Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient

Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determ...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 5; no. 11; pp. 1121 - 1132
Main Authors Anderson, Ian C., Campbell, Colin D., Prosser, James I.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.
AbstractList The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.
Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.
The conservation and regeneration of native Scots pine ( Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.
The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.
Author Anderson, Ian C.
Campbell, Colin D.
Prosser, James I.
Author_xml – sequence: 1
  givenname: Ian C.
  surname: Anderson
  fullname: Anderson, Ian C.
  email: i.anderson@macaulay.ac.uk
  organization: The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
– sequence: 2
  givenname: Colin D.
  surname: Campbell
  fullname: Campbell, Colin D.
  organization: The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
– sequence: 3
  givenname: James I.
  surname: Prosser
  fullname: Prosser, James I.
  organization: Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14641592$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9v0zAUxS00xP7xFZCfEDwku7abZJEQ0jRGO6nApILg7eLYTuWS2sVORvvtcdbRB17gyVe653d8dM8pOXLeGUIog5zBpLxY5WxS8ozXHHIOIHKAgvN8-4ScHBZHh5nxY3Ia4wqAVaKCZ-Q4LSasqPkJ-f7O3psQbb-jvqXt4JaWWkd9WEpnFY3edpEOTptAJV17HzrpNM3oQvk-0o11hr66s26INO66exP7YCOd56_pMkhtjevPydNWdtE8f3zPyJf3N5-vZ9n80_T2-mqeKXEpeCZ0U0qlmUjBmpYz2daFKLUExaQE4E3VFkoLkKUGrcq6ZRWrAEzNGqlKXogz8nLvuwn-55CC4NpGZbqU1_ghYsUmnFdsFL54FA7N2mjcBLuWYYd_bpIEb_cCFXyMwbSobC97610fpO2QAY4l4GpEOI63xrEEfCgBt8ng8i-Dwx__Rt_s0V-2M7v_5vDmw20aEp7tcRt7sz3gMvzAMlVf4NePU5zNFvViWn_DhfgNH2asqw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2009_08_045
crossref_primary_10_3390_f12030353
crossref_primary_10_1007_s12210_008_0017_5
crossref_primary_10_12974_2311_8741_2022_10_01
crossref_primary_10_3390_life10120362
crossref_primary_10_1038_ismej_2007_51
crossref_primary_10_1016_j_biocontrol_2014_12_007
crossref_primary_10_1111_j_1365_294X_2008_03813_x
crossref_primary_10_1007_s00248_005_5047_2
crossref_primary_10_1016_S1002_0160_13_60025_9
crossref_primary_10_3389_ffunb_2022_886685
crossref_primary_10_1007_s10526_007_9092_2
crossref_primary_10_1093_jxb_eri192
crossref_primary_10_1007_s00248_007_9226_1
crossref_primary_10_1016_j_foreco_2017_10_052
crossref_primary_10_1371_journal_pone_0117505
crossref_primary_10_1007_s11104_012_1236_1
crossref_primary_10_1007_s11356_015_5904_6
crossref_primary_10_1007_s11104_008_9794_y
crossref_primary_10_1108_EL_05_2017_0104
crossref_primary_10_1155_2013_606480
crossref_primary_10_1007_s00114_008_0394_8
crossref_primary_10_3390_agronomy14112468
crossref_primary_10_1007_s11104_014_2238_y
crossref_primary_10_1111_j_1365_2389_2005_00781_x
crossref_primary_10_1016_j_revpalbo_2007_03_001
crossref_primary_10_1139_X10_176
crossref_primary_10_1007_s11104_010_0593_x
crossref_primary_10_3389_fmicb_2019_03135
crossref_primary_10_1111_j_1365_2672_2006_03030_x
crossref_primary_10_1111_j_1365_294X_2007_03540_x
crossref_primary_10_1111_1574_6968_12313
crossref_primary_10_1111_j_1469_8137_2006_01957_x
crossref_primary_10_17221_132_2009_PSE
crossref_primary_10_1111_j_1574_6941_2006_00258_x
crossref_primary_10_1016_j_eja_2010_05_005
crossref_primary_10_1007_s13213_010_0168_3
crossref_primary_10_1016_j_funeco_2009_05_003
crossref_primary_10_1111_j_1574_6941_2009_00650_x
crossref_primary_10_1094_PDIS_03_13_0332_RE
crossref_primary_10_1007_s11274_015_1890_6
crossref_primary_10_1016_j_soilbio_2007_02_012
crossref_primary_10_1139_w11_015
crossref_primary_10_1016_j_jenvman_2018_06_065
crossref_primary_10_1590_1678_992x_2016_0419
crossref_primary_10_1016_j_soilbio_2007_10_015
crossref_primary_10_1007_s00248_011_9839_2
crossref_primary_10_1016_j_funeco_2015_03_005
crossref_primary_10_1016_j_soilbio_2014_09_010
crossref_primary_10_3852_10_256
crossref_primary_10_3389_fmicb_2017_01007
crossref_primary_10_2307_3558354
crossref_primary_10_1111_j_1365_2699_2010_02281_x
crossref_primary_10_1007_s00248_010_9790_7
crossref_primary_10_1139_W08_152
crossref_primary_10_1016_j_soilbio_2011_12_007
crossref_primary_10_1051_forest_2006037
crossref_primary_10_1016_j_mimet_2006_09_015
crossref_primary_10_1007_s12275_010_9369_5
crossref_primary_10_1038_srep39515
crossref_primary_10_1016_j_mimet_2007_06_016
crossref_primary_10_7717_peerj_5857
crossref_primary_10_1111_j_1462_2920_2004_00675_x
crossref_primary_10_1007_s11270_006_9323_7
crossref_primary_10_1515_bot_2005_046
crossref_primary_10_1016_j_soilbio_2006_06_007
crossref_primary_10_1111_j_1574_6976_2007_00073_x
crossref_primary_10_1128_AEM_71_9_5544_5550_2005
crossref_primary_10_1139_b06_087
crossref_primary_10_1016_j_funbio_2010_12_001
crossref_primary_10_1016_j_soilbio_2012_02_003
crossref_primary_10_1016_j_myc_2013_08_002
crossref_primary_10_1016_j_apsoil_2015_06_002
crossref_primary_10_1111_j_1574_6941_2008_00637_x
crossref_primary_10_1016_j_soilbio_2010_06_022
crossref_primary_10_1371_journal_pone_0066146
crossref_primary_10_1016_j_mimet_2007_10_005
crossref_primary_10_3390_f11080837
crossref_primary_10_1371_journal_pone_0062580
crossref_primary_10_22144_ctu_jen_2016_043
crossref_primary_10_1016_j_ejsobi_2013_12_005
crossref_primary_10_1007_s00248_007_9220_7
crossref_primary_10_1111_j_1469_8137_2004_01167_x
crossref_primary_10_1264_jsme2_ME16085
crossref_primary_10_1016_j_mycol_2005_11_004
crossref_primary_10_1016_j_jbiosc_2010_10_006
crossref_primary_10_1016_j_soilbio_2010_09_001
crossref_primary_10_1016_j_soilbio_2006_01_016
crossref_primary_10_1016_j_watres_2010_07_018
crossref_primary_10_1007_s11104_011_1065_7
crossref_primary_10_1111_jam_14147
crossref_primary_10_1016_j_mycres_2008_11_020
crossref_primary_10_1016_j_soilbio_2009_06_018
crossref_primary_10_2136_sssaj2006_0080
crossref_primary_10_1038_s41598_021_97674_w
crossref_primary_10_1128_AEM_00510_06
crossref_primary_10_1186_s12575_015_0020_z
crossref_primary_10_1111_j_1462_2920_2007_01455_x
crossref_primary_10_1016_j_ejsobi_2012_10_008
crossref_primary_10_3390_f12121624
crossref_primary_10_1264_jsme2_ME11287
crossref_primary_10_1046_j_1469_8137_2004_00997_x
crossref_primary_10_1016_j_mimet_2006_08_005
crossref_primary_10_1016_j_apsoil_2013_05_015
crossref_primary_10_1007_s13213_013_0772_0
crossref_primary_10_1007_s11270_012_1187_4
crossref_primary_10_1016_j_ijantimicag_2013_01_021
crossref_primary_10_1046_j_0016_8025_2001_00735_x
crossref_primary_10_1007_s10482_012_9843_7
crossref_primary_10_1016_j_soilbio_2007_06_022
crossref_primary_10_1016_j_geoderma_2021_115088
crossref_primary_10_1007_s13225_012_0218_1
crossref_primary_10_1128_AEM_01315_08
crossref_primary_10_1016_j_soilbio_2009_10_016
crossref_primary_10_1111_j_1469_8137_2006_01793_x
crossref_primary_10_3390_f9090560
crossref_primary_10_1016_j_funbio_2015_06_008
crossref_primary_10_1016_j_soilbio_2008_05_015
crossref_primary_10_1371_journal_pone_0124096
crossref_primary_10_1016_j_soilbio_2015_09_015
crossref_primary_10_1007_s00248_005_5130_8
crossref_primary_10_1007_s00248_015_0584_9
crossref_primary_10_1007_s11104_009_0067_1
crossref_primary_10_1002_mbo3_169
crossref_primary_10_1007_s00248_014_0523_1
crossref_primary_10_1080_03746600608685104
crossref_primary_10_56431_p_9q7fup
crossref_primary_10_1038_s41598_019_40910_1
crossref_primary_10_1007_s13225_009_0001_0
crossref_primary_10_1111_jam_12549
crossref_primary_10_1128_AEM_02758_08
crossref_primary_10_1038_ismej_2009_87
crossref_primary_10_1016_S1001_0742_09_60215_1
crossref_primary_10_4028_www_scientific_net_AMM_700_519
crossref_primary_10_1111_j_1574_6968_2007_00914_x
crossref_primary_10_1007_s42729_020_00394_9
crossref_primary_10_1016_j_soilbio_2008_11_018
crossref_primary_10_1373_clinchem_2008_107565
crossref_primary_10_18052_www_scipress_com_ILNS_77_1
crossref_primary_10_1016_j_apsoil_2008_03_005
crossref_primary_10_1016_j_soilbio_2008_05_023
crossref_primary_10_1111_j_1469_8137_2006_01786_x
Cites_doi 10.1007/PL00008881
10.1007/BF01372852
10.1128/AEM.59.3.695-700.1993
10.1016/S0038-0717(03)00091-9
10.1111/j.1574-6941.2002.tb01022.x
10.1046/j.1469-8137.1999.00502.x
10.1016/S0038-0717(00)00198-X
10.1046/j.1462-2920.2003.00383.x
10.1017/S0953756201004725
10.1007/BF02232893
10.1128/AEM.65.6.2614-2621.1999
10.1007/s00374-002-0561-6
10.1128/AEM.66.10.4356-4360.2000
10.1126/science.295.5562.2051
10.1128/AEM.68.12.5999-6004.2002
10.1139/b92-037
10.1016/S0953-7562(09)80810-1
10.1073/pnas.85.8.2444
10.1046/j.1365-294X.2003.01716.x
10.1139/b89-005
10.1007/BF01373388
10.1016/S0167-7012(01)00344-X
10.1017/S0953756200002835
10.1139/b73-201
10.1128/AEM.67.10.4479-4487.2001
10.1046/j.0028-646X.2001.00290.x
10.1111/j.1574-6968.2001.tb10516.x
10.1046/j.1469-8137.2002.00535.x
10.1046/j.1469-8137.2003.00767.x
10.1093/treephys/21.2-3.71
10.1128/AEM.69.1.327-333.2003
10.1046/j.0962-1083.2001.01333.x
10.1128/AEM.67.10.4554-4559.2001
10.1016/S0168-6496(03)00109-0
10.1094/PHYTO.1997.87.9.888
10.1111/j.1365-294X.1993.tb00005.x
10.2307/2257528
10.1146/annurev.es.22.110191.002521
10.1046/j.1469-8137.2000.00605.x
10.1016/S0007-1536(83)80175-2
10.1016/S0038-0717(01)00023-2
10.1128/AEM.66.12.5488-5491.2000
10.1017/S0953756200002471
10.1017/S0953756202005890
10.1016/S0167-7012(00)00212-8
10.1093/nar/22.22.4673
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1046/j.1462-2920.2003.00522.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1132
ExternalDocumentID 14641592
10_1046_j_1462_2920_2003_00522_x
EMI522
ark_67375_WNG_HHS9SG9X_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3832-3db6acd13641bf21af9536da0c1aa002b7f5cd30a6d0dc69f171700e91bac6253
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Jul 11 07:51:21 EDT 2025
Wed Feb 19 01:51:55 EST 2025
Tue Jul 01 00:42:33 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Aug 20 01:21:36 EDT 2025
Wed Oct 30 09:52:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3832-3db6acd13641bf21af9536da0c1aa002b7f5cd30a6d0dc69f171700e91bac6253
Notes istex:F6053D37BE3020534A059A318772237E9C700A80
ark:/67375/WNG-HHS9SG9X-S
ArticleID:EMI522
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 14641592
PQID 71422715
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_71422715
pubmed_primary_14641592
crossref_citationtrail_10_1046_j_1462_2920_2003_00522_x
crossref_primary_10_1046_j_1462_2920_2003_00522_x
wiley_primary_10_1046_j_1462_2920_2003_00522_x_EMI522
istex_primary_ark_67375_WNG_HHS9SG9X_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2003
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: November 2003
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2003
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Borneman, J., and Hartin, R.J. (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66: 4356-4360.
Landeweert, R., Leeflang, P., Kuyper, T.W., Hoffland, E., Rosling, A., Wernars, K., and Smit, E. (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69: 327-333.
Smit, E., Leeflang, P., Glandorf, B., Van Elsas, J.D., and Wernars, K. (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65: 2614-2621.
Cook, R.J., and Papendick, R.I. (1970) Soil water potential as a factor in the ecology of Fusarium roseum F. sp. cerealis'culmorum'. Plant Soil 32: 131-145.
Chapman, S.J., Campbell, C.D., Fraser, A.R., and Puri, G. (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33: 1193-1200.
Hawksworth, D.L. (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422-1432.
Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G., and Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488-5491.
Chapman, S.J., Campbell, C.D., and Puri, G. (2003) Native pinewood expansion: soil chemical and microbiological indicators of change. Soil Biol Biochem 35: 753-764.
Bruns, T.D., White, T.J., and Taylor, J.W. (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525-564.
Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641-655.
Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J., and Young, J.P.W. (2002) Extensive fungal diversity in plant roots. Science 295: 2051.
Swofford, D.L. (2002) paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts, USA: Sinauer Associates.
Schmalenberger, A., and Tebbe, C.C. (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12: 251-262.
Pennanen, T., Paavolainen, L., and Hantula, J. (2001) Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol Biochem 33: 697-699.
Dickinson, C.H., and Dooley, M.J. (1967) The microbiology of cut-away peat. Plant Soil 27: 172-186.
Vainio, E.J., and Hantula, J. (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927-936.
Cuttle, S.P., and Malcolm, D.C. (1979) A corer for taking undisturbed peat samples. Plant Soil 51: 297-300.
Valinsky, L., Della Vedova, G., Jiang, T., and Borneman, J. (2002) Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68: 5999-6004.
McCaig, A.E., Glover, L.A., and Prosser, J.I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554-4559.
Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59: 695-700.
Horton, T.R., and Bruns, T.D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10: 1855-1871.
Pearson, W.R., and Lipman, D.J. (1998) Improved tool for biological sequence analysis. Proc Natl Acad Sci USA 85: 2444-2448.
Boddy, L. (1983) Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans Br Mycol Soc 80: 141-149.
Gimingham, C.H. (1960) Biological flora of the British Isles: Calluna vulgaris (L.) Hull. J Ecol 48: 455-483.
Lord, N.S., Kaplan, C.W., Shank, P., Kitts, C.L., and Elrod, S.L. (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42: 327-337.
Schabereiter-Gurtner, C., Piñar, G., Lubitz, W., and Rölleke, S. (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47: 345-354.
Hawksworth, D.L., and Rossman, A.Y. (1997) Where are all the undescribed fungi? Phytopathology 87: 888-891.
Chen, D.M., and Cairney, J.W.G. (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106: 532-540.
Department of the Environment. (1994) Biodiversity: the UK Action Plan. London: HMSO.
Mexal, J., and Reid, C.P.P. (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51: 1579-1588.
Anderson, I.C., Campbell, C.D., and Prosser, J.I. (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5: 36-47.
Gardes, M., and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2: 113-118.
Leake, J.R., Donnelly, D.P., Saunders, E.M., Boddy, L., and Read, D.J. (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposing fungus. Tree Physiol 21: 71-82.
Vrålstad, T., Schumacher, T., and Taylor, A.F.S. (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153: 143-152.
Nilsson, M., Bååth, E., and Söderström, B. (1992) The microfungal communities of a mixed mire in northern Sweden. Can J Bot 70: 272-276.
Viaud, M., Pasquier, A., and Brygoo, Y. (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104: 1027-1032.
Jumpponen, A. (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158: 569-578.
Vrålstad, T., Fossheim, T., and Schumacher, T. (2000) Piceirhiza bicolorata- the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145: 549-563.
Smit, E., Veenman, C., and Baar, J. (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45: 49-57.
Kowalchuk, G.A., Van Os, G.J., Van Aartrijk, J., and Van Veen, J.A. (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37: 55-63.
Möhlenhoff, P., Müller, L., Gorbushina, A.A., and Petersen, K. (2001) Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiol Lett 195: 169-173.
Dickie, I.A., Xu, B., and Koide, R.T. (2002) Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156: 527-535.
Lindahl, B., Stenlid, J., Olsson, S., and Finlay, R. (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144: 183-193.
Van Elsas, J.D., Duarte, G.F., Keijzer-Wolters, A., and Smit, E. (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43: 133-151.
Setälä, H. (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125: 109-118.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
Coleman, M.D., Bledsoe, C.S., and Lopushinsky, W. (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67: 29-39.
Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., and Nazaret, S. (2001) Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67: 4479-4487.
1973; 51
1989; 67
2002; 153
1997; 87
2002; 295
2000; 43
2000; 66
2002; 156
1991; 95
2003; 35
1994; 22
1970; 32
2003; 37
1999; 65
1994
1999; 144
1967; 27
2002
1998; 85
2003; 158
2001; 67
1993; 2
2001; 47
1979; 51
2001; 105
2001; 21
2003; 12
1993; 59
1992; 70
2001; 195
1990
1960; 48
2002; 42
2000; 125
2000; 104
1991; 22
2002; 68
2002; 106
2003; 69
2003; 5
1983; 80
2000; 145
2001; 33
2001; 10
2003; 45
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
White T.J. (e_1_2_6_50_1) 1990
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
Department of the Environment. (e_1_2_6_12_1) 1994
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
Swofford D.L. (e_1_2_6_42_1) 2002
e_1_2_6_14_1
e_1_2_6_35_1
Kowalchuk G.A. (e_1_2_6_24_1) 2003; 37
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Hawksworth, D.L., and Rossman, A.Y. (1997) Where are all the undescribed fungi? Phytopathology 87: 888-891.
– reference: McCaig, A.E., Glover, L.A., and Prosser, J.I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554-4559.
– reference: Cuttle, S.P., and Malcolm, D.C. (1979) A corer for taking undisturbed peat samples. Plant Soil 51: 297-300.
– reference: Pearson, W.R., and Lipman, D.J. (1998) Improved tool for biological sequence analysis. Proc Natl Acad Sci USA 85: 2444-2448.
– reference: Möhlenhoff, P., Müller, L., Gorbushina, A.A., and Petersen, K. (2001) Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiol Lett 195: 169-173.
– reference: Setälä, H. (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125: 109-118.
– reference: Bruns, T.D., White, T.J., and Taylor, J.W. (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525-564.
– reference: Kowalchuk, G.A., Van Os, G.J., Van Aartrijk, J., and Van Veen, J.A. (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37: 55-63.
– reference: Vrålstad, T., Schumacher, T., and Taylor, A.F.S. (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153: 143-152.
– reference: Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641-655.
– reference: Lindahl, B., Stenlid, J., Olsson, S., and Finlay, R. (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144: 183-193.
– reference: Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
– reference: Jumpponen, A. (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158: 569-578.
– reference: Smit, E., Leeflang, P., Glandorf, B., Van Elsas, J.D., and Wernars, K. (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65: 2614-2621.
– reference: Dickinson, C.H., and Dooley, M.J. (1967) The microbiology of cut-away peat. Plant Soil 27: 172-186.
– reference: Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., and Nazaret, S. (2001) Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67: 4479-4487.
– reference: Vrålstad, T., Fossheim, T., and Schumacher, T. (2000) Piceirhiza bicolorata- the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145: 549-563.
– reference: Vainio, E.J., and Hantula, J. (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927-936.
– reference: Chapman, S.J., Campbell, C.D., Fraser, A.R., and Puri, G. (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33: 1193-1200.
– reference: Schabereiter-Gurtner, C., Piñar, G., Lubitz, W., and Rölleke, S. (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47: 345-354.
– reference: Boddy, L. (1983) Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans Br Mycol Soc 80: 141-149.
– reference: Nilsson, M., Bååth, E., and Söderström, B. (1992) The microfungal communities of a mixed mire in northern Sweden. Can J Bot 70: 272-276.
– reference: Viaud, M., Pasquier, A., and Brygoo, Y. (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104: 1027-1032.
– reference: Anderson, I.C., Campbell, C.D., and Prosser, J.I. (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5: 36-47.
– reference: Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G., and Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488-5491.
– reference: Coleman, M.D., Bledsoe, C.S., and Lopushinsky, W. (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67: 29-39.
– reference: Cook, R.J., and Papendick, R.I. (1970) Soil water potential as a factor in the ecology of Fusarium roseum F. sp. cerealis'culmorum'. Plant Soil 32: 131-145.
– reference: Leake, J.R., Donnelly, D.P., Saunders, E.M., Boddy, L., and Read, D.J. (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposing fungus. Tree Physiol 21: 71-82.
– reference: Horton, T.R., and Bruns, T.D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10: 1855-1871.
– reference: Smit, E., Veenman, C., and Baar, J. (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45: 49-57.
– reference: Chapman, S.J., Campbell, C.D., and Puri, G. (2003) Native pinewood expansion: soil chemical and microbiological indicators of change. Soil Biol Biochem 35: 753-764.
– reference: Chen, D.M., and Cairney, J.W.G. (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106: 532-540.
– reference: Borneman, J., and Hartin, R.J. (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66: 4356-4360.
– reference: Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J., and Young, J.P.W. (2002) Extensive fungal diversity in plant roots. Science 295: 2051.
– reference: Van Elsas, J.D., Duarte, G.F., Keijzer-Wolters, A., and Smit, E. (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43: 133-151.
– reference: Schmalenberger, A., and Tebbe, C.C. (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12: 251-262.
– reference: Gimingham, C.H. (1960) Biological flora of the British Isles: Calluna vulgaris (L.) Hull. J Ecol 48: 455-483.
– reference: Dickie, I.A., Xu, B., and Koide, R.T. (2002) Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156: 527-535.
– reference: Department of the Environment. (1994) Biodiversity: the UK Action Plan. London: HMSO.
– reference: Gardes, M., and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2: 113-118.
– reference: Lord, N.S., Kaplan, C.W., Shank, P., Kitts, C.L., and Elrod, S.L. (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42: 327-337.
– reference: Mexal, J., and Reid, C.P.P. (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51: 1579-1588.
– reference: Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59: 695-700.
– reference: Valinsky, L., Della Vedova, G., Jiang, T., and Borneman, J. (2002) Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68: 5999-6004.
– reference: Pennanen, T., Paavolainen, L., and Hantula, J. (2001) Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol Biochem 33: 697-699.
– reference: Hawksworth, D.L. (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422-1432.
– reference: Landeweert, R., Leeflang, P., Kuyper, T.W., Hoffland, E., Rosling, A., Wernars, K., and Smit, E. (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69: 327-333.
– reference: Swofford, D.L. (2002) paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts, USA: Sinauer Associates.
– volume: 105
  start-page: 1422
  year: 2001
  end-page: 1432
  article-title: The magnitude of fungal diversity: the 1.5 million species estimate revisited
  publication-title: Mycol Res
– volume: 195
  start-page: 169
  year: 2001
  end-page: 173
  article-title: Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects
  publication-title: FEMS Microbiol Lett
– volume: 45
  start-page: 49
  year: 2003
  end-page: 57
  article-title: Molecular analysis of ectomycorrhizal basidiomycete communities in a L. stand reveals long‐term increased diversity after removal of litter and humus layers
  publication-title: FEMS Microbiol Ecol
– volume: 27
  start-page: 172
  year: 1967
  end-page: 186
  article-title: The microbiology of cut‐away peat
  publication-title: Plant Soil
– volume: 68
  start-page: 5999
  year: 2002
  end-page: 6004
  article-title: Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition
  publication-title: Appl Environ Microbiol
– volume: 70
  start-page: 272
  year: 1992
  end-page: 276
  article-title: The microfungal communities of a mixed mire in northern Sweden
  publication-title: Can J Bot
– volume: 85
  start-page: 2444
  year: 1998
  end-page: 2448
  article-title: Improved tool for biological sequence analysis
  publication-title: Proc Natl Acad Sci USA
– year: 1994
– volume: 33
  start-page: 697
  year: 2001
  end-page: 699
  article-title: Rapid PCR‐based method for the direct analysis of fungal communities in complex environmental samples
  publication-title: Soil Biol Biochem
– volume: 22
  start-page: 4673
  year: 1994
  end-page: 4680
  article-title: clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions‐specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res
– volume: 66
  start-page: 5488
  year: 2000
  end-page: 5491
  article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA‐ and rRNA‐based microbial community composition
  publication-title: Appl Environ Microbiol
– volume: 95
  start-page: 641
  year: 1991
  end-page: 655
  article-title: The fungal dimension of biodiversity: magnitude, significance, and conservation
  publication-title: Mycol Res
– volume: 66
  start-page: 4356
  year: 2000
  end-page: 4360
  article-title: PCR primers that amplify fungal rRNA genes from environmental samples
  publication-title: Appl Environ Microbiol
– volume: 67
  start-page: 4479
  year: 2001
  end-page: 4487
  article-title: Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability
  publication-title: Appl Environ Microbiol
– volume: 104
  start-page: 927
  year: 2000
  end-page: 936
  article-title: Direct analysis of wood‐inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA
  publication-title: Mycol Res
– volume: 51
  start-page: 297
  year: 1979
  end-page: 300
  article-title: A corer for taking undisturbed peat samples
  publication-title: Plant Soil
– volume: 295
  start-page: 2051
  year: 2002
  article-title: Extensive fungal diversity in plant roots
  publication-title: Science
– volume: 69
  start-page: 327
  year: 2003
  end-page: 333
  article-title: Molecular identification of ectomycorrhizal mycelium in soil horizons
  publication-title: Appl Environ Microbiol
– volume: 12
  start-page: 251
  year: 2003
  end-page: 262
  article-title: Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR‐amplified partial small subunit rRNA genes in ecological studies
  publication-title: Mol Ecol
– volume: 48
  start-page: 455
  year: 1960
  end-page: 483
  article-title: Biological flora of the British Isles: (L.) Hull
  publication-title: J Ecol
– start-page: 315
  year: 1990
  end-page: 322
– volume: 10
  start-page: 1855
  year: 2001
  end-page: 1871
  article-title: The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box
  publication-title: Mol Ecol
– volume: 2
  start-page: 113
  year: 1993
  end-page: 118
  article-title: ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts
  publication-title: Mol Ecol
– volume: 106
  start-page: 532
  year: 2002
  end-page: 540
  article-title: Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites
  publication-title: Mycol Res
– volume: 158
  start-page: 569
  year: 2003
  end-page: 578
  article-title: Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis
  publication-title: New Phytol
– volume: 145
  start-page: 549
  year: 2000
  end-page: 563
  article-title: – the ectomycorrhizal expression of the aggregate?
  publication-title: New Phytol
– volume: 144
  start-page: 183
  year: 1999
  end-page: 193
  article-title: Translocation of P between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems
  publication-title: New Phytol
– volume: 153
  start-page: 143
  year: 2002
  end-page: 152
  article-title: Mycorrhizal synthesis between fungal strains of the aggregate and potential ectomycorrhizal and ericoid hosts
  publication-title: New Phytol
– volume: 42
  start-page: 327
  year: 2002
  end-page: 337
  article-title: Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions
  publication-title: FEMS Microbiol Ecol
– volume: 80
  start-page: 141
  year: 1983
  end-page: 149
  article-title: Effect of temperature and water potential on growth rate of wood‐rotting basidiomycetes
  publication-title: Trans Br Mycol Soc
– volume: 65
  start-page: 2614
  year: 1999
  end-page: 2621
  article-title: Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR‐amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis
  publication-title: Appl Environ Microbiol
– volume: 43
  start-page: 133
  year: 2000
  end-page: 151
  article-title: Analysis of the dynamics of fungal communities in soil via fungal‐specific PCR of soil DNA followed by denaturing gradient gel electrophoresis
  publication-title: J Microbiol Meth
– volume: 33
  start-page: 1193
  year: 2001
  end-page: 1200
  article-title: FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties
  publication-title: Soil Biol Biochem
– volume: 104
  start-page: 1027
  year: 2000
  end-page: 1032
  article-title: Diversity of soil fungi studied by PCR‐RFLP of ITS
  publication-title: Mycol Res
– volume: 51
  start-page: 1579
  year: 1973
  end-page: 1588
  article-title: The growth of selected mycorrhizal fungi in response to induced water stress
  publication-title: Can J Bot
– volume: 67
  start-page: 4554
  year: 2001
  end-page: 4559
  article-title: Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns
  publication-title: Appl Environ Microbiol
– volume: 59
  start-page: 695
  year: 1993
  end-page: 700
  article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction‐amplified genes encoding for 16S rRNA
  publication-title: Appl Environ Microbiol
– volume: 156
  start-page: 527
  year: 2002
  end-page: 535
  article-title: Vertical distribution of ectomycorrhizal hyphae in soil as shown by T‐RFLP analysis
  publication-title: New Phytol
– volume: 32
  start-page: 131
  year: 1970
  end-page: 145
  article-title: Soil water potential as a factor in the ecology of F. sp. ‘culmorum’
  publication-title: Plant Soil
– volume: 5
  start-page: 36
  year: 2003
  end-page: 47
  article-title: Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil
  publication-title: Environ Microbiol
– volume: 67
  start-page: 29
  year: 1989
  end-page: 39
  article-title: Pure culture response of ectomycorrhizal fungi to imposed water stress
  publication-title: Can J Bot
– year: 2002
– volume: 35
  start-page: 753
  year: 2003
  end-page: 764
  article-title: Native pinewood expansion: soil chemical and microbiological indicators of change
  publication-title: Soil Biol Biochem
– volume: 47
  start-page: 345
  year: 2001
  end-page: 354
  article-title: Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis
  publication-title: J Microbiol Meth
– volume: 37
  start-page: 55
  year: 2003
  end-page: 63
  article-title: Microbial community responses to disease management soil treatments used in flower bulb cultivation
  publication-title: Biol Fertil Soils
– volume: 22
  start-page: 525
  year: 1991
  end-page: 564
  article-title: Fungal molecular systematics
  publication-title: Annu Rev Ecol Syst
– volume: 21
  start-page: 71
  year: 2001
  end-page: 82
  article-title: Rates and quantities of carbon flux to ectomycorrhizal mycelium following C pulse labelling of seedlings: effects of litter patches and interaction with a wood‐decomposing fungus
  publication-title: Tree Physiol
– volume: 125
  start-page: 109
  year: 2000
  end-page: 118
  article-title: Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza
  publication-title: Oecologia
– volume: 87
  start-page: 888
  year: 1997
  end-page: 891
  article-title: Where are all the undescribed fungi?
  publication-title: Phytopathology
– ident: e_1_2_6_39_1
  doi: 10.1007/PL00008881
– ident: e_1_2_6_10_1
  doi: 10.1007/BF01372852
– ident: e_1_2_6_32_1
  doi: 10.1128/AEM.59.3.695-700.1993
– ident: e_1_2_6_7_1
  doi: 10.1016/S0038-0717(03)00091-9
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1574-6941.2002.tb01022.x
– ident: e_1_2_6_27_1
  doi: 10.1046/j.1469-8137.1999.00502.x
– ident: e_1_2_6_35_1
  doi: 10.1016/S0038-0717(00)00198-X
– start-page: 315
  volume-title: PCR Protocols: a Guide to Methods and Applications.
  year: 1990
  ident: e_1_2_6_50_1
– ident: e_1_2_6_2_1
  doi: 10.1046/j.1462-2920.2003.00383.x
– ident: e_1_2_6_20_1
  doi: 10.1017/S0953756201004725
– ident: e_1_2_6_11_1
  doi: 10.1007/BF02232893
– ident: e_1_2_6_40_1
  doi: 10.1128/AEM.65.6.2614-2621.1999
– volume: 37
  start-page: 55
  year: 2003
  ident: e_1_2_6_24_1
  article-title: Microbial community responses to disease management soil treatments used in flower bulb cultivation
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-002-0561-6
– ident: e_1_2_6_4_1
  doi: 10.1128/AEM.66.10.4356-4360.2000
– ident: e_1_2_6_46_1
  doi: 10.1126/science.295.5562.2051
– ident: e_1_2_6_45_1
  doi: 10.1128/AEM.68.12.5999-6004.2002
– ident: e_1_2_6_33_1
  doi: 10.1139/b92-037
– ident: e_1_2_6_19_1
  doi: 10.1016/S0953-7562(09)80810-1
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.85.8.2444
– ident: e_1_2_6_38_1
  doi: 10.1046/j.1365-294X.2003.01716.x
– ident: e_1_2_6_9_1
  doi: 10.1139/b89-005
– ident: e_1_2_6_14_1
  doi: 10.1007/BF01373388
– ident: e_1_2_6_37_1
  doi: 10.1016/S0167-7012(01)00344-X
– ident: e_1_2_6_47_1
  doi: 10.1017/S0953756200002835
– ident: e_1_2_6_30_1
  doi: 10.1139/b73-201
– ident: e_1_2_6_36_1
  doi: 10.1128/AEM.67.10.4479-4487.2001
– ident: e_1_2_6_49_1
  doi: 10.1046/j.0028-646X.2001.00290.x
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1574-6968.2001.tb10516.x
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1469-8137.2002.00535.x
– ident: e_1_2_6_23_1
  doi: 10.1046/j.1469-8137.2003.00767.x
– ident: e_1_2_6_26_1
  doi: 10.1093/treephys/21.2-3.71
– ident: e_1_2_6_25_1
  doi: 10.1128/AEM.69.1.327-333.2003
– ident: e_1_2_6_22_1
  doi: 10.1046/j.0962-1083.2001.01333.x
– ident: e_1_2_6_29_1
  doi: 10.1128/AEM.67.10.4554-4559.2001
– ident: e_1_2_6_41_1
  doi: 10.1016/S0168-6496(03)00109-0
– volume-title: Biodiversity: the UK Action Plan
  year: 1994
  ident: e_1_2_6_12_1
– ident: e_1_2_6_21_1
  doi: 10.1094/PHYTO.1997.87.9.888
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1365-294X.1993.tb00005.x
– ident: e_1_2_6_17_1
  doi: 10.2307/2257528
– ident: e_1_2_6_5_1
  doi: 10.1146/annurev.es.22.110191.002521
– ident: e_1_2_6_48_1
  doi: 10.1046/j.1469-8137.2000.00605.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S0007-1536(83)80175-2
– ident: e_1_2_6_6_1
  doi: 10.1016/S0038-0717(01)00023-2
– ident: e_1_2_6_18_1
  doi: 10.1128/AEM.66.12.5488-5491.2000
– ident: e_1_2_6_44_1
  doi: 10.1017/S0953756200002471
– ident: e_1_2_6_8_1
  doi: 10.1017/S0953756202005890
– volume-title: paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods)
  year: 2002
  ident: e_1_2_6_42_1
– ident: e_1_2_6_15_1
  doi: 10.1016/S0167-7012(00)00212-8
– ident: e_1_2_6_43_1
  doi: 10.1093/nar/22.22.4673
SSID ssj0017370
Score 2.158198
Snippet Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK...
The conservation and regeneration of native Scots pine ( Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because...
The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1121
SubjectTerms Biodiversity
DNA Fingerprinting - methods
DNA, Fungal - analysis
DNA, Fungal - isolation & purification
DNA, Ribosomal Spacer - analysis
DNA, Ribosomal Spacer - isolation & purification
Electrophoresis, Polyacrylamide Gel
Fungi - classification
Fungi - isolation & purification
Molecular Sequence Data
Phylogeny
Pinus sylvestris
Polymerase Chain Reaction - methods
Polymorphism, Genetic
Sequence Analysis, DNA
Soil Microbiology
Trees
Title Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient
URI https://api.istex.fr/ark:/67375/WNG-HHS9SG9X-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1462-2920.2003.00522.x
https://www.ncbi.nlm.nih.gov/pubmed/14641592
https://www.proquest.com/docview/71422715
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyQuUN6hPHxACA6J4jyc-oiAdoWgQiwVe7PGj1SrXZJqk5Xanvof-If8Ejx2sqiohwpxy2UcezzjGXtmviHkpTMSVltgMauBx4VhIhbOs48zk2qngLYWCuudPx_yyVHxcVbOhvwnrIUJ-BCbBzfUDH9eo4KDCl1IUo9u65XcDSqy1MN6JvjCmSXoT2LqFvpHXzdIUqzKfd-4gYSNST1jgPOqgS5Zqm1k-ulVbuhlr9abpf07ZDEuKGSjLJJ1rxJ9_hfW4_9Z8Q65PXiv9G0Qt7vkhm3ukZuhn-XZfaLej1ketK2pM5nHczpvaOgcpWnXzpcdxaq1FQX6o219oTH9dfGTTnXbd_TETZG-_jJv1h3tzpaIAOLOIPopeUOPVz43rX9AjvY_fHs3iYcmDrF2l98szo3ioI3bkoKpOmNQY8DYQKoZgJMGVdWlNnkK3KRGc1GzCiEDrWAKtLuc5Q_JVtM29jGhBlQu9B5kYHlhTAZ1UQHn2nClrSp0RKpxw6QeEM6x0cZS-kh7wcNNJ5PIQey_mUvPQXkaEbahPAkoH9egeeVlYkMAqwVmyVWl_H54ICeTqZgeiJmcRuTFKDTS6S4GZKCx7bqTFT7AVayMyKMgS39-Xjh2lSKLSOkl4tqzkk573ceTf6TbJbdCtiK-MT0lW_1qbZ85r6tXz70-_QaR6x0F
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQXyrNNedQHhOCQNM7DwUcEtAG2K8S2Ym-WX6lWXZJqk5VaTvyH_sP-Ejx2sqiohwpxy2US25nxvL9B6KVVEkYZQUJSCRpmmrCQWcs-THSsrACaiknodz4Y0_Io-zzNp_04IOiF8fgQq4AbSIa7r0HAISC926clBym3b2VJ7HA9IwhxJpE1KNdhwLfzr76tsKRIkbrJcT0NGcp6hhTndW-6oqvW4djPrjNEr9q1TjHtbaD5sCVfj3ISLTsZqZ9_oT3-pz3fR_d6Axa_8xz3AN0y9UN024-0PH-E5Ieh0AM3FbZa83iGZzX2w6MUbpvZvMXQuLbAAv9oGtdrjC9_XeCJaroWn9o14tdfZ_Wyxe35HEBA7DWER9EbfLxw5WndY3S09_HwfRn2cxxCZf3fJEy1pEJpktKMyCohooKcsRaxIkJYhpBFlSudxoLqWCvKKlIAaqBhRApl_bP0CVqrm9psIayFTJl6KxJhaKZ1IqqsEJQqTaUyMlMBKoY_xlUPcg6zNubcJdsz6p2dhMMJwgjOlLsT5GcBIivKUw_0cQOaV44pVgRicQKFckXOv4_3eVlO2GSfTfkkQDsD13ArvpCTEbVpli0vIAZXkDxAm56Z_nw8s8eVsyRAuWOJG6-KWwG2D9v_SLeD7pSHByM--jT-8hTd9cWLEHJ6hta6xdI8t0ZYJ1844foNZ_0hIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXKO_wqg8IwSEhThynPiKW7QJlVbFU7M3ys1rtkqw2WanlxH_oP-wvqR_JoqIeKsQtl0nsyYxnPI9vAHhljYSWmqMYGU5irBCNqfXs40yl0iqgNlS4fuevYzI6wp-nxbSrf3K9MAEfYhNwc5rhz2un4Etl3nVZyV7J7UtplnpYz8RFOLPE-pPbmKR7TsIH3zZQUqjM_eC4jgb1VT19hvOqN10yVduO6ydX-aGX3Vpvl4Z3wbzfUShHmSfrViTy119gj_9nyzvgTue-wvdB3u6BG7q6D26GgZanD4AY9GUesDbQ2szjGZxVMIyOkrCpZ4sGura1FeTwZ137TmN4_vsMTmTdNnBplwjfHM6qdQOb04WDALGHEDxI3sLjlS9Oax-Co-HH7x9GcTfFIZb29pvFuRKES4VygpEwGeLGZYwVTyXi3IqDKE0hVZ5yolIlCTWodJiBmiLBpb2d5Y_AVlVX-gmAioucyj2ecU2wUhk3uOSESEWE1ALLCJT9D2Oygzh3kzYWzKfaMQlXnYw5DroBnDnzHGQnEUAbymWA-bgGzWsvExsCvpq7MrmyYD_G-2w0mtDJPp2ySQR2e6FhVnldRoZXul43rHQRuBIVEXgcZOnPx7FlV0GzCBReIq69KmbV1z48_Ue6XXDrcDBkB5_GX56B26Fy0cWbnoOtdrXWL6wH1oqXXrUuAPX9H9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+of+fungi+in+organic+soils+under+a+moorland+-+Scots+pine+%28Pinus+sylvestris+L.%29+gradient&rft.jtitle=Environmental+microbiology&rft.au=Anderson%2C+Ian+C.&rft.au=Campbell%2C+Colin+D.&rft.au=Prosser%2C+James+I.&rft.date=2003-11-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=5&rft.issue=11&rft.spage=1121&rft.epage=1132&rft_id=info:doi/10.1046%2Fj.1462-2920.2003.00522.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HHS9SG9X_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon