Excited‐State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State

Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intri...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 9; no. 23
Main Authors Chen, Ling, Fu, Peng‐Yan, Wang, Hai‐Ping, Pan, Mei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed. In this review, a summary introduction of ESIPT (excited state intramolecular proton transfer) materials in the solid state including small organic molecules, metal‐organic frameworks, and covalent‐organic frameworks is given. The four‐leveled energy state cycle based keto‐enol emissions of these materials respond to temperature, pressure, solvent, ions, light, and so on, and can be applied widely in optical sensing fields.
AbstractList Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed.
Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled energy state cycle and concomitant multi‐emissions. Such transformation is easily affected by the environmental conditions, leading to intricate spectral responses. In contrast with the widely reported researches that inclined to the solution systems dissolved with ESIPT molecules, ESIPT materials including small organic molecules, metal‐organic materials, covalent‐organic frameworks, and so on, which can be formed in solid state are emerging in recent years, bringing more scientific information and novel applications for the family of ESIPT materials. In this short review, the progress for the different types of these materials will be introduced, especially their optical sensing performances and mechanisms, like responses to external physical stimulations (pressure, temperature, light), solvent polarities, pH, ions, and small molecule compounds. And the potential photophysical and photochemical applications will also be surveyed. In this review, a summary introduction of ESIPT (excited state intramolecular proton transfer) materials in the solid state including small organic molecules, metal‐organic frameworks, and covalent‐organic frameworks is given. The four‐leveled energy state cycle based keto‐enol emissions of these materials respond to temperature, pressure, solvent, ions, light, and so on, and can be applied widely in optical sensing fields.
Author Fu, Peng‐Yan
Wang, Hai‐Ping
Pan, Mei
Chen, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Chen
  fullname: Chen, Ling
  organization: Wuyi University
– sequence: 2
  givenname: Peng‐Yan
  surname: Fu
  fullname: Fu, Peng‐Yan
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: Hai‐Ping
  surname: Wang
  fullname: Wang, Hai‐Ping
  organization: Wuyi University
– sequence: 4
  givenname: Mei
  orcidid: 0000-0002-8979-7305
  surname: Pan
  fullname: Pan, Mei
  email: panm@mail.sysu.edu.cn
  organization: Sun Yat‐Sen University
BookMark eNqFkM1KAzEUhYNUsNZuXQfc6GJqkvlJZ1lq1UKlhakLVyHeZCRlmtRkinbnI_iMPolTKyqCuLpncb5zOecQtayzGqFjSnqUEHYulVv2GGGE0Dxle6jNmhtRwmnrhz5A3RAWpDERHucJb6O70TOYWqu3l9eilrXGY1t7uXSVhnUlPZ55VzuL517aUGqPT0fFeDY_w6XzeLqqDcgKF9oGYx-wsbhwlVH4I-kI7ZeyCrr7eTvo9nI0H15Hk-nVeDiYRBD3YxbFIFMKivKYMOD3kCkOVPGclQmXqSqZLmnSSBVDPwENJVdcqT5VCQD0Mxl30Mkud-Xd41qHWizc2tvmpWAZSZMkzVjcuJKdC7wLwetSNLVlbdy2rqkEJWK7o9juKL52bLDeL2zlzVL6zd9AvgOeTKU3_7jF4GJ6882-AwSNiNs
CitedBy_id crossref_primary_10_1002_chem_202301540
crossref_primary_10_1016_j_saa_2023_122471
crossref_primary_10_1002_cjoc_202200313
crossref_primary_10_1021_acs_chemmater_4c01213
crossref_primary_10_1002_chem_202404141
crossref_primary_10_1002_asia_202401326
crossref_primary_10_1016_j_saa_2023_122873
crossref_primary_10_3762_bjoc_18_122
crossref_primary_10_1002_slct_202103695
crossref_primary_10_1016_j_saa_2024_124412
crossref_primary_10_1039_D4NJ01787K
crossref_primary_10_1002_adpr_202100141
crossref_primary_10_1002_adom_202303025
crossref_primary_10_1021_acs_langmuir_1c03158
crossref_primary_10_1002_marc_202400363
crossref_primary_10_1039_D2DT02460H
crossref_primary_10_1246_cl_230317
crossref_primary_10_1021_acsami_2c20129
crossref_primary_10_1016_j_cej_2022_136445
crossref_primary_10_1021_acs_jpcc_1c10041
crossref_primary_10_1039_D2CE01210C
crossref_primary_10_1111_php_13913
crossref_primary_10_1039_D5QM00012B
crossref_primary_10_1039_D3CP00938F
crossref_primary_10_1002_cjoc_202401035
crossref_primary_10_1021_acsami_2c10573
crossref_primary_10_1002_anie_202309026
crossref_primary_10_1016_j_cej_2021_133717
crossref_primary_10_1021_acs_jpca_2c07349
crossref_primary_10_1021_acssensors_4c00614
crossref_primary_10_1002_advs_202405596
crossref_primary_10_1039_D2NJ04463C
crossref_primary_10_1002_ange_202309172
crossref_primary_10_1021_accountsmr_3c00139
crossref_primary_10_1021_acs_inorgchem_3c02036
crossref_primary_10_1016_j_dyepig_2022_110222
crossref_primary_10_1002_cplu_202100370
crossref_primary_10_1016_j_jphotochem_2022_114195
crossref_primary_10_1002_chem_202403500
crossref_primary_10_1002_asia_202300048
crossref_primary_10_1007_s10895_023_03546_z
crossref_primary_10_1016_j_jphotobiol_2024_113087
crossref_primary_10_1039_D2OB00691J
crossref_primary_10_1039_D2DT01232D
crossref_primary_10_1021_acs_inorgchem_3c01470
crossref_primary_10_1016_j_molliq_2024_124231
crossref_primary_10_1016_j_foodchem_2023_136476
crossref_primary_10_1021_acs_orglett_5c00249
crossref_primary_10_3390_molecules26216728
crossref_primary_10_2139_ssrn_4005931
crossref_primary_10_1016_j_molliq_2022_118968
crossref_primary_10_3390_physchem4010007
crossref_primary_10_1021_prechem_4c00097
crossref_primary_10_1039_D1QM01280K
crossref_primary_10_1016_j_jphotochem_2024_115947
crossref_primary_10_1002_asia_202200266
crossref_primary_10_1021_acs_joc_2c00818
crossref_primary_10_1016_j_jphotochem_2023_114738
crossref_primary_10_1021_jacs_1c11874
crossref_primary_10_1016_j_cej_2023_141666
crossref_primary_10_1021_acs_jpclett_4c03665
crossref_primary_10_3390_molecules27082443
crossref_primary_10_1515_chem_2022_0199
crossref_primary_10_1002_ajoc_202400572
crossref_primary_10_1002_anie_202309172
crossref_primary_10_1007_s10895_025_04197_y
crossref_primary_10_1039_D4CC06049K
crossref_primary_10_1016_j_jphotochem_2021_113487
crossref_primary_10_1016_j_jphotochem_2024_115931
crossref_primary_10_1039_D3CP03476C
crossref_primary_10_1016_j_saa_2022_121474
crossref_primary_10_1039_D3CP03367H
crossref_primary_10_1088_2050_6120_aca378
crossref_primary_10_1002_tcr_202300249
crossref_primary_10_3390_molecules28041793
crossref_primary_10_3390_molecules26175140
crossref_primary_10_1016_j_dyepig_2021_110071
crossref_primary_10_1002_cptc_202400079
crossref_primary_10_1016_j_arabjc_2022_103935
crossref_primary_10_1002_chem_202401451
crossref_primary_10_1016_j_saa_2022_122050
crossref_primary_10_1021_acs_jpca_4c00532
crossref_primary_10_1016_j_molliq_2023_122647
crossref_primary_10_1016_j_dyepig_2023_111827
crossref_primary_10_1021_acs_joc_3c00806
crossref_primary_10_1002_adpr_202300173
crossref_primary_10_1002_cptc_202300115
crossref_primary_10_1016_j_microc_2024_110636
crossref_primary_10_1021_acsomega_2c01414
crossref_primary_10_1039_D1CE00927C
crossref_primary_10_1016_j_jphotochem_2024_116091
crossref_primary_10_1002_agt2_160
crossref_primary_10_1002_anie_202302107
crossref_primary_10_1039_D1MA00506E
crossref_primary_10_1016_j_saa_2024_124824
crossref_primary_10_1016_j_snb_2023_134541
crossref_primary_10_1002_ange_202309026
crossref_primary_10_1039_D3CP04635D
crossref_primary_10_1002_advs_202502784
crossref_primary_10_1039_D4SC01937G
crossref_primary_10_1007_s10895_024_04072_2
crossref_primary_10_1088_2050_6120_ad5490
crossref_primary_10_1002_ange_202302107
crossref_primary_10_1002_asia_202400293
crossref_primary_10_1063_5_0213557
crossref_primary_10_3390_molecules29071629
crossref_primary_10_1080_10408347_2025_2455381
crossref_primary_10_1002_bio_4892
crossref_primary_10_1021_acs_langmuir_4c00418
crossref_primary_10_1016_j_saa_2024_124714
crossref_primary_10_1021_acs_jctc_4c00666
crossref_primary_10_1039_D1QM00455G
crossref_primary_10_1039_D4CE00660G
crossref_primary_10_1016_j_molliq_2022_119611
Cites_doi 10.1039/C7PP00112F
10.1039/C7AN01479A
10.1038/ncomms15985
10.1126/science.1120411
10.1021/acsami.8b14215
10.1021/acs.accounts.9b00575
10.1002/anie.202009765
10.1039/C9NJ03340H
10.1021/ar1000499
10.1016/j.saa.2019.04.049
10.1016/j.dyepig.2020.108535
10.1002/ajoc.202000234
10.1039/c0cc02069a
10.1021/acscentsci.0c00260
10.1039/C8QM00633D
10.1021/acs.cgd.7b01047
10.1039/C9TC00607A
10.1016/j.tetlet.2017.05.071
10.1039/C7CS00879A
10.1038/378703a0
10.1002/chem.201802010
10.1021/acs.analchem.7b03988
10.1002/ange.201404867
10.1039/C9SC03040A
10.1039/b919613g
10.1002/anie.201902890
10.1039/C2CS35195A
10.1002/anie.201410612
10.1021/ja00492a005
10.1039/D0TC03430D
10.1021/acsami.7b08060
10.1021/ic3017547
10.1021/jacs.0c07378
10.1016/j.ccr.2019.213113
10.1039/C9PP00294D
10.1038/s41570-018-0020-z
10.1002/chem.201904626
10.1002/chem.201602322
10.1016/j.matt.2019.02.002
10.1039/C9QM00395A
10.1038/s42004-019-0113-8
10.1007/BF03218534
10.1021/acs.inorgchem.0c02101
10.1002/slct.201904875
10.1039/C9AN01762C
10.1039/C8AN00903A
10.1002/slct.201904558
10.1039/C5CS00543D
10.1016/j.snb.2018.03.175
10.1039/C8CS00185E
10.1039/C6CC07300J
10.1039/D0RA01559H
10.1021/acs.inorgchem.5b00539
10.1021/acs.jpcc.8b03248
10.1021/j100290a026
10.1021/acsami.8b20410
10.1016/j.aca.2013.05.011
10.1039/C9ME00098D
10.1002/asia.201600330
10.1039/C8NJ01435C
10.1002/chem.201902673
10.1126/science.aat7679
10.1002/adma.201102046
10.1007/s40242-020-0039-9
10.1016/j.ccr.2017.10.031
10.1016/j.snb.2016.01.024
10.1021/acs.chemrev.5b00263
10.1039/C9CS00807A
10.1039/c0cs00224k
10.1021/acs.accounts.8b00172
10.1039/C6TC01308B
10.1002/ejic.201600089
10.1002/anie.202010326
10.1039/C7CC07996F
10.1039/C8CC02345J
10.1039/C7TB02076G
10.1016/j.poly.2020.114771
10.1002/adma.201401356
10.1021/acs.analchem.9b00032
10.1002/chem.201101183
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202001952
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202001952
ADOM202001952
Genre reviewArticle
GrantInformation_xml – fundername: Science Foundation for Young Teachers of Wuyi University
  funderid: 2019td07
– fundername: NSFC
  funderid: 21901189; 21720102007; 21821003
– fundername: LIRTP of Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
– fundername: Young Talents Project in Higher Education of Guangdong Province
  funderid: 2018KQNCX270
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3832-3ca51cd17302c7bc6d7c1d792f47a5df2ef1447ad3c84cecf7d7dd81d4ccc86a3
ISSN 2195-1071
IngestDate Fri Jul 25 11:49:38 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 02:47:38 EDT 2025
Wed Jan 22 16:26:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3832-3ca51cd17302c7bc6d7c1d792f47a5df2ef1447ad3c84cecf7d7dd81d4ccc86a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8979-7305
PQID 2605445623
PQPubID 2034581
PageCount 25
ParticipantIDs proquest_journals_2605445623
crossref_citationtrail_10_1002_adom_202001952
crossref_primary_10_1002_adom_202001952
wiley_primary_10_1002_adom_202001952_ADOM202001952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 122
2019; 91
2010 2011 2013 2019; 43 23 42 18
2017; 8
2011 2020; 40 26
2019 2020; 1 404
2019; 11
2016; 228
2019; 10
2019; 58
2017; 89
2020 2020 2020; 142 59 190
2020 2018; 5 2
2012; 18
2016; 2016
2018 2018; 54 24
2020; 10
2018; 42
2017; 9
2018; 47
2012; 51
2008 2003 2017; 16 4991 16
2020; 6
2020; 5
1952 1961; 56 1
2019; 25
2020; 9
2020; 49
1978; 100
2020 2020; 59 59
2014; 126
2018; 143
2019; 3
1987; 91
2019; 2
2010; 39
2020; 181
2013; 786
2018; 266
2015; 54
2016; 52
2020; 36
2020; 145
2014 2020; 54 5
2016; 11
2016; 4
2017; 53
2010; 46
2017; 58
2017; 17
2019; 43
1995 2018 2019 2019 2020 2020; 378 47 7 378 8 53
2018; 51
2019; 219
2017; 142
2005 2018; 310 361
2016 2015 2014; 45 115 26
2018; 10
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Weller A. (e_1_2_8_6_1) 1952; 56
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Park S. Y. (e_1_2_8_7_2) 2003; 4991
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_40_3
e_1_2_8_42_1
e_1_2_8_44_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_61_1
Weller A. (e_1_2_8_6_2) 1961; 1
e_1_2_8_37_4
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_37_3
e_1_2_8_39_1
e_1_2_8_37_6
e_1_2_8_37_5
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_54_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 54 24
  start-page: 6304
  year: 2018 2018
  publication-title: Chem. Commun. Chem. ‐ Eur. J.
– volume: 51
  start-page: 1681
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 5517
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 40 26
  start-page: 3483 5557
  year: 2011 2020
  publication-title: Chem. Soc. Rev. Chemistry
– volume: 54
  start-page: 5813
  year: 2015
  publication-title: Inorg. Chem.
– volume: 59 59
  year: 2020 2020
  publication-title: Angew. Chem. Int. Angew. Chem. Int.
– volume: 54 5
  start-page: 1651 461
  year: 2014 2020
  publication-title: Angew. Chem., Int. Ed. Mol. Syst. Des. Eng.
– volume: 2016
  start-page: 2676
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 58
  start-page: 8773
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 237
  year: 2012
  publication-title: Chem. ‐ Eur. J.
– volume: 22
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 378 47 7 378 8 53
  start-page: 703 5740 7494 333 485
  year: 1995 2018 2019 2019 2020 2020
  publication-title: Nature Chem. Soc. Rev. J. Mater. Chem. C Coord. Chem. Rev. J. Mater. Chem. C Acc. Chem. Res.
– volume: 11
  start-page: 1765
  year: 2016
  publication-title: Chem. Asian J.
– volume: 10
  year: 2020
  publication-title: RSC Adv.
– volume: 142 59 190
  year: 2020 2020 2020
  publication-title: J. Am. Chem. Soc. Inorg. Chem. Polyhedron
– volume: 49
  start-page: 839
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 43 23 42 18
  start-page: 1364 3615 1379 2830
  year: 2010 2011 2013 2019
  publication-title: Acc. Chem. Res. Adv. Mater. Chem. Soc. Rev. Photochem. Photobiol. Sci.
– volume: 1 404
  start-page: 156
  year: 2019 2020
  publication-title: Matter Coordin. Chem. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2596
  year: 2017
  publication-title: Tetrahedron Lett.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 36
  start-page: 755
  year: 2020
  publication-title: Chem. Res. Chinese Univ.
– volume: 56 1
  start-page: 662 187
  year: 1952 1961
  publication-title: Elektrochemie Prog. React. Kinet.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 45 115 26
  start-page: 169 5429
  year: 2016 2015 2014
  publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Mater.
– volume: 5
  start-page: 3295
  year: 2020
  publication-title: ChemistrySelect
– volume: 43
  year: 2019
  publication-title: New J. Chem.
– volume: 181
  year: 2020
  publication-title: Dyes Pigm.
– volume: 91
  start-page: 5261
  year: 2019
  publication-title: Anal. Chem.
– volume: 39
  start-page: 1989
  year: 2010
  publication-title: Dalton Trans.
– volume: 91
  start-page: 1404
  year: 1987
  publication-title: J. Phys. Chem.
– volume: 5 2
  start-page: 2103 131
  year: 2020 2018
  publication-title: ChemistrySelect Nat. Rev. Chem.
– volume: 310 361
  start-page: 1166 48
  year: 2005 2018
  publication-title: Science Science
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 142
  start-page: 4825
  year: 2017
  publication-title: Analyst
– volume: 16 4991 16
  start-page: 385 433 1020
  year: 2008 2003 2017
  publication-title: Macromol. Res. SPIE Photochem. Photobiol. Sci.
– volume: 51
  year: 2012
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 2128
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 89
  year: 2017
  publication-title: Anal. Chem.
– volume: 786
  start-page: 139
  year: 2013
  publication-title: Anal. Chim. Acta
– volume: 25
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 100
  start-page: 7472
  year: 1978
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 10
  year: 2019
  publication-title: Commun. Chem.
– volume: 143
  start-page: 3900
  year: 2018
  publication-title: Analyst
– volume: 9
  start-page: 1326
  year: 2020
  publication-title: Asian J. Org. Chem.
– volume: 126
  start-page: 8370
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 787
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 228
  start-page: 539
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 47
  start-page: 8842
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 6962
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 266
  start-page: 717
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 219
  start-page: 154
  year: 2019
  publication-title: Spectrochim. Acta. A, Mol. Biomol. Spectrosc.
– volume: 145
  start-page: 1062
  year: 2020
  publication-title: Analyst
– volume: 10
  year: 2019
  publication-title: Chem. Sci.
– volume: 5
  start-page: 7736
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 620
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 7906
  year: 2010
  publication-title: Chem. Commun.
– ident: e_1_2_8_7_3
  doi: 10.1039/C7PP00112F
– ident: e_1_2_8_23_1
  doi: 10.1039/C7AN01479A
– ident: e_1_2_8_51_1
  doi: 10.1038/ncomms15985
– ident: e_1_2_8_54_1
  doi: 10.1126/science.1120411
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.8b14215
– ident: e_1_2_8_37_6
  doi: 10.1021/acs.accounts.9b00575
– ident: e_1_2_8_9_2
  doi: 10.1002/anie.202009765
– ident: e_1_2_8_19_1
  doi: 10.1039/C9NJ03340H
– ident: e_1_2_8_1_1
  doi: 10.1021/ar1000499
– ident: e_1_2_8_35_1
  doi: 10.1016/j.saa.2019.04.049
– ident: e_1_2_8_13_1
  doi: 10.1016/j.dyepig.2020.108535
– ident: e_1_2_8_60_1
  doi: 10.1002/ajoc.202000234
– volume: 1
  start-page: 187
  year: 1961
  ident: e_1_2_8_6_2
  publication-title: Prog. React. Kinet.
– ident: e_1_2_8_41_1
  doi: 10.1039/c0cc02069a
– ident: e_1_2_8_58_1
  doi: 10.1021/acscentsci.0c00260
– ident: e_1_2_8_21_1
  doi: 10.1039/C8QM00633D
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.cgd.7b01047
– ident: e_1_2_8_37_3
  doi: 10.1039/C9TC00607A
– ident: e_1_2_8_22_1
  doi: 10.1016/j.tetlet.2017.05.071
– ident: e_1_2_8_37_2
  doi: 10.1039/C7CS00879A
– ident: e_1_2_8_37_1
  doi: 10.1038/378703a0
– ident: e_1_2_8_53_2
  doi: 10.1002/chem.201802010
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.analchem.7b03988
– ident: e_1_2_8_59_1
  doi: 10.1002/ange.201404867
– ident: e_1_2_8_57_1
  doi: 10.1039/C9SC03040A
– ident: e_1_2_8_38_1
  doi: 10.1039/b919613g
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.201902890
– ident: e_1_2_8_1_3
  doi: 10.1039/C2CS35195A
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.201410612
– ident: e_1_2_8_2_1
  doi: 10.1021/ja00492a005
– ident: e_1_2_8_37_5
  doi: 10.1039/D0TC03430D
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.7b08060
– ident: e_1_2_8_42_1
  doi: 10.1021/ic3017547
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.0c07378
– ident: e_1_2_8_39_2
  doi: 10.1016/j.ccr.2019.213113
– ident: e_1_2_8_1_4
  doi: 10.1039/C9PP00294D
– ident: e_1_2_8_8_2
  doi: 10.1038/s41570-018-0020-z
– ident: e_1_2_8_10_2
  doi: 10.1002/chem.201904626
– ident: e_1_2_8_46_1
  doi: 10.1002/chem.201602322
– ident: e_1_2_8_39_1
  doi: 10.1016/j.matt.2019.02.002
– ident: e_1_2_8_26_1
  doi: 10.1039/C9QM00395A
– ident: e_1_2_8_36_1
  doi: 10.1038/s42004-019-0113-8
– ident: e_1_2_8_7_1
  doi: 10.1007/BF03218534
– ident: e_1_2_8_40_2
  doi: 10.1021/acs.inorgchem.0c02101
– ident: e_1_2_8_31_1
  doi: 10.1002/slct.201904875
– ident: e_1_2_8_30_1
  doi: 10.1039/C9AN01762C
– ident: e_1_2_8_16_1
  doi: 10.1039/C8AN00903A
– ident: e_1_2_8_8_1
  doi: 10.1002/slct.201904558
– ident: e_1_2_8_11_1
  doi: 10.1039/C5CS00543D
– ident: e_1_2_8_17_1
  doi: 10.1016/j.snb.2018.03.175
– ident: e_1_2_8_5_1
  doi: 10.1039/C8CS00185E
– ident: e_1_2_8_27_1
  doi: 10.1039/C6CC07300J
– ident: e_1_2_8_61_1
  doi: 10.1039/D0RA01559H
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.inorgchem.5b00539
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.jpcc.8b03248
– ident: e_1_2_8_3_1
  doi: 10.1021/j100290a026
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.8b20410
– ident: e_1_2_8_15_1
  doi: 10.1016/j.aca.2013.05.011
– ident: e_1_2_8_44_2
  doi: 10.1039/C9ME00098D
– ident: e_1_2_8_50_1
  doi: 10.1002/asia.201600330
– ident: e_1_2_8_24_1
  doi: 10.1039/C8NJ01435C
– ident: e_1_2_8_48_1
  doi: 10.1002/chem.201902673
– ident: e_1_2_8_54_2
  doi: 10.1126/science.aat7679
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.201102046
– ident: e_1_2_8_52_1
  doi: 10.1007/s40242-020-0039-9
– volume: 56
  start-page: 662
  year: 1952
  ident: e_1_2_8_6_1
  publication-title: Elektrochemie
– ident: e_1_2_8_37_4
  doi: 10.1016/j.ccr.2017.10.031
– ident: e_1_2_8_29_1
  doi: 10.1016/j.snb.2016.01.024
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_8_55_1
  doi: 10.1039/C9CS00807A
– ident: e_1_2_8_10_1
  doi: 10.1039/c0cs00224k
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.accounts.8b00172
– volume: 4991
  start-page: 433
  year: 2003
  ident: e_1_2_8_7_2
  publication-title: SPIE
– ident: e_1_2_8_12_1
  doi: 10.1039/C6TC01308B
– ident: e_1_2_8_49_1
  doi: 10.1002/ejic.201600089
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.202010326
– ident: e_1_2_8_32_1
  doi: 10.1039/C7CC07996F
– ident: e_1_2_8_53_1
  doi: 10.1039/C8CC02345J
– ident: e_1_2_8_18_1
  doi: 10.1039/C7TB02076G
– ident: e_1_2_8_40_3
  doi: 10.1016/j.poly.2020.114771
– ident: e_1_2_8_11_3
  doi: 10.1002/adma.201401356
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.analchem.9b00032
– ident: e_1_2_8_43_1
  doi: 10.1002/chem.201101183
SSID ssj0001073947
Score 2.6033552
SecondaryResourceType review_article
Snippet Excited‐state intramolecular proton transfer (ESIPT) process brings about ultrafast keto‐enol tautomerism, which simultaneously induces the unique four‐leveled...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms ESIPT materials
excited‐state intramolecular proton transfer
External pressure
Materials science
optical sensing
Optics
Organic chemistry
Organic materials
photophysical properties
Protons
Solid state
Title Excited‐State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202001952
https://www.proquest.com/docview/2605445623
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyJQ0B6QgIMhXjte-xjRoIAaGimpaE_WetaWIrVJ1SYS6qk_gRM_kF_CzD5sR5RXL1a03l3HO5_ntTOzjL2kmuCos4UBZIkOYllkQSHSKigSSHUiY50oyneefE7Gh_Gno8FRp_O9FbW0WRdv4fLavJKbUBXbkK6UJfsflK0nxQb8jfTFK1IYr_9E49FXII2xDlgwmiM5-c7VqT_2llIBqHSGEUoVFY4Q6Wj2cTonfwDFGB6cWXf2jELZbYLLbHWycHpoW3kd-niBlRuC2q59zSZIwHKxfS8QCRkbGweMTMX_z-MGkl-cv3qsFvXtaWv01DpoJ-Wi7Z8QYSvWw7AxQadBopFpm8pr2hwfzlpwsznITiLX8uoXdm_Lxyq9opoCwiQ_ikaw-c38uufgz31tGeC9g0l9_xbbEWh-iC7bGe5N9meN9442OM3pdfWr-IqgffFu-yHbGk9jxrSNIaPNzO-xO84M4UOLqfusUy4fsLvOJOGO4V88ZMcOYj-uvhk48G1wcQsu7sHFXxtoveEILO6AxR2w-GLJDbC4mekRO_wwmr8fB-40jgAiZPtBBGoQgg5RJAiQBSRaQqhlJqpYqoGuRFmhcS6VjiCNoYRKaqk1mkMxAKSJih6z7nK1LJ8w3i8gK1OoCk3Vr0hlTGmDux9qFadxv-qxwK9YDq5UPZ2YcpLbItsipxXO6xXusVd1_zNbpOW3PXc9AXL3IV_kZNLH5AmIekwYovxllnwLJE9vMugZu918LLusuz7flM9RvV0XLxzWfgIrlpkP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited%E2%80%90State+Intramolecular+Proton+Transfer+%28ESIPT%29+for+Optical+Sensing+in+Solid+State&rft.jtitle=Advanced+optical+materials&rft.au=Chen%2C+Ling&rft.au=Fu%2C+Peng%E2%80%90Yan&rft.au=Wang%2C+Hai%E2%80%90Ping&rft.au=Pan%2C+Mei&rft.date=2021-12-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=9&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202001952&rft.externalDBID=10.1002%252Fadom.202001952&rft.externalDocID=ADOM202001952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon