Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy

Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 18
Main Authors Yang, Dan, Yang, Guixin, Yang, Piaoping, Lv, Ruichan, Gai, Shili, Li, Chunxia, He, Fei, Lin, Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 11.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis. A novel nanoplatform with photodynamic therapy (PDT) and photothermal therapy (PTT) effect is first developed by assembly of iron oxide nanoparticles and Au nanoparticles on black phosphorus sheets, which exhibits excellent tumor inhibition efficacy due to a synergistic PDT and PTT mediated by a low‐power near‐infrared laser, and the therapeutic process can be visualized by magnetic resonance imaging.
AbstractList Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe 3 O 4 ) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe 3 O 4 ), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe 3 O 4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe 3 O 4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe 3 O 4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis.
Photodynamic therapy (PDT), as a minimally invasive and high-efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near-infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low-power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis.
Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis. A novel nanoplatform with photodynamic therapy (PDT) and photothermal therapy (PTT) effect is first developed by assembly of iron oxide nanoparticles and Au nanoparticles on black phosphorus sheets, which exhibits excellent tumor inhibition efficacy due to a synergistic PDT and PTT mediated by a low‐power near‐infrared laser, and the therapeutic process can be visualized by magnetic resonance imaging.
Author Yang, Guixin
Yang, Dan
Lin, Jun
Yang, Piaoping
Gai, Shili
Li, Chunxia
He, Fei
Lv, Ruichan
Author_xml – sequence: 1
  givenname: Dan
  surname: Yang
  fullname: Yang, Dan
  organization: Harbin Engineering University
– sequence: 2
  givenname: Guixin
  surname: Yang
  fullname: Yang, Guixin
  organization: Harbin Engineering University
– sequence: 3
  givenname: Piaoping
  surname: Yang
  fullname: Yang, Piaoping
  email: yangpiaoping@hrbeu.edu.cn
  organization: Harbin Engineering University
– sequence: 4
  givenname: Ruichan
  surname: Lv
  fullname: Lv, Ruichan
  organization: Harbin Engineering University
– sequence: 5
  givenname: Shili
  surname: Gai
  fullname: Gai, Shili
  organization: Harbin Engineering University
– sequence: 6
  givenname: Chunxia
  surname: Li
  fullname: Li, Chunxia
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Fei
  surname: He
  fullname: He, Fei
  organization: Harbin Engineering University
– sequence: 8
  givenname: Jun
  surname: Lin
  fullname: Lin, Jun
  email: jlin@ciac.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkUtvEzEURq2qSH3AlrUl1gl-TCYzyyFQqNTXopXYjW7s68bFYw-2ozL_hp-KQ1ARSFVXtq7P-a6s74Qc-uCRkLeczTlj4j1oM8wF40vG5JIfkGNe83ommWgOn-786xE5SemBFWwpq2Pys0sJh7WbaDC029IbB2kI3ip6swk55A3GARzt7tFnCl7T8xg8vf5hNdIr8GGEmK1ymGgZ37kcIW-spx8cqG-7iDRuQtwmakKktxDvMaP-N3oX-nugJw9DWbwCr7DQ5R3G6TV5ZcAlfPPnPCV3Z59uV19mF9efz1fdxUzJRvLZGlhVt1I2Qgmo5aLmZt201ZqzSi8QjFhqbVirtVLYFoOpBtC0XGHVMGGkPCXv9rljDN-3mHL_ELbRl5U9bwWrRFMvmkJVe0rFkFJE0yubIdvgy8-t6znrd130uy76py6KNv9PG6MdIE7PC-1eeLQOpxfovvt4dvnX_QVhz6HT
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00572
crossref_primary_10_1002_smll_201803791
crossref_primary_10_1002_wnan_1663
crossref_primary_10_1016_j_eurpolymj_2023_112582
crossref_primary_10_1021_acsabm_9b00843
crossref_primary_10_1002_advs_202104066
crossref_primary_10_3389_fbioe_2018_00114
crossref_primary_10_1039_C9QM00197B
crossref_primary_10_1038_s41368_022_00211_2
crossref_primary_10_1016_j_jconrel_2019_12_013
crossref_primary_10_1016_j_apmt_2020_100864
crossref_primary_10_1016_j_dyepig_2020_108926
crossref_primary_10_1002_adma_201802244
crossref_primary_10_1002_adtp_201800090
crossref_primary_10_1039_D3TB02333H
crossref_primary_10_1002_adfm_201900318
crossref_primary_10_1016_j_colsurfb_2020_111217
crossref_primary_10_1038_s41377_018_0007_z
crossref_primary_10_1016_j_addr_2021_113907
crossref_primary_10_1039_C8TB00845K
crossref_primary_10_1126_sciadv_aax4659
crossref_primary_10_1007_s12274_021_3740_1
crossref_primary_10_1016_j_jallcom_2023_169206
crossref_primary_10_3390_ijms24119293
crossref_primary_10_3390_ma17122870
crossref_primary_10_1002_aoc_4534
crossref_primary_10_1557_s43578_022_00591_5
crossref_primary_10_1080_10601325_2021_1934012
crossref_primary_10_1016_j_apsb_2020_01_004
crossref_primary_10_1021_acs_iecr_1c02313
crossref_primary_10_12677_AAC_2021_113021
crossref_primary_10_2147_IJN_S337599
crossref_primary_10_3390_ijms22010234
crossref_primary_10_1002_smll_201702830
crossref_primary_10_1007_s11431_020_1623_8
crossref_primary_10_1007_s12274_023_5418_3
crossref_primary_10_3389_fmolb_2022_1105540
crossref_primary_10_1039_D1EN00273B
crossref_primary_10_1002_adfm_202005400
crossref_primary_10_1016_j_ccr_2019_213041
crossref_primary_10_2147_IJN_S328767
crossref_primary_10_1016_j_biomaterials_2019_119569
crossref_primary_10_1002_sstr_202000065
crossref_primary_10_1039_C8NR08741E
crossref_primary_10_1016_j_apenergy_2024_122806
crossref_primary_10_1016_j_apmt_2019_100497
crossref_primary_10_1002_cssc_202100801
crossref_primary_10_1016_j_ceramint_2020_10_212
crossref_primary_10_1016_j_ijbiomac_2024_130157
crossref_primary_10_1039_C8TB00940F
crossref_primary_10_1016_j_apmt_2019_07_001
crossref_primary_10_1016_j_biomaterials_2020_119770
crossref_primary_10_1021_acsnano_8b00770
crossref_primary_10_1021_acsnano_8b02034
crossref_primary_10_1039_C7TB02004J
crossref_primary_10_1002_adfm_201904344
crossref_primary_10_1002_adhm_201900132
crossref_primary_10_1002_ange_202003632
crossref_primary_10_1016_j_cej_2024_157748
crossref_primary_10_1515_nanoph_2018_0074
crossref_primary_10_1039_C9NR03095F
crossref_primary_10_1021_acsanm_4c01788
crossref_primary_10_1016_j_nantod_2022_101590
crossref_primary_10_1002_adma_201902333
crossref_primary_10_1002_ange_201805138
crossref_primary_10_1021_acsomega_3c06944
crossref_primary_10_1021_acs_chemrev_1c00165
crossref_primary_10_1002_smll_201804565
crossref_primary_10_1016_j_ijpharm_2020_119231
crossref_primary_10_1021_acsnano_8b09387
crossref_primary_10_1016_j_apsusc_2020_147912
crossref_primary_10_1039_D1NR01965A
crossref_primary_10_1016_j_cej_2024_156401
crossref_primary_10_1016_j_biomaterials_2020_120346
crossref_primary_10_1021_acsami_8b10339
crossref_primary_10_1002_advs_202303911
crossref_primary_10_1002_solr_201900400
crossref_primary_10_1016_j_bioadv_2024_213948
crossref_primary_10_1016_j_biomaterials_2018_04_022
crossref_primary_10_1016_j_cej_2018_05_156
crossref_primary_10_1021_acsami_8b21483
crossref_primary_10_1021_acs_chemrev_9b00445
crossref_primary_10_1016_j_biomaterials_2018_10_018
crossref_primary_10_1016_j_biomaterials_2018_10_008
crossref_primary_10_1016_j_snb_2023_134287
crossref_primary_10_1007_s40843_018_9245_y
crossref_primary_10_1002_wnan_1750
crossref_primary_10_1016_j_actbio_2020_09_008
crossref_primary_10_1002_advs_201902236
crossref_primary_10_1002_ange_201706228
crossref_primary_10_1016_j_cej_2018_12_007
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1016_j_colsurfb_2018_07_024
crossref_primary_10_1088_1361_6528_aab3f0
crossref_primary_10_2147_IJN_S404394
crossref_primary_10_1007_s12274_021_3325_z
crossref_primary_10_1098_rsos_172186
crossref_primary_10_1016_j_cej_2019_03_177
crossref_primary_10_1021_acs_langmuir_9b02300
crossref_primary_10_1039_C9NR02955A
crossref_primary_10_1002_slct_201901931
crossref_primary_10_3390_nano12193383
crossref_primary_10_1016_j_ijbiomac_2023_124963
crossref_primary_10_1016_j_cej_2019_122822
crossref_primary_10_1002_advs_201900883
crossref_primary_10_1063_1_5079903
crossref_primary_10_1002_advs_202003033
crossref_primary_10_1016_j_biopha_2025_117909
crossref_primary_10_1021_acsnano_7b08500
crossref_primary_10_1016_j_jpowsour_2018_11_011
crossref_primary_10_3724_zdxbyxb_2023_0101
crossref_primary_10_1039_D2TA05490F
crossref_primary_10_1016_j_colsurfb_2019_110375
crossref_primary_10_1002_chem_201901668
crossref_primary_10_1002_anie_201805138
crossref_primary_10_1021_acs_orglett_7b02183
crossref_primary_10_1007_s11051_017_4031_3
crossref_primary_10_1039_D0NR03346D
crossref_primary_10_3390_photochem1030026
crossref_primary_10_1039_C8CS00618K
crossref_primary_10_1039_C8NR05300F
crossref_primary_10_1002_ppsc_201800010
crossref_primary_10_1021_acsnano_8b06563
crossref_primary_10_1016_j_scib_2018_05_022
crossref_primary_10_1039_D0BM01972K
crossref_primary_10_1021_acsanm_9b02119
crossref_primary_10_1002_cnma_202000101
crossref_primary_10_1039_D3QO00278K
crossref_primary_10_3389_fbiom_2023_1172524
crossref_primary_10_1016_j_matlet_2022_133725
crossref_primary_10_1021_acsami_0c04506
crossref_primary_10_1016_j_biomaterials_2021_120736
crossref_primary_10_3390_polym13172989
crossref_primary_10_1016_j_mtcomm_2021_103051
crossref_primary_10_1039_D0TA04068A
crossref_primary_10_1016_j_colsurfb_2018_10_008
crossref_primary_10_1016_j_cej_2021_128888
crossref_primary_10_2147_IJN_S444471
crossref_primary_10_1016_j_nantod_2019_02_012
crossref_primary_10_1039_C8CC08833K
crossref_primary_10_1039_D4NR02567A
crossref_primary_10_1142_S1793545820300086
crossref_primary_10_1002_anbr_202300070
crossref_primary_10_1016_j_snb_2020_129431
crossref_primary_10_1007_s11426_022_1355_6
crossref_primary_10_1002_anie_202003632
crossref_primary_10_1021_acssuschemeng_8b04150
crossref_primary_10_1016_j_cej_2021_129178
crossref_primary_10_2147_IJN_S309062
crossref_primary_10_3390_ijms252312824
crossref_primary_10_1016_j_actbio_2018_05_011
crossref_primary_10_1016_j_jconrel_2019_02_015
crossref_primary_10_1016_j_jddst_2024_105374
crossref_primary_10_1039_C8SC04844D
crossref_primary_10_1039_D2TB01276F
crossref_primary_10_1016_j_biomaterials_2018_01_026
crossref_primary_10_1016_j_jciso_2024_100124
crossref_primary_10_1002_adhm_202102088
crossref_primary_10_1016_j_pdpdt_2018_08_003
crossref_primary_10_1016_j_biomaterials_2020_119827
crossref_primary_10_1007_s43630_020_00010_w
crossref_primary_10_1016_j_cej_2018_01_081
crossref_primary_10_1002_anie_201706228
crossref_primary_10_1016_j_cej_2023_145091
crossref_primary_10_1021_acsami_0c01539
crossref_primary_10_1016_j_cej_2020_127381
crossref_primary_10_1002_pol_20230641
crossref_primary_10_1039_C8TB02704H
crossref_primary_10_1021_acsanm_2c04551
crossref_primary_10_1016_j_carres_2019_01_014
crossref_primary_10_1080_14686996_2021_1924044
crossref_primary_10_1039_C7BM00999B
crossref_primary_10_1039_C8TB02077A
crossref_primary_10_3390_pharmaceutics14010204
crossref_primary_10_1016_j_jphotochem_2024_115481
crossref_primary_10_1039_C8CS00342D
crossref_primary_10_3390_nano11010013
crossref_primary_10_1039_C9TB01459D
crossref_primary_10_1002_adma_202310999
crossref_primary_10_1039_C9NR08708G
crossref_primary_10_1016_j_enmf_2021_08_001
crossref_primary_10_1039_C9NR09122J
crossref_primary_10_1016_j_lfs_2021_119400
crossref_primary_10_1002_chem_201806307
crossref_primary_10_1016_j_bioadv_2024_213951
crossref_primary_10_1002_adfm_201802500
crossref_primary_10_1021_acsabm_0c01102
crossref_primary_10_1002_adhm_202301324
crossref_primary_10_1016_j_matdes_2019_108188
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1364_OME_9_000423
crossref_primary_10_1016_j_tibtech_2019_02_005
crossref_primary_10_1016_j_jcis_2023_09_170
crossref_primary_10_1021_acsami_0c02524
crossref_primary_10_1016_j_ccr_2024_215744
crossref_primary_10_1016_j_nanoen_2022_107383
crossref_primary_10_1039_D0CS00150C
crossref_primary_10_1039_C8CC00931G
crossref_primary_10_1016_j_micpath_2019_103800
crossref_primary_10_1021_acsami_3c00524
crossref_primary_10_1021_acs_analchem_2c01499
crossref_primary_10_1039_C8TB00745D
crossref_primary_10_1016_j_ccr_2022_214654
crossref_primary_10_1021_acs_analchem_7b02081
crossref_primary_10_1016_j_apenergy_2024_124127
crossref_primary_10_1039_D4RA07114J
crossref_primary_10_1021_acsami_1c04305
crossref_primary_10_1021_acsami_8b09999
crossref_primary_10_1021_acsanm_2c00170
crossref_primary_10_1039_D4NR05298F
crossref_primary_10_1021_acs_langmuir_9b03001
crossref_primary_10_1021_acs_chemrev_8b00401
crossref_primary_10_1039_C9BM01881F
crossref_primary_10_2147_IJN_S246336
crossref_primary_10_1039_C7TB02733H
crossref_primary_10_1007_s13204_020_01502_y
crossref_primary_10_1016_j_mser_2017_08_001
crossref_primary_10_1002_adma_202103936
crossref_primary_10_1016_j_giant_2021_100073
crossref_primary_10_1021_acsnano_1c10450
crossref_primary_10_1088_2515_7639_ac0ea4
crossref_primary_10_1021_acsabm_0c00797
crossref_primary_10_1007_s11664_020_08415_0
crossref_primary_10_1080_00914037_2022_2158333
crossref_primary_10_1016_j_colsurfb_2023_113338
crossref_primary_10_1016_j_jcis_2018_07_001
crossref_primary_10_1021_acs_analchem_9b02040
crossref_primary_10_1002_advs_202102587
crossref_primary_10_1021_acsnano_0c07899
crossref_primary_10_1039_D0NR00956C
crossref_primary_10_1021_acsapm_1c01339
crossref_primary_10_1021_acsbiomaterials_8b00934
crossref_primary_10_1002_adfm_201803471
crossref_primary_10_1039_D1NH00291K
crossref_primary_10_1016_j_dyepig_2018_07_034
crossref_primary_10_1002_adfm_201801961
crossref_primary_10_1016_j_cej_2024_157554
crossref_primary_10_1021_acsanm_1c01279
crossref_primary_10_1021_acsami_9b00374
crossref_primary_10_1039_C7RA09368C
crossref_primary_10_1016_j_matchemphys_2024_129562
crossref_primary_10_1039_C8RA07441K
crossref_primary_10_1021_acs_chemrev_8b00626
crossref_primary_10_1021_acsami_0c02718
crossref_primary_10_1016_j_ijbiomac_2023_127607
crossref_primary_10_1039_D1TB00337B
crossref_primary_10_1002_advs_201900471
crossref_primary_10_1021_acsami_9b05943
crossref_primary_10_1021_acsnano_8b09552
crossref_primary_10_1016_j_addr_2022_114672
crossref_primary_10_1021_acsabm_1c00440
crossref_primary_10_1039_D1TB00410G
crossref_primary_10_1016_j_cej_2019_123525
crossref_primary_10_1039_D3CC02624H
crossref_primary_10_1021_acsanm_8b00359
crossref_primary_10_1021_acs_analchem_8b05343
crossref_primary_10_1039_D0BM01811B
crossref_primary_10_1073_pnas_1714421115
crossref_primary_10_1021_acsami_8b00276
Cites_doi 10.1021/acsnano.5b01143
10.1088/0957-4484/27/16/165101
10.1038/ncomms5475
10.1021/nn201560b
10.1039/C2RA22056C
10.1021/ja4013497
10.1021/ar100129p
10.1002/smll.201500550
10.1021/ja306199p
10.1039/C5CC09149G
10.1038/nature16478
10.1038/srep26271
10.1002/chem.201600536
10.1016/j.biomaterials.2016.03.022
10.1002/adma.201104964
10.1016/j.biomaterials.2014.12.036
10.1002/anie.201506154
10.1002/chem.201405921
10.1002/adma.201603276
10.1021/nn5063613
10.1021/cr4001594
10.1002/adma.201405150
10.1002/adhm.201500908
10.1088/2053-1583/2/1/011002
10.1039/C5EE03732H
10.1021/nn400418y
10.1016/j.biomaterials.2013.06.045
10.1002/adma.201505700
10.1039/C4CS00257A
10.1002/anie.201101447
10.1016/j.biomaterials.2016.03.037
10.1021/cm702352y
10.1103/PhysRevB.89.235319
10.7150/thno.5327
10.1021/nn4011686
10.1021/acsami.5b06026
10.1021/acs.chemmater.6b01720
10.1021/acsnano.5b02599
10.1039/C4NR03727H
10.1021/jacs.5b06025
10.1038/nnano.2014.35
10.1007/S11434-015-0829-5
10.1016/j.biomaterials.2016.01.009
10.1038/am.2015.82
10.1002/adfm.201504215
10.1021/nn505051d
10.1016/j.addr.2012.09.006
10.1038/ncomms10437
10.1016/j.biomaterials.2015.07.055
10.1038/srep10848
10.1016/j.biomaterials.2014.04.063
10.1021/nn4017179
10.1002/smll.201301456
10.1038/ncomms5458
10.1021/acsami.5b01027
10.1021/am508117e
10.1039/C4CC07628A
10.1021/nn506107c
10.1002/smll.201600191
10.1016/j.biomaterials.2016.01.057
10.1021/ja412364m
10.1002/anie.201501468
10.1002/adfm.201502868
10.1021/acs.jpcc.6b02006
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201700371
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201700371
ADFM201700371
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB643803
– fundername: Fundamental Research funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 21271053; 51502050; 51422209; 51332008; 51628201; 51572258
– fundername: Outstanding Youth Foundation of Heilongjiang Province
  funderid: JC2015003
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3831-ba04693382c2a63561fb894b104d5eaf27ddf09ddcce93830c8aef91ce4802f33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 03:32:31 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 04:11:39 EDT 2025
Wed Jan 22 16:43:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-ba04693382c2a63561fb894b104d5eaf27ddf09ddcce93830c8aef91ce4802f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1920428658
PQPubID 2045204
PageCount 14
ParticipantIDs proquest_journals_1920428658
crossref_citationtrail_10_1002_adfm_201700371
crossref_primary_10_1002_adfm_201700371
wiley_primary_10_1002_adfm_201700371_ADFM201700371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 11, 2017
PublicationDateYYYYMMDD 2017-05-11
PublicationDate_xml – month: 05
  year: 2017
  text: May 11, 2017
  day: 11
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2015; 71
2013; 7
2014; 136
2015; 45
2014; 5
2012; 134
2015; 137
2015; 44
2016; 85
2016; 84
2008; 20
2014; 9
2014; 8
2012; 24
2014; 50
2014; 6
2012; 64
2014; 10
2015; 2
2015; 5
2015; 11
2015; 54
2016; 529
2016; 52
2016; 93
2016; 91
2015; 9
2015; 7
2011; 5
2014; 89
2014; 114
2016; 120
2016; 12
2016; 5
2016; 6
2016; 7
2015; 25
2015; 27
2015; 60
2013; 34
2011; 50
2015; 21
2011; 44
2013; 135
2014; 35
2016
2016; 29
2016; 28
2016; 27
2016; 26
2016; 9
2016; 22
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Liu J. (e_1_2_6_39_1) 2015; 11
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Chen W. (e_1_2_6_66_1) 2016
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 7
  start-page: 8176
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 2584
  year: 2015
  publication-title: ACS Nano
– volume: 12
  start-page: 2046
  year: 2016
  publication-title: Small
– volume: 10
  start-page: 566
  year: 2014
  publication-title: Small
– volume: 9
  start-page: 3596
  year: 2015
  publication-title: ACS Nano
– volume: 29
  start-page: 1603276
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 165101
  year: 2016
  publication-title: Nanotechnology
– volume: 11
  start-page: 23232
  year: 2015
  publication-title: Small
– volume: 136
  start-page: 2248
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 6477
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 52
  start-page: 1258
  year: 2016
  publication-title: Chem. Commun.
– start-page: 1603864
  year: 2016
  publication-title: Adv. Mater.
– volume: 71
  start-page: 84
  year: 2015
  publication-title: Biomaterials
– volume: 26
  start-page: 1708
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 382
  year: 2013
  publication-title: RSC Adv.
– volume: 93
  start-page: 10
  year: 2016
  publication-title: Biomaterials
– volume: 7
  start-page: 17371
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 7385
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 1868
  year: 2012
  publication-title: Adv. Mater.
– volume: 35
  start-page: 7470
  year: 2014
  publication-title: Biomaterials
– volume: 9
  start-page: 372
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 60
  start-page: 1170
  year: 2015
  publication-title: Sci. Bull.
– volume: 20
  start-page: 198
  year: 2008
  publication-title: Chem. Mater.
– volume: 84
  start-page: 13
  year: 2016
  publication-title: Biomaterials
– volume: 6
  start-page: 26271
  year: 2016
  publication-title: Sci. Rep.
– volume: 54
  start-page: 7915
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3932
  year: 2015
  publication-title: Small
– volume: 120
  start-page: 10086
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 54
  start-page: 11526
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 3484
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: 011002
  year: 2015
  publication-title: 2D Mater.
– volume: 135
  start-page: 8571
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 24
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 21
  start-page: 6879
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 8869
  year: 2015
  publication-title: ACS Nano
– volume: 27
  start-page: 1887
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 6782
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 721
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 134
  start-page: 16662
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4724
  year: 2016
  publication-title: Chem. Mater.
– volume: 44
  start-page: 2732
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1630
  year: 2015
  publication-title: ACS Nano
– volume: 114
  start-page: 2343
  year: 2014
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4475
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 5320
  year: 2013
  publication-title: ACS Nano
– volume: 3
  start-page: 152
  year: 2013
  publication-title: Theranostics
– volume: 34
  start-page: 7715
  year: 2013
  publication-title: Biomaterials
– volume: 7
  start-page: 10437
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: e205
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 529
  start-page: 351
  year: 2016
  publication-title: Nature
– volume: 44
  start-page: 322
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 6101
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4458
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 10621
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 12591
  year: 2014
  publication-title: Nanoscale
– volume: 50
  start-page: 14983
  year: 2014
  publication-title: Chem. Commun.
– volume: 91
  start-page: 81
  year: 2016
  publication-title: Biomaterials
– volume: 9
  start-page: 709
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 89
  start-page: 235319
  year: 2014
  publication-title: Phys. Rev. B
– volume: 137
  start-page: 11376
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7000
  year: 2011
  publication-title: ACS Nano
– volume: 7
  start-page: 5097
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 30
  year: 2016
  publication-title: Biomaterials
– volume: 5
  start-page: 10848
  year: 2015
  publication-title: Sci. Rep.
– volume: 28
  start-page: 3273
  year: 2016
  publication-title: Adv. Mater.
– volume: 45
  start-page: 81
  year: 2015
  publication-title: Biomaterials
– ident: e_1_2_6_10_1
  doi: 10.1021/acsnano.5b01143
– ident: e_1_2_6_52_1
  doi: 10.1088/0957-4484/27/16/165101
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms5475
– ident: e_1_2_6_21_1
  doi: 10.1021/nn201560b
– ident: e_1_2_6_15_1
  doi: 10.1039/C2RA22056C
– start-page: 1603864
  year: 2016
  ident: e_1_2_6_66_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_37_1
  doi: 10.1021/ja4013497
– ident: e_1_2_6_38_1
  doi: 10.1021/ar100129p
– volume: 11
  start-page: 23232
  year: 2015
  ident: e_1_2_6_39_1
  publication-title: Small
– ident: e_1_2_6_27_1
  doi: 10.1002/smll.201500550
– ident: e_1_2_6_69_1
  doi: 10.1021/ja306199p
– ident: e_1_2_6_31_1
  doi: 10.1039/C5CC09149G
– ident: e_1_2_6_50_1
  doi: 10.1038/nature16478
– ident: e_1_2_6_58_1
  doi: 10.1038/srep26271
– ident: e_1_2_6_11_1
  doi: 10.1002/chem.201600536
– ident: e_1_2_6_63_1
  doi: 10.1016/j.biomaterials.2016.03.022
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201104964
– ident: e_1_2_6_41_1
  doi: 10.1016/j.biomaterials.2014.12.036
– ident: e_1_2_6_64_1
  doi: 10.1002/anie.201506154
– ident: e_1_2_6_68_1
  doi: 10.1002/chem.201405921
– ident: e_1_2_6_62_1
  doi: 10.1002/adma.201603276
– ident: e_1_2_6_18_1
  doi: 10.1021/nn5063613
– ident: e_1_2_6_19_1
  doi: 10.1021/cr4001594
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201405150
– ident: e_1_2_6_51_1
  doi: 10.1002/adhm.201500908
– ident: e_1_2_6_67_1
  doi: 10.1088/2053-1583/2/1/011002
– ident: e_1_2_6_12_1
  doi: 10.1016/j.biomaterials.2016.03.022
– ident: e_1_2_6_13_1
  doi: 10.1039/C5EE03732H
– ident: e_1_2_6_30_1
  doi: 10.1021/nn400418y
– ident: e_1_2_6_25_1
  doi: 10.1016/j.biomaterials.2013.06.045
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.201505700
– ident: e_1_2_6_2_1
  doi: 10.1039/C4CS00257A
– ident: e_1_2_6_56_1
  doi: 10.1002/anie.201101447
– ident: e_1_2_6_29_1
  doi: 10.1016/j.biomaterials.2016.03.037
– ident: e_1_2_6_42_1
  doi: 10.1021/cm702352y
– ident: e_1_2_6_8_1
  doi: 10.1103/PhysRevB.89.235319
– ident: e_1_2_6_24_1
  doi: 10.7150/thno.5327
– ident: e_1_2_6_28_1
  doi: 10.1021/nn4011686
– ident: e_1_2_6_49_1
  doi: 10.1021/acsami.5b06026
– ident: e_1_2_6_61_1
  doi: 10.1021/acs.chemmater.6b01720
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.201104964
– ident: e_1_2_6_6_1
  doi: 10.1021/acsnano.5b02599
– ident: e_1_2_6_23_1
  doi: 10.1039/C4NR03727H
– ident: e_1_2_6_1_1
  doi: 10.1021/jacs.5b06025
– ident: e_1_2_6_7_1
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_6_35_1
  doi: 10.1007/S11434-015-0829-5
– ident: e_1_2_6_26_1
  doi: 10.1016/j.biomaterials.2016.01.009
– ident: e_1_2_6_20_1
  doi: 10.1038/am.2015.82
– ident: e_1_2_6_55_1
  doi: 10.1002/adfm.201504215
– ident: e_1_2_6_16_1
  doi: 10.1021/nn505051d
– ident: e_1_2_6_60_1
  doi: 10.1016/j.addr.2012.09.006
– ident: e_1_2_6_65_1
  doi: 10.1021/jacs.5b06025
– ident: e_1_2_6_33_1
  doi: 10.1038/ncomms10437
– ident: e_1_2_6_54_1
  doi: 10.1016/j.biomaterials.2015.07.055
– ident: e_1_2_6_3_1
  doi: 10.1038/srep10848
– ident: e_1_2_6_43_1
  doi: 10.1016/j.biomaterials.2014.04.063
– ident: e_1_2_6_44_1
  doi: 10.1021/nn4017179
– ident: e_1_2_6_59_1
  doi: 10.1002/smll.201301456
– ident: e_1_2_6_4_1
  doi: 10.1038/ncomms5458
– ident: e_1_2_6_22_1
  doi: 10.1021/acsami.5b01027
– ident: e_1_2_6_40_1
  doi: 10.1021/am508117e
– ident: e_1_2_6_46_1
  doi: 10.1039/C4CC07628A
– ident: e_1_2_6_17_1
  doi: 10.1021/nn506107c
– ident: e_1_2_6_36_1
  doi: 10.1002/smll.201600191
– ident: e_1_2_6_45_1
  doi: 10.1016/j.biomaterials.2016.01.057
– ident: e_1_2_6_47_1
  doi: 10.1021/ja412364m
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201501468
– ident: e_1_2_6_53_1
  doi: 10.1002/adfm.201502868
– ident: e_1_2_6_57_1
  doi: 10.1021/acs.jpcc.6b02006
SSID ssj0017734
Score 2.6277542
Snippet Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty...
Photodynamic therapy (PDT), as a minimally invasive and high-efficiency anticancer approach, has received extensive research attention recently. Despite plenty...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorbance
Absorption spectra
Assaying
Assembly
Au nanoparticles
Biocompatibility
Biodegradability
Biomedical materials
black phosphorus
Electromagnetic absorption
Fe3O4 nanoparticles
Gold
In vitro methods and tests
Iron oxides
Lasers
Magnetic resonance imaging
Materials science
Nanocomposites
Nanoparticles
Near infrared radiation
NMR
Nuclear magnetic resonance
Optoelectronic devices
Phosphorus
Photodynamic therapy
photothermal therapy
Sheets
Title Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700371
https://www.proquest.com/docview/1920428658
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH0Yse3MVqlTkInlKTdJrlWNSiYlW0hd7CrLTYJKULWD-NH9V5k8VWEEFvSZh52WYy_zfz3i8InUkbYIVcWIxIahHft62Ah0BGpIALI6FtFtrbD95Nl9z1Gr2FLP6MD1FOuEHPMN9r6OCUTS6-oKFUKMgkB75c3SSRQ8AWqKLnkh_l-H62rOw5EODl9Apqo-1eLFdfHpW-pOaiYDUjTmsL0eJas0CT19psymr8_RvG8T83s402czmKm1n72UErMtlFGwuQwj30AevCMRvOcapwc4aftN6OAaiLn_rp1CRwxWACcrQwTQS-HacJfnwbCIn1t1s75XnsHdaHu0Og4fYHCTYzh2BiMuqn49kEa_WMOyYuXYpl02DUHBDzhMb6xJfQVHXpjIiwj7qt687ljZX_18Hi2h92LEbBKde-sctdCnw8R7EgJEx7hqIhqXJ9IZQdCsG5DHUNmwdUqtDhkgS2q-r1A7SapIk8RJgySYnyqN_gejimMqh7MgyItInSdUKvgqzivUY8h57DvzeGUYZrdiN48lH55CvovCw_ynAfP5asFs0kyrv9JNJyGXxQreoqyDXv-xcrUfOq1S73jv5S6RitwzZENDhOFa1OxzN5ooXSlJ2iteZV-_7l1HSKT6Y-Dg8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFICD6EE9uIvVqjkInkZnpuksx1ItVVsVacHbkJWK7Yx0Aeuv8aeal1naCiLocULyZibre8l7XxA6kzbACrmwGJHUIr5vWwEPgYxIARdGQtsctLfvvWaX3D5Xc29CiIVJ-RDFhhuMDDNfwwCHDenLGTWUCgWh5ACYq0AU-Qpc622sqqeCIOX4fnqw7Dng4uU859xG271cLL-4Ls2UzXmV1aw5jU3E8q9NXU1eLyZjdsE_voEc__U7W2gj00hxLe1C22hJxjtofY5TuIs-4Wh4wPpTnChcm-BHrXIPgKmLH3vJ2MRwDUAEhGlhGgt8M0xi_PD-IiTW07e2yzP3O6yTu30A4vZeYmw2D0HE6K2XDCcjrBVo3DGu6VIsigahJkFMYzrQL65Db9W5UyjCHuo2rjv1ppVd7WBxbRI7FqNgl2vz2OUuBUSeo1gQEqaNQ1GVVLm-EMoOheBchrqEzQMqVehwSQLbVZXKPlqOk1geIEyZpER51K9yvSJTGVQ8GQZE2kTpMqFXQlbesBHPuOdw_UY_SonNbgQ1HxU1X0LnRf63lPjxY85y3k-ibOSPIq0xgxmqFbsSck2D_yIlql012sXT4V8KnaLVZqfdilo393dHaA3SwcHBccpoeTycyGOtN43ZiRkZX_Z7EJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFICDKIg-eBenU_Mg-FRNu6yXx7E55mVziIO9lTQXJm7t2AXUX-NPNSftuk0QQR8bktM213OSc74gdCEJwAq5sCIqmUU9j1g-D4CMyAAXRgNiDtqbLbfRoXfdcnchij_lQ-QbbjAyzHwNA3wo1PUcGsqEgkhy4MuVIIh8jbrEh35de8oBUrbnpefKrg0eXnZ3hm0kzvVy-eVlaa5rLmqsZsmpbyM2-9jU0-T1ajqJrvjHN47jf_5mB21l-iiupB1oF63IeA9tLlAK99EnHAwPov47ThSuTHFbK9wDIOridi-ZmAiuAYiAIC3MYoFvR0mMH99ehMR68tZWeeZ8h3Vypw843N5LjM3WIYgYD3vJaDrGWn3Gz8YxXYpl0SDUJIj3mA30i6vQV3XuFIlwgDr1m-dqw8oudrC4NohtK2JglWvj2OEOA0CerSI_oJE2DUVZMuV4QigSCMG5DHQJwn0mVWBzSX3iqFLpEK3GSSyPEGaRZFS5zCtzvR4z6ZdcGfhUEqp0mcAtIGvWriHPqOdw-UY_THnNTgg1H-Y1X0CXef5hyvv4MWdx1k3CbNyPQ60vgxGq1boCckx7_yIlrNTqzfzp-C-FztF6u1YPH25b9ydoA5LBu8G2i2h1MprKU600TaIzMy6-ANRxD04
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+Au+Plasmonic+Photothermal+Agent+and+Iron+Oxide+Nanoparticles+on+Ultrathin+Black+Phosphorus+for+Targeted+Photothermal+and+Photodynamic+Cancer+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Dan&rft.au=Yang%2C+Guixin&rft.au=Yang%2C+Piaoping&rft.au=Lv%2C+Ruichan&rft.date=2017-05-11&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201700371&rft.externalDBID=10.1002%252Fadfm.201700371&rft.externalDocID=ADFM201700371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon