Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy
Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 18 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
11.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis.
A novel nanoplatform with photodynamic therapy (PDT) and photothermal therapy (PTT) effect is first developed by assembly of iron oxide nanoparticles and Au nanoparticles on black phosphorus sheets, which exhibits excellent tumor inhibition efficacy due to a synergistic PDT and PTT mediated by a low‐power near‐infrared laser, and the therapeutic process can be visualized by magnetic resonance imaging. |
---|---|
AbstractList | Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe
3
O
4
) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe
3
O
4
), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe
3
O
4
nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe
3
O
4
can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe
3
O
4
NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis. Photodynamic therapy (PDT), as a minimally invasive and high-efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near-infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low-power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis. Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis. A novel nanoplatform with photodynamic therapy (PDT) and photothermal therapy (PTT) effect is first developed by assembly of iron oxide nanoparticles and Au nanoparticles on black phosphorus sheets, which exhibits excellent tumor inhibition efficacy due to a synergistic PDT and PTT mediated by a low‐power near‐infrared laser, and the therapeutic process can be visualized by magnetic resonance imaging. |
Author | Yang, Guixin Yang, Dan Lin, Jun Yang, Piaoping Gai, Shili Li, Chunxia He, Fei Lv, Ruichan |
Author_xml | – sequence: 1 givenname: Dan surname: Yang fullname: Yang, Dan organization: Harbin Engineering University – sequence: 2 givenname: Guixin surname: Yang fullname: Yang, Guixin organization: Harbin Engineering University – sequence: 3 givenname: Piaoping surname: Yang fullname: Yang, Piaoping email: yangpiaoping@hrbeu.edu.cn organization: Harbin Engineering University – sequence: 4 givenname: Ruichan surname: Lv fullname: Lv, Ruichan organization: Harbin Engineering University – sequence: 5 givenname: Shili surname: Gai fullname: Gai, Shili organization: Harbin Engineering University – sequence: 6 givenname: Chunxia surname: Li fullname: Li, Chunxia organization: Chinese Academy of Sciences – sequence: 7 givenname: Fei surname: He fullname: He, Fei organization: Harbin Engineering University – sequence: 8 givenname: Jun surname: Lin fullname: Lin, Jun email: jlin@ciac.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkUtvEzEURq2qSH3AlrUl1gl-TCYzyyFQqNTXopXYjW7s68bFYw-2ozL_hp-KQ1ARSFVXtq7P-a6s74Qc-uCRkLeczTlj4j1oM8wF40vG5JIfkGNe83ommWgOn-786xE5SemBFWwpq2Pys0sJh7WbaDC029IbB2kI3ip6swk55A3GARzt7tFnCl7T8xg8vf5hNdIr8GGEmK1ymGgZ37kcIW-spx8cqG-7iDRuQtwmakKktxDvMaP-N3oX-nugJw9DWbwCr7DQ5R3G6TV5ZcAlfPPnPCV3Z59uV19mF9efz1fdxUzJRvLZGlhVt1I2Qgmo5aLmZt201ZqzSi8QjFhqbVirtVLYFoOpBtC0XGHVMGGkPCXv9rljDN-3mHL_ELbRl5U9bwWrRFMvmkJVe0rFkFJE0yubIdvgy8-t6znrd130uy76py6KNv9PG6MdIE7PC-1eeLQOpxfovvt4dvnX_QVhz6HT |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00572 crossref_primary_10_1002_smll_201803791 crossref_primary_10_1002_wnan_1663 crossref_primary_10_1016_j_eurpolymj_2023_112582 crossref_primary_10_1021_acsabm_9b00843 crossref_primary_10_1002_advs_202104066 crossref_primary_10_3389_fbioe_2018_00114 crossref_primary_10_1039_C9QM00197B crossref_primary_10_1038_s41368_022_00211_2 crossref_primary_10_1016_j_jconrel_2019_12_013 crossref_primary_10_1016_j_apmt_2020_100864 crossref_primary_10_1016_j_dyepig_2020_108926 crossref_primary_10_1002_adma_201802244 crossref_primary_10_1002_adtp_201800090 crossref_primary_10_1039_D3TB02333H crossref_primary_10_1002_adfm_201900318 crossref_primary_10_1016_j_colsurfb_2020_111217 crossref_primary_10_1038_s41377_018_0007_z crossref_primary_10_1016_j_addr_2021_113907 crossref_primary_10_1039_C8TB00845K crossref_primary_10_1126_sciadv_aax4659 crossref_primary_10_1007_s12274_021_3740_1 crossref_primary_10_1016_j_jallcom_2023_169206 crossref_primary_10_3390_ijms24119293 crossref_primary_10_3390_ma17122870 crossref_primary_10_1002_aoc_4534 crossref_primary_10_1557_s43578_022_00591_5 crossref_primary_10_1080_10601325_2021_1934012 crossref_primary_10_1016_j_apsb_2020_01_004 crossref_primary_10_1021_acs_iecr_1c02313 crossref_primary_10_12677_AAC_2021_113021 crossref_primary_10_2147_IJN_S337599 crossref_primary_10_3390_ijms22010234 crossref_primary_10_1002_smll_201702830 crossref_primary_10_1007_s11431_020_1623_8 crossref_primary_10_1007_s12274_023_5418_3 crossref_primary_10_3389_fmolb_2022_1105540 crossref_primary_10_1039_D1EN00273B crossref_primary_10_1002_adfm_202005400 crossref_primary_10_1016_j_ccr_2019_213041 crossref_primary_10_2147_IJN_S328767 crossref_primary_10_1016_j_biomaterials_2019_119569 crossref_primary_10_1002_sstr_202000065 crossref_primary_10_1039_C8NR08741E crossref_primary_10_1016_j_apenergy_2024_122806 crossref_primary_10_1016_j_apmt_2019_100497 crossref_primary_10_1002_cssc_202100801 crossref_primary_10_1016_j_ceramint_2020_10_212 crossref_primary_10_1016_j_ijbiomac_2024_130157 crossref_primary_10_1039_C8TB00940F crossref_primary_10_1016_j_apmt_2019_07_001 crossref_primary_10_1016_j_biomaterials_2020_119770 crossref_primary_10_1021_acsnano_8b00770 crossref_primary_10_1021_acsnano_8b02034 crossref_primary_10_1039_C7TB02004J crossref_primary_10_1002_adfm_201904344 crossref_primary_10_1002_adhm_201900132 crossref_primary_10_1002_ange_202003632 crossref_primary_10_1016_j_cej_2024_157748 crossref_primary_10_1515_nanoph_2018_0074 crossref_primary_10_1039_C9NR03095F crossref_primary_10_1021_acsanm_4c01788 crossref_primary_10_1016_j_nantod_2022_101590 crossref_primary_10_1002_adma_201902333 crossref_primary_10_1002_ange_201805138 crossref_primary_10_1021_acsomega_3c06944 crossref_primary_10_1021_acs_chemrev_1c00165 crossref_primary_10_1002_smll_201804565 crossref_primary_10_1016_j_ijpharm_2020_119231 crossref_primary_10_1021_acsnano_8b09387 crossref_primary_10_1016_j_apsusc_2020_147912 crossref_primary_10_1039_D1NR01965A crossref_primary_10_1016_j_cej_2024_156401 crossref_primary_10_1016_j_biomaterials_2020_120346 crossref_primary_10_1021_acsami_8b10339 crossref_primary_10_1002_advs_202303911 crossref_primary_10_1002_solr_201900400 crossref_primary_10_1016_j_bioadv_2024_213948 crossref_primary_10_1016_j_biomaterials_2018_04_022 crossref_primary_10_1016_j_cej_2018_05_156 crossref_primary_10_1021_acsami_8b21483 crossref_primary_10_1021_acs_chemrev_9b00445 crossref_primary_10_1016_j_biomaterials_2018_10_018 crossref_primary_10_1016_j_biomaterials_2018_10_008 crossref_primary_10_1016_j_snb_2023_134287 crossref_primary_10_1007_s40843_018_9245_y crossref_primary_10_1002_wnan_1750 crossref_primary_10_1016_j_actbio_2020_09_008 crossref_primary_10_1002_advs_201902236 crossref_primary_10_1002_ange_201706228 crossref_primary_10_1016_j_cej_2018_12_007 crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1016_j_colsurfb_2018_07_024 crossref_primary_10_1088_1361_6528_aab3f0 crossref_primary_10_2147_IJN_S404394 crossref_primary_10_1007_s12274_021_3325_z crossref_primary_10_1098_rsos_172186 crossref_primary_10_1016_j_cej_2019_03_177 crossref_primary_10_1021_acs_langmuir_9b02300 crossref_primary_10_1039_C9NR02955A crossref_primary_10_1002_slct_201901931 crossref_primary_10_3390_nano12193383 crossref_primary_10_1016_j_ijbiomac_2023_124963 crossref_primary_10_1016_j_cej_2019_122822 crossref_primary_10_1002_advs_201900883 crossref_primary_10_1063_1_5079903 crossref_primary_10_1002_advs_202003033 crossref_primary_10_1016_j_biopha_2025_117909 crossref_primary_10_1021_acsnano_7b08500 crossref_primary_10_1016_j_jpowsour_2018_11_011 crossref_primary_10_3724_zdxbyxb_2023_0101 crossref_primary_10_1039_D2TA05490F crossref_primary_10_1016_j_colsurfb_2019_110375 crossref_primary_10_1002_chem_201901668 crossref_primary_10_1002_anie_201805138 crossref_primary_10_1021_acs_orglett_7b02183 crossref_primary_10_1007_s11051_017_4031_3 crossref_primary_10_1039_D0NR03346D crossref_primary_10_3390_photochem1030026 crossref_primary_10_1039_C8CS00618K crossref_primary_10_1039_C8NR05300F crossref_primary_10_1002_ppsc_201800010 crossref_primary_10_1021_acsnano_8b06563 crossref_primary_10_1016_j_scib_2018_05_022 crossref_primary_10_1039_D0BM01972K crossref_primary_10_1021_acsanm_9b02119 crossref_primary_10_1002_cnma_202000101 crossref_primary_10_1039_D3QO00278K crossref_primary_10_3389_fbiom_2023_1172524 crossref_primary_10_1016_j_matlet_2022_133725 crossref_primary_10_1021_acsami_0c04506 crossref_primary_10_1016_j_biomaterials_2021_120736 crossref_primary_10_3390_polym13172989 crossref_primary_10_1016_j_mtcomm_2021_103051 crossref_primary_10_1039_D0TA04068A crossref_primary_10_1016_j_colsurfb_2018_10_008 crossref_primary_10_1016_j_cej_2021_128888 crossref_primary_10_2147_IJN_S444471 crossref_primary_10_1016_j_nantod_2019_02_012 crossref_primary_10_1039_C8CC08833K crossref_primary_10_1039_D4NR02567A crossref_primary_10_1142_S1793545820300086 crossref_primary_10_1002_anbr_202300070 crossref_primary_10_1016_j_snb_2020_129431 crossref_primary_10_1007_s11426_022_1355_6 crossref_primary_10_1002_anie_202003632 crossref_primary_10_1021_acssuschemeng_8b04150 crossref_primary_10_1016_j_cej_2021_129178 crossref_primary_10_2147_IJN_S309062 crossref_primary_10_3390_ijms252312824 crossref_primary_10_1016_j_actbio_2018_05_011 crossref_primary_10_1016_j_jconrel_2019_02_015 crossref_primary_10_1016_j_jddst_2024_105374 crossref_primary_10_1039_C8SC04844D crossref_primary_10_1039_D2TB01276F crossref_primary_10_1016_j_biomaterials_2018_01_026 crossref_primary_10_1016_j_jciso_2024_100124 crossref_primary_10_1002_adhm_202102088 crossref_primary_10_1016_j_pdpdt_2018_08_003 crossref_primary_10_1016_j_biomaterials_2020_119827 crossref_primary_10_1007_s43630_020_00010_w crossref_primary_10_1016_j_cej_2018_01_081 crossref_primary_10_1002_anie_201706228 crossref_primary_10_1016_j_cej_2023_145091 crossref_primary_10_1021_acsami_0c01539 crossref_primary_10_1016_j_cej_2020_127381 crossref_primary_10_1002_pol_20230641 crossref_primary_10_1039_C8TB02704H crossref_primary_10_1021_acsanm_2c04551 crossref_primary_10_1016_j_carres_2019_01_014 crossref_primary_10_1080_14686996_2021_1924044 crossref_primary_10_1039_C7BM00999B crossref_primary_10_1039_C8TB02077A crossref_primary_10_3390_pharmaceutics14010204 crossref_primary_10_1016_j_jphotochem_2024_115481 crossref_primary_10_1039_C8CS00342D crossref_primary_10_3390_nano11010013 crossref_primary_10_1039_C9TB01459D crossref_primary_10_1002_adma_202310999 crossref_primary_10_1039_C9NR08708G crossref_primary_10_1016_j_enmf_2021_08_001 crossref_primary_10_1039_C9NR09122J crossref_primary_10_1016_j_lfs_2021_119400 crossref_primary_10_1002_chem_201806307 crossref_primary_10_1016_j_bioadv_2024_213951 crossref_primary_10_1002_adfm_201802500 crossref_primary_10_1021_acsabm_0c01102 crossref_primary_10_1002_adhm_202301324 crossref_primary_10_1016_j_matdes_2019_108188 crossref_primary_10_1039_D0CS01138J crossref_primary_10_1364_OME_9_000423 crossref_primary_10_1016_j_tibtech_2019_02_005 crossref_primary_10_1016_j_jcis_2023_09_170 crossref_primary_10_1021_acsami_0c02524 crossref_primary_10_1016_j_ccr_2024_215744 crossref_primary_10_1016_j_nanoen_2022_107383 crossref_primary_10_1039_D0CS00150C crossref_primary_10_1039_C8CC00931G crossref_primary_10_1016_j_micpath_2019_103800 crossref_primary_10_1021_acsami_3c00524 crossref_primary_10_1021_acs_analchem_2c01499 crossref_primary_10_1039_C8TB00745D crossref_primary_10_1016_j_ccr_2022_214654 crossref_primary_10_1021_acs_analchem_7b02081 crossref_primary_10_1016_j_apenergy_2024_124127 crossref_primary_10_1039_D4RA07114J crossref_primary_10_1021_acsami_1c04305 crossref_primary_10_1021_acsami_8b09999 crossref_primary_10_1021_acsanm_2c00170 crossref_primary_10_1039_D4NR05298F crossref_primary_10_1021_acs_langmuir_9b03001 crossref_primary_10_1021_acs_chemrev_8b00401 crossref_primary_10_1039_C9BM01881F crossref_primary_10_2147_IJN_S246336 crossref_primary_10_1039_C7TB02733H crossref_primary_10_1007_s13204_020_01502_y crossref_primary_10_1016_j_mser_2017_08_001 crossref_primary_10_1002_adma_202103936 crossref_primary_10_1016_j_giant_2021_100073 crossref_primary_10_1021_acsnano_1c10450 crossref_primary_10_1088_2515_7639_ac0ea4 crossref_primary_10_1021_acsabm_0c00797 crossref_primary_10_1007_s11664_020_08415_0 crossref_primary_10_1080_00914037_2022_2158333 crossref_primary_10_1016_j_colsurfb_2023_113338 crossref_primary_10_1016_j_jcis_2018_07_001 crossref_primary_10_1021_acs_analchem_9b02040 crossref_primary_10_1002_advs_202102587 crossref_primary_10_1021_acsnano_0c07899 crossref_primary_10_1039_D0NR00956C crossref_primary_10_1021_acsapm_1c01339 crossref_primary_10_1021_acsbiomaterials_8b00934 crossref_primary_10_1002_adfm_201803471 crossref_primary_10_1039_D1NH00291K crossref_primary_10_1016_j_dyepig_2018_07_034 crossref_primary_10_1002_adfm_201801961 crossref_primary_10_1016_j_cej_2024_157554 crossref_primary_10_1021_acsanm_1c01279 crossref_primary_10_1021_acsami_9b00374 crossref_primary_10_1039_C7RA09368C crossref_primary_10_1016_j_matchemphys_2024_129562 crossref_primary_10_1039_C8RA07441K crossref_primary_10_1021_acs_chemrev_8b00626 crossref_primary_10_1021_acsami_0c02718 crossref_primary_10_1016_j_ijbiomac_2023_127607 crossref_primary_10_1039_D1TB00337B crossref_primary_10_1002_advs_201900471 crossref_primary_10_1021_acsami_9b05943 crossref_primary_10_1021_acsnano_8b09552 crossref_primary_10_1016_j_addr_2022_114672 crossref_primary_10_1021_acsabm_1c00440 crossref_primary_10_1039_D1TB00410G crossref_primary_10_1016_j_cej_2019_123525 crossref_primary_10_1039_D3CC02624H crossref_primary_10_1021_acsanm_8b00359 crossref_primary_10_1021_acs_analchem_8b05343 crossref_primary_10_1039_D0BM01811B crossref_primary_10_1073_pnas_1714421115 crossref_primary_10_1021_acsami_8b00276 |
Cites_doi | 10.1021/acsnano.5b01143 10.1088/0957-4484/27/16/165101 10.1038/ncomms5475 10.1021/nn201560b 10.1039/C2RA22056C 10.1021/ja4013497 10.1021/ar100129p 10.1002/smll.201500550 10.1021/ja306199p 10.1039/C5CC09149G 10.1038/nature16478 10.1038/srep26271 10.1002/chem.201600536 10.1016/j.biomaterials.2016.03.022 10.1002/adma.201104964 10.1016/j.biomaterials.2014.12.036 10.1002/anie.201506154 10.1002/chem.201405921 10.1002/adma.201603276 10.1021/nn5063613 10.1021/cr4001594 10.1002/adma.201405150 10.1002/adhm.201500908 10.1088/2053-1583/2/1/011002 10.1039/C5EE03732H 10.1021/nn400418y 10.1016/j.biomaterials.2013.06.045 10.1002/adma.201505700 10.1039/C4CS00257A 10.1002/anie.201101447 10.1016/j.biomaterials.2016.03.037 10.1021/cm702352y 10.1103/PhysRevB.89.235319 10.7150/thno.5327 10.1021/nn4011686 10.1021/acsami.5b06026 10.1021/acs.chemmater.6b01720 10.1021/acsnano.5b02599 10.1039/C4NR03727H 10.1021/jacs.5b06025 10.1038/nnano.2014.35 10.1007/S11434-015-0829-5 10.1016/j.biomaterials.2016.01.009 10.1038/am.2015.82 10.1002/adfm.201504215 10.1021/nn505051d 10.1016/j.addr.2012.09.006 10.1038/ncomms10437 10.1016/j.biomaterials.2015.07.055 10.1038/srep10848 10.1016/j.biomaterials.2014.04.063 10.1021/nn4017179 10.1002/smll.201301456 10.1038/ncomms5458 10.1021/acsami.5b01027 10.1021/am508117e 10.1039/C4CC07628A 10.1021/nn506107c 10.1002/smll.201600191 10.1016/j.biomaterials.2016.01.057 10.1021/ja412364m 10.1002/anie.201501468 10.1002/adfm.201502868 10.1021/acs.jpcc.6b02006 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201700371 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201700371 ADFM201700371 |
Genre | article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB643803 – fundername: Fundamental Research funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 21271053; 51502050; 51422209; 51332008; 51628201; 51572258 – fundername: Outstanding Youth Foundation of Heilongjiang Province funderid: JC2015003 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3831-ba04693382c2a63561fb894b104d5eaf27ddf09ddcce93830c8aef91ce4802f33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:32:31 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 04:11:39 EDT 2025 Wed Jan 22 16:43:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3831-ba04693382c2a63561fb894b104d5eaf27ddf09ddcce93830c8aef91ce4802f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1920428658 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1920428658 crossref_citationtrail_10_1002_adfm_201700371 crossref_primary_10_1002_adfm_201700371 wiley_primary_10_1002_adfm_201700371_ADFM201700371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 11, 2017 |
PublicationDateYYYYMMDD | 2017-05-11 |
PublicationDate_xml | – month: 05 year: 2017 text: May 11, 2017 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2015; 71 2013; 7 2014; 136 2015; 45 2014; 5 2012; 134 2015; 137 2015; 44 2016; 85 2016; 84 2008; 20 2014; 9 2014; 8 2012; 24 2014; 50 2014; 6 2012; 64 2014; 10 2015; 2 2015; 5 2015; 11 2015; 54 2016; 529 2016; 52 2016; 93 2016; 91 2015; 9 2015; 7 2011; 5 2014; 89 2014; 114 2016; 120 2016; 12 2016; 5 2016; 6 2016; 7 2015; 25 2015; 27 2015; 60 2013; 34 2011; 50 2015; 21 2011; 44 2013; 135 2014; 35 2016 2016; 29 2016; 28 2016; 27 2016; 26 2016; 9 2016; 22 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Liu J. (e_1_2_6_39_1) 2015; 11 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Chen W. (e_1_2_6_66_1) 2016 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 7 start-page: 8176 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2584 year: 2015 publication-title: ACS Nano – volume: 12 start-page: 2046 year: 2016 publication-title: Small – volume: 10 start-page: 566 year: 2014 publication-title: Small – volume: 9 start-page: 3596 year: 2015 publication-title: ACS Nano – volume: 29 start-page: 1603276 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 165101 year: 2016 publication-title: Nanotechnology – volume: 11 start-page: 23232 year: 2015 publication-title: Small – volume: 136 start-page: 2248 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 6477 year: 2016 publication-title: Chem. Eur. J. – volume: 52 start-page: 1258 year: 2016 publication-title: Chem. Commun. – start-page: 1603864 year: 2016 publication-title: Adv. Mater. – volume: 71 start-page: 84 year: 2015 publication-title: Biomaterials – volume: 26 start-page: 1708 year: 2016 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 382 year: 2013 publication-title: RSC Adv. – volume: 93 start-page: 10 year: 2016 publication-title: Biomaterials – volume: 7 start-page: 17371 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 7385 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 1868 year: 2012 publication-title: Adv. Mater. – volume: 35 start-page: 7470 year: 2014 publication-title: Biomaterials – volume: 9 start-page: 372 year: 2014 publication-title: Nat. Nanotechnol. – volume: 60 start-page: 1170 year: 2015 publication-title: Sci. Bull. – volume: 20 start-page: 198 year: 2008 publication-title: Chem. Mater. – volume: 84 start-page: 13 year: 2016 publication-title: Biomaterials – volume: 6 start-page: 26271 year: 2016 publication-title: Sci. Rep. – volume: 54 start-page: 7915 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3932 year: 2015 publication-title: Small – volume: 120 start-page: 10086 year: 2016 publication-title: J. Phys. Chem. C – volume: 54 start-page: 11526 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 3484 year: 2013 publication-title: ACS Nano – volume: 2 start-page: 011002 year: 2015 publication-title: 2D Mater. – volume: 135 start-page: 8571 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 24 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 21 start-page: 6879 year: 2015 publication-title: Chem. Eur. J. – volume: 9 start-page: 8869 year: 2015 publication-title: ACS Nano – volume: 27 start-page: 1887 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 6782 year: 2013 publication-title: ACS Nano – volume: 5 start-page: 721 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 134 start-page: 16662 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4724 year: 2016 publication-title: Chem. Mater. – volume: 44 start-page: 2732 year: 2015 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1630 year: 2015 publication-title: ACS Nano – volume: 114 start-page: 2343 year: 2014 publication-title: Chem. Rev. – volume: 5 start-page: 4475 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 5320 year: 2013 publication-title: ACS Nano – volume: 3 start-page: 152 year: 2013 publication-title: Theranostics – volume: 34 start-page: 7715 year: 2013 publication-title: Biomaterials – volume: 7 start-page: 10437 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: e205 year: 2015 publication-title: NPG Asia Mater. – volume: 529 start-page: 351 year: 2016 publication-title: Nature – volume: 44 start-page: 322 year: 2011 publication-title: Acc. Chem. Res. – volume: 25 start-page: 6101 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4458 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 10621 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 12591 year: 2014 publication-title: Nanoscale – volume: 50 start-page: 14983 year: 2014 publication-title: Chem. Commun. – volume: 91 start-page: 81 year: 2016 publication-title: Biomaterials – volume: 9 start-page: 709 year: 2016 publication-title: Energy Environ. Sci. – volume: 89 start-page: 235319 year: 2014 publication-title: Phys. Rev. B – volume: 137 start-page: 11376 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7000 year: 2011 publication-title: ACS Nano – volume: 7 start-page: 5097 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 85 start-page: 30 year: 2016 publication-title: Biomaterials – volume: 5 start-page: 10848 year: 2015 publication-title: Sci. Rep. – volume: 28 start-page: 3273 year: 2016 publication-title: Adv. Mater. – volume: 45 start-page: 81 year: 2015 publication-title: Biomaterials – ident: e_1_2_6_10_1 doi: 10.1021/acsnano.5b01143 – ident: e_1_2_6_52_1 doi: 10.1088/0957-4484/27/16/165101 – ident: e_1_2_6_5_1 doi: 10.1038/ncomms5475 – ident: e_1_2_6_21_1 doi: 10.1021/nn201560b – ident: e_1_2_6_15_1 doi: 10.1039/C2RA22056C – start-page: 1603864 year: 2016 ident: e_1_2_6_66_1 publication-title: Adv. Mater. – ident: e_1_2_6_37_1 doi: 10.1021/ja4013497 – ident: e_1_2_6_38_1 doi: 10.1021/ar100129p – volume: 11 start-page: 23232 year: 2015 ident: e_1_2_6_39_1 publication-title: Small – ident: e_1_2_6_27_1 doi: 10.1002/smll.201500550 – ident: e_1_2_6_69_1 doi: 10.1021/ja306199p – ident: e_1_2_6_31_1 doi: 10.1039/C5CC09149G – ident: e_1_2_6_50_1 doi: 10.1038/nature16478 – ident: e_1_2_6_58_1 doi: 10.1038/srep26271 – ident: e_1_2_6_11_1 doi: 10.1002/chem.201600536 – ident: e_1_2_6_63_1 doi: 10.1016/j.biomaterials.2016.03.022 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201104964 – ident: e_1_2_6_41_1 doi: 10.1016/j.biomaterials.2014.12.036 – ident: e_1_2_6_64_1 doi: 10.1002/anie.201506154 – ident: e_1_2_6_68_1 doi: 10.1002/chem.201405921 – ident: e_1_2_6_62_1 doi: 10.1002/adma.201603276 – ident: e_1_2_6_18_1 doi: 10.1021/nn5063613 – ident: e_1_2_6_19_1 doi: 10.1021/cr4001594 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201405150 – ident: e_1_2_6_51_1 doi: 10.1002/adhm.201500908 – ident: e_1_2_6_67_1 doi: 10.1088/2053-1583/2/1/011002 – ident: e_1_2_6_12_1 doi: 10.1016/j.biomaterials.2016.03.022 – ident: e_1_2_6_13_1 doi: 10.1039/C5EE03732H – ident: e_1_2_6_30_1 doi: 10.1021/nn400418y – ident: e_1_2_6_25_1 doi: 10.1016/j.biomaterials.2013.06.045 – ident: e_1_2_6_48_1 doi: 10.1002/adma.201505700 – ident: e_1_2_6_2_1 doi: 10.1039/C4CS00257A – ident: e_1_2_6_56_1 doi: 10.1002/anie.201101447 – ident: e_1_2_6_29_1 doi: 10.1016/j.biomaterials.2016.03.037 – ident: e_1_2_6_42_1 doi: 10.1021/cm702352y – ident: e_1_2_6_8_1 doi: 10.1103/PhysRevB.89.235319 – ident: e_1_2_6_24_1 doi: 10.7150/thno.5327 – ident: e_1_2_6_28_1 doi: 10.1021/nn4011686 – ident: e_1_2_6_49_1 doi: 10.1021/acsami.5b06026 – ident: e_1_2_6_61_1 doi: 10.1021/acs.chemmater.6b01720 – ident: e_1_2_6_34_1 doi: 10.1002/adma.201104964 – ident: e_1_2_6_6_1 doi: 10.1021/acsnano.5b02599 – ident: e_1_2_6_23_1 doi: 10.1039/C4NR03727H – ident: e_1_2_6_1_1 doi: 10.1021/jacs.5b06025 – ident: e_1_2_6_7_1 doi: 10.1038/nnano.2014.35 – ident: e_1_2_6_35_1 doi: 10.1007/S11434-015-0829-5 – ident: e_1_2_6_26_1 doi: 10.1016/j.biomaterials.2016.01.009 – ident: e_1_2_6_20_1 doi: 10.1038/am.2015.82 – ident: e_1_2_6_55_1 doi: 10.1002/adfm.201504215 – ident: e_1_2_6_16_1 doi: 10.1021/nn505051d – ident: e_1_2_6_60_1 doi: 10.1016/j.addr.2012.09.006 – ident: e_1_2_6_65_1 doi: 10.1021/jacs.5b06025 – ident: e_1_2_6_33_1 doi: 10.1038/ncomms10437 – ident: e_1_2_6_54_1 doi: 10.1016/j.biomaterials.2015.07.055 – ident: e_1_2_6_3_1 doi: 10.1038/srep10848 – ident: e_1_2_6_43_1 doi: 10.1016/j.biomaterials.2014.04.063 – ident: e_1_2_6_44_1 doi: 10.1021/nn4017179 – ident: e_1_2_6_59_1 doi: 10.1002/smll.201301456 – ident: e_1_2_6_4_1 doi: 10.1038/ncomms5458 – ident: e_1_2_6_22_1 doi: 10.1021/acsami.5b01027 – ident: e_1_2_6_40_1 doi: 10.1021/am508117e – ident: e_1_2_6_46_1 doi: 10.1039/C4CC07628A – ident: e_1_2_6_17_1 doi: 10.1021/nn506107c – ident: e_1_2_6_36_1 doi: 10.1002/smll.201600191 – ident: e_1_2_6_45_1 doi: 10.1016/j.biomaterials.2016.01.057 – ident: e_1_2_6_47_1 doi: 10.1021/ja412364m – ident: e_1_2_6_14_1 doi: 10.1002/anie.201501468 – ident: e_1_2_6_53_1 doi: 10.1002/adfm.201502868 – ident: e_1_2_6_57_1 doi: 10.1021/acs.jpcc.6b02006 |
SSID | ssj0017734 |
Score | 2.6277542 |
Snippet | Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty... Photodynamic therapy (PDT), as a minimally invasive and high-efficiency anticancer approach, has received extensive research attention recently. Despite plenty... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorbance Absorption spectra Assaying Assembly Au nanoparticles Biocompatibility Biodegradability Biomedical materials black phosphorus Electromagnetic absorption Fe3O4 nanoparticles Gold In vitro methods and tests Iron oxides Lasers Magnetic resonance imaging Materials science Nanocomposites Nanoparticles Near infrared radiation NMR Nuclear magnetic resonance Optoelectronic devices Phosphorus Photodynamic therapy photothermal therapy Sheets |
Title | Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700371 https://www.proquest.com/docview/1920428658 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH0Yse3MVqlTkInlKTdJrlWNSiYlW0hd7CrLTYJKULWD-NH9V5k8VWEEFvSZh52WYy_zfz3i8InUkbYIVcWIxIahHft62Ah0BGpIALI6FtFtrbD95Nl9z1Gr2FLP6MD1FOuEHPMN9r6OCUTS6-oKFUKMgkB75c3SSRQ8AWqKLnkh_l-H62rOw5EODl9Apqo-1eLFdfHpW-pOaiYDUjTmsL0eJas0CT19psymr8_RvG8T83s402czmKm1n72UErMtlFGwuQwj30AevCMRvOcapwc4aftN6OAaiLn_rp1CRwxWACcrQwTQS-HacJfnwbCIn1t1s75XnsHdaHu0Og4fYHCTYzh2BiMuqn49kEa_WMOyYuXYpl02DUHBDzhMb6xJfQVHXpjIiwj7qt687ljZX_18Hi2h92LEbBKde-sctdCnw8R7EgJEx7hqIhqXJ9IZQdCsG5DHUNmwdUqtDhkgS2q-r1A7SapIk8RJgySYnyqN_gejimMqh7MgyItInSdUKvgqzivUY8h57DvzeGUYZrdiN48lH55CvovCw_ynAfP5asFs0kyrv9JNJyGXxQreoqyDXv-xcrUfOq1S73jv5S6RitwzZENDhOFa1OxzN5ooXSlJ2iteZV-_7l1HSKT6Y-Dg8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFICD6EE9uIvVqjkInkZnpuksx1ItVVsVacHbkJWK7Yx0Aeuv8aeal1naCiLocULyZibre8l7XxA6kzbACrmwGJHUIr5vWwEPgYxIARdGQtsctLfvvWaX3D5Xc29CiIVJ-RDFhhuMDDNfwwCHDenLGTWUCgWh5ACYq0AU-Qpc622sqqeCIOX4fnqw7Dng4uU859xG271cLL-4Ls2UzXmV1aw5jU3E8q9NXU1eLyZjdsE_voEc__U7W2gj00hxLe1C22hJxjtofY5TuIs-4Wh4wPpTnChcm-BHrXIPgKmLH3vJ2MRwDUAEhGlhGgt8M0xi_PD-IiTW07e2yzP3O6yTu30A4vZeYmw2D0HE6K2XDCcjrBVo3DGu6VIsigahJkFMYzrQL65Db9W5UyjCHuo2rjv1ppVd7WBxbRI7FqNgl2vz2OUuBUSeo1gQEqaNQ1GVVLm-EMoOheBchrqEzQMqVehwSQLbVZXKPlqOk1geIEyZpER51K9yvSJTGVQ8GQZE2kTpMqFXQlbesBHPuOdw_UY_SonNbgQ1HxU1X0LnRf63lPjxY85y3k-ibOSPIq0xgxmqFbsSck2D_yIlql012sXT4V8KnaLVZqfdilo393dHaA3SwcHBccpoeTycyGOtN43ZiRkZX_Z7EJY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFICDKIg-eBenU_Mg-FRNu6yXx7E55mVziIO9lTQXJm7t2AXUX-NPNSftuk0QQR8bktM213OSc74gdCEJwAq5sCIqmUU9j1g-D4CMyAAXRgNiDtqbLbfRoXfdcnchij_lQ-QbbjAyzHwNA3wo1PUcGsqEgkhy4MuVIIh8jbrEh35de8oBUrbnpefKrg0eXnZ3hm0kzvVy-eVlaa5rLmqsZsmpbyM2-9jU0-T1ajqJrvjHN47jf_5mB21l-iiupB1oF63IeA9tLlAK99EnHAwPov47ThSuTHFbK9wDIOridi-ZmAiuAYiAIC3MYoFvR0mMH99ehMR68tZWeeZ8h3Vypw843N5LjM3WIYgYD3vJaDrGWn3Gz8YxXYpl0SDUJIj3mA30i6vQV3XuFIlwgDr1m-dqw8oudrC4NohtK2JglWvj2OEOA0CerSI_oJE2DUVZMuV4QigSCMG5DHQJwn0mVWBzSX3iqFLpEK3GSSyPEGaRZFS5zCtzvR4z6ZdcGfhUEqp0mcAtIGvWriHPqOdw-UY_THnNTgg1H-Y1X0CXef5hyvv4MWdx1k3CbNyPQ60vgxGq1boCckx7_yIlrNTqzfzp-C-FztF6u1YPH25b9ydoA5LBu8G2i2h1MprKU600TaIzMy6-ANRxD04 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+Au+Plasmonic+Photothermal+Agent+and+Iron+Oxide+Nanoparticles+on+Ultrathin+Black+Phosphorus+for+Targeted+Photothermal+and+Photodynamic+Cancer+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Dan&rft.au=Yang%2C+Guixin&rft.au=Yang%2C+Piaoping&rft.au=Lv%2C+Ruichan&rft.date=2017-05-11&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201700371&rft.externalDBID=10.1002%252Fadfm.201700371&rft.externalDocID=ADFM201700371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |