Topological Valley Hall Edge State Lasing

Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Ha...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 14; no. 7
Main Authors Zhong, Hua, Li, Yongdong, Song, Daohong, Kartashov, Yaroslav V., Zhang, Yiqi, Zhang, Yanpeng, Chen, Zhigang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries. Topological lasing from the valley Hall edge states is proposed that occurs at the domain wall with proper gain landscape between two honeycomb waveguide arrays with broken spatial inversion symmetry, in the presence of uniform losses and two‐photon absorption. Lasing states can circumvent certain corners without radiation into the bulk as long as the intervalley scattering is absent.
AbstractList Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries.
Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries. Topological lasing from the valley Hall edge states is proposed that occurs at the domain wall with proper gain landscape between two honeycomb waveguide arrays with broken spatial inversion symmetry, in the presence of uniform losses and two‐photon absorption. Lasing states can circumvent certain corners without radiation into the bulk as long as the intervalley scattering is absent.
Author Kartashov, Yaroslav V.
Zhang, Yanpeng
Chen, Zhigang
Li, Yongdong
Zhang, Yiqi
Zhong, Hua
Song, Daohong
Author_xml – sequence: 1
  givenname: Hua
  surname: Zhong
  fullname: Zhong, Hua
  organization: Guangdong Xi'an Jiaotong University Academy
– sequence: 2
  givenname: Yongdong
  surname: Li
  fullname: Li, Yongdong
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Daohong
  surname: Song
  fullname: Song, Daohong
  organization: Nankai University
– sequence: 4
  givenname: Yaroslav V.
  surname: Kartashov
  fullname: Kartashov, Yaroslav V.
  organization: Russian Academy of Sciences
– sequence: 5
  givenname: Yiqi
  orcidid: 0000-0002-5715-2182
  surname: Zhang
  fullname: Zhang, Yiqi
  email: zhangyiqi@mail.xjtu.edu.cn
  organization: Guangdong Xi'an Jiaotong University Academy
– sequence: 6
  givenname: Yanpeng
  surname: Zhang
  fullname: Zhang, Yanpeng
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Zhigang
  surname: Chen
  fullname: Chen, Zhigang
  organization: San Francisco State University
BookMark eNqFkM1LAzEQxYNUsK1ePS948rA1H7tpcpRSrbBQ0eo1JNmkpMTNmt0i_e-bUqkgiO_y5vB-M8MbgUETGgPANYITBCG-822IEwwxPAidgSFilOSMcT44zQxegFHXbSAsk-gQ3K5CG3xYOy199i69N7tskSyb12uTvfayN1klO9esL8G5lb4zV98-Bm8P89VskVfLx6fZfZVrwgjKka3rUrNaK04t4qUy2lCWTJVyColVFlNja8QphlIqg2lR8qmWtZ4qyxUhY3Bz3NvG8Lk1XS82YRubdFLgAkNOCcVFShXHlI6h66KxQrv0rAtNH6XzAkFxKEUcShGnUhI2-YW10X3IuPsb4Efgy6Vq_kmL6nn58sPuAV2Wdq8
CitedBy_id crossref_primary_10_1002_qute_202300354
crossref_primary_10_1364_PRJ_418689
crossref_primary_10_1364_OE_445851
crossref_primary_10_1002_advs_202203588
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1002_adpr_202100013
crossref_primary_10_3390_photonics10111220
crossref_primary_10_1063_5_0071548
crossref_primary_10_1021_acsnano_2c09883
crossref_primary_10_1002_lpor_202000563
crossref_primary_10_1364_OE_491719
crossref_primary_10_1364_PRJ_485676
crossref_primary_10_1016_j_optlastec_2021_107616
crossref_primary_10_1021_acsphotonics_2c01695
crossref_primary_10_1063_5_0223535
crossref_primary_10_1002_lpor_202400045
crossref_primary_10_1515_nanoph_2021_0385
crossref_primary_10_1002_pssr_202100427
crossref_primary_10_1364_OE_442338
crossref_primary_10_1364_OL_460722
crossref_primary_10_3390_sym16040453
crossref_primary_10_1002_adpr_202100010
crossref_primary_10_1002_adom_202001865
crossref_primary_10_1103_PhysRevB_109_L201122
crossref_primary_10_1364_OE_450558
crossref_primary_10_1007_s11071_021_07193_6
crossref_primary_10_1103_PhysRevB_108_235305
crossref_primary_10_1088_1361_6463_ad3839
crossref_primary_10_1016_j_rinp_2023_107066
crossref_primary_10_1002_pssb_202200169
crossref_primary_10_7498_aps_72_20221814
crossref_primary_10_1063_1_5142397
crossref_primary_10_1063_5_0217904
crossref_primary_10_1103_PhysRevB_103_L201406
crossref_primary_10_1038_s41467_022_34979_y
crossref_primary_10_1002_apxr_202200053
crossref_primary_10_1002_pssb_202100568
crossref_primary_10_1038_s41377_024_01512_3
crossref_primary_10_1364_OE_438474
crossref_primary_10_1063_5_0042975
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1103_PhysRevB_108_205421
crossref_primary_10_1063_5_0041124
crossref_primary_10_1103_PhysRevB_103_195432
crossref_primary_10_1021_acsphotonics_0c00521
crossref_primary_10_1103_PhysRevB_107_085302
crossref_primary_10_1080_23746149_2021_1905546
crossref_primary_10_1007_s11467_021_1149_7
crossref_primary_10_1021_acsphotonics_0c01771
Cites_doi 10.1038/nature12066
10.1103/PhysRevLett.122.123903
10.1103/PhysRevLett.120.113901
10.1103/PhysRevLett.112.206601
10.1364/OE.22.023605
10.1038/nature08293
10.1038/nmat3520
10.1103/RevModPhys.91.015006
10.1038/nphoton.2014.248
10.1088/1367-2630/18/2/025012
10.1002/lpor.201900159
10.1103/PhysRevLett.100.013904
10.1038/nmat3783
10.1088/1367-2630/aac9e0
10.1126/science.aar4005
10.1038/s41566-017-0006-2
10.1103/PhysRevResearch.1.033148
10.1103/PhysRevB.96.020202
10.1103/PhysRevLett.99.236809
10.1038/s41586-019-0943-7
10.1103/PhysRevB.77.235406
10.1038/s41566-017-0048-5
10.1038/nphys2063
10.1126/science.aar4003
10.1038/ncomms6782
10.1038/s41586-018-0601-5
10.1038/s41586-018-0418-2
10.1063/1.5121414
10.1103/PhysRevLett.121.033904
10.1103/PhysRevLett.122.083902
10.1038/s41586-020-1981-x
10.1103/PhysRevLett.108.206809
10.1021/nl201941f
10.1038/s41467-018-03434-2
10.1088/0034-4885/79/6/066501
10.1364/OL.44.003342
10.1038/s41467-018-06520-7
10.1126/science.1250140
10.1126/science.aao4551
10.1038/s41467-017-01515-2
10.1209/0295-5075/122/14004
10.1016/S0022-3093(00)00215-5
10.1038/s41467-019-08881-z
10.1103/PhysRevLett.120.063902
10.1038/nphys1926
10.1038/s41586-018-0829-0
10.1038/nphys4304
10.1126/science.aao5989
10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.114.223901
10.1038/ncomms16023
10.1038/s41565-019-0584-x
10.1103/PhysRevB.93.195317
10.1103/RevModPhys.82.3045
10.1038/nphoton.2013.274
10.1038/nmat4807
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202000001
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202000001
LPOR202000001
Genre article
GrantInformation_xml – fundername: RFBR and DFG
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2018A0303130057
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2018A0303130057
– fundername: National Key R&D Program of China
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3831-1fdd5c8dcb96f195bece685beb5a703fbf26efd19620aabe264597cadc7bf9b33
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:08:15 EDT 2025
Tue Jul 01 04:32:34 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 16:34:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-1fdd5c8dcb96f195bece685beb5a703fbf26efd19620aabe264597cadc7bf9b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5715-2182
PQID 2420963624
PQPubID 1016358
PageCount 8
ParticipantIDs proquest_journals_2420963624
crossref_citationtrail_10_1002_lpor_202000001
crossref_primary_10_1002_lpor_202000001
wiley_primary_10_1002_lpor_202000001_LPOR202000001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2018; 120
2018; 362
2019; 91
2018; 562
2018; 122
2017; 8
2018; 121
2019; 10
2019; 13
2019; 567
2011; 11
2020; 15
2019; 565
2008; 77
2013; 7
2008; 100
2019; 122
2014; 22
2017; 358
2016; 79
2018; 9
2014; 5
2013; 12
2020; 578
2014; 13
2014; 8
2019; 4
2019; 1
2011; 83
2007
2000; 274
2016; 93
2003
2007; 96
2016; 18
2007; 99
2018; 20
2011; 7
2012; 108
2014; 112
2010; 82
2018; 359
2019; 44
2015; 114
2017; 16
2020
2017; 11
2013; 496
2019
2009; 461
2018; 14
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  start-page: 57
  year: 2014
  publication-title: Nat. Mater.
– volume: 79
  year: 2016
  publication-title: Rep. Prog. Phys.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 362
  start-page: 1149
  year: 2018
  publication-title: Science
– volume: 562
  start-page: 552
  year: 2018
  publication-title: Nature
– volume: 274
  start-page: 232
  year: 2000
  publication-title: J. Non Cryst. Solids
– volume: 15
  start-page: 67
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 560
  start-page: 461
  year: 2018
  publication-title: Nature
– volume: 16
  start-page: 298
  year: 2017
  publication-title: Nat. Mater.
– volume: 9
  start-page: 3991
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 567
  start-page: 356
  year: 2019
  publication-title: Nature
– volume: 44
  start-page: 3342
  year: 2019
  publication-title: Opt. Lett.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 359
  year: 2018
  publication-title: Science
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 4
  year: 2019
  publication-title: APL Photonics
– volume: 358
  start-page: 636
  year: 2017
  publication-title: Science
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1001
  year: 2013
  publication-title: Nat. Photonics
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– year: 2019
– volume: 12
  start-page: 233
  year: 2013
  publication-title: Nat. Mater.
– volume: 22
  year: 2014
  publication-title: Opt. Express
– volume: 14
  start-page: 140
  year: 2018
  publication-title: Nat. Phys.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 3045
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 91
  year: 2019
  publication-title: Rev. Mod. Phys.
– volume: 578
  start-page: 246
  year: 2020
  publication-title: Nature
– volume: 11
  start-page: 3453
  year: 2011
  publication-title: Nano Lett.
– volume: 344
  start-page: 1489
  year: 2014
  publication-title: Science
– volume: 96
  year: 2007
  publication-title: Phys. Rev. B
– year: 2007
– volume: 11
  start-page: 651
  year: 2017
  publication-title: Nat. Photonics
– volume: 11
  start-page: 763
  year: 2017
  publication-title: Nat. Photonics
– year: 2003
– volume: 7
  start-page: 907
  year: 2011
  publication-title: Nat. Phys.
– volume: 8
  start-page: 821
  year: 2014
  publication-title: Nat. Photonics
– volume: 565
  start-page: 622
  year: 2019
  publication-title: Nature
– volume: 496
  start-page: 196
  year: 2013
  publication-title: Nature
– volume: 1
  year: 2019
  publication-title: Phys. Rev. Res.
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 461
  start-page: 772
  year: 2009
  publication-title: Nature
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 490
  year: 2011
  publication-title: Nat. Phys.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 981
  year: 2018
  publication-title: Nat. Commun.
– year: 2020
– volume: 5
  start-page: 5782
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 872
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1304
  year: 2017
  publication-title: Nat. Commun.
– volume: 20
  year: 2018
  publication-title: New J. Phys.
– volume: 122
  year: 2018
  publication-title: EPL
– ident: e_1_2_8_10_1
  doi: 10.1038/nature12066
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.122.123903
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.120.113901
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevLett.112.206601
– ident: e_1_2_8_32_1
  doi: 10.1364/OE.22.023605
– ident: e_1_2_8_6_1
  doi: 10.1038/nature08293
– ident: e_1_2_8_12_1
  doi: 10.1038/nmat3520
– ident: e_1_2_8_2_1
  doi: 10.1103/RevModPhys.91.015006
– ident: e_1_2_8_1_1
  doi: 10.1038/nphoton.2014.248
– ident: e_1_2_8_49_1
  doi: 10.1088/1367-2630/18/2/025012
– ident: e_1_2_8_48_1
  doi: 10.1002/lpor.201900159
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.100.013904
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat3783
– ident: e_1_2_8_39_1
  doi: 10.1088/1367-2630/aac9e0
– ident: e_1_2_8_42_1
  doi: 10.1126/science.aar4005
– ident: e_1_2_8_35_1
  doi: 10.1038/s41566-017-0006-2
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevResearch.1.033148
– ident: e_1_2_8_58_1
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevB.96.020202
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevLett.99.236809
– ident: e_1_2_8_16_1
  doi: 10.1038/s41586-019-0943-7
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.77.235406
– ident: e_1_2_8_54_1
  doi: 10.1038/s41566-017-0048-5
– ident: e_1_2_8_8_1
  doi: 10.1038/nphys2063
– ident: e_1_2_8_41_1
  doi: 10.1126/science.aar4003
– ident: e_1_2_8_13_1
  doi: 10.1038/ncomms6782
– ident: e_1_2_8_17_1
  doi: 10.1038/s41586-018-0601-5
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-018-0418-2
– ident: e_1_2_8_43_1
  doi: 10.1063/1.5121414
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.121.033904
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevLett.122.083902
– ident: e_1_2_8_59_1
  doi: 10.1038/s41586-020-1981-x
– ident: e_1_2_8_56_1
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevLett.108.206809
– ident: e_1_2_8_50_1
  doi: 10.1021/nl201941f
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-018-03434-2
– ident: e_1_2_8_52_1
  doi: 10.1088/0034-4885/79/6/066501
– ident: e_1_2_8_21_1
  doi: 10.1364/OL.44.003342
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-018-06520-7
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1250140
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aao4551
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-017-01515-2
– ident: e_1_2_8_38_1
  doi: 10.1209/0295-5075/122/14004
– ident: e_1_2_8_57_1
  doi: 10.1016/S0022-3093(00)00215-5
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-019-08881-z
– ident: e_1_2_8_60_1
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.120.063902
– ident: e_1_2_8_7_1
  doi: 10.1038/nphys1926
– ident: e_1_2_8_15_1
  doi: 10.1038/s41586-018-0829-0
– ident: e_1_2_8_33_1
  doi: 10.1038/nphys4304
– ident: e_1_2_8_47_1
  doi: 10.1126/science.aao5989
– ident: e_1_2_8_46_1
– ident: e_1_2_8_4_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevLett.114.223901
– ident: e_1_2_8_53_1
  doi: 10.1038/ncomms16023
– ident: e_1_2_8_55_1
  doi: 10.1038/s41565-019-0584-x
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.93.195317
– ident: e_1_2_8_3_1
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_8_11_1
  doi: 10.1038/nphoton.2013.274
– ident: e_1_2_8_30_1
  doi: 10.1038/nmat4807
SSID ssj0055556
Score 2.5191472
Snippet Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Domain walls
edge state
Lasers
Lasing
Photon absorption
Robustness
Scattering
topological insulator
topological laser
Topology
valley hall effect
Valleys
Waveguides
Title Topological Valley Hall Edge State Lasing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202000001
https://www.proquest.com/docview/2420963624
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kJy_WJ1ar5CCIh213s--jSEuR-qC00lvI04Olitse9Nc72VdbQQTdS3YhWXYnmeT7huQbgAtXURUJD7kJYgkn0NJ10pQbK4QcGmRjiRY23nF3Hw0mwe00nK6d4i_0IeqAm_WMfL62Ds5F1l2Jhs4QnyK_oznMtfzHbtiyqGhU60eFeOXHi5LId5DquZVqo0u7m803V6UV1FwHrPmK028Cr7612Gjy0lkuREd-fpNx_M_P7MJOCUfJdTF-9mBLz_ehWUJTUjp-dgBX4yKZgu1S8mTzr3yQARakp541yRErGXIbdziESb83vhk4ZZYFRyI79RzPKBXKREmRRsZLQ-xUHSVYiJDjdGCEoZE2Cj2VupwLTa38TCy5krEwqfD9I2jMX-f6GIjG9r5xY2k8GQiJXE6GJki1y_2Ycp60wKmszGQpQW4zYcxYIZ5MmbUDq-3Qgsu6_lshvvFjzXbVaax0wowh-kCChit00AKaW_-Xt7Dh48Oofjr5S6NT2Lb3xYbeNjQW70t9hrBlIc7zofkFkw3jcA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iB71Yn1itmoMgHrbdzb6PIi1Vt1VKK95Cnh4sVWx70F_vJPuoFUTQvYRdkmV3kkm-b0i-QejMlURG3ANuAljCCZRwnTRl2gghhxrYWKK4iXf0-lF3FNw8huVuQnMWJteHqAJuxjPsfG0c3ASkWwvV0DEAVCB4xOJcIEBrJq23ZVWDSkEqhMseMEoi3wGy55a6jS5pLbdfXpcWYPMrZLVrTqeGePm1-VaT5-Z8xpvi45uQ479-ZwttFogUX-ZDaButqMkOqhXoFBe-P91FF8M8n4LpVfxgUrC84y4UuC2fFLagFWfMhB720KjTHl51nSLRgiOAoHqOp6UMRSIFTyPtpSH0q4oSKHjIYEbQXJNIaQnOSlzGuCJGgSYWTIqY65T7_j5anbxM1AHCCtr72o2F9kTABdA5EeogVS7zY8JYUkdOaWYqChVykwxjTHP9ZEKNHWhlhzo6r-q_5vobP9ZslL1GCz-cUgAgwNFgkQ7qiFjz__IWmt3fDaq7w780OkXr3WEvo9l1__YIbZjn-f7eBlqdvc3VMaCYGT-x4_QT3DXniw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MJsaL-Iwoag8mxsPCbvd9NAJBRSQEDLemTw8SJAIH_fVO9wWYGBPdS7ObdrM77bTfN2m_QejSlkQG3AFuAljC8pSwrThm2ggh-xrYWKS4iXc8doP20Lsf-aOVU_ypPkQRcDOekczXxsGnUteXoqFjwKfA70gCc4H_bHqBHZlx3egXAlI-XMn5oihwLeB6di7baJP6evv1ZWmJNVcRa7LktMqI5R-b7jR5rS3mvCY-v-k4_udvdtFOhkfxTTqA9tCGmuyjcoZNceb5swN0PUizKZg-xc8mAcsHbkOBm_JF4QSy4g4zgYdDNGw1B7dtK0uzYAmgp47laCl9EUnB40A7sQ-9qoIICu4zmA801yRQWoKrEpsxrojRnwkFkyLkOuaue4RKk7eJOkZYQXtX26HQjvC4ADInfO3FymZuSBiLKsjKrUxFpkFuUmGMaaqeTKixAy3sUEFXRf1pqr7xY81q3mk088IZBfgBDA2WaK-CSGL9X95CO72nfnF38pdGF2ir12jRzl334RRtm8fp5t4qKs3fF-oMIMycnyej9AtLgeZD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Valley+Hall+Edge+State+Lasing&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Zhong%2C+Hua&rft.au=Li%2C+Yongdong&rft.au=Song%2C+Daohong&rft.au=Kartashov%2C+Yaroslav+V&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=7&rft_id=info:doi/10.1002%2Flpor.202000001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon