Anti‐Corrosive and Zn‐Ion‐Regulating Composite Interlayer Enabling Long‐Life Zn Metal Anodes
The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric b...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 46 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries.
Side reactions and dendrites can be effectively suppressed by coating an anti‐corrosive and Zn‐ion‐regulating interlayer on the Zn anode. In the layer, polyacrylonitrile acts as an H2O/O2 barrier, and amorphous Si3N4 nanoparticles with special dielectric properties can enhance ion kinetics and endow uniform Zn deposition. The Zn anodes with the coating can deliver good performance even under harsh cycling conditions. |
---|---|
AbstractList | The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si
3
N
4
) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H
2
O/O
2
corrosion, and Si
3
N
4
with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm
−2
. Even under draconian deep‐discharging (DOD
Zn
= 60%) and high current density (10 mA cm
−2
), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries. The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries. The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions have hindered its usage. Herein, an elastic and anti‐corrosive interlayer is introduced to address the problem. The idiosyncratic dielectric behavior of amorphous and nanostructured silicon nitride (Si3N4) is utilized to manipulate the ion kinetics, by uniformly dispersing its particles in polyacrylonitrile (PAN) to fabricate an interlayer attached to Zn metal (PSN‐Zn). PAN serves as an elastic constraint to inhibit drastic dendrite evolution and blocks H2O/O2 corrosion, and Si3N4 with a high dielectric constant can facilitate the ion kinetics and endow uniform Zn deposition. The electrochemical stability and deposition consistency of the Zn anodes are greatly improved, with an extended lifespan of over 800 h at 1 mA cm−2. Even under draconian deep‐discharging (DODZn = 60%) and high current density (10 mA cm−2), the PSN‐Zn anode can still operate stably for over 250 h. The effect of the dielectric property is systematically discussed and verified by experiments and theoretical simulations. Moreover, full cells with vanadium‐ and manganese‐based cathodes also deliver excellent performance, indicating the use of the multifunctional interlayer as an appealing approach for rechargeable aqueous zinc batteries. Side reactions and dendrites can be effectively suppressed by coating an anti‐corrosive and Zn‐ion‐regulating interlayer on the Zn anode. In the layer, polyacrylonitrile acts as an H2O/O2 barrier, and amorphous Si3N4 nanoparticles with special dielectric properties can enhance ion kinetics and endow uniform Zn deposition. The Zn anodes with the coating can deliver good performance even under harsh cycling conditions. |
Author | Liu, Zhexuan Fang, Guozhao Liang, Shuquan Pan, Anqiang Wang, Yaping Fu, Chunyan Zhang, Yifang Zhou, Shuang Lu, Haotian Usman, Ibrahim Feng, Mingyang Cao, Xinxin |
Author_xml | – sequence: 1 givenname: Shuang surname: Zhou fullname: Zhou, Shuang organization: Central South University – sequence: 2 givenname: Yaping surname: Wang fullname: Wang, Yaping organization: Ministry of Education – sequence: 3 givenname: Haotian surname: Lu fullname: Lu, Haotian organization: International Campus of Tianjin University – sequence: 4 givenname: Yifang surname: Zhang fullname: Zhang, Yifang email: yifangzhang@tju.edu.cn organization: International Campus of Tianjin University – sequence: 5 givenname: Chunyan surname: Fu fullname: Fu, Chunyan organization: Central South University – sequence: 6 givenname: Ibrahim surname: Usman fullname: Usman, Ibrahim organization: Ahmadu Bello University – sequence: 7 givenname: Zhexuan surname: Liu fullname: Liu, Zhexuan organization: Central South University – sequence: 8 givenname: Mingyang surname: Feng fullname: Feng, Mingyang organization: Central South University – sequence: 9 givenname: Guozhao surname: Fang fullname: Fang, Guozhao organization: Central South University – sequence: 10 givenname: Xinxin surname: Cao fullname: Cao, Xinxin organization: Central South University – sequence: 11 givenname: Shuquan surname: Liang fullname: Liang, Shuquan organization: Central South University – sequence: 12 givenname: Anqiang orcidid: 0000-0002-7605-1192 surname: Pan fullname: Pan, Anqiang email: pananqiang@csu.edu.cn organization: Central South University |
BookMark | eNqFkM9Kw0AQxhepYK1ePQc8t-6_bLLHEFstpAiiIF6WTbIpW9LdutkqvfkIPqNP4oZKBUG8zAwz32-G-U7BwFijALhAcIIgxFeybtYTDDGClDB0BIaIITYmEKeDQ42eTsBp160gRElC6BDUmfH68_0jt87ZTr-qSJo6ejahNbd9vFfLbSu9Nssot-tN0HgVzY1XrpU75aKpkWXbTwtrlkFf6EYFPlooL9soM7ZW3Rk4bmTbqfPvPAKPs-lDfjsu7m7meVaMK5ISNI4lYSUmMawYq3mSVpTVTCmKSckbIlnCcQIRSgmDlPGS8ibGCU0ljUtcScLJCFzu926cfdmqzouV3ToTTgoc8zimDFESVJO9qgofd041YuP0WrqdQFD0ToreSXFwMgD0F1BpHyyxxjup278xvsfedKt2_xwR2fVs8cN-AVzRjRI |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_02_033 crossref_primary_10_1016_j_scriptamat_2023_115520 crossref_primary_10_1021_acs_nanolett_4c03201 crossref_primary_10_1016_j_ensm_2023_02_039 crossref_primary_10_1039_D5EE00075K crossref_primary_10_1002_advs_202200155 crossref_primary_10_1002_smtd_202300255 crossref_primary_10_1002_adma_202208764 crossref_primary_10_1002_sus2_184 crossref_primary_10_1039_D3MH00261F crossref_primary_10_34133_energymatadv_0035 crossref_primary_10_1021_acsnano_2c05285 crossref_primary_10_1021_acssuschemeng_4c06019 crossref_primary_10_1016_j_ijbiomac_2024_139438 crossref_primary_10_1039_D2SE01398C crossref_primary_10_1039_D2TA04875B crossref_primary_10_1016_j_cej_2021_134378 crossref_primary_10_1016_j_cej_2022_136799 crossref_primary_10_1002_smtd_202201572 crossref_primary_10_1007_s12274_022_4619_5 crossref_primary_10_1021_acssuschemeng_4c07186 crossref_primary_10_1002_smll_202303457 crossref_primary_10_1002_aenm_202405253 crossref_primary_10_1021_acsenergylett_2c02359 crossref_primary_10_1021_acs_iecr_2c03462 crossref_primary_10_1039_D3QI01981K crossref_primary_10_1002_smll_202200567 crossref_primary_10_1016_j_jpowsour_2024_234134 crossref_primary_10_1016_j_jcis_2025_01_279 crossref_primary_10_1002_adfm_202213510 crossref_primary_10_1016_j_chempr_2023_03_033 crossref_primary_10_1002_adfm_202302293 crossref_primary_10_1002_adma_202206970 crossref_primary_10_1002_smll_202405522 crossref_primary_10_1039_D3EE02522E crossref_primary_10_1002_adsu_202401048 crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1002_adfm_202313859 crossref_primary_10_1002_adma_202202382 crossref_primary_10_1002_smll_202305902 crossref_primary_10_1021_acsnano_3c05640 crossref_primary_10_1016_j_ensm_2023_102920 crossref_primary_10_1016_j_jcis_2022_05_157 crossref_primary_10_1021_acsnano_2c03398 crossref_primary_10_1002_eem2_12689 crossref_primary_10_1021_acsami_4c01004 crossref_primary_10_1021_acsenergylett_3c00367 crossref_primary_10_1007_s43979_023_00073_5 crossref_primary_10_1016_j_nanoen_2022_107333 crossref_primary_10_1016_j_ensm_2023_103075 crossref_primary_10_1002_aenm_202301997 crossref_primary_10_3390_batteries9060328 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1002_adfm_202306085 crossref_primary_10_1002_aenm_202400398 crossref_primary_10_1002_anie_202403050 crossref_primary_10_1016_j_jechem_2022_08_040 crossref_primary_10_1021_acsanm_3c06229 crossref_primary_10_1002_adfm_202309350 crossref_primary_10_1002_adfm_202417189 crossref_primary_10_1016_j_ensm_2024_103391 crossref_primary_10_1002_smll_202204713 crossref_primary_10_1016_j_apmate_2022_100093 crossref_primary_10_1002_aenm_202400033 crossref_primary_10_1002_cssc_202301942 crossref_primary_10_1016_j_jechem_2022_05_033 crossref_primary_10_1007_s12598_023_02541_4 crossref_primary_10_1002_aenm_202401479 crossref_primary_10_1002_adma_202312934 crossref_primary_10_1002_smll_202203061 crossref_primary_10_1021_acsenergylett_3c02139 crossref_primary_10_1039_D3RA02350H crossref_primary_10_1002_batt_202300544 crossref_primary_10_1002_ece2_48 crossref_primary_10_1016_j_ensm_2024_103541 crossref_primary_10_1016_S1003_6326_24_66613_6 crossref_primary_10_1016_j_pmatsci_2025_101453 crossref_primary_10_1002_ange_202403050 crossref_primary_10_1002_adfm_202308015 crossref_primary_10_1038_s41467_023_39947_8 crossref_primary_10_1002_adfm_202307201 crossref_primary_10_1002_smll_202405300 crossref_primary_10_1016_j_est_2024_113434 crossref_primary_10_1016_j_est_2024_114642 crossref_primary_10_1002_sstr_202200143 crossref_primary_10_1039_D4TA00041B crossref_primary_10_1002_admi_202200564 crossref_primary_10_1016_j_nanoen_2022_107751 crossref_primary_10_1021_acsnano_3c10081 crossref_primary_10_1016_j_cej_2023_147763 crossref_primary_10_1021_acsenergylett_2c00124 crossref_primary_10_1002_adfm_202304280 crossref_primary_10_1016_j_matt_2022_08_025 crossref_primary_10_1016_j_cej_2022_138772 crossref_primary_10_1016_j_cej_2024_158660 crossref_primary_10_1021_acsami_3c11936 crossref_primary_10_1002_adfm_202211088 crossref_primary_10_1002_aenm_202200318 crossref_primary_10_1016_j_est_2024_112992 crossref_primary_10_1016_j_est_2024_113686 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1016_j_nanoen_2022_107426 crossref_primary_10_1039_D3EE03246A crossref_primary_10_1002_smll_202406481 crossref_primary_10_1016_j_ensm_2023_01_037 crossref_primary_10_1039_D3DT02212A crossref_primary_10_1149_1945_7111_acdd9e crossref_primary_10_1002_adfm_202204026 crossref_primary_10_1016_j_nanoen_2022_107269 crossref_primary_10_1039_D3SC06934F crossref_primary_10_1002_smll_202306406 crossref_primary_10_1002_ange_202308017 crossref_primary_10_1002_adma_202412844 crossref_primary_10_1002_smll_202306195 crossref_primary_10_1016_j_jcis_2023_08_047 crossref_primary_10_1002_aenm_202300550 crossref_primary_10_1021_acsaem_4c02586 crossref_primary_10_1016_j_cej_2023_147759 crossref_primary_10_1016_j_actamat_2024_120433 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1002_advs_202201433 crossref_primary_10_1016_j_jcis_2024_10_145 crossref_primary_10_1021_acsnano_4c06008 crossref_primary_10_1021_acs_nanolett_3c04806 crossref_primary_10_1002_advs_202307667 crossref_primary_10_1002_adma_202203153 crossref_primary_10_3390_batteries10060200 crossref_primary_10_1016_j_jpowsour_2022_232385 crossref_primary_10_1002_cey2_441 crossref_primary_10_1021_acsnano_3c04996 crossref_primary_10_1002_adfm_202412577 crossref_primary_10_1002_adfm_202210290 crossref_primary_10_1002_aenm_202203165 crossref_primary_10_1016_j_jpowsour_2023_233894 crossref_primary_10_1002_batt_202200468 crossref_primary_10_1002_smll_202300130 crossref_primary_10_1002_eom2_12190 crossref_primary_10_1021_acs_nanolett_2c04410 crossref_primary_10_1002_aenm_202103708 crossref_primary_10_1021_acsenergylett_3c01017 crossref_primary_10_1002_adfm_202209028 crossref_primary_10_1002_anie_202308017 crossref_primary_10_1039_D1CC05849E crossref_primary_10_1002_eom2_12173 crossref_primary_10_1007_s40843_022_2308_4 crossref_primary_10_1002_adfm_202418594 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1021_acsenergylett_2c02282 crossref_primary_10_1021_acs_nanolett_2c03114 crossref_primary_10_1039_D3EE00982C crossref_primary_10_1016_j_jechem_2022_06_028 crossref_primary_10_1016_j_nanoen_2022_107329 crossref_primary_10_1002_aenm_202302493 crossref_primary_10_1002_aenm_202302770 crossref_primary_10_1002_anie_202401507 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1002_adfm_202212446 crossref_primary_10_1039_D1TA10122F crossref_primary_10_1002_advs_202202380 crossref_primary_10_1002_aenm_202404660 crossref_primary_10_1002_ange_202401507 crossref_primary_10_1016_j_ensm_2022_10_061 crossref_primary_10_1021_acsenergylett_2c01920 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1016_j_apsusc_2022_154660 crossref_primary_10_1002_aenm_202200665 crossref_primary_10_3390_en16217443 crossref_primary_10_1002_adfm_202417890 crossref_primary_10_1016_j_mser_2024_100844 crossref_primary_10_1002_aenm_202202603 crossref_primary_10_1016_j_cej_2024_154395 crossref_primary_10_59717_j_xinn_mater_2023_100029 crossref_primary_10_1002_aenm_202500155 crossref_primary_10_1002_adma_202206239 crossref_primary_10_1002_adfm_202301530 crossref_primary_10_1002_smll_202303906 crossref_primary_10_1021_acs_nanolett_3c00741 crossref_primary_10_1039_D2TA04779A crossref_primary_10_1002_adma_202311637 crossref_primary_10_1016_j_cej_2024_152935 |
Cites_doi | 10.1021/acsaem.1c00979 10.1002/aenm.201801090 10.1007/BF01148763 10.1038/s41467-020-17752-x 10.1016/j.jechem.2020.05.056 10.1038/s41467-017-00974-x 10.1016/0965-9773(95)00186-7 10.1002/anie.201814653 10.1016/j.joule.2019.02.012 10.1002/anie.201813223 10.1039/C9EE03857D 10.1002/adma.202100187 10.1007/s12598-020-01588-x 10.1016/j.jechem.2020.07.021 10.1002/adma.201605531 10.1016/j.ensm.2021.02.041 10.1002/anie.202012322 10.1002/adfm.201907343 10.1002/adfm.202001867 10.1002/advs.202002173 10.1016/j.ensm.2020.04.038 10.1002/adma.202001755 10.1002/anie.202008634 10.1039/C9EE03545A 10.1002/aenm.202100186 10.1016/j.nanoen.2018.09.021 10.1002/aenm.201904215 10.1002/adfm.202001263 10.1002/adfm.201908528 10.1002/adma.202001854 10.1007/s10965-018-1518-2 10.1002/app.30467 10.1002/adfm.202006495 10.1016/j.cej.2020.126508 10.1039/C9EE00596J 10.1111/jace.12509 10.1002/pssa.2211360203 10.1002/anie.202001844 10.1002/adfm.202000599 10.1016/j.ceramint.2020.06.147 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202104361 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202104361 ADFM202104361 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52002270 – fundername: China Postdoctoral Science Foundation funderid: 2020M670661 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3831-5a36b2350c66d978c46d6ee423b9f3a679270118360469b49f52748a45b2ca393 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:36:33 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 04:12:35 EDT 2025 Wed Jan 22 16:26:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3831-5a36b2350c66d978c46d6ee423b9f3a679270118360469b49f52748a45b2ca393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7605-1192 |
PQID | 2595546143 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2595546143 crossref_primary_10_1002_adfm_202104361 crossref_citationtrail_10_1002_adfm_202104361 wiley_primary_10_1002_adfm_202104361_ADFM202104361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2019; 3 2021; 4 2019; 12 2019; 58 2021; 404 2020; 59 2020; 13 2017; 29 2020; 11 2020; 32 2020; 10 1989; 24 1995; 6 2018; 25 2020; 7 2021; 38 2018; 8 2021; 54 2021; 11 2021; 55 2021; 33 2020; 31 2020; 30 2013; 96 2020; 46 1993; 136 2021; 60 2018; 53 2021; 40 2011; 120 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 3961 year: 2020 publication-title: Nat. Commun. – volume: 40 start-page: 309 year: 2021 publication-title: Rare Met. – volume: 58 start-page: 4313 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 24 start-page: 821 year: 1989 publication-title: J. Mater. Sci. – volume: 4 start-page: 6197 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 13 start-page: 503 year: 2020 publication-title: Energy Environ. Sci. – volume: 60 start-page: 2861 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 850 year: 2017 publication-title: Nat. Commun. – volume: 46 year: 2020 publication-title: Ceram. Int. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 96 start-page: 3009 year: 2013 publication-title: J. Am. Ceram. Soc. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 start-page: 823 year: 1995 publication-title: Nanostruct. Mater. – volume: 120 start-page: 1133 year: 2011 publication-title: J. Appl. Polym. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 54 start-page: 194 year: 2021 publication-title: J. Energy Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 30 start-page: 104 year: 2020 publication-title: Energy Storage Mater. – volume: 59 start-page: 9377 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 55 start-page: 549 year: 2021 publication-title: J. Energy Chem. – volume: 404 year: 2021 publication-title: Chem. Eng. J. – volume: 136 start-page: 291 year: 1993 publication-title: Phys. Status Solidi – volume: 25 start-page: 130 year: 2018 publication-title: J. Polym. Res. – volume: 53 start-page: 666 year: 2018 publication-title: Nano Energy – volume: 38 start-page: 141 year: 2021 publication-title: Energy Storage Mater. – volume: 13 start-page: 1212 year: 2020 publication-title: Energy Environ. Sci. – ident: e_1_2_8_40_1 doi: 10.1021/acsaem.1c00979 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_8_36_1 doi: 10.1007/BF01148763 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-020-17752-x – ident: e_1_2_8_4_1 doi: 10.1016/j.jechem.2020.05.056 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-017-00974-x – ident: e_1_2_8_26_1 doi: 10.1016/0965-9773(95)00186-7 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201814653 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201813223 – ident: e_1_2_8_31_1 doi: 10.1039/C9EE03857D – ident: e_1_2_8_39_1 doi: 10.1002/adma.202100187 – ident: e_1_2_8_3_1 doi: 10.1007/s12598-020-01588-x – ident: e_1_2_8_38_1 doi: 10.1016/j.jechem.2020.07.021 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201605531 – ident: e_1_2_8_19_1 doi: 10.1016/j.ensm.2021.02.041 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202012322 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201907343 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202001867 – ident: e_1_2_8_11_1 doi: 10.1002/advs.202002173 – ident: e_1_2_8_12_1 doi: 10.1016/j.ensm.2020.04.038 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202001755 – ident: e_1_2_8_6_1 doi: 10.1002/anie.202008634 – ident: e_1_2_8_9_1 doi: 10.1039/C9EE03545A – ident: e_1_2_8_8_1 doi: 10.1002/aenm.202100186 – ident: e_1_2_8_1_1 doi: 10.1016/j.nanoen.2018.09.021 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.201904215 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.202001263 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202001854 – ident: e_1_2_8_28_1 doi: 10.1007/s10965-018-1518-2 – ident: e_1_2_8_37_1 doi: 10.1002/app.30467 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.202006495 – ident: e_1_2_8_18_1 doi: 10.1016/j.cej.2020.126508 – ident: e_1_2_8_7_1 doi: 10.1039/C9EE00596J – ident: e_1_2_8_29_1 doi: 10.1111/jace.12509 – ident: e_1_2_8_27_1 doi: 10.1002/pssa.2211360203 – ident: e_1_2_8_10_1 doi: 10.1002/anie.202001844 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.202000599 – ident: e_1_2_8_30_1 doi: 10.1016/j.ceramint.2020.06.147 |
SSID | ssj0017734 |
Score | 2.6821175 |
Snippet | The Zn metal anode is considered one of the most promising anode choices for aqueous Zn‐based batteries. Nevertheless, dendrites and intricate side reactions... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anode effect anti‐corrosion aqueous zinc batteries Dendritic structure Deposition dielectric behavior Dielectric properties Interlayers Kinetics Manganese Materials science Polyacrylonitrile Rechargeable batteries Silicon nitride Zinc zinc electrodeposition zinc metal anodes |
Title | Anti‐Corrosive and Zn‐Ion‐Regulating Composite Interlayer Enabling Long‐Life Zn Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104361 https://www.proquest.com/docview/2595546143 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQLDDwRhRKlQGJKW0ettOMVR8qqGUoVKpYIjt2UEWVoDZdmPgEvpEv4d6kTVskhARLlIedOHZ8fY5z7zEh11oDu6GWNj3KtEkdi5mCK8sEJsG8CACtohjg3L_n3SG9G7HRWhR_rg9RTLhhz8jsNXZwIWe1lWioUBFGkgNloW7Gf9BhC1HRoNCPsj0v_63MbXTwskdL1UbLqW1m3xyVVlBzHbBmI07ngIhlWXNHk5fqPJXV8O2bjON_XuaQ7C_gqNHIv58jsqXjY7K3JlJ4QlQjTsef7x_NZAplB-NoiFgZTzGcuk1wO8iXs4fEBloX9ALTRjbTOBEA6I02hmfh1V4SP0P63jjSkN_o6xQfHSdKz07JsNN-bHbNxdoMZgic1jaZcLl0XGaFnCtgoiHlimsN4Ez6kSu45zseBrW6HAm4pH7EgP_WBWXSCYXru2dkO05ifU4MqaQIPVEH7GBTJf06s1wwI4wKz6pHDisRc9k2QbgQLsf1MyZBLrnsBFh7QVF7JXJTpH_NJTt-TFleNnWw6LqzAPggeu4BjiwRJ2uzX-4SNFqdfnF08ZdMl2QX9_MYxzLZTqdzfQVgJ5UVstNo9XsPlezD_gLKu_iK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToNAFJ0YXagL38ZqVRYmrlAeMwMsmz5StXVhNDFuyAwzmMYGTEs3rvwEv9Ev8V4otDUxJrohAe7AMM9zhnvPEHKmNbAbamnTo0yb1LGYKbiyTGASzIsB0CqKAc79W959oNePrPQmxFiYQh-iWnDDnpGP19jBcUH6cqYaKlSMoeTAWaiLBGgFt_VG-fzWXaUgZXte8WOZ2-jiZT-Wuo2Wc7mYfnFemoHNeciazzmdTSLL3BauJi8Xk0xeRG_fhBz_9TlbZGOKSI1G0YS2yZJOdsj6nE7hLlGNJBt8vn800xFkHsZHQyTKeErg0lWKx7tiR3swNnCAQUcwbeSLjUMBmN5oY4QW3u2lyTPY9waxhvRGX2f46iRVerxHHjrt-2bXnG7PYEZAa22TCZdLx2VWxLkCMhpRrrjWgM9kELuCe4HjYVyry5GDSxrEDCiwLyiTTiTcwN0ny0ma6ANiSCVF5Akf4INNlQx8ZrkwkjAqPMuPHVYjZlk5YTTVLsctNIZhobrshFh6YVV6NXJe2b8Wqh0_WtbLug6nvXccAiVE5z2AkjXi5JX2y1PCRqvTr84O_5LolKx27_u9sHd1e3NE1vB6EfJYJ8vZaKKPAftk8iRv3V-BVfsS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1EQXThW6zPLARX0TxmJsmy9IHVtkixUNyEmcxEiiUpGjeu_AS_0S_x3qRNW0EE3QSS3Ekm8zxncu8ZQs61BnZDLW16lGmTOhYzBVeWCUyCeTEAWkUxwLnT5dd9ejNgg7ko_kIfolxww56Rj9fYwccqvpqJhgoVYyQ5UBbqIv9ZodwKcPOGeq8UkLI9r_ivzG308LIHU9lGy7laTL84Lc2w5jxizaec5iYR08wWniZPl6-ZvIzevuk4_udrtsjGBI8a1aIBbZMlneyQ9TmVwl2iqkk2_Hz_qKXPkHcYHQ2RKOMhgUutFI-9Yj97MDZweEE3MG3kS40jAYjeaGB8Ft5tp8kj2LeHsYb0Rkdn-OokVfplj_SbjfvatTnZnMGMgNTaJhMul47LrIhzBVQ0olxxrQGdySB2BfcCx8OoVpcjA5c0iBkQYF9QJp1IuIG7T5aTNNEHxJBKisgTPoAHmyoZ-MxyYRxhVHiWHzusQsxp3YTRRLkcN9AYhYXmshNi6YVl6VXIRWk_LjQ7frQ8nlZ1OOm7LyEQQnTdAyBZIU5eZ788JazWm53y7PAvic7I6l29GbZb3dsjsoaXi3jHY7KcPb_qEwA-mTzN2_YXkcz5wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti%E2%80%90Corrosive+and+Zn%E2%80%90Ion%E2%80%90Regulating+Composite+Interlayer+Enabling+Long%E2%80%90Life+Zn+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Shuang&rft.au=Wang%2C+Yaping&rft.au=Lu%2C+Haotian&rft.au=Zhang%2C+Yifang&rft.date=2021-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=46&rft_id=info:doi/10.1002%2Fadfm.202104361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |