Topological Valley Hall Edge State Lasing
Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Ha...
Saved in:
Published in | Laser & photonics reviews Vol. 14; no. 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries.
Topological lasing from the valley Hall edge states is proposed that occurs at the domain wall with proper gain landscape between two honeycomb waveguide arrays with broken spatial inversion symmetry, in the presence of uniform losses and two‐photon absorption. Lasing states can circumvent certain corners without radiation into the bulk as long as the intervalley scattering is absent. |
---|---|
AbstractList | Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries. Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional lasers, even in the presence of disorder, edge deformation, or local defects. Here a new class of topological lasers arising from the valley Hall edge states is proposed, which does not rely on magnetic fields. Specifically, topological lasing occurs at domain walls between two honeycomb waveguide arrays with broken spatial inversion symmetry. Two types of valley Hall edge lasing modes are found by shaping the gain landscape along the domain walls. In the presence of uniform losses and two‐photon absorption, the lasing results in the formation of stable nonlinear dissipative excitations localized on the edge of the structure, even if it has complex geometry and even if it is finite. Robustness of lasing edge states is demonstrated in both periodic and finite structures, where such states can circumvent certain corners without scattering losses or radiation into the bulk, as long as the intervalley scattering is absent. The photonic structure and mechanism proposed here for topological lasing is fundamentally different from those previously employed in topological lasers, and can be used for fabrication of practical topological lasers of various geometries. Topological lasing from the valley Hall edge states is proposed that occurs at the domain wall with proper gain landscape between two honeycomb waveguide arrays with broken spatial inversion symmetry, in the presence of uniform losses and two‐photon absorption. Lasing states can circumvent certain corners without radiation into the bulk as long as the intervalley scattering is absent. |
Author | Kartashov, Yaroslav V. Zhang, Yanpeng Chen, Zhigang Li, Yongdong Zhang, Yiqi Zhong, Hua Song, Daohong |
Author_xml | – sequence: 1 givenname: Hua surname: Zhong fullname: Zhong, Hua organization: Guangdong Xi'an Jiaotong University Academy – sequence: 2 givenname: Yongdong surname: Li fullname: Li, Yongdong organization: Xi'an Jiaotong University – sequence: 3 givenname: Daohong surname: Song fullname: Song, Daohong organization: Nankai University – sequence: 4 givenname: Yaroslav V. surname: Kartashov fullname: Kartashov, Yaroslav V. organization: Russian Academy of Sciences – sequence: 5 givenname: Yiqi orcidid: 0000-0002-5715-2182 surname: Zhang fullname: Zhang, Yiqi email: zhangyiqi@mail.xjtu.edu.cn organization: Guangdong Xi'an Jiaotong University Academy – sequence: 6 givenname: Yanpeng surname: Zhang fullname: Zhang, Yanpeng organization: Xi'an Jiaotong University – sequence: 7 givenname: Zhigang surname: Chen fullname: Chen, Zhigang organization: San Francisco State University |
BookMark | eNqFkM1LAzEQxYNUsK1ePS948rA1H7tpcpRSrbBQ0eo1JNmkpMTNmt0i_e-bUqkgiO_y5vB-M8MbgUETGgPANYITBCG-822IEwwxPAidgSFilOSMcT44zQxegFHXbSAsk-gQ3K5CG3xYOy199i69N7tskSyb12uTvfayN1klO9esL8G5lb4zV98-Bm8P89VskVfLx6fZfZVrwgjKka3rUrNaK04t4qUy2lCWTJVyColVFlNja8QphlIqg2lR8qmWtZ4qyxUhY3Bz3NvG8Lk1XS82YRubdFLgAkNOCcVFShXHlI6h66KxQrv0rAtNH6XzAkFxKEUcShGnUhI2-YW10X3IuPsb4Efgy6Vq_kmL6nn58sPuAV2Wdq8 |
CitedBy_id | crossref_primary_10_1002_qute_202300354 crossref_primary_10_1364_PRJ_418689 crossref_primary_10_1364_OE_445851 crossref_primary_10_1002_advs_202203588 crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1002_adpr_202100013 crossref_primary_10_3390_photonics10111220 crossref_primary_10_1063_5_0071548 crossref_primary_10_1021_acsnano_2c09883 crossref_primary_10_1002_lpor_202000563 crossref_primary_10_1364_OE_491719 crossref_primary_10_1364_PRJ_485676 crossref_primary_10_1016_j_optlastec_2021_107616 crossref_primary_10_1021_acsphotonics_2c01695 crossref_primary_10_1063_5_0223535 crossref_primary_10_1002_lpor_202400045 crossref_primary_10_1515_nanoph_2021_0385 crossref_primary_10_1002_pssr_202100427 crossref_primary_10_1364_OE_442338 crossref_primary_10_1364_OL_460722 crossref_primary_10_3390_sym16040453 crossref_primary_10_1002_adpr_202100010 crossref_primary_10_1002_adom_202001865 crossref_primary_10_1103_PhysRevB_109_L201122 crossref_primary_10_1364_OE_450558 crossref_primary_10_1007_s11071_021_07193_6 crossref_primary_10_1103_PhysRevB_108_235305 crossref_primary_10_1088_1361_6463_ad3839 crossref_primary_10_1016_j_rinp_2023_107066 crossref_primary_10_1002_pssb_202200169 crossref_primary_10_7498_aps_72_20221814 crossref_primary_10_1063_1_5142397 crossref_primary_10_1063_5_0217904 crossref_primary_10_1103_PhysRevB_103_L201406 crossref_primary_10_1038_s41467_022_34979_y crossref_primary_10_1002_apxr_202200053 crossref_primary_10_1002_pssb_202100568 crossref_primary_10_1038_s41377_024_01512_3 crossref_primary_10_1364_OE_438474 crossref_primary_10_1063_5_0042975 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1103_PhysRevB_108_205421 crossref_primary_10_1063_5_0041124 crossref_primary_10_1103_PhysRevB_103_195432 crossref_primary_10_1021_acsphotonics_0c00521 crossref_primary_10_1103_PhysRevB_107_085302 crossref_primary_10_1080_23746149_2021_1905546 crossref_primary_10_1007_s11467_021_1149_7 crossref_primary_10_1021_acsphotonics_0c01771 |
Cites_doi | 10.1038/nature12066 10.1103/PhysRevLett.122.123903 10.1103/PhysRevLett.120.113901 10.1103/PhysRevLett.112.206601 10.1364/OE.22.023605 10.1038/nature08293 10.1038/nmat3520 10.1103/RevModPhys.91.015006 10.1038/nphoton.2014.248 10.1088/1367-2630/18/2/025012 10.1002/lpor.201900159 10.1103/PhysRevLett.100.013904 10.1038/nmat3783 10.1088/1367-2630/aac9e0 10.1126/science.aar4005 10.1038/s41566-017-0006-2 10.1103/PhysRevResearch.1.033148 10.1103/PhysRevB.96.020202 10.1103/PhysRevLett.99.236809 10.1038/s41586-019-0943-7 10.1103/PhysRevB.77.235406 10.1038/s41566-017-0048-5 10.1038/nphys2063 10.1126/science.aar4003 10.1038/ncomms6782 10.1038/s41586-018-0601-5 10.1038/s41586-018-0418-2 10.1063/1.5121414 10.1103/PhysRevLett.121.033904 10.1103/PhysRevLett.122.083902 10.1038/s41586-020-1981-x 10.1103/PhysRevLett.108.206809 10.1021/nl201941f 10.1038/s41467-018-03434-2 10.1088/0034-4885/79/6/066501 10.1364/OL.44.003342 10.1038/s41467-018-06520-7 10.1126/science.1250140 10.1126/science.aao4551 10.1038/s41467-017-01515-2 10.1209/0295-5075/122/14004 10.1016/S0022-3093(00)00215-5 10.1038/s41467-019-08881-z 10.1103/PhysRevLett.120.063902 10.1038/nphys1926 10.1038/s41586-018-0829-0 10.1038/nphys4304 10.1126/science.aao5989 10.1103/RevModPhys.83.1057 10.1103/PhysRevLett.114.223901 10.1038/ncomms16023 10.1038/s41565-019-0584-x 10.1103/PhysRevB.93.195317 10.1103/RevModPhys.82.3045 10.1038/nphoton.2013.274 10.1038/nmat4807 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202000001 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202000001 LPOR202000001 |
Genre | article |
GrantInformation_xml | – fundername: RFBR and DFG – fundername: Natural Science Foundation of Guangdong Province funderid: 2018A0303130057 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2018A0303130057 – fundername: National Key R&D Program of China |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3831-1fdd5c8dcb96f195bece685beb5a703fbf26efd19620aabe264597cadc7bf9b33 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:08:15 EDT 2025 Tue Jul 01 04:32:34 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:34:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3831-1fdd5c8dcb96f195bece685beb5a703fbf26efd19620aabe264597cadc7bf9b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5715-2182 |
PQID | 2420963624 |
PQPubID | 1016358 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2420963624 crossref_citationtrail_10_1002_lpor_202000001 crossref_primary_10_1002_lpor_202000001 wiley_primary_10_1002_lpor_202000001_LPOR202000001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 560 2018; 120 2018; 362 2019; 91 2018; 562 2018; 122 2017; 8 2018; 121 2019; 10 2019; 13 2019; 567 2011; 11 2020; 15 2019; 565 2008; 77 2013; 7 2008; 100 2019; 122 2014; 22 2017; 358 2016; 79 2018; 9 2014; 5 2013; 12 2020; 578 2014; 13 2014; 8 2019; 4 2019; 1 2011; 83 2007 2000; 274 2016; 93 2003 2007; 96 2016; 18 2007; 99 2018; 20 2011; 7 2012; 108 2014; 112 2010; 82 2018; 359 2019; 44 2015; 114 2017; 16 2020 2017; 11 2013; 496 2019 2009; 461 2018; 14 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 start-page: 57 year: 2014 publication-title: Nat. Mater. – volume: 79 year: 2016 publication-title: Rep. Prog. Phys. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 362 start-page: 1149 year: 2018 publication-title: Science – volume: 562 start-page: 552 year: 2018 publication-title: Nature – volume: 274 start-page: 232 year: 2000 publication-title: J. Non Cryst. Solids – volume: 15 start-page: 67 year: 2020 publication-title: Nat. Nanotechnol. – volume: 560 start-page: 461 year: 2018 publication-title: Nature – volume: 16 start-page: 298 year: 2017 publication-title: Nat. Mater. – volume: 9 start-page: 3991 year: 2018 publication-title: Nat. Commun. – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 567 start-page: 356 year: 2019 publication-title: Nature – volume: 44 start-page: 3342 year: 2019 publication-title: Opt. Lett. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 359 year: 2018 publication-title: Science – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 4 year: 2019 publication-title: APL Photonics – volume: 358 start-page: 636 year: 2017 publication-title: Science – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1001 year: 2013 publication-title: Nat. Photonics – volume: 77 year: 2008 publication-title: Phys. Rev. B – year: 2019 – volume: 12 start-page: 233 year: 2013 publication-title: Nat. Mater. – volume: 22 year: 2014 publication-title: Opt. Express – volume: 14 start-page: 140 year: 2018 publication-title: Nat. Phys. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 3045 year: 2010 publication-title: Rev. Mod. Phys. – volume: 91 year: 2019 publication-title: Rev. Mod. Phys. – volume: 578 start-page: 246 year: 2020 publication-title: Nature – volume: 11 start-page: 3453 year: 2011 publication-title: Nano Lett. – volume: 344 start-page: 1489 year: 2014 publication-title: Science – volume: 96 year: 2007 publication-title: Phys. Rev. B – year: 2007 – volume: 11 start-page: 651 year: 2017 publication-title: Nat. Photonics – volume: 11 start-page: 763 year: 2017 publication-title: Nat. Photonics – year: 2003 – volume: 7 start-page: 907 year: 2011 publication-title: Nat. Phys. – volume: 8 start-page: 821 year: 2014 publication-title: Nat. Photonics – volume: 565 start-page: 622 year: 2019 publication-title: Nature – volume: 496 start-page: 196 year: 2013 publication-title: Nature – volume: 1 year: 2019 publication-title: Phys. Rev. Res. – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 461 start-page: 772 year: 2009 publication-title: Nature – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 490 year: 2011 publication-title: Nat. Phys. – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 981 year: 2018 publication-title: Nat. Commun. – year: 2020 – volume: 5 start-page: 5782 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 872 year: 2019 publication-title: Nat. Commun. – volume: 8 start-page: 1304 year: 2017 publication-title: Nat. Commun. – volume: 20 year: 2018 publication-title: New J. Phys. – volume: 122 year: 2018 publication-title: EPL – ident: e_1_2_8_10_1 doi: 10.1038/nature12066 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.122.123903 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.120.113901 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevLett.112.206601 – ident: e_1_2_8_32_1 doi: 10.1364/OE.22.023605 – ident: e_1_2_8_6_1 doi: 10.1038/nature08293 – ident: e_1_2_8_12_1 doi: 10.1038/nmat3520 – ident: e_1_2_8_2_1 doi: 10.1103/RevModPhys.91.015006 – ident: e_1_2_8_1_1 doi: 10.1038/nphoton.2014.248 – ident: e_1_2_8_49_1 doi: 10.1088/1367-2630/18/2/025012 – ident: e_1_2_8_48_1 doi: 10.1002/lpor.201900159 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevLett.100.013904 – ident: e_1_2_8_22_1 doi: 10.1038/nmat3783 – ident: e_1_2_8_39_1 doi: 10.1088/1367-2630/aac9e0 – ident: e_1_2_8_42_1 doi: 10.1126/science.aar4005 – ident: e_1_2_8_35_1 doi: 10.1038/s41566-017-0006-2 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevResearch.1.033148 – ident: e_1_2_8_58_1 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevB.96.020202 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.99.236809 – ident: e_1_2_8_16_1 doi: 10.1038/s41586-019-0943-7 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.77.235406 – ident: e_1_2_8_54_1 doi: 10.1038/s41566-017-0048-5 – ident: e_1_2_8_8_1 doi: 10.1038/nphys2063 – ident: e_1_2_8_41_1 doi: 10.1126/science.aar4003 – ident: e_1_2_8_13_1 doi: 10.1038/ncomms6782 – ident: e_1_2_8_17_1 doi: 10.1038/s41586-018-0601-5 – ident: e_1_2_8_14_1 doi: 10.1038/s41586-018-0418-2 – ident: e_1_2_8_43_1 doi: 10.1063/1.5121414 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevLett.121.033904 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevLett.122.083902 – ident: e_1_2_8_59_1 doi: 10.1038/s41586-020-1981-x – ident: e_1_2_8_56_1 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevLett.108.206809 – ident: e_1_2_8_50_1 doi: 10.1021/nl201941f – ident: e_1_2_8_37_1 doi: 10.1038/s41467-018-03434-2 – ident: e_1_2_8_52_1 doi: 10.1088/0034-4885/79/6/066501 – ident: e_1_2_8_21_1 doi: 10.1364/OL.44.003342 – ident: e_1_2_8_28_1 doi: 10.1038/s41467-018-06520-7 – ident: e_1_2_8_27_1 doi: 10.1126/science.1250140 – ident: e_1_2_8_40_1 doi: 10.1126/science.aao4551 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-017-01515-2 – ident: e_1_2_8_38_1 doi: 10.1209/0295-5075/122/14004 – ident: e_1_2_8_57_1 doi: 10.1016/S0022-3093(00)00215-5 – ident: e_1_2_8_31_1 doi: 10.1038/s41467-019-08881-z – ident: e_1_2_8_60_1 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.120.063902 – ident: e_1_2_8_7_1 doi: 10.1038/nphys1926 – ident: e_1_2_8_15_1 doi: 10.1038/s41586-018-0829-0 – ident: e_1_2_8_33_1 doi: 10.1038/nphys4304 – ident: e_1_2_8_47_1 doi: 10.1126/science.aao5989 – ident: e_1_2_8_46_1 – ident: e_1_2_8_4_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevLett.114.223901 – ident: e_1_2_8_53_1 doi: 10.1038/ncomms16023 – ident: e_1_2_8_55_1 doi: 10.1038/s41565-019-0584-x – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.93.195317 – ident: e_1_2_8_3_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_8_11_1 doi: 10.1038/nphoton.2013.274 – ident: e_1_2_8_30_1 doi: 10.1038/nmat4807 |
SSID | ssj0055556 |
Score | 2.5191472 |
Snippet | Topological lasers based on topologically protected edge states exhibit unique features and enhanced robustness of operation in comparison with conventional... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Domain walls edge state Lasers Lasing Photon absorption Robustness Scattering topological insulator topological laser Topology valley hall effect Valleys Waveguides |
Title | Topological Valley Hall Edge State Lasing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202000001 https://www.proquest.com/docview/2420963624 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kJy_WJ1ar5CCIh213s--jSEuR-qC00lvI04Olitse9Nc72VdbQQTdS3YhWXYnmeT7huQbgAtXURUJD7kJYgkn0NJ10pQbK4QcGmRjiRY23nF3Hw0mwe00nK6d4i_0IeqAm_WMfL62Ds5F1l2Jhs4QnyK_oznMtfzHbtiyqGhU60eFeOXHi5LId5DquZVqo0u7m803V6UV1FwHrPmK028Cr7612Gjy0lkuREd-fpNx_M_P7MJOCUfJdTF-9mBLz_ehWUJTUjp-dgBX4yKZgu1S8mTzr3yQARakp541yRErGXIbdziESb83vhk4ZZYFRyI79RzPKBXKREmRRsZLQ-xUHSVYiJDjdGCEoZE2Cj2VupwLTa38TCy5krEwqfD9I2jMX-f6GIjG9r5xY2k8GQiJXE6GJki1y_2Ycp60wKmszGQpQW4zYcxYIZ5MmbUDq-3Qgsu6_lshvvFjzXbVaax0wowh-kCChit00AKaW_-Xt7Dh48Oofjr5S6NT2Lb3xYbeNjQW70t9hrBlIc7zofkFkw3jcA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iB71Yn1itmoMgHrbdzb6PIi1Vt1VKK95Cnh4sVWx70F_vJPuoFUTQvYRdkmV3kkm-b0i-QejMlURG3ANuAljCCZRwnTRl2gghhxrYWKK4iXf0-lF3FNw8huVuQnMWJteHqAJuxjPsfG0c3ASkWwvV0DEAVCB4xOJcIEBrJq23ZVWDSkEqhMseMEoi3wGy55a6jS5pLbdfXpcWYPMrZLVrTqeGePm1-VaT5-Z8xpvi45uQ479-ZwttFogUX-ZDaButqMkOqhXoFBe-P91FF8M8n4LpVfxgUrC84y4UuC2fFLagFWfMhB720KjTHl51nSLRgiOAoHqOp6UMRSIFTyPtpSH0q4oSKHjIYEbQXJNIaQnOSlzGuCJGgSYWTIqY65T7_j5anbxM1AHCCtr72o2F9kTABdA5EeogVS7zY8JYUkdOaWYqChVykwxjTHP9ZEKNHWhlhzo6r-q_5vobP9ZslL1GCz-cUgAgwNFgkQ7qiFjz__IWmt3fDaq7w780OkXr3WEvo9l1__YIbZjn-f7eBlqdvc3VMaCYGT-x4_QT3DXniw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MJsaL-Iwoag8mxsPCbvd9NAJBRSQEDLemTw8SJAIH_fVO9wWYGBPdS7ObdrM77bTfN2m_QejSlkQG3AFuAljC8pSwrThm2ggh-xrYWKS4iXc8doP20Lsf-aOVU_ypPkQRcDOekczXxsGnUteXoqFjwKfA70gCc4H_bHqBHZlx3egXAlI-XMn5oihwLeB6di7baJP6evv1ZWmJNVcRa7LktMqI5R-b7jR5rS3mvCY-v-k4_udvdtFOhkfxTTqA9tCGmuyjcoZNceb5swN0PUizKZg-xc8mAcsHbkOBm_JF4QSy4g4zgYdDNGw1B7dtK0uzYAmgp47laCl9EUnB40A7sQ-9qoIICu4zmA801yRQWoKrEpsxrojRnwkFkyLkOuaue4RKk7eJOkZYQXtX26HQjvC4ADInfO3FymZuSBiLKsjKrUxFpkFuUmGMaaqeTKixAy3sUEFXRf1pqr7xY81q3mk088IZBfgBDA2WaK-CSGL9X95CO72nfnF38pdGF2ir12jRzl334RRtm8fp5t4qKs3fF-oMIMycnyej9AtLgeZD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Valley+Hall+Edge+State+Lasing&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Zhong%2C+Hua&rft.au=Li%2C+Yongdong&rft.au=Song%2C+Daohong&rft.au=Kartashov%2C+Yaroslav+V&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=7&rft_id=info:doi/10.1002%2Flpor.202000001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |