Anti‐Corrosive and Zn‐Ion‐Regulating Composite Interlayer Enabling Long‐Life Zn Metal Anodes

The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric b...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 46
Main Authors Zhou, Shuang, Wang, Yaping, Lu, Haotian, Zhang, Yifang, Fu, Chunyan, Usman, Ibrahim, Liu, Zhexuan, Feng, Mingyang, Fang, Guozhao, Cao, Xinxin, Liang, Shuquan, Pan, Anqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries. Side reactions and dendrites can be effectively suppressed by coating an anti‐corrosive and Zn‐ion‐regulating interlayer on the Zn anode. In the layer, polyacrylonitrile acts as an H2O/O2 barrier, and amorphous Si3N4 nanoparticles with special dielectric properties can enhance ion kinetics and endow uniform Zn deposition. The Zn anodes with the coating can deliver good performance even under harsh cycling conditions.
AbstractList The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si 3 N 4 ) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H 2 O/O 2 corrosion, and Si 3 N 4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm −2 . Even under draconian deep‐discharging (DOD Zn  = 60%) and high current density (10 mA cm −2 ), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries.
The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries.
The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries. Side reactions and dendrites can be effectively suppressed by coating an anti‐corrosive and Zn‐ion‐regulating interlayer on the Zn anode. In the layer, polyacrylonitrile acts as an H2O/O2 barrier, and amorphous Si3N4 nanoparticles with special dielectric properties can enhance ion kinetics and endow uniform Zn deposition. The Zn anodes with the coating can deliver good performance even under harsh cycling conditions.
Author Liu, Zhexuan
Fang, Guozhao
Liang, Shuquan
Pan, Anqiang
Wang, Yaping
Fu, Chunyan
Zhang, Yifang
Zhou, Shuang
Lu, Haotian
Usman, Ibrahim
Feng, Mingyang
Cao, Xinxin
Author_xml – sequence: 1
  givenname: Shuang
  surname: Zhou
  fullname: Zhou, Shuang
  organization: Central South University
– sequence: 2
  givenname: Yaping
  surname: Wang
  fullname: Wang, Yaping
  organization: Ministry of Education
– sequence: 3
  givenname: Haotian
  surname: Lu
  fullname: Lu, Haotian
  organization: International Campus of Tianjin University
– sequence: 4
  givenname: Yifang
  surname: Zhang
  fullname: Zhang, Yifang
  email: yifangzhang@tju.edu.cn
  organization: International Campus of Tianjin University
– sequence: 5
  givenname: Chunyan
  surname: Fu
  fullname: Fu, Chunyan
  organization: Central South University
– sequence: 6
  givenname: Ibrahim
  surname: Usman
  fullname: Usman, Ibrahim
  organization: Ahmadu Bello University
– sequence: 7
  givenname: Zhexuan
  surname: Liu
  fullname: Liu, Zhexuan
  organization: Central South University
– sequence: 8
  givenname: Mingyang
  surname: Feng
  fullname: Feng, Mingyang
  organization: Central South University
– sequence: 9
  givenname: Guozhao
  surname: Fang
  fullname: Fang, Guozhao
  organization: Central South University
– sequence: 10
  givenname: Xinxin
  surname: Cao
  fullname: Cao, Xinxin
  organization: Central South University
– sequence: 11
  givenname: Shuquan
  surname: Liang
  fullname: Liang, Shuquan
  organization: Central South University
– sequence: 12
  givenname: Anqiang
  orcidid: 0000-0002-7605-1192
  surname: Pan
  fullname: Pan, Anqiang
  email: pananqiang@csu.edu.cn
  organization: Central South University
BookMark eNqFkM9Kw0AQxhepYK1ePQc8t-6_bLLHEFstpAiiIF6WTbIpW9LdutkqvfkIPqNP4oZKBUG8zAwz32-G-U7BwFijALhAcIIgxFeybtYTDDGClDB0BIaIITYmEKeDQ42eTsBp160gRElC6BDUmfH68_0jt87ZTr-qSJo6ejahNbd9vFfLbSu9Nssot-tN0HgVzY1XrpU75aKpkWXbTwtrlkFf6EYFPlooL9soM7ZW3Rk4bmTbqfPvPAKPs-lDfjsu7m7meVaMK5ISNI4lYSUmMawYq3mSVpTVTCmKSckbIlnCcQIRSgmDlPGS8ibGCU0ljUtcScLJCFzu926cfdmqzouV3ToTTgoc8zimDFESVJO9qgofd041YuP0WrqdQFD0ToreSXFwMgD0F1BpHyyxxjup278xvsfedKt2_xwR2fVs8cN-AVzRjRI
CitedBy_id crossref_primary_10_1016_j_ensm_2022_02_033
crossref_primary_10_1016_j_scriptamat_2023_115520
crossref_primary_10_1021_acs_nanolett_4c03201
crossref_primary_10_1016_j_ensm_2023_02_039
crossref_primary_10_1039_D5EE00075K
crossref_primary_10_1002_advs_202200155
crossref_primary_10_1002_smtd_202300255
crossref_primary_10_1002_adma_202208764
crossref_primary_10_1002_sus2_184
crossref_primary_10_1039_D3MH00261F
crossref_primary_10_34133_energymatadv_0035
crossref_primary_10_1021_acsnano_2c05285
crossref_primary_10_1021_acssuschemeng_4c06019
crossref_primary_10_1016_j_ijbiomac_2024_139438
crossref_primary_10_1039_D2SE01398C
crossref_primary_10_1039_D2TA04875B
crossref_primary_10_1016_j_cej_2021_134378
crossref_primary_10_1016_j_cej_2022_136799
crossref_primary_10_1002_smtd_202201572
crossref_primary_10_1007_s12274_022_4619_5
crossref_primary_10_1021_acssuschemeng_4c07186
crossref_primary_10_1002_smll_202303457
crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1021_acsenergylett_2c02359
crossref_primary_10_1021_acs_iecr_2c03462
crossref_primary_10_1039_D3QI01981K
crossref_primary_10_1002_smll_202200567
crossref_primary_10_1016_j_jpowsour_2024_234134
crossref_primary_10_1016_j_jcis_2025_01_279
crossref_primary_10_1002_adfm_202213510
crossref_primary_10_1016_j_chempr_2023_03_033
crossref_primary_10_1002_adfm_202302293
crossref_primary_10_1002_adma_202206970
crossref_primary_10_1002_smll_202405522
crossref_primary_10_1039_D3EE02522E
crossref_primary_10_1002_adsu_202401048
crossref_primary_10_1016_j_enchem_2022_100076
crossref_primary_10_1002_adfm_202313859
crossref_primary_10_1002_adma_202202382
crossref_primary_10_1002_smll_202305902
crossref_primary_10_1021_acsnano_3c05640
crossref_primary_10_1016_j_ensm_2023_102920
crossref_primary_10_1016_j_jcis_2022_05_157
crossref_primary_10_1021_acsnano_2c03398
crossref_primary_10_1002_eem2_12689
crossref_primary_10_1021_acsami_4c01004
crossref_primary_10_1021_acsenergylett_3c00367
crossref_primary_10_1007_s43979_023_00073_5
crossref_primary_10_1016_j_nanoen_2022_107333
crossref_primary_10_1016_j_ensm_2023_103075
crossref_primary_10_1002_aenm_202301997
crossref_primary_10_3390_batteries9060328
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1002_adfm_202306085
crossref_primary_10_1002_aenm_202400398
crossref_primary_10_1002_anie_202403050
crossref_primary_10_1016_j_jechem_2022_08_040
crossref_primary_10_1021_acsanm_3c06229
crossref_primary_10_1002_adfm_202309350
crossref_primary_10_1002_adfm_202417189
crossref_primary_10_1016_j_ensm_2024_103391
crossref_primary_10_1002_smll_202204713
crossref_primary_10_1016_j_apmate_2022_100093
crossref_primary_10_1002_aenm_202400033
crossref_primary_10_1002_cssc_202301942
crossref_primary_10_1016_j_jechem_2022_05_033
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1002_aenm_202401479
crossref_primary_10_1002_adma_202312934
crossref_primary_10_1002_smll_202203061
crossref_primary_10_1021_acsenergylett_3c02139
crossref_primary_10_1039_D3RA02350H
crossref_primary_10_1002_batt_202300544
crossref_primary_10_1002_ece2_48
crossref_primary_10_1016_j_ensm_2024_103541
crossref_primary_10_1016_S1003_6326_24_66613_6
crossref_primary_10_1016_j_pmatsci_2025_101453
crossref_primary_10_1002_ange_202403050
crossref_primary_10_1002_adfm_202308015
crossref_primary_10_1038_s41467_023_39947_8
crossref_primary_10_1002_adfm_202307201
crossref_primary_10_1002_smll_202405300
crossref_primary_10_1016_j_est_2024_113434
crossref_primary_10_1016_j_est_2024_114642
crossref_primary_10_1002_sstr_202200143
crossref_primary_10_1039_D4TA00041B
crossref_primary_10_1002_admi_202200564
crossref_primary_10_1016_j_nanoen_2022_107751
crossref_primary_10_1021_acsnano_3c10081
crossref_primary_10_1016_j_cej_2023_147763
crossref_primary_10_1021_acsenergylett_2c00124
crossref_primary_10_1002_adfm_202304280
crossref_primary_10_1016_j_matt_2022_08_025
crossref_primary_10_1016_j_cej_2022_138772
crossref_primary_10_1016_j_cej_2024_158660
crossref_primary_10_1021_acsami_3c11936
crossref_primary_10_1002_adfm_202211088
crossref_primary_10_1002_aenm_202200318
crossref_primary_10_1016_j_est_2024_112992
crossref_primary_10_1016_j_est_2024_113686
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1016_j_nanoen_2022_107426
crossref_primary_10_1039_D3EE03246A
crossref_primary_10_1002_smll_202406481
crossref_primary_10_1016_j_ensm_2023_01_037
crossref_primary_10_1039_D3DT02212A
crossref_primary_10_1149_1945_7111_acdd9e
crossref_primary_10_1002_adfm_202204026
crossref_primary_10_1016_j_nanoen_2022_107269
crossref_primary_10_1039_D3SC06934F
crossref_primary_10_1002_smll_202306406
crossref_primary_10_1002_ange_202308017
crossref_primary_10_1002_adma_202412844
crossref_primary_10_1002_smll_202306195
crossref_primary_10_1016_j_jcis_2023_08_047
crossref_primary_10_1002_aenm_202300550
crossref_primary_10_1021_acsaem_4c02586
crossref_primary_10_1016_j_cej_2023_147759
crossref_primary_10_1016_j_actamat_2024_120433
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1002_advs_202201433
crossref_primary_10_1016_j_jcis_2024_10_145
crossref_primary_10_1021_acsnano_4c06008
crossref_primary_10_1021_acs_nanolett_3c04806
crossref_primary_10_1002_advs_202307667
crossref_primary_10_1002_adma_202203153
crossref_primary_10_3390_batteries10060200
crossref_primary_10_1016_j_jpowsour_2022_232385
crossref_primary_10_1002_cey2_441
crossref_primary_10_1021_acsnano_3c04996
crossref_primary_10_1002_adfm_202412577
crossref_primary_10_1002_adfm_202210290
crossref_primary_10_1002_aenm_202203165
crossref_primary_10_1016_j_jpowsour_2023_233894
crossref_primary_10_1002_batt_202200468
crossref_primary_10_1002_smll_202300130
crossref_primary_10_1002_eom2_12190
crossref_primary_10_1021_acs_nanolett_2c04410
crossref_primary_10_1002_aenm_202103708
crossref_primary_10_1021_acsenergylett_3c01017
crossref_primary_10_1002_adfm_202209028
crossref_primary_10_1002_anie_202308017
crossref_primary_10_1039_D1CC05849E
crossref_primary_10_1002_eom2_12173
crossref_primary_10_1007_s40843_022_2308_4
crossref_primary_10_1002_adfm_202418594
crossref_primary_10_1016_j_est_2024_112898
crossref_primary_10_1021_acsenergylett_2c02282
crossref_primary_10_1021_acs_nanolett_2c03114
crossref_primary_10_1039_D3EE00982C
crossref_primary_10_1016_j_jechem_2022_06_028
crossref_primary_10_1016_j_nanoen_2022_107329
crossref_primary_10_1002_aenm_202302493
crossref_primary_10_1002_aenm_202302770
crossref_primary_10_1002_anie_202401507
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1002_adfm_202212446
crossref_primary_10_1039_D1TA10122F
crossref_primary_10_1002_advs_202202380
crossref_primary_10_1002_aenm_202404660
crossref_primary_10_1002_ange_202401507
crossref_primary_10_1016_j_ensm_2022_10_061
crossref_primary_10_1021_acsenergylett_2c01920
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1016_j_apsusc_2022_154660
crossref_primary_10_1002_aenm_202200665
crossref_primary_10_3390_en16217443
crossref_primary_10_1002_adfm_202417890
crossref_primary_10_1016_j_mser_2024_100844
crossref_primary_10_1002_aenm_202202603
crossref_primary_10_1016_j_cej_2024_154395
crossref_primary_10_59717_j_xinn_mater_2023_100029
crossref_primary_10_1002_aenm_202500155
crossref_primary_10_1002_adma_202206239
crossref_primary_10_1002_adfm_202301530
crossref_primary_10_1002_smll_202303906
crossref_primary_10_1021_acs_nanolett_3c00741
crossref_primary_10_1039_D2TA04779A
crossref_primary_10_1002_adma_202311637
crossref_primary_10_1016_j_cej_2024_152935
Cites_doi 10.1021/acsaem.1c00979
10.1002/aenm.201801090
10.1007/BF01148763
10.1038/s41467-020-17752-x
10.1016/j.jechem.2020.05.056
10.1038/s41467-017-00974-x
10.1016/0965-9773(95)00186-7
10.1002/anie.201814653
10.1016/j.joule.2019.02.012
10.1002/anie.201813223
10.1039/C9EE03857D
10.1002/adma.202100187
10.1007/s12598-020-01588-x
10.1016/j.jechem.2020.07.021
10.1002/adma.201605531
10.1016/j.ensm.2021.02.041
10.1002/anie.202012322
10.1002/adfm.201907343
10.1002/adfm.202001867
10.1002/advs.202002173
10.1016/j.ensm.2020.04.038
10.1002/adma.202001755
10.1002/anie.202008634
10.1039/C9EE03545A
10.1002/aenm.202100186
10.1016/j.nanoen.2018.09.021
10.1002/aenm.201904215
10.1002/adfm.202001263
10.1002/adfm.201908528
10.1002/adma.202001854
10.1007/s10965-018-1518-2
10.1002/app.30467
10.1002/adfm.202006495
10.1016/j.cej.2020.126508
10.1039/C9EE00596J
10.1111/jace.12509
10.1002/pssa.2211360203
10.1002/anie.202001844
10.1002/adfm.202000599
10.1016/j.ceramint.2020.06.147
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202104361
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202104361
ADFM202104361
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52002270
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M670661
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3831-5a36b2350c66d978c46d6ee423b9f3a679270118360469b49f52748a45b2ca393
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:36:33 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 04:12:35 EDT 2025
Wed Jan 22 16:26:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-5a36b2350c66d978c46d6ee423b9f3a679270118360469b49f52748a45b2ca393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7605-1192
PQID 2595546143
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2595546143
crossref_primary_10_1002_adfm_202104361
crossref_citationtrail_10_1002_adfm_202104361
wiley_primary_10_1002_adfm_202104361_ADFM202104361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2019; 3
2021; 4
2019; 12
2019; 58
2021; 404
2020; 59
2020; 13
2017; 29
2020; 11
2020; 32
2020; 10
1989; 24
1995; 6
2018; 25
2020; 7
2021; 38
2018; 8
2021; 54
2021; 11
2021; 55
2021; 33
2020; 31
2020; 30
2013; 96
2020; 46
1993; 136
2021; 60
2018; 53
2021; 40
2011; 120
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 3961
  year: 2020
  publication-title: Nat. Commun.
– volume: 40
  start-page: 309
  year: 2021
  publication-title: Rare Met.
– volume: 58
  start-page: 4313
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 24
  start-page: 821
  year: 1989
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 6197
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 1289
  year: 2019
  publication-title: Joule
– volume: 13
  start-page: 503
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 2861
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 850
  year: 2017
  publication-title: Nat. Commun.
– volume: 46
  year: 2020
  publication-title: Ceram. Int.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 96
  start-page: 3009
  year: 2013
  publication-title: J. Am. Ceram. Soc.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  start-page: 823
  year: 1995
  publication-title: Nanostruct. Mater.
– volume: 120
  start-page: 1133
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 194
  year: 2021
  publication-title: J. Energy Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 30
  start-page: 104
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 59
  start-page: 9377
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 549
  year: 2021
  publication-title: J. Energy Chem.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 136
  start-page: 291
  year: 1993
  publication-title: Phys. Status Solidi
– volume: 25
  start-page: 130
  year: 2018
  publication-title: J. Polym. Res.
– volume: 53
  start-page: 666
  year: 2018
  publication-title: Nano Energy
– volume: 38
  start-page: 141
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 1212
  year: 2020
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_40_1
  doi: 10.1021/acsaem.1c00979
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_8_36_1
  doi: 10.1007/BF01148763
– ident: e_1_2_8_24_1
  doi: 10.1038/s41467-020-17752-x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jechem.2020.05.056
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-017-00974-x
– ident: e_1_2_8_26_1
  doi: 10.1016/0965-9773(95)00186-7
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201814653
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_8_31_1
  doi: 10.1039/C9EE03857D
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.202100187
– ident: e_1_2_8_3_1
  doi: 10.1007/s12598-020-01588-x
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jechem.2020.07.021
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ensm.2021.02.041
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201907343
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202001867
– ident: e_1_2_8_11_1
  doi: 10.1002/advs.202002173
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ensm.2020.04.038
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202001755
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.202008634
– ident: e_1_2_8_9_1
  doi: 10.1039/C9EE03545A
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.202100186
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nanoen.2018.09.021
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.201904215
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202001263
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202001854
– ident: e_1_2_8_28_1
  doi: 10.1007/s10965-018-1518-2
– ident: e_1_2_8_37_1
  doi: 10.1002/app.30467
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.202006495
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cej.2020.126508
– ident: e_1_2_8_7_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_8_29_1
  doi: 10.1111/jace.12509
– ident: e_1_2_8_27_1
  doi: 10.1002/pssa.2211360203
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202001844
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.202000599
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ceramint.2020.06.147
SSID ssj0017734
Score 2.6821175
Snippet The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anode effect
anti‐corrosion
aqueous zinc batteries
Dendritic structure
Deposition
dielectric behavior
Dielectric properties
Interlayers
Kinetics
Manganese
Materials science
Polyacrylonitrile
Rechargeable batteries
Silicon nitride
Zinc
zinc electrodeposition
zinc metal anodes
Title Anti‐Corrosive and Zn‐Ion‐Regulating Composite Interlayer Enabling Long‐Life Zn Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104361
https://www.proquest.com/docview/2595546143
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQLDDwRhRKlQGJKW0ettOMVR8qqGUoVKpYIjt2UEWVoDZdmPgEvpEv4d6kTVskhARLlIedOHZ8fY5z7zEh11oDu6GWNj3KtEkdi5mCK8sEJsG8CACtohjg3L_n3SG9G7HRWhR_rg9RTLhhz8jsNXZwIWe1lWioUBFGkgNloW7Gf9BhC1HRoNCPsj0v_63MbXTwskdL1UbLqW1m3xyVVlBzHbBmI07ngIhlWXNHk5fqPJXV8O2bjON_XuaQ7C_gqNHIv58jsqXjY7K3JlJ4QlQjTsef7x_NZAplB-NoiFgZTzGcuk1wO8iXs4fEBloX9ALTRjbTOBEA6I02hmfh1V4SP0P63jjSkN_o6xQfHSdKz07JsNN-bHbNxdoMZgic1jaZcLl0XGaFnCtgoiHlimsN4Ez6kSu45zseBrW6HAm4pH7EgP_WBWXSCYXru2dkO05ifU4MqaQIPVEH7GBTJf06s1wwI4wKz6pHDisRc9k2QbgQLsf1MyZBLrnsBFh7QVF7JXJTpH_NJTt-TFleNnWw6LqzAPggeu4BjiwRJ2uzX-4SNFqdfnF08ZdMl2QX9_MYxzLZTqdzfQVgJ5UVstNo9XsPlezD_gLKu_iK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToNAFJ0YXagL38ZqVRYmrlAeMwMsmz5StXVhNDFuyAwzmMYGTEs3rvwEv9Ev8V4otDUxJrohAe7AMM9zhnvPEHKmNbAbamnTo0yb1LGYKbiyTGASzIsB0CqKAc79W959oNePrPQmxFiYQh-iWnDDnpGP19jBcUH6cqYaKlSMoeTAWaiLBGgFt_VG-fzWXaUgZXte8WOZ2-jiZT-Wuo2Wc7mYfnFemoHNeciazzmdTSLL3BauJi8Xk0xeRG_fhBz_9TlbZGOKSI1G0YS2yZJOdsj6nE7hLlGNJBt8vn800xFkHsZHQyTKeErg0lWKx7tiR3swNnCAQUcwbeSLjUMBmN5oY4QW3u2lyTPY9waxhvRGX2f46iRVerxHHjrt-2bXnG7PYEZAa22TCZdLx2VWxLkCMhpRrrjWgM9kELuCe4HjYVyry5GDSxrEDCiwLyiTTiTcwN0ny0ma6ANiSCVF5Akf4INNlQx8ZrkwkjAqPMuPHVYjZlk5YTTVLsctNIZhobrshFh6YVV6NXJe2b8Wqh0_WtbLug6nvXccAiVE5z2AkjXi5JX2y1PCRqvTr84O_5LolKx27_u9sHd1e3NE1vB6EfJYJ8vZaKKPAftk8iRv3V-BVfsS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1EQXThW6zPLARX0TxmJsmy9IHVtkixUNyEmcxEiiUpGjeu_AS_0S_x3qRNW0EE3QSS3Ekm8zxncu8ZQs61BnZDLW16lGmTOhYzBVeWCUyCeTEAWkUxwLnT5dd9ejNgg7ko_kIfolxww56Rj9fYwccqvpqJhgoVYyQ5UBbqIv9ZodwKcPOGeq8UkLI9r_ivzG308LIHU9lGy7laTL84Lc2w5jxizaec5iYR08wWniZPl6-ZvIzevuk4_udrtsjGBI8a1aIBbZMlneyQ9TmVwl2iqkk2_Hz_qKXPkHcYHQ2RKOMhgUutFI-9Yj97MDZweEE3MG3kS40jAYjeaGB8Ft5tp8kj2LeHsYb0Rkdn-OokVfplj_SbjfvatTnZnMGMgNTaJhMul47LrIhzBVQ0olxxrQGdySB2BfcCx8OoVpcjA5c0iBkQYF9QJp1IuIG7T5aTNNEHxJBKisgTPoAHmyoZ-MxyYRxhVHiWHzusQsxp3YTRRLkcN9AYhYXmshNi6YVl6VXIRWk_LjQ7frQ8nlZ1OOm7LyEQQnTdAyBZIU5eZ788JazWm53y7PAvic7I6l29GbZb3dsjsoaXi3jHY7KcPb_qEwA-mTzN2_YXkcz5wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti%E2%80%90Corrosive+and+Zn%E2%80%90Ion%E2%80%90Regulating+Composite+Interlayer+Enabling+Long%E2%80%90Life+Zn+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Shuang&rft.au=Wang%2C+Yaping&rft.au=Lu%2C+Haotian&rft.au=Zhang%2C+Yifang&rft.date=2021-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=46&rft_id=info:doi/10.1002%2Fadfm.202104361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon