Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient
Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determ...
Saved in:
Published in | Environmental microbiology Vol. 5; no. 11; pp. 1121 - 1132 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.11.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community. |
---|---|
AbstractList | The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community. Summary The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community. The conservation and regeneration of native Scots pine ( Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR‐amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non‐mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community. The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community. |
Author | Anderson, Ian C. Campbell, Colin D. Prosser, James I. |
Author_xml | – sequence: 1 givenname: Ian C. surname: Anderson fullname: Anderson, Ian C. email: i.anderson@macaulay.ac.uk organization: The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK – sequence: 2 givenname: Colin D. surname: Campbell fullname: Campbell, Colin D. organization: The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK – sequence: 3 givenname: James I. surname: Prosser fullname: Prosser, James I. organization: Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14641592$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9v0zAUxS00xP7xFZCfEDwku7abZJEQ0jRGO6nApILg7eLYTuWS2sVORvvtcdbRB17gyVe653d8dM8pOXLeGUIog5zBpLxY5WxS8ozXHHIOIHKAgvN8-4ScHBZHh5nxY3Ia4wqAVaKCZ-Q4LSasqPkJ-f7O3psQbb-jvqXt4JaWWkd9WEpnFY3edpEOTptAJV17HzrpNM3oQvk-0o11hr66s26INO66exP7YCOd56_pMkhtjevPydNWdtE8f3zPyJf3N5-vZ9n80_T2-mqeKXEpeCZ0U0qlmUjBmpYz2daFKLUExaQE4E3VFkoLkKUGrcq6ZRWrAEzNGqlKXogz8nLvuwn-55CC4NpGZbqU1_ghYsUmnFdsFL54FA7N2mjcBLuWYYd_bpIEb_cCFXyMwbSobC97610fpO2QAY4l4GpEOI63xrEEfCgBt8ng8i-Dwx__Rt_s0V-2M7v_5vDmw20aEp7tcRt7sz3gMvzAMlVf4NePU5zNFvViWn_DhfgNH2asqw |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2009_08_045 crossref_primary_10_3390_f12030353 crossref_primary_10_1007_s12210_008_0017_5 crossref_primary_10_12974_2311_8741_2022_10_01 crossref_primary_10_3390_life10120362 crossref_primary_10_1038_ismej_2007_51 crossref_primary_10_1016_j_biocontrol_2014_12_007 crossref_primary_10_1111_j_1365_294X_2008_03813_x crossref_primary_10_1007_s00248_005_5047_2 crossref_primary_10_1016_S1002_0160_13_60025_9 crossref_primary_10_3389_ffunb_2022_886685 crossref_primary_10_1007_s10526_007_9092_2 crossref_primary_10_1093_jxb_eri192 crossref_primary_10_1007_s00248_007_9226_1 crossref_primary_10_1016_j_foreco_2017_10_052 crossref_primary_10_1371_journal_pone_0117505 crossref_primary_10_1007_s11104_012_1236_1 crossref_primary_10_1007_s11356_015_5904_6 crossref_primary_10_1007_s11104_008_9794_y crossref_primary_10_1108_EL_05_2017_0104 crossref_primary_10_1155_2013_606480 crossref_primary_10_1007_s00114_008_0394_8 crossref_primary_10_3390_agronomy14112468 crossref_primary_10_1007_s11104_014_2238_y crossref_primary_10_1111_j_1365_2389_2005_00781_x crossref_primary_10_1016_j_revpalbo_2007_03_001 crossref_primary_10_1139_X10_176 crossref_primary_10_1007_s11104_010_0593_x crossref_primary_10_3389_fmicb_2019_03135 crossref_primary_10_1111_j_1365_2672_2006_03030_x crossref_primary_10_1111_j_1365_294X_2007_03540_x crossref_primary_10_1111_1574_6968_12313 crossref_primary_10_1111_j_1469_8137_2006_01957_x crossref_primary_10_17221_132_2009_PSE crossref_primary_10_1111_j_1574_6941_2006_00258_x crossref_primary_10_1016_j_eja_2010_05_005 crossref_primary_10_1007_s13213_010_0168_3 crossref_primary_10_1016_j_funeco_2009_05_003 crossref_primary_10_1111_j_1574_6941_2009_00650_x crossref_primary_10_1094_PDIS_03_13_0332_RE crossref_primary_10_1007_s11274_015_1890_6 crossref_primary_10_1016_j_soilbio_2007_02_012 crossref_primary_10_1139_w11_015 crossref_primary_10_1016_j_jenvman_2018_06_065 crossref_primary_10_1590_1678_992x_2016_0419 crossref_primary_10_1016_j_soilbio_2007_10_015 crossref_primary_10_1007_s00248_011_9839_2 crossref_primary_10_1016_j_funeco_2015_03_005 crossref_primary_10_1016_j_soilbio_2014_09_010 crossref_primary_10_3852_10_256 crossref_primary_10_3389_fmicb_2017_01007 crossref_primary_10_2307_3558354 crossref_primary_10_1111_j_1365_2699_2010_02281_x crossref_primary_10_1007_s00248_010_9790_7 crossref_primary_10_1139_W08_152 crossref_primary_10_1016_j_soilbio_2011_12_007 crossref_primary_10_1051_forest_2006037 crossref_primary_10_1016_j_mimet_2006_09_015 crossref_primary_10_1007_s12275_010_9369_5 crossref_primary_10_1038_srep39515 crossref_primary_10_1016_j_mimet_2007_06_016 crossref_primary_10_7717_peerj_5857 crossref_primary_10_1111_j_1462_2920_2004_00675_x crossref_primary_10_1007_s11270_006_9323_7 crossref_primary_10_1515_bot_2005_046 crossref_primary_10_1016_j_soilbio_2006_06_007 crossref_primary_10_1111_j_1574_6976_2007_00073_x crossref_primary_10_1128_AEM_71_9_5544_5550_2005 crossref_primary_10_1139_b06_087 crossref_primary_10_1016_j_funbio_2010_12_001 crossref_primary_10_1016_j_soilbio_2012_02_003 crossref_primary_10_1016_j_myc_2013_08_002 crossref_primary_10_1016_j_apsoil_2015_06_002 crossref_primary_10_1111_j_1574_6941_2008_00637_x crossref_primary_10_1016_j_soilbio_2010_06_022 crossref_primary_10_1371_journal_pone_0066146 crossref_primary_10_1016_j_mimet_2007_10_005 crossref_primary_10_3390_f11080837 crossref_primary_10_1371_journal_pone_0062580 crossref_primary_10_22144_ctu_jen_2016_043 crossref_primary_10_1016_j_ejsobi_2013_12_005 crossref_primary_10_1007_s00248_007_9220_7 crossref_primary_10_1111_j_1469_8137_2004_01167_x crossref_primary_10_1264_jsme2_ME16085 crossref_primary_10_1016_j_mycol_2005_11_004 crossref_primary_10_1016_j_jbiosc_2010_10_006 crossref_primary_10_1016_j_soilbio_2010_09_001 crossref_primary_10_1016_j_soilbio_2006_01_016 crossref_primary_10_1016_j_watres_2010_07_018 crossref_primary_10_1007_s11104_011_1065_7 crossref_primary_10_1111_jam_14147 crossref_primary_10_1016_j_mycres_2008_11_020 crossref_primary_10_1016_j_soilbio_2009_06_018 crossref_primary_10_2136_sssaj2006_0080 crossref_primary_10_1038_s41598_021_97674_w crossref_primary_10_1128_AEM_00510_06 crossref_primary_10_1186_s12575_015_0020_z crossref_primary_10_1111_j_1462_2920_2007_01455_x crossref_primary_10_1016_j_ejsobi_2012_10_008 crossref_primary_10_3390_f12121624 crossref_primary_10_1264_jsme2_ME11287 crossref_primary_10_1046_j_1469_8137_2004_00997_x crossref_primary_10_1016_j_mimet_2006_08_005 crossref_primary_10_1016_j_apsoil_2013_05_015 crossref_primary_10_1007_s13213_013_0772_0 crossref_primary_10_1007_s11270_012_1187_4 crossref_primary_10_1016_j_ijantimicag_2013_01_021 crossref_primary_10_1046_j_0016_8025_2001_00735_x crossref_primary_10_1007_s10482_012_9843_7 crossref_primary_10_1016_j_soilbio_2007_06_022 crossref_primary_10_1016_j_geoderma_2021_115088 crossref_primary_10_1007_s13225_012_0218_1 crossref_primary_10_1128_AEM_01315_08 crossref_primary_10_1016_j_soilbio_2009_10_016 crossref_primary_10_1111_j_1469_8137_2006_01793_x crossref_primary_10_3390_f9090560 crossref_primary_10_1016_j_funbio_2015_06_008 crossref_primary_10_1016_j_soilbio_2008_05_015 crossref_primary_10_1371_journal_pone_0124096 crossref_primary_10_1016_j_soilbio_2015_09_015 crossref_primary_10_1007_s00248_005_5130_8 crossref_primary_10_1007_s00248_015_0584_9 crossref_primary_10_1007_s11104_009_0067_1 crossref_primary_10_1002_mbo3_169 crossref_primary_10_1007_s00248_014_0523_1 crossref_primary_10_1080_03746600608685104 crossref_primary_10_56431_p_9q7fup crossref_primary_10_1038_s41598_019_40910_1 crossref_primary_10_1007_s13225_009_0001_0 crossref_primary_10_1111_jam_12549 crossref_primary_10_1128_AEM_02758_08 crossref_primary_10_1038_ismej_2009_87 crossref_primary_10_1016_S1001_0742_09_60215_1 crossref_primary_10_4028_www_scientific_net_AMM_700_519 crossref_primary_10_1111_j_1574_6968_2007_00914_x crossref_primary_10_1007_s42729_020_00394_9 crossref_primary_10_1016_j_soilbio_2008_11_018 crossref_primary_10_1373_clinchem_2008_107565 crossref_primary_10_18052_www_scipress_com_ILNS_77_1 crossref_primary_10_1016_j_apsoil_2008_03_005 crossref_primary_10_1016_j_soilbio_2008_05_023 crossref_primary_10_1111_j_1469_8137_2006_01786_x |
Cites_doi | 10.1007/PL00008881 10.1007/BF01372852 10.1128/AEM.59.3.695-700.1993 10.1016/S0038-0717(03)00091-9 10.1111/j.1574-6941.2002.tb01022.x 10.1046/j.1469-8137.1999.00502.x 10.1016/S0038-0717(00)00198-X 10.1046/j.1462-2920.2003.00383.x 10.1017/S0953756201004725 10.1007/BF02232893 10.1128/AEM.65.6.2614-2621.1999 10.1007/s00374-002-0561-6 10.1128/AEM.66.10.4356-4360.2000 10.1126/science.295.5562.2051 10.1128/AEM.68.12.5999-6004.2002 10.1139/b92-037 10.1016/S0953-7562(09)80810-1 10.1073/pnas.85.8.2444 10.1046/j.1365-294X.2003.01716.x 10.1139/b89-005 10.1007/BF01373388 10.1016/S0167-7012(01)00344-X 10.1017/S0953756200002835 10.1139/b73-201 10.1128/AEM.67.10.4479-4487.2001 10.1046/j.0028-646X.2001.00290.x 10.1111/j.1574-6968.2001.tb10516.x 10.1046/j.1469-8137.2002.00535.x 10.1046/j.1469-8137.2003.00767.x 10.1093/treephys/21.2-3.71 10.1128/AEM.69.1.327-333.2003 10.1046/j.0962-1083.2001.01333.x 10.1128/AEM.67.10.4554-4559.2001 10.1016/S0168-6496(03)00109-0 10.1094/PHYTO.1997.87.9.888 10.1111/j.1365-294X.1993.tb00005.x 10.2307/2257528 10.1146/annurev.es.22.110191.002521 10.1046/j.1469-8137.2000.00605.x 10.1016/S0007-1536(83)80175-2 10.1016/S0038-0717(01)00023-2 10.1128/AEM.66.12.5488-5491.2000 10.1017/S0953756200002471 10.1017/S0953756202005890 10.1016/S0167-7012(00)00212-8 10.1093/nar/22.22.4673 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1046/j.1462-2920.2003.00522.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 1132 |
ExternalDocumentID | 14641592 10_1046_j_1462_2920_2003_00522_x EMI522 ark_67375_WNG_HHS9SG9X_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3832-3db6acd13641bf21af9536da0c1aa002b7f5cd30a6d0dc69f171700e91bac6253 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Fri Jul 11 07:51:21 EDT 2025 Wed Feb 19 01:51:55 EST 2025 Tue Jul 01 00:42:33 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Aug 20 01:21:36 EDT 2025 Wed Oct 30 09:52:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3832-3db6acd13641bf21af9536da0c1aa002b7f5cd30a6d0dc69f171700e91bac6253 |
Notes | istex:F6053D37BE3020534A059A318772237E9C700A80 ark:/67375/WNG-HHS9SG9X-S ArticleID:EMI522 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 14641592 |
PQID | 71422715 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_71422715 pubmed_primary_14641592 crossref_citationtrail_10_1046_j_1462_2920_2003_00522_x crossref_primary_10_1046_j_1462_2920_2003_00522_x wiley_primary_10_1046_j_1462_2920_2003_00522_x_EMI522 istex_primary_ark_67375_WNG_HHS9SG9X_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2003 |
PublicationDateYYYYMMDD | 2003-11-01 |
PublicationDate_xml | – month: 11 year: 2003 text: November 2003 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2003 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Borneman, J., and Hartin, R.J. (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66: 4356-4360. Landeweert, R., Leeflang, P., Kuyper, T.W., Hoffland, E., Rosling, A., Wernars, K., and Smit, E. (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69: 327-333. Smit, E., Leeflang, P., Glandorf, B., Van Elsas, J.D., and Wernars, K. (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65: 2614-2621. Cook, R.J., and Papendick, R.I. (1970) Soil water potential as a factor in the ecology of Fusarium roseum F. sp. cerealis'culmorum'. Plant Soil 32: 131-145. Chapman, S.J., Campbell, C.D., Fraser, A.R., and Puri, G. (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33: 1193-1200. Hawksworth, D.L. (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422-1432. Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G., and Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488-5491. Chapman, S.J., Campbell, C.D., and Puri, G. (2003) Native pinewood expansion: soil chemical and microbiological indicators of change. Soil Biol Biochem 35: 753-764. Bruns, T.D., White, T.J., and Taylor, J.W. (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525-564. Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641-655. Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J., and Young, J.P.W. (2002) Extensive fungal diversity in plant roots. Science 295: 2051. Swofford, D.L. (2002) paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts, USA: Sinauer Associates. Schmalenberger, A., and Tebbe, C.C. (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12: 251-262. Pennanen, T., Paavolainen, L., and Hantula, J. (2001) Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol Biochem 33: 697-699. Dickinson, C.H., and Dooley, M.J. (1967) The microbiology of cut-away peat. Plant Soil 27: 172-186. Vainio, E.J., and Hantula, J. (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927-936. Cuttle, S.P., and Malcolm, D.C. (1979) A corer for taking undisturbed peat samples. Plant Soil 51: 297-300. Valinsky, L., Della Vedova, G., Jiang, T., and Borneman, J. (2002) Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68: 5999-6004. McCaig, A.E., Glover, L.A., and Prosser, J.I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554-4559. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59: 695-700. Horton, T.R., and Bruns, T.D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10: 1855-1871. Pearson, W.R., and Lipman, D.J. (1998) Improved tool for biological sequence analysis. Proc Natl Acad Sci USA 85: 2444-2448. Boddy, L. (1983) Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans Br Mycol Soc 80: 141-149. Gimingham, C.H. (1960) Biological flora of the British Isles: Calluna vulgaris (L.) Hull. J Ecol 48: 455-483. Lord, N.S., Kaplan, C.W., Shank, P., Kitts, C.L., and Elrod, S.L. (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42: 327-337. Schabereiter-Gurtner, C., Piñar, G., Lubitz, W., and Rölleke, S. (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47: 345-354. Hawksworth, D.L., and Rossman, A.Y. (1997) Where are all the undescribed fungi? Phytopathology 87: 888-891. Chen, D.M., and Cairney, J.W.G. (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106: 532-540. Department of the Environment. (1994) Biodiversity: the UK Action Plan. London: HMSO. Mexal, J., and Reid, C.P.P. (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51: 1579-1588. Anderson, I.C., Campbell, C.D., and Prosser, J.I. (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5: 36-47. Gardes, M., and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2: 113-118. Leake, J.R., Donnelly, D.P., Saunders, E.M., Boddy, L., and Read, D.J. (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposing fungus. Tree Physiol 21: 71-82. Vrålstad, T., Schumacher, T., and Taylor, A.F.S. (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153: 143-152. Nilsson, M., Bååth, E., and Söderström, B. (1992) The microfungal communities of a mixed mire in northern Sweden. Can J Bot 70: 272-276. Viaud, M., Pasquier, A., and Brygoo, Y. (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104: 1027-1032. Jumpponen, A. (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158: 569-578. Vrålstad, T., Fossheim, T., and Schumacher, T. (2000) Piceirhiza bicolorata- the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145: 549-563. Smit, E., Veenman, C., and Baar, J. (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45: 49-57. Kowalchuk, G.A., Van Os, G.J., Van Aartrijk, J., and Van Veen, J.A. (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37: 55-63. Möhlenhoff, P., Müller, L., Gorbushina, A.A., and Petersen, K. (2001) Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiol Lett 195: 169-173. Dickie, I.A., Xu, B., and Koide, R.T. (2002) Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156: 527-535. Lindahl, B., Stenlid, J., Olsson, S., and Finlay, R. (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144: 183-193. Van Elsas, J.D., Duarte, G.F., Keijzer-Wolters, A., and Smit, E. (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43: 133-151. Setälä, H. (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125: 109-118. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. Coleman, M.D., Bledsoe, C.S., and Lopushinsky, W. (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67: 29-39. Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., and Nazaret, S. (2001) Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67: 4479-4487. 1973; 51 1989; 67 2002; 153 1997; 87 2002; 295 2000; 43 2000; 66 2002; 156 1991; 95 2003; 35 1994; 22 1970; 32 2003; 37 1999; 65 1994 1999; 144 1967; 27 2002 1998; 85 2003; 158 2001; 67 1993; 2 2001; 47 1979; 51 2001; 105 2001; 21 2003; 12 1993; 59 1992; 70 2001; 195 1990 1960; 48 2002; 42 2000; 125 2000; 104 1991; 22 2002; 68 2002; 106 2003; 69 2003; 5 1983; 80 2000; 145 2001; 33 2001; 10 2003; 45 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 White T.J. (e_1_2_6_50_1) 1990 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 Department of the Environment. (e_1_2_6_12_1) 1994 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 Swofford D.L. (e_1_2_6_42_1) 2002 e_1_2_6_14_1 e_1_2_6_35_1 Kowalchuk G.A. (e_1_2_6_24_1) 2003; 37 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Hawksworth, D.L., and Rossman, A.Y. (1997) Where are all the undescribed fungi? Phytopathology 87: 888-891. – reference: McCaig, A.E., Glover, L.A., and Prosser, J.I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67: 4554-4559. – reference: Cuttle, S.P., and Malcolm, D.C. (1979) A corer for taking undisturbed peat samples. Plant Soil 51: 297-300. – reference: Pearson, W.R., and Lipman, D.J. (1998) Improved tool for biological sequence analysis. Proc Natl Acad Sci USA 85: 2444-2448. – reference: Möhlenhoff, P., Müller, L., Gorbushina, A.A., and Petersen, K. (2001) Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiol Lett 195: 169-173. – reference: Setälä, H. (2000) Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia 125: 109-118. – reference: Bruns, T.D., White, T.J., and Taylor, J.W. (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525-564. – reference: Kowalchuk, G.A., Van Os, G.J., Van Aartrijk, J., and Van Veen, J.A. (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37: 55-63. – reference: Vrålstad, T., Schumacher, T., and Taylor, A.F.S. (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153: 143-152. – reference: Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641-655. – reference: Lindahl, B., Stenlid, J., Olsson, S., and Finlay, R. (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144: 183-193. – reference: Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. – reference: Jumpponen, A. (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158: 569-578. – reference: Smit, E., Leeflang, P., Glandorf, B., Van Elsas, J.D., and Wernars, K. (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65: 2614-2621. – reference: Dickinson, C.H., and Dooley, M.J. (1967) The microbiology of cut-away peat. Plant Soil 27: 172-186. – reference: Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., and Nazaret, S. (2001) Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67: 4479-4487. – reference: Vrålstad, T., Fossheim, T., and Schumacher, T. (2000) Piceirhiza bicolorata- the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145: 549-563. – reference: Vainio, E.J., and Hantula, J. (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927-936. – reference: Chapman, S.J., Campbell, C.D., Fraser, A.R., and Puri, G. (2001) FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil Biol Biochem 33: 1193-1200. – reference: Schabereiter-Gurtner, C., Piñar, G., Lubitz, W., and Rölleke, S. (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47: 345-354. – reference: Boddy, L. (1983) Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Trans Br Mycol Soc 80: 141-149. – reference: Nilsson, M., Bååth, E., and Söderström, B. (1992) The microfungal communities of a mixed mire in northern Sweden. Can J Bot 70: 272-276. – reference: Viaud, M., Pasquier, A., and Brygoo, Y. (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104: 1027-1032. – reference: Anderson, I.C., Campbell, C.D., and Prosser, J.I. (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5: 36-47. – reference: Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G., and Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488-5491. – reference: Coleman, M.D., Bledsoe, C.S., and Lopushinsky, W. (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67: 29-39. – reference: Cook, R.J., and Papendick, R.I. (1970) Soil water potential as a factor in the ecology of Fusarium roseum F. sp. cerealis'culmorum'. Plant Soil 32: 131-145. – reference: Leake, J.R., Donnelly, D.P., Saunders, E.M., Boddy, L., and Read, D.J. (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposing fungus. Tree Physiol 21: 71-82. – reference: Horton, T.R., and Bruns, T.D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10: 1855-1871. – reference: Smit, E., Veenman, C., and Baar, J. (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45: 49-57. – reference: Chapman, S.J., Campbell, C.D., and Puri, G. (2003) Native pinewood expansion: soil chemical and microbiological indicators of change. Soil Biol Biochem 35: 753-764. – reference: Chen, D.M., and Cairney, J.W.G. (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106: 532-540. – reference: Borneman, J., and Hartin, R.J. (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66: 4356-4360. – reference: Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J., and Young, J.P.W. (2002) Extensive fungal diversity in plant roots. Science 295: 2051. – reference: Van Elsas, J.D., Duarte, G.F., Keijzer-Wolters, A., and Smit, E. (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Meth 43: 133-151. – reference: Schmalenberger, A., and Tebbe, C.C. (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12: 251-262. – reference: Gimingham, C.H. (1960) Biological flora of the British Isles: Calluna vulgaris (L.) Hull. J Ecol 48: 455-483. – reference: Dickie, I.A., Xu, B., and Koide, R.T. (2002) Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156: 527-535. – reference: Department of the Environment. (1994) Biodiversity: the UK Action Plan. London: HMSO. – reference: Gardes, M., and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2: 113-118. – reference: Lord, N.S., Kaplan, C.W., Shank, P., Kitts, C.L., and Elrod, S.L. (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42: 327-337. – reference: Mexal, J., and Reid, C.P.P. (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51: 1579-1588. – reference: Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59: 695-700. – reference: Valinsky, L., Della Vedova, G., Jiang, T., and Borneman, J. (2002) Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition. Appl Environ Microbiol 68: 5999-6004. – reference: Pennanen, T., Paavolainen, L., and Hantula, J. (2001) Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol Biochem 33: 697-699. – reference: Hawksworth, D.L. (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422-1432. – reference: Landeweert, R., Leeflang, P., Kuyper, T.W., Hoffland, E., Rosling, A., Wernars, K., and Smit, E. (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69: 327-333. – reference: Swofford, D.L. (2002) paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts, USA: Sinauer Associates. – volume: 105 start-page: 1422 year: 2001 end-page: 1432 article-title: The magnitude of fungal diversity: the 1.5 million species estimate revisited publication-title: Mycol Res – volume: 195 start-page: 169 year: 2001 end-page: 173 article-title: Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects publication-title: FEMS Microbiol Lett – volume: 45 start-page: 49 year: 2003 end-page: 57 article-title: Molecular analysis of ectomycorrhizal basidiomycete communities in a L. stand reveals long‐term increased diversity after removal of litter and humus layers publication-title: FEMS Microbiol Ecol – volume: 27 start-page: 172 year: 1967 end-page: 186 article-title: The microbiology of cut‐away peat publication-title: Plant Soil – volume: 68 start-page: 5999 year: 2002 end-page: 6004 article-title: Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition publication-title: Appl Environ Microbiol – volume: 70 start-page: 272 year: 1992 end-page: 276 article-title: The microfungal communities of a mixed mire in northern Sweden publication-title: Can J Bot – volume: 85 start-page: 2444 year: 1998 end-page: 2448 article-title: Improved tool for biological sequence analysis publication-title: Proc Natl Acad Sci USA – year: 1994 – volume: 33 start-page: 697 year: 2001 end-page: 699 article-title: Rapid PCR‐based method for the direct analysis of fungal communities in complex environmental samples publication-title: Soil Biol Biochem – volume: 22 start-page: 4673 year: 1994 end-page: 4680 article-title: clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions‐specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res – volume: 66 start-page: 5488 year: 2000 end-page: 5491 article-title: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA‐ and rRNA‐based microbial community composition publication-title: Appl Environ Microbiol – volume: 95 start-page: 641 year: 1991 end-page: 655 article-title: The fungal dimension of biodiversity: magnitude, significance, and conservation publication-title: Mycol Res – volume: 66 start-page: 4356 year: 2000 end-page: 4360 article-title: PCR primers that amplify fungal rRNA genes from environmental samples publication-title: Appl Environ Microbiol – volume: 67 start-page: 4479 year: 2001 end-page: 4487 article-title: Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability publication-title: Appl Environ Microbiol – volume: 104 start-page: 927 year: 2000 end-page: 936 article-title: Direct analysis of wood‐inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA publication-title: Mycol Res – volume: 51 start-page: 297 year: 1979 end-page: 300 article-title: A corer for taking undisturbed peat samples publication-title: Plant Soil – volume: 295 start-page: 2051 year: 2002 article-title: Extensive fungal diversity in plant roots publication-title: Science – volume: 69 start-page: 327 year: 2003 end-page: 333 article-title: Molecular identification of ectomycorrhizal mycelium in soil horizons publication-title: Appl Environ Microbiol – volume: 12 start-page: 251 year: 2003 end-page: 262 article-title: Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR‐amplified partial small subunit rRNA genes in ecological studies publication-title: Mol Ecol – volume: 48 start-page: 455 year: 1960 end-page: 483 article-title: Biological flora of the British Isles: (L.) Hull publication-title: J Ecol – start-page: 315 year: 1990 end-page: 322 – volume: 10 start-page: 1855 year: 2001 end-page: 1871 article-title: The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box publication-title: Mol Ecol – volume: 2 start-page: 113 year: 1993 end-page: 118 article-title: ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts publication-title: Mol Ecol – volume: 106 start-page: 532 year: 2002 end-page: 540 article-title: Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites publication-title: Mycol Res – volume: 158 start-page: 569 year: 2003 end-page: 578 article-title: Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis publication-title: New Phytol – volume: 145 start-page: 549 year: 2000 end-page: 563 article-title: – the ectomycorrhizal expression of the aggregate? publication-title: New Phytol – volume: 144 start-page: 183 year: 1999 end-page: 193 article-title: Translocation of P between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems publication-title: New Phytol – volume: 153 start-page: 143 year: 2002 end-page: 152 article-title: Mycorrhizal synthesis between fungal strains of the aggregate and potential ectomycorrhizal and ericoid hosts publication-title: New Phytol – volume: 42 start-page: 327 year: 2002 end-page: 337 article-title: Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions publication-title: FEMS Microbiol Ecol – volume: 80 start-page: 141 year: 1983 end-page: 149 article-title: Effect of temperature and water potential on growth rate of wood‐rotting basidiomycetes publication-title: Trans Br Mycol Soc – volume: 65 start-page: 2614 year: 1999 end-page: 2621 article-title: Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR‐amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis publication-title: Appl Environ Microbiol – volume: 43 start-page: 133 year: 2000 end-page: 151 article-title: Analysis of the dynamics of fungal communities in soil via fungal‐specific PCR of soil DNA followed by denaturing gradient gel electrophoresis publication-title: J Microbiol Meth – volume: 33 start-page: 1193 year: 2001 end-page: 1200 article-title: FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties publication-title: Soil Biol Biochem – volume: 104 start-page: 1027 year: 2000 end-page: 1032 article-title: Diversity of soil fungi studied by PCR‐RFLP of ITS publication-title: Mycol Res – volume: 51 start-page: 1579 year: 1973 end-page: 1588 article-title: The growth of selected mycorrhizal fungi in response to induced water stress publication-title: Can J Bot – volume: 67 start-page: 4554 year: 2001 end-page: 4559 article-title: Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns publication-title: Appl Environ Microbiol – volume: 59 start-page: 695 year: 1993 end-page: 700 article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction‐amplified genes encoding for 16S rRNA publication-title: Appl Environ Microbiol – volume: 156 start-page: 527 year: 2002 end-page: 535 article-title: Vertical distribution of ectomycorrhizal hyphae in soil as shown by T‐RFLP analysis publication-title: New Phytol – volume: 32 start-page: 131 year: 1970 end-page: 145 article-title: Soil water potential as a factor in the ecology of F. sp. ‘culmorum’ publication-title: Plant Soil – volume: 5 start-page: 36 year: 2003 end-page: 47 article-title: Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil publication-title: Environ Microbiol – volume: 67 start-page: 29 year: 1989 end-page: 39 article-title: Pure culture response of ectomycorrhizal fungi to imposed water stress publication-title: Can J Bot – year: 2002 – volume: 35 start-page: 753 year: 2003 end-page: 764 article-title: Native pinewood expansion: soil chemical and microbiological indicators of change publication-title: Soil Biol Biochem – volume: 47 start-page: 345 year: 2001 end-page: 354 article-title: Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis publication-title: J Microbiol Meth – volume: 37 start-page: 55 year: 2003 end-page: 63 article-title: Microbial community responses to disease management soil treatments used in flower bulb cultivation publication-title: Biol Fertil Soils – volume: 22 start-page: 525 year: 1991 end-page: 564 article-title: Fungal molecular systematics publication-title: Annu Rev Ecol Syst – volume: 21 start-page: 71 year: 2001 end-page: 82 article-title: Rates and quantities of carbon flux to ectomycorrhizal mycelium following C pulse labelling of seedlings: effects of litter patches and interaction with a wood‐decomposing fungus publication-title: Tree Physiol – volume: 125 start-page: 109 year: 2000 end-page: 118 article-title: Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza publication-title: Oecologia – volume: 87 start-page: 888 year: 1997 end-page: 891 article-title: Where are all the undescribed fungi? publication-title: Phytopathology – ident: e_1_2_6_39_1 doi: 10.1007/PL00008881 – ident: e_1_2_6_10_1 doi: 10.1007/BF01372852 – ident: e_1_2_6_32_1 doi: 10.1128/AEM.59.3.695-700.1993 – ident: e_1_2_6_7_1 doi: 10.1016/S0038-0717(03)00091-9 – ident: e_1_2_6_28_1 doi: 10.1111/j.1574-6941.2002.tb01022.x – ident: e_1_2_6_27_1 doi: 10.1046/j.1469-8137.1999.00502.x – ident: e_1_2_6_35_1 doi: 10.1016/S0038-0717(00)00198-X – start-page: 315 volume-title: PCR Protocols: a Guide to Methods and Applications. year: 1990 ident: e_1_2_6_50_1 – ident: e_1_2_6_2_1 doi: 10.1046/j.1462-2920.2003.00383.x – ident: e_1_2_6_20_1 doi: 10.1017/S0953756201004725 – ident: e_1_2_6_11_1 doi: 10.1007/BF02232893 – ident: e_1_2_6_40_1 doi: 10.1128/AEM.65.6.2614-2621.1999 – volume: 37 start-page: 55 year: 2003 ident: e_1_2_6_24_1 article-title: Microbial community responses to disease management soil treatments used in flower bulb cultivation publication-title: Biol Fertil Soils doi: 10.1007/s00374-002-0561-6 – ident: e_1_2_6_4_1 doi: 10.1128/AEM.66.10.4356-4360.2000 – ident: e_1_2_6_46_1 doi: 10.1126/science.295.5562.2051 – ident: e_1_2_6_45_1 doi: 10.1128/AEM.68.12.5999-6004.2002 – ident: e_1_2_6_33_1 doi: 10.1139/b92-037 – ident: e_1_2_6_19_1 doi: 10.1016/S0953-7562(09)80810-1 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.85.8.2444 – ident: e_1_2_6_38_1 doi: 10.1046/j.1365-294X.2003.01716.x – ident: e_1_2_6_9_1 doi: 10.1139/b89-005 – ident: e_1_2_6_14_1 doi: 10.1007/BF01373388 – ident: e_1_2_6_37_1 doi: 10.1016/S0167-7012(01)00344-X – ident: e_1_2_6_47_1 doi: 10.1017/S0953756200002835 – ident: e_1_2_6_30_1 doi: 10.1139/b73-201 – ident: e_1_2_6_36_1 doi: 10.1128/AEM.67.10.4479-4487.2001 – ident: e_1_2_6_49_1 doi: 10.1046/j.0028-646X.2001.00290.x – ident: e_1_2_6_31_1 doi: 10.1111/j.1574-6968.2001.tb10516.x – ident: e_1_2_6_13_1 doi: 10.1046/j.1469-8137.2002.00535.x – ident: e_1_2_6_23_1 doi: 10.1046/j.1469-8137.2003.00767.x – ident: e_1_2_6_26_1 doi: 10.1093/treephys/21.2-3.71 – ident: e_1_2_6_25_1 doi: 10.1128/AEM.69.1.327-333.2003 – ident: e_1_2_6_22_1 doi: 10.1046/j.0962-1083.2001.01333.x – ident: e_1_2_6_29_1 doi: 10.1128/AEM.67.10.4554-4559.2001 – ident: e_1_2_6_41_1 doi: 10.1016/S0168-6496(03)00109-0 – volume-title: Biodiversity: the UK Action Plan year: 1994 ident: e_1_2_6_12_1 – ident: e_1_2_6_21_1 doi: 10.1094/PHYTO.1997.87.9.888 – ident: e_1_2_6_16_1 doi: 10.1111/j.1365-294X.1993.tb00005.x – ident: e_1_2_6_17_1 doi: 10.2307/2257528 – ident: e_1_2_6_5_1 doi: 10.1146/annurev.es.22.110191.002521 – ident: e_1_2_6_48_1 doi: 10.1046/j.1469-8137.2000.00605.x – ident: e_1_2_6_3_1 doi: 10.1016/S0007-1536(83)80175-2 – ident: e_1_2_6_6_1 doi: 10.1016/S0038-0717(01)00023-2 – ident: e_1_2_6_18_1 doi: 10.1128/AEM.66.12.5488-5491.2000 – ident: e_1_2_6_44_1 doi: 10.1017/S0953756200002471 – ident: e_1_2_6_8_1 doi: 10.1017/S0953756202005890 – volume-title: paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods) year: 2002 ident: e_1_2_6_42_1 – ident: e_1_2_6_15_1 doi: 10.1016/S0167-7012(00)00212-8 – ident: e_1_2_6_43_1 doi: 10.1093/nar/22.22.4673 |
SSID | ssj0017370 |
Score | 2.158198 |
Snippet | Summary
The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK... The conservation and regeneration of native Scots pine ( Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because... The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1121 |
SubjectTerms | Biodiversity DNA Fingerprinting - methods DNA, Fungal - analysis DNA, Fungal - isolation & purification DNA, Ribosomal Spacer - analysis DNA, Ribosomal Spacer - isolation & purification Electrophoresis, Polyacrylamide Gel Fungi - classification Fungi - isolation & purification Molecular Sequence Data Phylogeny Pinus sylvestris Polymerase Chain Reaction - methods Polymorphism, Genetic Sequence Analysis, DNA Soil Microbiology Trees |
Title | Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient |
URI | https://api.istex.fr/ark:/67375/WNG-HHS9SG9X-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1462-2920.2003.00522.x https://www.ncbi.nlm.nih.gov/pubmed/14641592 https://www.proquest.com/docview/71422715 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKyQuUN6hPHxACA6J4jyc-oiAdoWgQiwVe7PGj1SrXZJqk5Xanvof-If8Ejx2sqiohwpxy2UcezzjGXtmviHkpTMSVltgMauBx4VhIhbOs48zk2qngLYWCuudPx_yyVHxcVbOhvwnrIUJ-BCbBzfUDH9eo4KDCl1IUo9u65XcDSqy1MN6JvjCmSXoT2LqFvpHXzdIUqzKfd-4gYSNST1jgPOqgS5Zqm1k-ulVbuhlr9abpf07ZDEuKGSjLJJ1rxJ9_hfW4_9Z8Q65PXiv9G0Qt7vkhm3ukZuhn-XZfaLej1ketK2pM5nHczpvaOgcpWnXzpcdxaq1FQX6o219oTH9dfGTTnXbd_TETZG-_jJv1h3tzpaIAOLOIPopeUOPVz43rX9AjvY_fHs3iYcmDrF2l98szo3ioI3bkoKpOmNQY8DYQKoZgJMGVdWlNnkK3KRGc1GzCiEDrWAKtLuc5Q_JVtM29jGhBlQu9B5kYHlhTAZ1UQHn2nClrSp0RKpxw6QeEM6x0cZS-kh7wcNNJ5PIQey_mUvPQXkaEbahPAkoH9egeeVlYkMAqwVmyVWl_H54ICeTqZgeiJmcRuTFKDTS6S4GZKCx7bqTFT7AVayMyKMgS39-Xjh2lSKLSOkl4tqzkk573ceTf6TbJbdCtiK-MT0lW_1qbZ85r6tXz70-_QaR6x0F |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQXyrNNedQHhOCQNM7DwUcEtAG2K8S2Ym-WX6lWXZJqk5VaTvyH_sP-Ejx2sqiohwpxy2US25nxvL9B6KVVEkYZQUJSCRpmmrCQWcs-THSsrACaiknodz4Y0_Io-zzNp_04IOiF8fgQq4AbSIa7r0HAISC926clBym3b2VJ7HA9IwhxJpE1KNdhwLfzr76tsKRIkbrJcT0NGcp6hhTndW-6oqvW4djPrjNEr9q1TjHtbaD5sCVfj3ISLTsZqZ9_oT3-pz3fR_d6Axa_8xz3AN0y9UN024-0PH-E5Ieh0AM3FbZa83iGZzX2w6MUbpvZvMXQuLbAAv9oGtdrjC9_XeCJaroWn9o14tdfZ_Wyxe35HEBA7DWER9EbfLxw5WndY3S09_HwfRn2cxxCZf3fJEy1pEJpktKMyCohooKcsRaxIkJYhpBFlSudxoLqWCvKKlIAaqBhRApl_bP0CVqrm9psIayFTJl6KxJhaKZ1IqqsEJQqTaUyMlMBKoY_xlUPcg6zNubcJdsz6p2dhMMJwgjOlLsT5GcBIivKUw_0cQOaV44pVgRicQKFckXOv4_3eVlO2GSfTfkkQDsD13ArvpCTEbVpli0vIAZXkDxAm56Z_nw8s8eVsyRAuWOJG6-KWwG2D9v_SLeD7pSHByM--jT-8hTd9cWLEHJ6hta6xdI8t0ZYJ1844foNZ_0hIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXKO_wqg8IwSEhThynPiKW7QJlVbFU7M3ys1rtkqw2WanlxH_oP-wvqR_JoqIeKsQtl0nsyYxnPI9vAHhljYSWmqMYGU5irBCNqfXs40yl0iqgNlS4fuevYzI6wp-nxbSrf3K9MAEfYhNwc5rhz2un4Etl3nVZyV7J7UtplnpYz8RFOLPE-pPbmKR7TsIH3zZQUqjM_eC4jgb1VT19hvOqN10yVduO6ydX-aGX3Vpvl4Z3wbzfUShHmSfrViTy119gj_9nyzvgTue-wvdB3u6BG7q6D26GgZanD4AY9GUesDbQ2szjGZxVMIyOkrCpZ4sGura1FeTwZ137TmN4_vsMTmTdNnBplwjfHM6qdQOb04WDALGHEDxI3sLjlS9Oax-Co-HH7x9GcTfFIZb29pvFuRKES4VygpEwGeLGZYwVTyXi3IqDKE0hVZ5yolIlCTWodJiBmiLBpb2d5Y_AVlVX-gmAioucyj2ecU2wUhk3uOSESEWE1ALLCJT9D2Oygzh3kzYWzKfaMQlXnYw5DroBnDnzHGQnEUAbymWA-bgGzWsvExsCvpq7MrmyYD_G-2w0mtDJPp2ySQR2e6FhVnldRoZXul43rHQRuBIVEXgcZOnPx7FlV0GzCBReIq69KmbV1z48_Ue6XXDrcDBkB5_GX56B26Fy0cWbnoOtdrXWL6wH1oqXXrUuAPX9H9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+of+fungi+in+organic+soils+under+a+moorland+-+Scots+pine+%28Pinus+sylvestris+L.%29+gradient&rft.jtitle=Environmental+microbiology&rft.au=Anderson%2C+Ian+C.&rft.au=Campbell%2C+Colin+D.&rft.au=Prosser%2C+James+I.&rft.date=2003-11-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=5&rft.issue=11&rft.spage=1121&rft.epage=1132&rft_id=info:doi/10.1046%2Fj.1462-2920.2003.00522.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HHS9SG9X_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |