Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells

In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 19
Main Authors Chen, Wei, Zhou, Yecheng, Chen, Guocong, Wu, Yinghui, Tu, Bao, Liu, Fang‐Zhou, Huang, Li, Ng, Alan Man Ching, Djurišić, Aleksandra B., He, Zhubing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density. Suppression of the interfacial recombination are achieved by facile alkali chloride modification of the nickel oxide in inverted perovskite solar cells. It is demonstrated that the interface modification induces the ordering of the perovskite crystal at the interfaces, which in turn reduces defect/trap density, causing reduced interfacial recombination. This results in dramatically improvement of the open circuit voltage and power conversion efficiency.
AbstractList In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density.
In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density. Suppression of the interfacial recombination are achieved by facile alkali chloride modification of the nickel oxide in inverted perovskite solar cells. It is demonstrated that the interface modification induces the ordering of the perovskite crystal at the interfaces, which in turn reduces defect/trap density, causing reduced interfacial recombination. This results in dramatically improvement of the open circuit voltage and power conversion efficiency.
Author Chen, Wei
Chen, Guocong
Zhou, Yecheng
Huang, Li
Djurišić, Aleksandra B.
Tu, Bao
Wu, Yinghui
Ng, Alan Man Ching
He, Zhubing
Liu, Fang‐Zhou
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: The University of Hong Kong
– sequence: 2
  givenname: Yecheng
  surname: Zhou
  fullname: Zhou, Yecheng
  organization: Southern University of Science and Technology of China
– sequence: 3
  givenname: Guocong
  surname: Chen
  fullname: Chen, Guocong
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Yinghui
  surname: Wu
  fullname: Wu, Yinghui
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Bao
  surname: Tu
  fullname: Tu, Bao
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Fang‐Zhou
  surname: Liu
  fullname: Liu, Fang‐Zhou
  organization: The University of Hong Kong
– sequence: 7
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: Southern University of Science and Technology of China
– sequence: 8
  givenname: Alan Man Ching
  surname: Ng
  fullname: Ng, Alan Man Ching
  organization: Southern University of Science and Technology of China
– sequence: 9
  givenname: Aleksandra B.
  surname: Djurišić
  fullname: Djurišić, Aleksandra B.
  email: dalek@hku.hk
  organization: The University of Hong Kong
– sequence: 10
  givenname: Zhubing
  orcidid: 0000-0002-2775-0894
  surname: He
  fullname: He, Zhubing
  email: hezb@sustc.edu.cn
  organization: Southern University of Science and Technology
BookMark eNqFkMtLAzEQxoNUsNZePS943prHPo9lqVqoWnycl2x2QtOmyZpsK_3v3bZSQRDnMsPM95sZvkvUM9YAQtcEjwjG9JaDWY8oJhlmWUrPUJ8kJAqTLMK9U83oBRp6v8RdRDnBjPWRHesV1yooFto6VYMPpHVBu4DgddM0DrxX1gRWHlpT04KTXCiugxcQdl0pw9u9QJluuAXXQh3MNTfcBXNwdutXqu1WWd01CtDaX6FzybWH4XceoPe7yVvxEM6e76fFeBYK1v0ZMkhSwRJBecxrRmSWZ0LinAjOKy5yGQuZiCiNsrquqirOgGBRZ7LGeV3llFM2QDfHvY2zHxvwbbm0G2e6kyWlNI7zNEnTTjU6qoSz3juQZePUmrtdSXC597Xc-1qefO2A6BcgVHuwoHVc6b-x_Ih9Kg27f46U48nT4w_7BUaxkYM
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_144274
crossref_primary_10_1021_acsami_9b17386
crossref_primary_10_1007_s11814_024_00325_9
crossref_primary_10_1002_adfm_201902600
crossref_primary_10_1088_1674_1056_ac8e9f
crossref_primary_10_1002_solr_202200960
crossref_primary_10_1016_j_sse_2023_108802
crossref_primary_10_1038_s41560_024_01680_x
crossref_primary_10_1039_D3QM00103B
crossref_primary_10_1016_j_cej_2022_139308
crossref_primary_10_1039_C9TA12368G
crossref_primary_10_1002_adfm_202106495
crossref_primary_10_1002_advs_202412557
crossref_primary_10_1021_acsenergylett_3c00134
crossref_primary_10_1039_D4CC04884A
crossref_primary_10_1039_D0EE02017F
crossref_primary_10_1039_C9TC05759E
crossref_primary_10_1039_D3MH01293J
crossref_primary_10_1002_solr_202100663
crossref_primary_10_1021_acsaem_9b02438
crossref_primary_10_1039_D3TA06067E
crossref_primary_10_1002_smll_202400356
crossref_primary_10_1002_solr_202000376
crossref_primary_10_1021_acsami_0c11731
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1002_adma_202201451
crossref_primary_10_1021_acsenergylett_9b01964
crossref_primary_10_1002_er_8277
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1039_D4CP02131B
crossref_primary_10_1016_j_jcis_2022_04_117
crossref_primary_10_1002_er_5563
crossref_primary_10_1063_5_0245576
crossref_primary_10_1016_j_cej_2023_144279
crossref_primary_10_1007_s11664_021_09304_w
crossref_primary_10_1039_D3NA00485F
crossref_primary_10_1021_acsaom_3c00175
crossref_primary_10_1016_j_cej_2020_127579
crossref_primary_10_1039_D3RA01692G
crossref_primary_10_1002_advs_202201543
crossref_primary_10_1016_j_matpr_2021_02_728
crossref_primary_10_1088_1674_4926_43_5_051202
crossref_primary_10_1002_eem2_12639
crossref_primary_10_1002_smll_202403193
crossref_primary_10_1016_j_cej_2024_155699
crossref_primary_10_1002_solr_201900189
crossref_primary_10_1039_D0CC01197E
crossref_primary_10_1021_acs_jpcc_2c00283
crossref_primary_10_1002_smll_202307115
crossref_primary_10_1039_C9NR10788F
crossref_primary_10_1016_j_joule_2020_06_004
crossref_primary_10_1016_j_jpowsour_2021_229451
crossref_primary_10_1021_acs_chemmater_0c04931
crossref_primary_10_1002_aesr_202200151
crossref_primary_10_1002_adma_202304918
crossref_primary_10_1039_D0QM01064B
crossref_primary_10_1016_j_jechem_2020_06_019
crossref_primary_10_1002_smll_202302337
crossref_primary_10_1021_acsaem_0c01330
crossref_primary_10_1039_D1TA01180D
crossref_primary_10_1002_admi_202101562
crossref_primary_10_1016_j_nanoen_2020_104846
crossref_primary_10_1088_2515_7655_ac10fe
crossref_primary_10_1016_j_solener_2020_03_086
crossref_primary_10_1002_eem2_12504
crossref_primary_10_1002_advs_202102648
crossref_primary_10_3389_fchem_2022_802890
crossref_primary_10_1016_j_apsusc_2019_144478
crossref_primary_10_1088_1361_6528_ad7e32
crossref_primary_10_1002_solr_202000226
crossref_primary_10_1002_ange_202219307
crossref_primary_10_1002_adfm_202002230
crossref_primary_10_1021_jacs_9b13418
crossref_primary_10_1016_j_joule_2022_02_004
crossref_primary_10_1021_acsami_0c04618
crossref_primary_10_1088_2515_7655_abc73f
crossref_primary_10_1038_s41586_023_06207_0
crossref_primary_10_1021_acsaem_9b01652
crossref_primary_10_1039_C9TC06499K
crossref_primary_10_1002_solr_202100243
crossref_primary_10_3390_app122412888
crossref_primary_10_1002_aenm_202103674
crossref_primary_10_1039_D3EE03317A
crossref_primary_10_1002_solr_201900192
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_1002_solr_202200647
crossref_primary_10_13005_ojc_400132
crossref_primary_10_1016_j_cej_2022_136405
crossref_primary_10_1021_acsaem_1c01017
crossref_primary_10_1002_admi_202002078
crossref_primary_10_1016_j_nanoen_2019_103860
crossref_primary_10_1039_D0TA02488K
crossref_primary_10_1039_D1TA06565C
crossref_primary_10_1002_admi_202300751
crossref_primary_10_1039_D0SC02859B
crossref_primary_10_1002_EXP_20220027
crossref_primary_10_1002_nano_202100244
crossref_primary_10_1016_j_cej_2021_131357
crossref_primary_10_26599_EMD_2024_9370031
crossref_primary_10_1016_j_scib_2020_04_028
crossref_primary_10_1039_D2TA08443K
crossref_primary_10_1088_1742_6596_2892_1_012015
crossref_primary_10_1039_D1NJ02627E
crossref_primary_10_1039_D2EE00731B
crossref_primary_10_1002_ente_201900804
crossref_primary_10_1039_D3TA05876J
crossref_primary_10_1002_aenm_201903083
crossref_primary_10_1039_D0EE02043E
crossref_primary_10_1039_D1TC02053F
crossref_primary_10_1002_cssc_202402400
crossref_primary_10_1016_j_cej_2020_128100
crossref_primary_10_1021_acsami_1c22396
crossref_primary_10_1063_1674_0068_cjcp2104064
crossref_primary_10_3390_polym14040823
crossref_primary_10_1002_cnma_202200091
crossref_primary_10_1002_solr_202200793
crossref_primary_10_1021_acsenergylett_2c02054
crossref_primary_10_1039_D4TC00867G
crossref_primary_10_1002_solr_202000113
crossref_primary_10_1039_D0TA01279C
crossref_primary_10_1002_chem_202300566
crossref_primary_10_1002_lpor_202300780
crossref_primary_10_1021_acsami_1c15860
crossref_primary_10_1021_acs_chemmater_0c04188
crossref_primary_10_1021_acsenergylett_9b02112
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1007_s10854_022_08922_2
crossref_primary_10_1063_5_0068670
crossref_primary_10_1007_s11814_024_00319_7
crossref_primary_10_1002_aenm_202104030
crossref_primary_10_1038_s41467_024_46679_w
crossref_primary_10_1039_D1CP02704B
crossref_primary_10_1021_acsami_4c20422
crossref_primary_10_1016_j_cej_2021_129735
crossref_primary_10_1002_solr_202000664
crossref_primary_10_1002_solr_202300049
crossref_primary_10_1039_D4TA08465A
crossref_primary_10_1021_acsenergylett_4c03334
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1002_aenm_201902809
crossref_primary_10_1021_acsaem_1c00633
crossref_primary_10_3390_ijms231911792
crossref_primary_10_1002_aenm_202403911
crossref_primary_10_1002_anie_202407228
crossref_primary_10_1016_j_solener_2021_03_055
crossref_primary_10_1002_adfm_202314039
crossref_primary_10_1021_acsami_5c00355
crossref_primary_10_1002_smtd_202000478
crossref_primary_10_1039_D0TA12067G
crossref_primary_10_1021_acssuschemeng_0c09056
crossref_primary_10_1021_acsenergylett_2c01545
crossref_primary_10_1002_adma_202005504
crossref_primary_10_1002_adma_202302552
crossref_primary_10_1002_solr_202100700
crossref_primary_10_1021_acsanm_3c06274
crossref_primary_10_1016_j_cej_2020_126855
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1039_D3EE04343F
crossref_primary_10_1002_tcr_201900028
crossref_primary_10_1039_D2CE00825D
crossref_primary_10_1021_acsami_0c16139
crossref_primary_10_7498_aps_70_20201222
crossref_primary_10_1021_acsenergylett_0c02662
crossref_primary_10_1002_solr_202100815
crossref_primary_10_1016_j_scib_2021_02_029
crossref_primary_10_1039_D4EE06199C
crossref_primary_10_1002_adfm_202214774
crossref_primary_10_1038_s41427_023_00474_z
crossref_primary_10_1002_cssc_202100083
crossref_primary_10_1002_adfm_202411750
crossref_primary_10_3390_nano13243134
crossref_primary_10_1002_adfm_202201374
crossref_primary_10_1002_solr_201900346
crossref_primary_10_1103_PhysRevMaterials_4_085403
crossref_primary_10_1002_advs_202309111
crossref_primary_10_1021_acs_langmuir_3c03350
crossref_primary_10_1007_s11664_020_08264_x
crossref_primary_10_1016_j_xcrp_2021_100341
crossref_primary_10_1016_j_cej_2023_145632
crossref_primary_10_1088_1674_4926_44_10_100201
crossref_primary_10_1109_LED_2024_3425671
crossref_primary_10_1002_eem2_12111
crossref_primary_10_1016_j_nanoen_2019_104363
crossref_primary_10_1002_adma_202309768
crossref_primary_10_1039_D3TA00750B
crossref_primary_10_1002_solr_202000555
crossref_primary_10_1002_solr_202300712
crossref_primary_10_1007_s11664_020_08249_w
crossref_primary_10_1016_j_jechem_2022_01_049
crossref_primary_10_1002_adfm_202401945
crossref_primary_10_1002_solr_202200224
crossref_primary_10_1002_adfm_202410772
crossref_primary_10_3390_coatings11080978
crossref_primary_10_1021_acsami_9b20054
crossref_primary_10_1002_solr_202100010
crossref_primary_10_1007_s11426_020_9857_1
crossref_primary_10_1002_anie_202219307
crossref_primary_10_1002_adma_202403682
crossref_primary_10_1002_smll_202207445
crossref_primary_10_1002_solr_202100514
crossref_primary_10_1016_j_cej_2024_151228
crossref_primary_10_1021_acsami_4c02919
crossref_primary_10_1016_j_cej_2022_140727
crossref_primary_10_1002_solr_202300253
crossref_primary_10_1002_adfm_202302375
crossref_primary_10_1002_solr_202000197
crossref_primary_10_1002_adfm_202004933
crossref_primary_10_1021_acs_jpclett_2c01612
crossref_primary_10_1002_ente_202200314
crossref_primary_10_1002_solr_201900369
crossref_primary_10_1039_D2EE01801B
crossref_primary_10_1088_1361_6528_ac0028
crossref_primary_10_1002_smll_202201694
crossref_primary_10_1002_adom_202301949
crossref_primary_10_1007_s11664_022_09944_6
crossref_primary_10_1002_adma_202311970
crossref_primary_10_1016_j_apsusc_2021_151740
crossref_primary_10_1002_ange_202407228
crossref_primary_10_1002_cssc_201903025
crossref_primary_10_1021_acsmaterialslett_3c00241
crossref_primary_10_1016_j_orgel_2020_105627
crossref_primary_10_1021_acs_joc_9b02769
crossref_primary_10_1002_smll_202101839
crossref_primary_10_1002_cssc_202101089
crossref_primary_10_1002_solr_202200806
crossref_primary_10_1021_acsami_3c02709
crossref_primary_10_1002_adfm_202204450
crossref_primary_10_1002_aenm_201903922
crossref_primary_10_1002_solr_202000406
crossref_primary_10_1021_acsenergylett_0c01130
crossref_primary_10_1109_JPHOTOV_2022_3206895
crossref_primary_10_1002_ange_202116534
crossref_primary_10_1021_acsenergylett_1c00291
crossref_primary_10_1039_D2TC01692C
crossref_primary_10_1016_j_cej_2023_143789
crossref_primary_10_1021_acsami_2c01625
crossref_primary_10_1021_acs_jpclett_4c03648
crossref_primary_10_1016_j_jechem_2022_12_029
crossref_primary_10_1016_j_mtadv_2022_100300
crossref_primary_10_1021_acs_jpclett_1c00735
crossref_primary_10_1021_acssuschemeng_4c04732
crossref_primary_10_1002_nano_202000200
crossref_primary_10_1021_acs_jpclett_2c00626
crossref_primary_10_1002_adfm_202312037
crossref_primary_10_1039_D2RA05903G
crossref_primary_10_1002_advs_202300586
crossref_primary_10_1021_acsami_9b22283
crossref_primary_10_1016_j_jechem_2021_11_029
crossref_primary_10_1016_j_nanoen_2022_108136
crossref_primary_10_1021_acsami_4c06709
crossref_primary_10_1002_anie_202116534
crossref_primary_10_1002_advs_202101367
crossref_primary_10_1007_s12274_021_3306_2
crossref_primary_10_1002_smll_202311362
crossref_primary_10_1002_adma_202103394
crossref_primary_10_1021_acsami_0c18862
crossref_primary_10_1021_acsaelm_3c01318
crossref_primary_10_1021_acsaem_3c01967
crossref_primary_10_1016_j_joule_2022_10_015
crossref_primary_10_1007_s12274_021_3488_7
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1039_D0TA11564A
crossref_primary_10_1002_eem2_12666
crossref_primary_10_1002_adpr_202000178
crossref_primary_10_1021_acsaem_2c03127
Cites_doi 10.1039/C5EE03522H
10.1039/C7TA02440A
10.1021/acsami.7b14592
10.1039/c3ee42282h
10.1039/C8TA02652A
10.1038/natrevmats.2018.17
10.1126/science.aat8235
10.1038/natrevmats.2015.7
10.1002/adma.201604048
10.1021/acs.jpclett.7b00055
10.1002/adma.201603923
10.1002/adma.201800515
10.1126/sciadv.aat3604
10.1002/anie.201405176
10.1126/science.aad1015
10.1021/acs.chemmater.5b03902
10.1021/acsami.6b08783
10.1039/C5CP03352G
10.1016/j.apsusc.2018.04.230
10.1002/admi.201600467
10.1002/aenm.201800138
10.1039/C7TA01636K
10.1002/adfm.201804128
10.1002/aenm.201700722
10.1002/aenm.201703432
10.1002/admi.201800645
10.1002/admi.201600694
10.1038/s41467-018-05583-w
10.1126/science.aap9282
10.1038/nenergy.2016.149
10.1142/9789813148598_0001
10.1039/C4EE00233D
10.1093/nsr/nwx100
10.1002/advs.201802163
10.1039/C8TC05837G
10.1021/acs.jpclett.6b02843
10.1038/nenergy.2017.102
10.1002/aenm.201501310
10.1002/aenm.201701544
10.1002/aenm.201602333
10.1038/ncomms11683
10.1002/adma.201707350
10.1038/nature25989
10.1002/adma.201504168
10.1038/s41560-018-0219-8
10.1021/acsphotonics.7b01537
10.1007/s12274-016-1405-2
10.1126/science.aam6323
10.1002/aenm.201703519
10.1038/natrevmats.2017.42
10.1126/science.aai9081
10.1038/s41560-018-0192-2
10.1002/aenm.201501420
10.1002/admi.201500799
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201803872
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201803872
AENM201803872
Genre article
GrantInformation_xml – fundername: Shenzhen Key Laboratory Project
  funderid: ZDSYS201602261933302
– fundername: National Key Research Project MOST
  funderid: 2016YFA0202400
– fundername: Seed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong and RGC GRF
  funderid: 15204515; 15246816
– fundername: Natural Science Foundation of Shenzhen Innovation Committee
  funderid: JCYJ20150529152146471; JCYJ20170818141216288
– fundername: National Natural Science Foundation of China
  funderid: 61775091
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3832-3e67c36c2a5ad31f898cf091caabac9f5cf6c4748ddbbb58e10cd8fd09db92a23
ISSN 1614-6832
IngestDate Fri Jul 25 12:21:55 EDT 2025
Tue Jul 01 01:43:28 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Aug 20 07:26:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3832-3e67c36c2a5ad31f898cf091caabac9f5cf6c4748ddbbb58e10cd8fd09db92a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2775-0894
PQID 2225597677
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2225597677
crossref_primary_10_1002_aenm_201803872
crossref_citationtrail_10_1002_aenm_201803872
wiley_primary_10_1002_aenm_201803872_AENM201803872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 361
2019; 7
2017; 7
2018; 28
2017; 8
2015; 17
2017; 2
2015; 5
2019; 6
2018; 360
2017; 4
2017; 29
2017; 355
2013; 6
2017; 9
2017; 358
2015; 350
2018; 6
2018; 9
2016; 6
2018; 8
2018; 451
2016; 7
2018; 3
2016; 1
2018; 5
2016; 3
2018; 4
2017; 10
2018; 555
2018; 30
2016; 28
2014; 7
2016; 8
2016; 9
2014; 53
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 8
  start-page: 29419
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: eaat3604
  year: 2018
  publication-title: Sci. Adv.
– volume: 8
  start-page: 1703519
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 22604
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 17042
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 8
  start-page: 1800138
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1501310
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 9397
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 451
  start-page: 325
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 53
  start-page: 12571
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 11683
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 847
  year: 2018
  publication-title: Nat. Energy
– volume: 9
  start-page: 3301
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1273
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 3
  start-page: 1500799
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 9
  start-page: 43902
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 742
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 648
  year: 2018
  publication-title: Nat. Energy
– volume: 7
  start-page: 2359
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 207
  year: 2016
  publication-title: Chem. Mater.
– volume: 1
  start-page: 16149
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 591
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 15007
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 1703432
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 13220
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1600467
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 358
  start-page: 739
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1600694
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 28
  start-page: 10718
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1802163
  year: 2019
  publication-title: Adv. Sci.
– volume: 29
  start-page: 1603923
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1501420
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 555
  start-page: 497
  year: 2018
  publication-title: Nature
– volume: 28
  start-page: 5112
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 559
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 10
  start-page: 1471
  year: 2017
  publication-title: Nano Res.
– volume: 9
  start-page: 490
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 8
  start-page: 1701544
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 9514
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1800515
  year: 2018
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1707350
  year: 2018
  publication-title: Adv. Mater.
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 5
  start-page: 2034
  year: 2018
  publication-title: ACS Photonics
– volume: 6
  start-page: 3249
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1800645
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Mater. Today Energy
– volume: 28
  start-page: 1804128
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1700722
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 361
  start-page: eaat8235
  year: 2018
  publication-title: Science
– volume: 3
  start-page: 18017
  year: 2018
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_7_17_1
  doi: 10.1039/C5EE03522H
– ident: e_1_2_7_10_1
  doi: 10.1039/C7TA02440A
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.7b14592
– ident: e_1_2_7_49_1
  doi: 10.1039/c3ee42282h
– ident: e_1_2_7_50_1
  doi: 10.1039/C8TA02652A
– ident: e_1_2_7_5_1
  doi: 10.1038/natrevmats.2018.17
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aat8235
– ident: e_1_2_7_3_1
  doi: 10.1038/natrevmats.2015.7
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201604048
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.jpclett.7b00055
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201603923
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201800515
– ident: e_1_2_7_20_1
  doi: 10.1126/sciadv.aat3604
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201405176
– ident: e_1_2_7_22_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemmater.5b03902
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.6b08783
– ident: e_1_2_7_54_1
  doi: 10.1039/C5CP03352G
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apsusc.2018.04.230
– ident: e_1_2_7_41_1
  doi: 10.1002/admi.201600467
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201800138
– ident: e_1_2_7_9_1
  doi: 10.1039/C7TA01636K
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201804128
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201700722
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201703432
– ident: e_1_2_7_14_1
  doi: 10.1002/admi.201800645
– ident: e_1_2_7_13_1
  doi: 10.1002/admi.201600694
– ident: e_1_2_7_33_1
  doi: 10.1038/s41467-018-05583-w
– ident: e_1_2_7_45_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_7_37_1
  doi: 10.1038/nenergy.2016.149
– ident: e_1_2_7_53_1
  doi: 10.1142/9789813148598_0001
– ident: e_1_2_7_47_1
  doi: 10.1039/C4EE00233D
– ident: e_1_2_7_6_1
  doi: 10.1093/nsr/nwx100
– ident: e_1_2_7_24_1
  doi: 10.1002/advs.201802163
– ident: e_1_2_7_51_1
  doi: 10.1039/C8TC05837G
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jpclett.6b02843
– ident: e_1_2_7_35_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201701544
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201602333
– ident: e_1_2_7_42_1
  doi: 10.1038/ncomms11683
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201707350
– ident: e_1_2_7_29_1
  doi: 10.1038/nature25989
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201504168
– ident: e_1_2_7_44_1
  doi: 10.1038/s41560-018-0219-8
– ident: e_1_2_7_40_1
  doi: 10.1021/acsphotonics.7b01537
– ident: e_1_2_7_7_1
  doi: 10.1007/s12274-016-1405-2
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aam6323
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201703519
– ident: e_1_2_7_4_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_7_30_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_7_36_1
  doi: 10.1038/s41560-018-0192-2
– ident: e_1_2_7_52_1
  doi: 10.1002/aenm.201501420
– ident: e_1_2_7_16_1
  doi: 10.1002/admi.201500799
SSID ssj0000491033
Score 2.6560655
Snippet In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alkali chlorides
Density
Efficiency
Energy conversion efficiency
halide perovskites
interfacial recombination
Ion diffusion
Ion migration
Ion recombination
nickel oxide
Perovskites
Photoluminescence
Photovoltaic cells
Potassium chloride
Quantum efficiency
Solar cells
Title Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201803872
https://www.proquest.com/docview/2225597677
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqdYKMgHJA6rQOJsHj5GS6FCbC9t1d4iP9UVS4L2USR-PWM7TrxoEYVLlFhOst75PJ5vMjNG6E3BOdWZ4pEsFBAUmZOI5oJEjOqEF1rFyu5DNj_LTy-nn6-z69HoR5hdsuHvxM-9eSX_I1VoA7maLNl_kGz_UGiAc5AvHEHCcLyTjKvlVzCjJ7MbE0Yn1bqPGTR7dboA18YHAVjXn2bWQ2445zegxMxHOppqGytje5o9jNjKxMW3t2vj2J2cG-47manlch0aspWPHVAueRAMXzfiIV7AKbQrtRic0-3WqnwFSOlWzKDnp20L5LxvvnJ9YWm92S5C54TJh_KhgJ0-hdU_ysvOhanCNlelySthGmKN7tXtrlYsU40pIJCU5rs7GVYx_-X-t8WtDzl05ZlJbe6v-_vvoUMC_AIU5GH1Yf7lvHfPAXFK4tSmZ_gh-JKfMXm_-yN2TZqBp4Rsx5orFw_RUcczcOVA8wiNVPMYPQiqTz5BrYMP7uGDAT4YsIID-OBW26YAPngHPnjRYA8f7OCDB_hgCx9s4fMUXX48uZidRt3-G5FIYbxRqvJCpDBzWcZkmuiSlkKDfSkY40zAFBc6F9NiWkrJOc9KlcRCllrGVHJKGEmfoYOmbdRzhKUmlE1FKRmYrADOEnitlkkRs0LSjIoxivxfWIuuOL3ZI2VZ75fbGL3t-393ZVn-2PPYS6Tupu66Nk4OYNJ5UYwRsVL6y1Pq6uRs3l-9uPPbX6L7w7Q4Rgeb1Va9Ait2w193iPsF92qesw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali+Chlorides+for+the+Suppression+of+the+Interfacial+Recombination+in+Inverted+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Zhou%2C+Yecheng&rft.au=Chen%2C+Guocong&rft.au=Wu%2C+Yinghui&rft.date=2019-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201803872&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201803872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon