doi: 10.1002/anie.201106656
– ident: e_1_2_4_47_1
  doi: 10.1002/chem.201303446
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_4_18_1
  doi: 10.1038/ncomms9647
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201605308
– ident: e_1_2_4_39_1
  doi: 10.1039/C4TA06778A
– ident: e_1_2_4_10_1
  doi: 10.1038/nmat2317
– ident: e_1_2_4_16_1
  doi: 10.1021/acsnano.5b07831
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201301207
– ident: e_1_2_4_7_1
  doi: 10.1021/jacs.7b08416
– ident: e_1_2_4_11_1
  doi: 10.1039/c2ee03479d
– ident: e_1_2_4_15_1
  doi: 10.1002/anie.201705926
– ident: e_1_2_4_41_1
  doi: 10.1021/ja101749y
– ident: e_1_2_4_8_1
  doi: 10.1021/jacs.6b11878
– ident: e_1_2_4_31_1
  doi: 10.1039/C5SC03551A
– ident: e_1_2_4_44_1
  doi: 10.1021/jacs.6b11878
– ident: e_1_2_4_45_1
  doi: 10.1002/anie.201608453
– ident: e_1_2_4_28_1
  doi: 10.1002/aenm.201500296
SSID ssj0000491033
Score 2.6336818
Snippet The design and synthesis of efficient metal‐free photoelectrocatalysts for water splitting are of great significance, as nonmetal elements are generally earth...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aqueous solutions
Carbon
Carbon nitride
Catalysis
graphdiyne
graphitic carbon nitride
Heterojunctions
Hole mobility
hole transfer
Photoelectric effect
Photoelectric emission
photoelectrocatalysts
Water splitting
Title Metal‐Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201702992
https://www.proquest.com/docview/2049909123
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wKHFb-iy4J8QOKAQhM7TdJjRbZUaFMhsSu1pyh2HCkIpag0h-XEgQfghXgZnoSZOHZSVJaFS9V6ErfxfPV8dma-EPJcZCh6NlGO5-e-46sicKJAKMfPClZMi9ATHAuFk2WwuPTfriarweBHL2up3olX8svBupL_8Sq0gV-xSvYfPGs7hQZ4D_6FV_AwvN7Ix4kC6mzTFeZbpV6yGIsvYggnMGCbDxC1DCV8g9LUmOuGSR4C2pblblui6u68MeXlVaUVwLuNBmSlC8w_TDZNEu3VdR31ee7MpBYoXVsIvFgPSDfjNdPdGuutzQWsTRjFBKEazauyttbzsttlaPe4m81ue_mqO3utlRFWtbLmd8bcbnF4UZOKNenNysAhnCBqN0JVv01rPZmpPOojNjgYIbTibKYqlCHwQhfCMetiobn__1uItImLWuSZpXh-as-_RY4YrFLYkBzN4uT8vd3kg-WX5_KmyMNcghEOddl4_0fsE6NutdNfMzWk5-IuOW5XK3SmoXePDFR1n9zpaVg-IN8aEP78-h3hR1k8ZjHdBx_dFNRihmrM0BYz4w56FKBHLfQoQI8i9KiB3nXdPCSX87OL1wunfbSHIzkMghPhDV3hMS-XaiIFg0U3D10Uq3SjcOplBUelwigPMhkUhUQDDzIhWAR0MwPK_ogMq02lHhPKw1B5IQ_9QuY-sKtIogwh55mUAjovRsQx45rKVvceH7_yMT3szBF5YY__pBVf_njkqXFT2s4Kn8HqA8GbAiEcEda47i-9pLOzZWI_ndz425-Q291_5ZQMd9taPQWCvBPPWhj-AlaNswk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Free+2D%2F2D+Heterojunction+of+Graphitic+Carbon+Nitride%2FGraphdiyne+for+Improving+the+Hole+Mobility+of+Graphitic+Carbon+Nitride&rft.jtitle=Advanced+energy+materials&rft.au=Han%2C+Ying%E2%80%90Ying&rft.au=Lu%2C+Xiu%E2%80%90Li&rft.au=Tang%2C+Shang%E2%80%90Feng&rft.au=Yin%2C+Xue%E2%80%90Peng&rft.date=2018-06-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=16&rft_id=info:doi/10.1002%2Faenm.201702992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201702992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon