Excited‐State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State
Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intri...
Saved in:
Published in | Advanced optical materials Vol. 9; no. 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed.
In this review, a summary introduction of ESIPT (excited state intramolecular proton transfer) materials in the solid state including small organic molecules, metal‐organic frameworks, and covalent‐organic frameworks is given. The four‐leveled energy state cycle based keto‐enol emissions of these materials respond to temperature, pressure, solvent, ions, light, and so on, and can be applied widely in optical sensing fields. |
---|---|
AbstractList | Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed. Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed. In this review, a summary introduction of ESIPT (excited state intramolecular proton transfer) materials in the solid state including small organic molecules, metal‐organic frameworks, and covalent‐organic frameworks is given. The four‐leveled energy state cycle based keto‐enol emissions of these materials respond to temperature, pressure, solvent, ions, light, and so on, and can be applied widely in optical sensing fields. |
Author | Fu, Peng‐Yan Wang, Hai‐Ping Pan, Mei Chen, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Chen fullname: Chen, Ling organization: Wuyi University – sequence: 2 givenname: Peng‐Yan surname: Fu fullname: Fu, Peng‐Yan organization: Sun Yat‐Sen University – sequence: 3 givenname: Hai‐Ping surname: Wang fullname: Wang, Hai‐Ping organization: Wuyi University – sequence: 4 givenname: Mei orcidid: 0000-0002-8979-7305 surname: Pan fullname: Pan, Mei email: panm@mail.sysu.edu.cn organization: Sun Yat‐Sen University |
BookMark | eNqFkM1KAzEUhYNUsNZuXQfc6GJqkvlJZ1lq1UKlhakLVyHeZCRlmtRkinbnI_iMPolTKyqCuLpncb5zOecQtayzGqFjSnqUEHYulVv2GGGE0Dxle6jNmhtRwmnrhz5A3RAWpDERHucJb6O70TOYWqu3l9eilrXGY1t7uXSVhnUlPZ55VzuL517aUGqPT0fFeDY_w6XzeLqqDcgKF9oGYx-wsbhwlVH4I-kI7ZeyCrr7eTvo9nI0H15Hk-nVeDiYRBD3YxbFIFMKivKYMOD3kCkOVPGclQmXqSqZLmnSSBVDPwENJVdcqT5VCQD0Mxl30Mkud-Xd41qHWizc2tvmpWAZSZMkzVjcuJKdC7wLwetSNLVlbdy2rqkEJWK7o9juKL52bLDeL2zlzVL6zd9AvgOeTKU3_7jF4GJ6882-AwSNiNs |
CitedBy_id | crossref_primary_10_1002_chem_202301540 crossref_primary_10_1016_j_saa_2023_122471 crossref_primary_10_1002_cjoc_202200313 crossref_primary_10_1021_acs_chemmater_4c01213 crossref_primary_10_1002_chem_202404141 crossref_primary_10_1002_asia_202401326 crossref_primary_10_1016_j_saa_2023_122873 crossref_primary_10_3762_bjoc_18_122 crossref_primary_10_1002_slct_202103695 crossref_primary_10_1016_j_saa_2024_124412 crossref_primary_10_1039_D4NJ01787K crossref_primary_10_1002_adpr_202100141 crossref_primary_10_1002_adom_202303025 crossref_primary_10_1021_acs_langmuir_1c03158 crossref_primary_10_1002_marc_202400363 crossref_primary_10_1039_D2DT02460H crossref_primary_10_1246_cl_230317 crossref_primary_10_1021_acsami_2c20129 crossref_primary_10_1016_j_cej_2022_136445 crossref_primary_10_1021_acs_jpcc_1c10041 crossref_primary_10_1039_D2CE01210C crossref_primary_10_1111_php_13913 crossref_primary_10_1039_D5QM00012B crossref_primary_10_1039_D3CP00938F crossref_primary_10_1002_cjoc_202401035 crossref_primary_10_1021_acsami_2c10573 crossref_primary_10_1002_anie_202309026 crossref_primary_10_1016_j_cej_2021_133717 crossref_primary_10_1021_acs_jpca_2c07349 crossref_primary_10_1021_acssensors_4c00614 crossref_primary_10_1002_advs_202405596 crossref_primary_10_1039_D2NJ04463C crossref_primary_10_1002_ange_202309172 crossref_primary_10_1021_accountsmr_3c00139 crossref_primary_10_1021_acs_inorgchem_3c02036 crossref_primary_10_1016_j_dyepig_2022_110222 crossref_primary_10_1002_cplu_202100370 crossref_primary_10_1016_j_jphotochem_2022_114195 crossref_primary_10_1002_chem_202403500 crossref_primary_10_1002_asia_202300048 crossref_primary_10_1007_s10895_023_03546_z crossref_primary_10_1016_j_jphotobiol_2024_113087 crossref_primary_10_1039_D2OB00691J crossref_primary_10_1039_D2DT01232D crossref_primary_10_1021_acs_inorgchem_3c01470 crossref_primary_10_1016_j_molliq_2024_124231 crossref_primary_10_1016_j_foodchem_2023_136476 crossref_primary_10_1021_acs_orglett_5c00249 crossref_primary_10_3390_molecules26216728 crossref_primary_10_2139_ssrn_4005931 crossref_primary_10_1016_j_molliq_2022_118968 crossref_primary_10_3390_physchem4010007 crossref_primary_10_1021_prechem_4c00097 crossref_primary_10_1039_D1QM01280K crossref_primary_10_1016_j_jphotochem_2024_115947 crossref_primary_10_1002_asia_202200266 crossref_primary_10_1021_acs_joc_2c00818 crossref_primary_10_1016_j_jphotochem_2023_114738 crossref_primary_10_1021_jacs_1c11874 crossref_primary_10_1016_j_cej_2023_141666 crossref_primary_10_1021_acs_jpclett_4c03665 crossref_primary_10_3390_molecules27082443 crossref_primary_10_1515_chem_2022_0199 crossref_primary_10_1002_ajoc_202400572 crossref_primary_10_1002_anie_202309172 crossref_primary_10_1007_s10895_025_04197_y crossref_primary_10_1039_D4CC06049K crossref_primary_10_1016_j_jphotochem_2021_113487 crossref_primary_10_1016_j_jphotochem_2024_115931 crossref_primary_10_1039_D3CP03476C crossref_primary_10_1016_j_saa_2022_121474 crossref_primary_10_1039_D3CP03367H crossref_primary_10_1088_2050_6120_aca378 crossref_primary_10_1002_tcr_202300249 crossref_primary_10_3390_molecules28041793 crossref_primary_10_3390_molecules26175140 crossref_primary_10_1016_j_dyepig_2021_110071 crossref_primary_10_1002_cptc_202400079 crossref_primary_10_1016_j_arabjc_2022_103935 crossref_primary_10_1002_chem_202401451 crossref_primary_10_1016_j_saa_2022_122050 crossref_primary_10_1021_acs_jpca_4c00532 crossref_primary_10_1016_j_molliq_2023_122647 crossref_primary_10_1016_j_dyepig_2023_111827 crossref_primary_10_1021_acs_joc_3c00806 crossref_primary_10_1002_adpr_202300173 crossref_primary_10_1002_cptc_202300115 crossref_primary_10_1016_j_microc_2024_110636 crossref_primary_10_1021_acsomega_2c01414 crossref_primary_10_1039_D1CE00927C crossref_primary_10_1016_j_jphotochem_2024_116091 crossref_primary_10_1002_agt2_160 crossref_primary_10_1002_anie_202302107 crossref_primary_10_1039_D1MA00506E crossref_primary_10_1016_j_saa_2024_124824 crossref_primary_10_1016_j_snb_2023_134541 crossref_primary_10_1002_ange_202309026 crossref_primary_10_1039_D3CP04635D crossref_primary_10_1002_advs_202502784 crossref_primary_10_1039_D4SC01937G crossref_primary_10_1007_s10895_024_04072_2 crossref_primary_10_1088_2050_6120_ad5490 crossref_primary_10_1002_ange_202302107 crossref_primary_10_1002_asia_202400293 crossref_primary_10_1063_5_0213557 crossref_primary_10_3390_molecules29071629 crossref_primary_10_1080_10408347_2025_2455381 crossref_primary_10_1002_bio_4892 crossref_primary_10_1021_acs_langmuir_4c00418 crossref_primary_10_1016_j_saa_2024_124714 crossref_primary_10_1021_acs_jctc_4c00666 crossref_primary_10_1039_D1QM00455G crossref_primary_10_1039_D4CE00660G crossref_primary_10_1016_j_molliq_2022_119611 |
Cites_doi | 10.1039/C7PP00112F 10.1039/C7AN01479A 10.1038/ncomms15985 10.1126/science.1120411 10.1021/acsami.8b14215 10.1021/acs.accounts.9b00575 10.1002/anie.202009765 10.1039/C9NJ03340H 10.1021/ar1000499 10.1016/j.saa.2019.04.049 10.1016/j.dyepig.2020.108535 10.1002/ajoc.202000234 10.1039/c0cc02069a 10.1021/acscentsci.0c00260 10.1039/C8QM00633D 10.1021/acs.cgd.7b01047 10.1039/C9TC00607A 10.1016/j.tetlet.2017.05.071 10.1039/C7CS00879A 10.1038/378703a0 10.1002/chem.201802010 10.1021/acs.analchem.7b03988 10.1002/ange.201404867 10.1039/C9SC03040A 10.1039/b919613g 10.1002/anie.201902890 10.1039/C2CS35195A 10.1002/anie.201410612 10.1021/ja00492a005 10.1039/D0TC03430D 10.1021/acsami.7b08060 10.1021/ic3017547 10.1021/jacs.0c07378 10.1016/j.ccr.2019.213113 10.1039/C9PP00294D 10.1038/s41570-018-0020-z 10.1002/chem.201904626 10.1002/chem.201602322 10.1016/j.matt.2019.02.002 10.1039/C9QM00395A 10.1038/s42004-019-0113-8 10.1007/BF03218534 10.1021/acs.inorgchem.0c02101 10.1002/slct.201904875 10.1039/C9AN01762C 10.1039/C8AN00903A 10.1002/slct.201904558 10.1039/C5CS00543D 10.1016/j.snb.2018.03.175 10.1039/C8CS00185E 10.1039/C6CC07300J 10.1039/D0RA01559H 10.1021/acs.inorgchem.5b00539 10.1021/acs.jpcc.8b03248 10.1021/j100290a026 10.1021/acsami.8b20410 10.1016/j.aca.2013.05.011 10.1039/C9ME00098D 10.1002/asia.201600330 10.1039/C8NJ01435C 10.1002/chem.201902673 10.1126/science.aat7679 10.1002/adma.201102046 10.1007/s40242-020-0039-9 10.1016/j.ccr.2017.10.031 10.1016/j.snb.2016.01.024 10.1021/acs.chemrev.5b00263 10.1039/C9CS00807A 10.1039/c0cs00224k 10.1021/acs.accounts.8b00172 10.1039/C6TC01308B 10.1002/ejic.201600089 10.1002/anie.202010326 10.1039/C7CC07996F 10.1039/C8CC02345J 10.1039/C7TB02076G 10.1016/j.poly.2020.114771 10.1002/adma.201401356 10.1021/acs.analchem.9b00032 10.1002/chem.201101183 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202001952 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202001952 ADOM202001952 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Science Foundation for Young Teachers of Wuyi University funderid: 2019td07 – fundername: NSFC funderid: 21901189; 21720102007; 21821003 – fundername: LIRTP of Guangdong Pearl River Talents Program funderid: 2017BT01C161 – fundername: Young Talents Project in Higher Education of Guangdong Province funderid: 2018KQNCX270 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3832-3ca51cd17302c7bc6d7c1d792f47a5df2ef1447ad3c84cecf7d7dd81d4ccc86a3 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 11:49:38 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 02:47:38 EDT 2025 Wed Jan 22 16:26:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3832-3ca51cd17302c7bc6d7c1d792f47a5df2ef1447ad3c84cecf7d7dd81d4ccc86a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8979-7305 |
PQID | 2605445623 |
PQPubID | 2034581 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2605445623 crossref_citationtrail_10_1002_adom_202001952 crossref_primary_10_1002_adom_202001952 wiley_primary_10_1002_adom_202001952_ADOM202001952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 122 2019; 91 2010 2011 2013 2019; 43 23 42 18 2017; 8 2011 2020; 40 26 2019 2020; 1 404 2019; 11 2016; 228 2019; 10 2019; 58 2017; 89 2020 2020 2020; 142 59 190 2020 2018; 5 2 2012; 18 2016; 2016 2018 2018; 54 24 2020; 10 2018; 42 2017; 9 2018; 47 2012; 51 2008 2003 2017; 16 4991 16 2020; 6 2020; 5 1952 1961; 56 1 2019; 25 2020; 9 2020; 49 1978; 100 2020 2020; 59 59 2014; 126 2018; 143 2019; 3 1987; 91 2019; 2 2010; 39 2020; 181 2013; 786 2018; 266 2015; 54 2016; 52 2020; 36 2020; 145 2014 2020; 54 5 2016; 11 2016; 4 2017; 53 2010; 46 2017; 58 2017; 17 2019; 43 1995 2018 2019 2019 2020 2020; 378 47 7 378 8 53 2018; 51 2019; 219 2017; 142 2005 2018; 310 361 2016 2015 2014; 45 115 26 2018; 10 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Weller A. (e_1_2_8_6_1) 1952; 56 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Park S. Y. (e_1_2_8_7_2) 2003; 4991 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_40_3 e_1_2_8_42_1 e_1_2_8_44_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_61_1 Weller A. (e_1_2_8_6_2) 1961; 1 e_1_2_8_37_4 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_37_3 e_1_2_8_39_1 e_1_2_8_37_6 e_1_2_8_37_5 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_54_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 54 24 start-page: 6304 year: 2018 2018 publication-title: Chem. Commun. Chem. ‐ Eur. J. – volume: 51 start-page: 1681 year: 2018 publication-title: Acc. Chem. Res. – volume: 17 start-page: 5517 year: 2017 publication-title: Cryst. Growth Des. – volume: 40 26 start-page: 3483 5557 year: 2011 2020 publication-title: Chem. Soc. Rev. Chemistry – volume: 54 start-page: 5813 year: 2015 publication-title: Inorg. Chem. – volume: 59 59 year: 2020 2020 publication-title: Angew. Chem. Int. Angew. Chem. Int. – volume: 54 5 start-page: 1651 461 year: 2014 2020 publication-title: Angew. Chem., Int. Ed. Mol. Syst. Des. Eng. – volume: 2016 start-page: 2676 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 58 start-page: 8773 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 237 year: 2012 publication-title: Chem. ‐ Eur. J. – volume: 22 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 378 47 7 378 8 53 start-page: 703 5740 7494 333 485 year: 1995 2018 2019 2019 2020 2020 publication-title: Nature Chem. Soc. Rev. J. Mater. Chem. C Coord. Chem. Rev. J. Mater. Chem. C Acc. Chem. Res. – volume: 11 start-page: 1765 year: 2016 publication-title: Chem. Asian J. – volume: 10 year: 2020 publication-title: RSC Adv. – volume: 142 59 190 year: 2020 2020 2020 publication-title: J. Am. Chem. Soc. Inorg. Chem. Polyhedron – volume: 49 start-page: 839 year: 2020 publication-title: Chem. Soc. Rev. – volume: 43 23 42 18 start-page: 1364 3615 1379 2830 year: 2010 2011 2013 2019 publication-title: Acc. Chem. Res. Adv. Mater. Chem. Soc. Rev. Photochem. Photobiol. Sci. – volume: 1 404 start-page: 156 year: 2019 2020 publication-title: Matter Coordin. Chem. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 58 start-page: 2596 year: 2017 publication-title: Tetrahedron Lett. – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 36 start-page: 755 year: 2020 publication-title: Chem. Res. Chinese Univ. – volume: 56 1 start-page: 662 187 year: 1952 1961 publication-title: Elektrochemie Prog. React. Kinet. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 45 115 26 start-page: 169 5429 year: 2016 2015 2014 publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Mater. – volume: 5 start-page: 3295 year: 2020 publication-title: ChemistrySelect – volume: 43 year: 2019 publication-title: New J. Chem. – volume: 181 year: 2020 publication-title: Dyes Pigm. – volume: 91 start-page: 5261 year: 2019 publication-title: Anal. Chem. – volume: 39 start-page: 1989 year: 2010 publication-title: Dalton Trans. – volume: 91 start-page: 1404 year: 1987 publication-title: J. Phys. Chem. – volume: 5 2 start-page: 2103 131 year: 2020 2018 publication-title: ChemistrySelect Nat. Rev. Chem. – volume: 310 361 start-page: 1166 48 year: 2005 2018 publication-title: Science Science – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 142 start-page: 4825 year: 2017 publication-title: Analyst – volume: 16 4991 16 start-page: 385 433 1020 year: 2008 2003 2017 publication-title: Macromol. Res. SPIE Photochem. Photobiol. Sci. – volume: 51 year: 2012 publication-title: Inorg. Chem. – volume: 3 start-page: 2128 year: 2019 publication-title: Mater. Chem. Front. – volume: 89 year: 2017 publication-title: Anal. Chem. – volume: 786 start-page: 139 year: 2013 publication-title: Anal. Chim. Acta – volume: 25 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 100 start-page: 7472 year: 1978 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 10 year: 2019 publication-title: Commun. Chem. – volume: 143 start-page: 3900 year: 2018 publication-title: Analyst – volume: 9 start-page: 1326 year: 2020 publication-title: Asian J. Org. Chem. – volume: 126 start-page: 8370 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 787 year: 2020 publication-title: ACS Cent. Sci. – volume: 228 start-page: 539 year: 2016 publication-title: Sens. Actuators, B – volume: 47 start-page: 8842 year: 2018 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 6962 year: 2016 publication-title: J. Mater. Chem. C – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 266 start-page: 717 year: 2018 publication-title: Sens. Actuators, B – volume: 219 start-page: 154 year: 2019 publication-title: Spectrochim. Acta. A, Mol. Biomol. Spectrosc. – volume: 145 start-page: 1062 year: 2020 publication-title: Analyst – volume: 10 year: 2019 publication-title: Chem. Sci. – volume: 5 start-page: 7736 year: 2017 publication-title: J. Mater. Chem. B – volume: 3 start-page: 620 year: 2019 publication-title: Mater. Chem. Front. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 7906 year: 2010 publication-title: Chem. Commun. – ident: e_1_2_8_7_3 doi: 10.1039/C7PP00112F – ident: e_1_2_8_23_1 doi: 10.1039/C7AN01479A – ident: e_1_2_8_51_1 doi: 10.1038/ncomms15985 – ident: e_1_2_8_54_1 doi: 10.1126/science.1120411 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.8b14215 – ident: e_1_2_8_37_6 doi: 10.1021/acs.accounts.9b00575 – ident: e_1_2_8_9_2 doi: 10.1002/anie.202009765 – ident: e_1_2_8_19_1 doi: 10.1039/C9NJ03340H – ident: e_1_2_8_1_1 doi: 10.1021/ar1000499 – ident: e_1_2_8_35_1 doi: 10.1016/j.saa.2019.04.049 – ident: e_1_2_8_13_1 doi: 10.1016/j.dyepig.2020.108535 – ident: e_1_2_8_60_1 doi: 10.1002/ajoc.202000234 – volume: 1 start-page: 187 year: 1961 ident: e_1_2_8_6_2 publication-title: Prog. React. Kinet. – ident: e_1_2_8_41_1 doi: 10.1039/c0cc02069a – ident: e_1_2_8_58_1 doi: 10.1021/acscentsci.0c00260 – ident: e_1_2_8_21_1 doi: 10.1039/C8QM00633D – ident: e_1_2_8_25_1 doi: 10.1021/acs.cgd.7b01047 – ident: e_1_2_8_37_3 doi: 10.1039/C9TC00607A – ident: e_1_2_8_22_1 doi: 10.1016/j.tetlet.2017.05.071 – ident: e_1_2_8_37_2 doi: 10.1039/C7CS00879A – ident: e_1_2_8_37_1 doi: 10.1038/378703a0 – ident: e_1_2_8_53_2 doi: 10.1002/chem.201802010 – ident: e_1_2_8_34_1 doi: 10.1021/acs.analchem.7b03988 – ident: e_1_2_8_59_1 doi: 10.1002/ange.201404867 – ident: e_1_2_8_57_1 doi: 10.1039/C9SC03040A – ident: e_1_2_8_38_1 doi: 10.1039/b919613g – ident: e_1_2_8_28_1 doi: 10.1002/anie.201902890 – ident: e_1_2_8_1_3 doi: 10.1039/C2CS35195A – ident: e_1_2_8_44_1 doi: 10.1002/anie.201410612 – ident: e_1_2_8_2_1 doi: 10.1021/ja00492a005 – ident: e_1_2_8_37_5 doi: 10.1039/D0TC03430D – ident: e_1_2_8_56_1 doi: 10.1021/acsami.7b08060 – ident: e_1_2_8_42_1 doi: 10.1021/ic3017547 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.0c07378 – ident: e_1_2_8_39_2 doi: 10.1016/j.ccr.2019.213113 – ident: e_1_2_8_1_4 doi: 10.1039/C9PP00294D – ident: e_1_2_8_8_2 doi: 10.1038/s41570-018-0020-z – ident: e_1_2_8_10_2 doi: 10.1002/chem.201904626 – ident: e_1_2_8_46_1 doi: 10.1002/chem.201602322 – ident: e_1_2_8_39_1 doi: 10.1016/j.matt.2019.02.002 – ident: e_1_2_8_26_1 doi: 10.1039/C9QM00395A – ident: e_1_2_8_36_1 doi: 10.1038/s42004-019-0113-8 – ident: e_1_2_8_7_1 doi: 10.1007/BF03218534 – ident: e_1_2_8_40_2 doi: 10.1021/acs.inorgchem.0c02101 – ident: e_1_2_8_31_1 doi: 10.1002/slct.201904875 – ident: e_1_2_8_30_1 doi: 10.1039/C9AN01762C – ident: e_1_2_8_16_1 doi: 10.1039/C8AN00903A – ident: e_1_2_8_8_1 doi: 10.1002/slct.201904558 – ident: e_1_2_8_11_1 doi: 10.1039/C5CS00543D – ident: e_1_2_8_17_1 doi: 10.1016/j.snb.2018.03.175 – ident: e_1_2_8_5_1 doi: 10.1039/C8CS00185E – ident: e_1_2_8_27_1 doi: 10.1039/C6CC07300J – ident: e_1_2_8_61_1 doi: 10.1039/D0RA01559H – ident: e_1_2_8_45_1 doi: 10.1021/acs.inorgchem.5b00539 – ident: e_1_2_8_14_1 doi: 10.1021/acs.jpcc.8b03248 – ident: e_1_2_8_3_1 doi: 10.1021/j100290a026 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.8b20410 – ident: e_1_2_8_15_1 doi: 10.1016/j.aca.2013.05.011 – ident: e_1_2_8_44_2 doi: 10.1039/C9ME00098D – ident: e_1_2_8_50_1 doi: 10.1002/asia.201600330 – ident: e_1_2_8_24_1 doi: 10.1039/C8NJ01435C – ident: e_1_2_8_48_1 doi: 10.1002/chem.201902673 – ident: e_1_2_8_54_2 doi: 10.1126/science.aat7679 – ident: e_1_2_8_1_2 doi: 10.1002/adma.201102046 – ident: e_1_2_8_52_1 doi: 10.1007/s40242-020-0039-9 – volume: 56 start-page: 662 year: 1952 ident: e_1_2_8_6_1 publication-title: Elektrochemie – ident: e_1_2_8_37_4 doi: 10.1016/j.ccr.2017.10.031 – ident: e_1_2_8_29_1 doi: 10.1016/j.snb.2016.01.024 – ident: e_1_2_8_11_2 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_8_55_1 doi: 10.1039/C9CS00807A – ident: e_1_2_8_10_1 doi: 10.1039/c0cs00224k – ident: e_1_2_8_4_1 doi: 10.1021/acs.accounts.8b00172 – volume: 4991 start-page: 433 year: 2003 ident: e_1_2_8_7_2 publication-title: SPIE – ident: e_1_2_8_12_1 doi: 10.1039/C6TC01308B – ident: e_1_2_8_49_1 doi: 10.1002/ejic.201600089 – ident: e_1_2_8_9_1 doi: 10.1002/anie.202010326 – ident: e_1_2_8_32_1 doi: 10.1039/C7CC07996F – ident: e_1_2_8_53_1 doi: 10.1039/C8CC02345J – ident: e_1_2_8_18_1 doi: 10.1039/C7TB02076G – ident: e_1_2_8_40_3 doi: 10.1016/j.poly.2020.114771 – ident: e_1_2_8_11_3 doi: 10.1002/adma.201401356 – ident: e_1_2_8_20_1 doi: 10.1021/acs.analchem.9b00032 – ident: e_1_2_8_43_1 doi: 10.1002/chem.201101183 |
SSID | ssj0001073947 |
Score | 2.6033552 |
SecondaryResourceType | review_article |
Snippet | Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | ESIPT materials excited‐state intramolecular proton transfer External pressure Materials science optical sensing Optics Organic chemistry Organic materials photophysical properties Protons Solid state |
Title | Excited‐State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202001952 https://www.proquest.com/docview/2605445623 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyJQ0B6QgIMhXjte-xjRoIAaGimpaE_WetaWIrVJ1SYS6qk_gRM_kF_CzD5sR5RXL1a03l3HO5_ntTOzjL2kmuCos4UBZIkOYllkQSHSKigSSHUiY50oyneefE7Gh_Gno8FRp_O9FbW0WRdv4fLavJKbUBXbkK6UJfsflK0nxQb8jfTFK1IYr_9E49FXII2xDlgwmiM5-c7VqT_2llIBqHSGEUoVFY4Q6Wj2cTonfwDFGB6cWXf2jELZbYLLbHWycHpoW3kd-niBlRuC2q59zSZIwHKxfS8QCRkbGweMTMX_z-MGkl-cv3qsFvXtaWv01DpoJ-Wi7Z8QYSvWw7AxQadBopFpm8pr2hwfzlpwsznITiLX8uoXdm_Lxyq9opoCwiQ_ikaw-c38uufgz31tGeC9g0l9_xbbEWh-iC7bGe5N9meN9442OM3pdfWr-IqgffFu-yHbGk9jxrSNIaPNzO-xO84M4UOLqfusUy4fsLvOJOGO4V88ZMcOYj-uvhk48G1wcQsu7sHFXxtoveEILO6AxR2w-GLJDbC4mekRO_wwmr8fB-40jgAiZPtBBGoQgg5RJAiQBSRaQqhlJqpYqoGuRFmhcS6VjiCNoYRKaqk1mkMxAKSJih6z7nK1LJ8w3i8gK1OoCk3Vr0hlTGmDux9qFadxv-qxwK9YDq5UPZ2YcpLbItsipxXO6xXusVd1_zNbpOW3PXc9AXL3IV_kZNLH5AmIekwYovxllnwLJE9vMugZu918LLusuz7flM9RvV0XLxzWfgIrlpkP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited%E2%80%90State+Intramolecular+Proton+Transfer+%28ESIPT%29+for+Optical+Sensing+in+Solid+State&rft.jtitle=Advanced+optical+materials&rft.au=Chen%2C+Ling&rft.au=Fu%2C+Peng%E2%80%90Yan&rft.au=Wang%2C+Hai%E2%80%90Ping&rft.au=Pan%2C+Mei&rft.date=2021-12-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=9&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202001952&rft.externalDBID=10.1002%252Fadom.202001952&rft.externalDocID=ADOM202001952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |