Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells
In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 19 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density.
Suppression of the interfacial recombination are achieved by facile alkali chloride modification of the nickel oxide in inverted perovskite solar cells. It is demonstrated that the interface modification induces the ordering of the perovskite crystal at the interfaces, which in turn reduces defect/trap density, causing reduced interfacial recombination. This results in dramatically improvement of the open circuit voltage and power conversion efficiency. |
---|---|
AbstractList | In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density. In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density. Suppression of the interfacial recombination are achieved by facile alkali chloride modification of the nickel oxide in inverted perovskite solar cells. It is demonstrated that the interface modification induces the ordering of the perovskite crystal at the interfaces, which in turn reduces defect/trap density, causing reduced interfacial recombination. This results in dramatically improvement of the open circuit voltage and power conversion efficiency. |
Author | Chen, Wei Chen, Guocong Zhou, Yecheng Huang, Li Djurišić, Aleksandra B. Tu, Bao Wu, Yinghui Ng, Alan Man Ching He, Zhubing Liu, Fang‐Zhou |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: The University of Hong Kong – sequence: 2 givenname: Yecheng surname: Zhou fullname: Zhou, Yecheng organization: Southern University of Science and Technology of China – sequence: 3 givenname: Guocong surname: Chen fullname: Chen, Guocong organization: Southern University of Science and Technology – sequence: 4 givenname: Yinghui surname: Wu fullname: Wu, Yinghui organization: Southern University of Science and Technology – sequence: 5 givenname: Bao surname: Tu fullname: Tu, Bao organization: Southern University of Science and Technology – sequence: 6 givenname: Fang‐Zhou surname: Liu fullname: Liu, Fang‐Zhou organization: The University of Hong Kong – sequence: 7 givenname: Li surname: Huang fullname: Huang, Li organization: Southern University of Science and Technology of China – sequence: 8 givenname: Alan Man Ching surname: Ng fullname: Ng, Alan Man Ching organization: Southern University of Science and Technology of China – sequence: 9 givenname: Aleksandra B. surname: Djurišić fullname: Djurišić, Aleksandra B. email: dalek@hku.hk organization: The University of Hong Kong – sequence: 10 givenname: Zhubing orcidid: 0000-0002-2775-0894 surname: He fullname: He, Zhubing email: hezb@sustc.edu.cn organization: Southern University of Science and Technology |
BookMark | eNqFkMtLAzEQxoNUsNZePS943prHPo9lqVqoWnycl2x2QtOmyZpsK_3v3bZSQRDnMsPM95sZvkvUM9YAQtcEjwjG9JaDWY8oJhlmWUrPUJ8kJAqTLMK9U83oBRp6v8RdRDnBjPWRHesV1yooFto6VYMPpHVBu4DgddM0DrxX1gRWHlpT04KTXCiugxcQdl0pw9u9QJluuAXXQh3MNTfcBXNwdutXqu1WWd01CtDaX6FzybWH4XceoPe7yVvxEM6e76fFeBYK1v0ZMkhSwRJBecxrRmSWZ0LinAjOKy5yGQuZiCiNsrquqirOgGBRZ7LGeV3llFM2QDfHvY2zHxvwbbm0G2e6kyWlNI7zNEnTTjU6qoSz3juQZePUmrtdSXC597Xc-1qefO2A6BcgVHuwoHVc6b-x_Ih9Kg27f46U48nT4w_7BUaxkYM |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2019_144274 crossref_primary_10_1021_acsami_9b17386 crossref_primary_10_1007_s11814_024_00325_9 crossref_primary_10_1002_adfm_201902600 crossref_primary_10_1088_1674_1056_ac8e9f crossref_primary_10_1002_solr_202200960 crossref_primary_10_1016_j_sse_2023_108802 crossref_primary_10_1038_s41560_024_01680_x crossref_primary_10_1039_D3QM00103B crossref_primary_10_1016_j_cej_2022_139308 crossref_primary_10_1039_C9TA12368G crossref_primary_10_1002_adfm_202106495 crossref_primary_10_1002_advs_202412557 crossref_primary_10_1021_acsenergylett_3c00134 crossref_primary_10_1039_D4CC04884A crossref_primary_10_1039_D0EE02017F crossref_primary_10_1039_C9TC05759E crossref_primary_10_1039_D3MH01293J crossref_primary_10_1002_solr_202100663 crossref_primary_10_1021_acsaem_9b02438 crossref_primary_10_1039_D3TA06067E crossref_primary_10_1002_smll_202400356 crossref_primary_10_1002_solr_202000376 crossref_primary_10_1021_acsami_0c11731 crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1002_adma_202201451 crossref_primary_10_1021_acsenergylett_9b01964 crossref_primary_10_1002_er_8277 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1039_D4CP02131B crossref_primary_10_1016_j_jcis_2022_04_117 crossref_primary_10_1002_er_5563 crossref_primary_10_1063_5_0245576 crossref_primary_10_1016_j_cej_2023_144279 crossref_primary_10_1007_s11664_021_09304_w crossref_primary_10_1039_D3NA00485F crossref_primary_10_1021_acsaom_3c00175 crossref_primary_10_1016_j_cej_2020_127579 crossref_primary_10_1039_D3RA01692G crossref_primary_10_1002_advs_202201543 crossref_primary_10_1016_j_matpr_2021_02_728 crossref_primary_10_1088_1674_4926_43_5_051202 crossref_primary_10_1002_eem2_12639 crossref_primary_10_1002_smll_202403193 crossref_primary_10_1016_j_cej_2024_155699 crossref_primary_10_1002_solr_201900189 crossref_primary_10_1039_D0CC01197E crossref_primary_10_1021_acs_jpcc_2c00283 crossref_primary_10_1002_smll_202307115 crossref_primary_10_1039_C9NR10788F crossref_primary_10_1016_j_joule_2020_06_004 crossref_primary_10_1016_j_jpowsour_2021_229451 crossref_primary_10_1021_acs_chemmater_0c04931 crossref_primary_10_1002_aesr_202200151 crossref_primary_10_1002_adma_202304918 crossref_primary_10_1039_D0QM01064B crossref_primary_10_1016_j_jechem_2020_06_019 crossref_primary_10_1002_smll_202302337 crossref_primary_10_1021_acsaem_0c01330 crossref_primary_10_1039_D1TA01180D crossref_primary_10_1002_admi_202101562 crossref_primary_10_1016_j_nanoen_2020_104846 crossref_primary_10_1088_2515_7655_ac10fe crossref_primary_10_1016_j_solener_2020_03_086 crossref_primary_10_1002_eem2_12504 crossref_primary_10_1002_advs_202102648 crossref_primary_10_3389_fchem_2022_802890 crossref_primary_10_1016_j_apsusc_2019_144478 crossref_primary_10_1088_1361_6528_ad7e32 crossref_primary_10_1002_solr_202000226 crossref_primary_10_1002_ange_202219307 crossref_primary_10_1002_adfm_202002230 crossref_primary_10_1021_jacs_9b13418 crossref_primary_10_1016_j_joule_2022_02_004 crossref_primary_10_1021_acsami_0c04618 crossref_primary_10_1088_2515_7655_abc73f crossref_primary_10_1038_s41586_023_06207_0 crossref_primary_10_1021_acsaem_9b01652 crossref_primary_10_1039_C9TC06499K crossref_primary_10_1002_solr_202100243 crossref_primary_10_3390_app122412888 crossref_primary_10_1002_aenm_202103674 crossref_primary_10_1039_D3EE03317A crossref_primary_10_1002_solr_201900192 crossref_primary_10_1002_aenm_202403706 crossref_primary_10_1002_solr_202200647 crossref_primary_10_13005_ojc_400132 crossref_primary_10_1016_j_cej_2022_136405 crossref_primary_10_1021_acsaem_1c01017 crossref_primary_10_1002_admi_202002078 crossref_primary_10_1016_j_nanoen_2019_103860 crossref_primary_10_1039_D0TA02488K crossref_primary_10_1039_D1TA06565C crossref_primary_10_1002_admi_202300751 crossref_primary_10_1039_D0SC02859B crossref_primary_10_1002_EXP_20220027 crossref_primary_10_1002_nano_202100244 crossref_primary_10_1016_j_cej_2021_131357 crossref_primary_10_26599_EMD_2024_9370031 crossref_primary_10_1016_j_scib_2020_04_028 crossref_primary_10_1039_D2TA08443K crossref_primary_10_1088_1742_6596_2892_1_012015 crossref_primary_10_1039_D1NJ02627E crossref_primary_10_1039_D2EE00731B crossref_primary_10_1002_ente_201900804 crossref_primary_10_1039_D3TA05876J crossref_primary_10_1002_aenm_201903083 crossref_primary_10_1039_D0EE02043E crossref_primary_10_1039_D1TC02053F crossref_primary_10_1002_cssc_202402400 crossref_primary_10_1016_j_cej_2020_128100 crossref_primary_10_1021_acsami_1c22396 crossref_primary_10_1063_1674_0068_cjcp2104064 crossref_primary_10_3390_polym14040823 crossref_primary_10_1002_cnma_202200091 crossref_primary_10_1002_solr_202200793 crossref_primary_10_1021_acsenergylett_2c02054 crossref_primary_10_1039_D4TC00867G crossref_primary_10_1002_solr_202000113 crossref_primary_10_1039_D0TA01279C crossref_primary_10_1002_chem_202300566 crossref_primary_10_1002_lpor_202300780 crossref_primary_10_1021_acsami_1c15860 crossref_primary_10_1021_acs_chemmater_0c04188 crossref_primary_10_1021_acsenergylett_9b02112 crossref_primary_10_1002_ente_202100952 crossref_primary_10_1007_s10854_022_08922_2 crossref_primary_10_1063_5_0068670 crossref_primary_10_1007_s11814_024_00319_7 crossref_primary_10_1002_aenm_202104030 crossref_primary_10_1038_s41467_024_46679_w crossref_primary_10_1039_D1CP02704B crossref_primary_10_1021_acsami_4c20422 crossref_primary_10_1016_j_cej_2021_129735 crossref_primary_10_1002_solr_202000664 crossref_primary_10_1002_solr_202300049 crossref_primary_10_1039_D4TA08465A crossref_primary_10_1021_acsenergylett_4c03334 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1002_aenm_201902809 crossref_primary_10_1021_acsaem_1c00633 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1002_aenm_202403911 crossref_primary_10_1002_anie_202407228 crossref_primary_10_1016_j_solener_2021_03_055 crossref_primary_10_1002_adfm_202314039 crossref_primary_10_1021_acsami_5c00355 crossref_primary_10_1002_smtd_202000478 crossref_primary_10_1039_D0TA12067G crossref_primary_10_1021_acssuschemeng_0c09056 crossref_primary_10_1021_acsenergylett_2c01545 crossref_primary_10_1002_adma_202005504 crossref_primary_10_1002_adma_202302552 crossref_primary_10_1002_solr_202100700 crossref_primary_10_1021_acsanm_3c06274 crossref_primary_10_1016_j_cej_2020_126855 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1039_D3EE04343F crossref_primary_10_1002_tcr_201900028 crossref_primary_10_1039_D2CE00825D crossref_primary_10_1021_acsami_0c16139 crossref_primary_10_7498_aps_70_20201222 crossref_primary_10_1021_acsenergylett_0c02662 crossref_primary_10_1002_solr_202100815 crossref_primary_10_1016_j_scib_2021_02_029 crossref_primary_10_1039_D4EE06199C crossref_primary_10_1002_adfm_202214774 crossref_primary_10_1038_s41427_023_00474_z crossref_primary_10_1002_cssc_202100083 crossref_primary_10_1002_adfm_202411750 crossref_primary_10_3390_nano13243134 crossref_primary_10_1002_adfm_202201374 crossref_primary_10_1002_solr_201900346 crossref_primary_10_1103_PhysRevMaterials_4_085403 crossref_primary_10_1002_advs_202309111 crossref_primary_10_1021_acs_langmuir_3c03350 crossref_primary_10_1007_s11664_020_08264_x crossref_primary_10_1016_j_xcrp_2021_100341 crossref_primary_10_1016_j_cej_2023_145632 crossref_primary_10_1088_1674_4926_44_10_100201 crossref_primary_10_1109_LED_2024_3425671 crossref_primary_10_1002_eem2_12111 crossref_primary_10_1016_j_nanoen_2019_104363 crossref_primary_10_1002_adma_202309768 crossref_primary_10_1039_D3TA00750B crossref_primary_10_1002_solr_202000555 crossref_primary_10_1002_solr_202300712 crossref_primary_10_1007_s11664_020_08249_w crossref_primary_10_1016_j_jechem_2022_01_049 crossref_primary_10_1002_adfm_202401945 crossref_primary_10_1002_solr_202200224 crossref_primary_10_1002_adfm_202410772 crossref_primary_10_3390_coatings11080978 crossref_primary_10_1021_acsami_9b20054 crossref_primary_10_1002_solr_202100010 crossref_primary_10_1007_s11426_020_9857_1 crossref_primary_10_1002_anie_202219307 crossref_primary_10_1002_adma_202403682 crossref_primary_10_1002_smll_202207445 crossref_primary_10_1002_solr_202100514 crossref_primary_10_1016_j_cej_2024_151228 crossref_primary_10_1021_acsami_4c02919 crossref_primary_10_1016_j_cej_2022_140727 crossref_primary_10_1002_solr_202300253 crossref_primary_10_1002_adfm_202302375 crossref_primary_10_1002_solr_202000197 crossref_primary_10_1002_adfm_202004933 crossref_primary_10_1021_acs_jpclett_2c01612 crossref_primary_10_1002_ente_202200314 crossref_primary_10_1002_solr_201900369 crossref_primary_10_1039_D2EE01801B crossref_primary_10_1088_1361_6528_ac0028 crossref_primary_10_1002_smll_202201694 crossref_primary_10_1002_adom_202301949 crossref_primary_10_1007_s11664_022_09944_6 crossref_primary_10_1002_adma_202311970 crossref_primary_10_1016_j_apsusc_2021_151740 crossref_primary_10_1002_ange_202407228 crossref_primary_10_1002_cssc_201903025 crossref_primary_10_1021_acsmaterialslett_3c00241 crossref_primary_10_1016_j_orgel_2020_105627 crossref_primary_10_1021_acs_joc_9b02769 crossref_primary_10_1002_smll_202101839 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1002_solr_202200806 crossref_primary_10_1021_acsami_3c02709 crossref_primary_10_1002_adfm_202204450 crossref_primary_10_1002_aenm_201903922 crossref_primary_10_1002_solr_202000406 crossref_primary_10_1021_acsenergylett_0c01130 crossref_primary_10_1109_JPHOTOV_2022_3206895 crossref_primary_10_1002_ange_202116534 crossref_primary_10_1021_acsenergylett_1c00291 crossref_primary_10_1039_D2TC01692C crossref_primary_10_1016_j_cej_2023_143789 crossref_primary_10_1021_acsami_2c01625 crossref_primary_10_1021_acs_jpclett_4c03648 crossref_primary_10_1016_j_jechem_2022_12_029 crossref_primary_10_1016_j_mtadv_2022_100300 crossref_primary_10_1021_acs_jpclett_1c00735 crossref_primary_10_1021_acssuschemeng_4c04732 crossref_primary_10_1002_nano_202000200 crossref_primary_10_1021_acs_jpclett_2c00626 crossref_primary_10_1002_adfm_202312037 crossref_primary_10_1039_D2RA05903G crossref_primary_10_1002_advs_202300586 crossref_primary_10_1021_acsami_9b22283 crossref_primary_10_1016_j_jechem_2021_11_029 crossref_primary_10_1016_j_nanoen_2022_108136 crossref_primary_10_1021_acsami_4c06709 crossref_primary_10_1002_anie_202116534 crossref_primary_10_1002_advs_202101367 crossref_primary_10_1007_s12274_021_3306_2 crossref_primary_10_1002_smll_202311362 crossref_primary_10_1002_adma_202103394 crossref_primary_10_1021_acsami_0c18862 crossref_primary_10_1021_acsaelm_3c01318 crossref_primary_10_1021_acsaem_3c01967 crossref_primary_10_1016_j_joule_2022_10_015 crossref_primary_10_1007_s12274_021_3488_7 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1039_D0TA11564A crossref_primary_10_1002_eem2_12666 crossref_primary_10_1002_adpr_202000178 crossref_primary_10_1021_acsaem_2c03127 |
Cites_doi | 10.1039/C5EE03522H 10.1039/C7TA02440A 10.1021/acsami.7b14592 10.1039/c3ee42282h 10.1039/C8TA02652A 10.1038/natrevmats.2018.17 10.1126/science.aat8235 10.1038/natrevmats.2015.7 10.1002/adma.201604048 10.1021/acs.jpclett.7b00055 10.1002/adma.201603923 10.1002/adma.201800515 10.1126/sciadv.aat3604 10.1002/anie.201405176 10.1126/science.aad1015 10.1021/acs.chemmater.5b03902 10.1021/acsami.6b08783 10.1039/C5CP03352G 10.1016/j.apsusc.2018.04.230 10.1002/admi.201600467 10.1002/aenm.201800138 10.1039/C7TA01636K 10.1002/adfm.201804128 10.1002/aenm.201700722 10.1002/aenm.201703432 10.1002/admi.201800645 10.1002/admi.201600694 10.1038/s41467-018-05583-w 10.1126/science.aap9282 10.1038/nenergy.2016.149 10.1142/9789813148598_0001 10.1039/C4EE00233D 10.1093/nsr/nwx100 10.1002/advs.201802163 10.1039/C8TC05837G 10.1021/acs.jpclett.6b02843 10.1038/nenergy.2017.102 10.1002/aenm.201501310 10.1002/aenm.201701544 10.1002/aenm.201602333 10.1038/ncomms11683 10.1002/adma.201707350 10.1038/nature25989 10.1002/adma.201504168 10.1038/s41560-018-0219-8 10.1021/acsphotonics.7b01537 10.1007/s12274-016-1405-2 10.1126/science.aam6323 10.1002/aenm.201703519 10.1038/natrevmats.2017.42 10.1126/science.aai9081 10.1038/s41560-018-0192-2 10.1002/aenm.201501420 10.1002/admi.201500799 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201803872 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201803872 AENM201803872 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Key Laboratory Project funderid: ZDSYS201602261933302 – fundername: National Key Research Project MOST funderid: 2016YFA0202400 – fundername: Seed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong and RGC GRF funderid: 15204515; 15246816 – fundername: Natural Science Foundation of Shenzhen Innovation Committee funderid: JCYJ20150529152146471; JCYJ20170818141216288 – fundername: National Natural Science Foundation of China funderid: 61775091 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3832-3e67c36c2a5ad31f898cf091caabac9f5cf6c4748ddbbb58e10cd8fd09db92a23 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:21:55 EDT 2025 Tue Jul 01 01:43:28 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Aug 20 07:26:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3832-3e67c36c2a5ad31f898cf091caabac9f5cf6c4748ddbbb58e10cd8fd09db92a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2775-0894 |
PQID | 2225597677 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2225597677 crossref_primary_10_1002_aenm_201803872 crossref_citationtrail_10_1002_aenm_201803872 wiley_primary_10_1002_aenm_201803872_AENM201803872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 361 2019; 7 2017; 7 2018; 28 2017; 8 2015; 17 2017; 2 2015; 5 2019; 6 2018; 360 2017; 4 2017; 29 2017; 355 2013; 6 2017; 9 2017; 358 2015; 350 2018; 6 2018; 9 2016; 6 2018; 8 2018; 451 2016; 7 2018; 3 2016; 1 2018; 5 2016; 3 2018; 4 2017; 10 2018; 555 2018; 30 2016; 28 2014; 7 2016; 8 2016; 9 2014; 53 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 8 start-page: 29419 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: eaat3604 year: 2018 publication-title: Sci. Adv. – volume: 8 start-page: 1703519 year: 2018 publication-title: Adv. Energy Mater. – volume: 17 start-page: 22604 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 17042 year: 2017 publication-title: Nat. Rev. Mater. – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 8 start-page: 1800138 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1501310 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 9397 year: 2018 publication-title: J. Mater. Chem. A – volume: 451 start-page: 325 year: 2018 publication-title: Appl. Surf. Sci. – volume: 53 start-page: 12571 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 11683 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 847 year: 2018 publication-title: Nat. Energy – volume: 9 start-page: 3301 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 1273 year: 2019 publication-title: J. Mater. Chem. C – volume: 3 start-page: 1500799 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 9 start-page: 43902 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 742 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 648 year: 2018 publication-title: Nat. Energy – volume: 7 start-page: 2359 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 start-page: 207 year: 2016 publication-title: Chem. Mater. – volume: 1 start-page: 16149 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 591 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 15007 year: 2016 publication-title: Nat. Rev. Mater. – volume: 8 start-page: 1703432 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 13220 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1600467 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 358 start-page: 739 year: 2017 publication-title: Science – volume: 7 start-page: 1602333 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1600694 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 28 start-page: 10718 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 1802163 year: 2019 publication-title: Adv. Sci. – volume: 29 start-page: 1603923 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1501420 year: 2016 publication-title: Adv. Energy Mater. – volume: 555 start-page: 497 year: 2018 publication-title: Nature – volume: 28 start-page: 5112 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 559 year: 2018 publication-title: Natl. Sci. Rev. – volume: 10 start-page: 1471 year: 2017 publication-title: Nano Res. – volume: 9 start-page: 490 year: 2016 publication-title: Energy Environ. Sci. – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 8 start-page: 1701544 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 9514 year: 2017 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1800515 year: 2018 publication-title: Adv. Mater. – volume: 30 start-page: 1707350 year: 2018 publication-title: Adv. Mater. – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 5 start-page: 2034 year: 2018 publication-title: ACS Photonics – volume: 6 start-page: 3249 year: 2013 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1800645 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 1 start-page: 1 year: 2016 publication-title: Mater. Today Energy – volume: 28 start-page: 1804128 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1700722 year: 2017 publication-title: Adv. Energy Mater. – volume: 361 start-page: eaat8235 year: 2018 publication-title: Science – volume: 3 start-page: 18017 year: 2018 publication-title: Nat. Rev. Mater. – ident: e_1_2_7_17_1 doi: 10.1039/C5EE03522H – ident: e_1_2_7_10_1 doi: 10.1039/C7TA02440A – ident: e_1_2_7_11_1 doi: 10.1021/acsami.7b14592 – ident: e_1_2_7_49_1 doi: 10.1039/c3ee42282h – ident: e_1_2_7_50_1 doi: 10.1039/C8TA02652A – ident: e_1_2_7_5_1 doi: 10.1038/natrevmats.2018.17 – ident: e_1_2_7_2_1 doi: 10.1126/science.aat8235 – ident: e_1_2_7_3_1 doi: 10.1038/natrevmats.2015.7 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201604048 – ident: e_1_2_7_38_1 doi: 10.1021/acs.jpclett.7b00055 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201603923 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201800515 – ident: e_1_2_7_20_1 doi: 10.1126/sciadv.aat3604 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201405176 – ident: e_1_2_7_22_1 doi: 10.1126/science.aad1015 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemmater.5b03902 – ident: e_1_2_7_28_1 doi: 10.1021/acsami.6b08783 – ident: e_1_2_7_54_1 doi: 10.1039/C5CP03352G – ident: e_1_2_7_32_1 doi: 10.1016/j.apsusc.2018.04.230 – ident: e_1_2_7_41_1 doi: 10.1002/admi.201600467 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201800138 – ident: e_1_2_7_9_1 doi: 10.1039/C7TA01636K – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201804128 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201700722 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201703432 – ident: e_1_2_7_14_1 doi: 10.1002/admi.201800645 – ident: e_1_2_7_13_1 doi: 10.1002/admi.201600694 – ident: e_1_2_7_33_1 doi: 10.1038/s41467-018-05583-w – ident: e_1_2_7_45_1 doi: 10.1126/science.aap9282 – ident: e_1_2_7_37_1 doi: 10.1038/nenergy.2016.149 – ident: e_1_2_7_53_1 doi: 10.1142/9789813148598_0001 – ident: e_1_2_7_47_1 doi: 10.1039/C4EE00233D – ident: e_1_2_7_6_1 doi: 10.1093/nsr/nwx100 – ident: e_1_2_7_24_1 doi: 10.1002/advs.201802163 – ident: e_1_2_7_51_1 doi: 10.1039/C8TC05837G – ident: e_1_2_7_39_1 doi: 10.1021/acs.jpclett.6b02843 – ident: e_1_2_7_35_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201701544 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201602333 – ident: e_1_2_7_42_1 doi: 10.1038/ncomms11683 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201707350 – ident: e_1_2_7_29_1 doi: 10.1038/nature25989 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201504168 – ident: e_1_2_7_44_1 doi: 10.1038/s41560-018-0219-8 – ident: e_1_2_7_40_1 doi: 10.1021/acsphotonics.7b01537 – ident: e_1_2_7_7_1 doi: 10.1007/s12274-016-1405-2 – ident: e_1_2_7_1_1 doi: 10.1126/science.aam6323 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201703519 – ident: e_1_2_7_4_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_7_30_1 doi: 10.1126/science.aai9081 – ident: e_1_2_7_36_1 doi: 10.1038/s41560-018-0192-2 – ident: e_1_2_7_52_1 doi: 10.1002/aenm.201501420 – ident: e_1_2_7_16_1 doi: 10.1002/admi.201500799 |
SSID | ssj0000491033 |
Score | 2.6560655 |
Snippet | In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alkali chlorides Density Efficiency Energy conversion efficiency halide perovskites interfacial recombination Ion diffusion Ion migration Ion recombination nickel oxide Perovskites Photoluminescence Photovoltaic cells Potassium chloride Quantum efficiency Solar cells |
Title | Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201803872 https://www.proquest.com/docview/2225597677 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqdYKMgHJA6rQOJsHj5GS6FCbC9t1d4iP9UVS4L2USR-PWM7TrxoEYVLlFhOst75PJ5vMjNG6E3BOdWZ4pEsFBAUmZOI5oJEjOqEF1rFyu5DNj_LTy-nn6-z69HoR5hdsuHvxM-9eSX_I1VoA7maLNl_kGz_UGiAc5AvHEHCcLyTjKvlVzCjJ7MbE0Yn1bqPGTR7dboA18YHAVjXn2bWQ2445zegxMxHOppqGytje5o9jNjKxMW3t2vj2J2cG-47manlch0aspWPHVAueRAMXzfiIV7AKbQrtRic0-3WqnwFSOlWzKDnp20L5LxvvnJ9YWm92S5C54TJh_KhgJ0-hdU_ysvOhanCNlelySthGmKN7tXtrlYsU40pIJCU5rs7GVYx_-X-t8WtDzl05ZlJbe6v-_vvoUMC_AIU5GH1Yf7lvHfPAXFK4tSmZ_gh-JKfMXm_-yN2TZqBp4Rsx5orFw_RUcczcOVA8wiNVPMYPQiqTz5BrYMP7uGDAT4YsIID-OBW26YAPngHPnjRYA8f7OCDB_hgCx9s4fMUXX48uZidRt3-G5FIYbxRqvJCpDBzWcZkmuiSlkKDfSkY40zAFBc6F9NiWkrJOc9KlcRCllrGVHJKGEmfoYOmbdRzhKUmlE1FKRmYrADOEnitlkkRs0LSjIoxivxfWIuuOL3ZI2VZ75fbGL3t-393ZVn-2PPYS6Tupu66Nk4OYNJ5UYwRsVL6y1Pq6uRs3l-9uPPbX6L7w7Q4Rgeb1Va9Ait2w193iPsF92qesw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali+Chlorides+for+the+Suppression+of+the+Interfacial+Recombination+in+Inverted+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Zhou%2C+Yecheng&rft.au=Chen%2C+Guocong&rft.au=Wu%2C+Yinghui&rft.date=2019-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201803872&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201803872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |