Room‐Temperature Nonvolatile Memory Based on a Single‐Phase Multiferroic Hexaferrite

The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 9
Main Authors Zhai, Kun, Shang, Da‐Shan, Chai, Yi‐Sheng, Li, Gang, Cai, Jian‐Wang, Shen, Bao‐Gen, Sun, Young
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 28.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics. A nonvolatile memory with low energy consumption is achieved by using a single‐phase multiferroic materials, Sr3Co2Fe24O41, based on its nonlinear magnetoelectric effects at room temperature. Instead of using the states of magnetization, electric polarization, and resistance to store binary information, this type of nonvolatile memory employs the states (magnitude and sign) of the magnetoelectric coefficients to encode binary information.
AbstractList The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics.
The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics. A nonvolatile memory with low energy consumption is achieved by using a single‐phase multiferroic materials, Sr3Co2Fe24O41, based on its nonlinear magnetoelectric effects at room temperature. Instead of using the states of magnetization, electric polarization, and resistance to store binary information, this type of nonvolatile memory employs the states (magnitude and sign) of the magnetoelectric coefficients to encode binary information.
The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr 3 Co 2 Fe 24 O 41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics.
Author Chai, Yi‐Sheng
Cai, Jian‐Wang
Zhai, Kun
Li, Gang
Shen, Bao‐Gen
Sun, Young
Shang, Da‐Shan
Author_xml – sequence: 1
  givenname: Kun
  surname: Zhai
  fullname: Zhai, Kun
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Da‐Shan
  surname: Shang
  fullname: Shang, Da‐Shan
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yi‐Sheng
  surname: Chai
  fullname: Chai, Yi‐Sheng
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Jian‐Wang
  surname: Cai
  fullname: Cai, Jian‐Wang
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Bao‐Gen
  surname: Shen
  fullname: Shen, Bao‐Gen
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Young
  orcidid: 0000-0001-8879-3508
  surname: Sun
  fullname: Sun, Young
  email: youngsun@iphy.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkM1Kw0AURgepYFvduh5wnTo_SSZZ1mqt0Kpohe6GSXJHU5JMnSRqdz6Cz-iTOKVSQRBX9-PynXvh9FCnMhUgdEzJgBLCTlWmywEjVJBACLqHujSkoccJizq7TBcHqFfXS-JqgvtdtLgzpvx8_5hDuQKrmtYCvjbViylUkxeAZ1Aau8ZnqoYMmworfJ9XjwU45PbJLfGsLZpcg7UmT_EE3tQm5w0con2tihqOvmcfPYwv5qOJN725vBoNp17KI049SqkWmUp5qgIShUFGSKQpI6HicZaIRARMxxCBgoALCEIVaJ2JhPqpYAlwxfvoZHt3Zc1zC3Ujl6a1lXspGSEi9n3GqGsNtq3Umrq2oOXK5qWya0mJ3NiTG3tyZ88B_i8gzRunxFSNVXnxNxZvsVcnb_3PEzk8H89-2C-Glolr
CitedBy_id crossref_primary_10_1007_s11433_020_1635_3
crossref_primary_10_1039_D1NR06598J
crossref_primary_10_7566_JPSJ_91_033701
crossref_primary_10_1039_D0CP03003A
crossref_primary_10_1021_acs_inorgchem_9b03724
crossref_primary_10_1016_j_jallcom_2022_167433
crossref_primary_10_1016_j_jallcom_2018_11_256
crossref_primary_10_1021_acsomega_3c08360
crossref_primary_10_1088_1361_648X_ac40ae
crossref_primary_10_1007_s10948_022_06341_2
crossref_primary_10_1016_j_mseb_2025_118072
crossref_primary_10_1002_pssr_202000506
crossref_primary_10_1103_PhysRevB_110_014430
crossref_primary_10_1039_C8NR03259A
crossref_primary_10_1016_j_jallcom_2020_154482
crossref_primary_10_1016_j_jallcom_2019_153130
crossref_primary_10_1016_j_progsolidstchem_2023_100404
crossref_primary_10_1088_1361_648X_ac965c
crossref_primary_10_1021_acs_inorgchem_5c00147
crossref_primary_10_7498_aps_67_20180857
crossref_primary_10_1103_PhysRevB_98_144405
crossref_primary_10_1088_1402_4896_ad7b85
crossref_primary_10_1002_adma_202306117
crossref_primary_10_1039_D4QI01301H
crossref_primary_10_1063_5_0045273
crossref_primary_10_1002_adfm_202108950
crossref_primary_10_1016_j_jmmm_2024_171968
crossref_primary_10_1051_epjap_2019180168
crossref_primary_10_1002_pssb_201900257
crossref_primary_10_1039_C8NR03924K
crossref_primary_10_1016_j_jmmm_2023_171229
crossref_primary_10_3390_cryst11050531
crossref_primary_10_1021_acsami_2c13088
crossref_primary_10_1039_D0TC03210G
crossref_primary_10_31613_ceramist_2021_24_3_03
crossref_primary_10_1016_j_matlet_2019_03_139
crossref_primary_10_1063_5_0204347
crossref_primary_10_1039_C9TC00477G
crossref_primary_10_1016_j_cap_2019_09_007
crossref_primary_10_1016_j_ceramint_2019_05_269
crossref_primary_10_1142_S2010135X25500018
crossref_primary_10_1016_j_jallcom_2022_167935
crossref_primary_10_1002_aelm_201900280
crossref_primary_10_1039_D0NR07911A
crossref_primary_10_1016_j_jallcom_2021_160422
crossref_primary_10_1016_j_ceramint_2021_07_090
crossref_primary_10_1038_s41467_023_43097_2
crossref_primary_10_1088_1361_6463_ac4a98
crossref_primary_10_1016_j_ceramint_2021_08_013
crossref_primary_10_1016_j_nantod_2022_101605
crossref_primary_10_1109_JSEN_2023_3327990
crossref_primary_10_1002_aelm_202101294
crossref_primary_10_1007_s10854_019_02477_5
crossref_primary_10_1002_adfm_201802338
crossref_primary_10_1016_j_jallcom_2021_163091
crossref_primary_10_1007_s42247_025_00996_y
crossref_primary_10_1088_2053_1591_ab1a93
crossref_primary_10_7498_aps_67_20180712
crossref_primary_10_1016_j_ceramint_2019_10_051
crossref_primary_10_1021_acs_chemmater_4c01665
crossref_primary_10_1021_acsami_9b19510
crossref_primary_10_1016_j_ceramint_2019_09_053
crossref_primary_10_1088_1361_6463_aac7e2
crossref_primary_10_1016_j_jpcs_2019_03_015
crossref_primary_10_1002_aelm_201800186
crossref_primary_10_1021_acsanm_3c00630
crossref_primary_10_1111_jace_17105
crossref_primary_10_1007_s40843_020_1391_3
crossref_primary_10_1088_1402_4896_ada4ec
crossref_primary_10_1016_j_jallcom_2022_164233
crossref_primary_10_1063_5_0044565
crossref_primary_10_1016_j_jallcom_2023_169343
crossref_primary_10_1016_j_jeurceramsoc_2023_07_027
crossref_primary_10_1103_PhysRevB_104_174415
crossref_primary_10_1107_S1600576723002133
crossref_primary_10_1039_D4NR01642D
crossref_primary_10_1103_PhysRevB_109_024442
crossref_primary_10_3390_nano9020190
crossref_primary_10_1103_PhysRevB_98_104416
crossref_primary_10_1016_j_jallcom_2022_165918
crossref_primary_10_1088_1361_6463_ab3b33
crossref_primary_10_1088_1361_6463_ab4cbb
Cites_doi 10.1088/0022-3727/38/8/R01
10.1103/PhysRevB.73.094434
10.1103/PhysRevLett.100.047601
10.1103/PhysRevB.94.024419
10.1038/srep34473
10.1088/1674-1056/24/6/068402
10.1080/00150199408213356
10.1002/adma.200901961
10.1103/PhysRevApplied.6.021001
10.1063/1.4753973
10.1038/ncomms5208
10.1038/nmat2189
10.1103/PhysRevLett.106.087201
10.1038/nature08128
10.1038/nmat2023
10.1038/nmat2826
10.1126/science.1110549
10.1038/s41467-017-00637-x
10.1103/PhysRevLett.95.057205
10.1103/PhysRevLett.108.177201
10.1146/annurev-conmatphys-020911-125101
10.1038/nmat2009
10.1038/nmat1868
10.1111/jace.13573
10.1103/PhysRevB.95.094405
10.1063/1.4972304
10.1038/nature05023
10.1103/PhysRevApplied.6.064028
10.1063/1.4816268
10.1038/ncomms2990
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201705771
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201705771
ADFM201705771
Genre article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: XDB07030200
– fundername: National Natural Science Foundation of China
  funderid: 11534015; 51725104; 51671213; 11674348
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0300701
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3831-111f7dac3ca50865d008f1206a39db7b752f9e8eae537e56a5ffd7b14c72be3a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:20:07 EDT 2025
Tue Jul 01 04:11:43 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Aug 20 07:27:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-111f7dac3ca50865d008f1206a39db7b752f9e8eae537e56a5ffd7b14c72be3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8879-3508
PQID 2007944221
PQPubID 2045204
PageCount 5
ParticipantIDs proquest_journals_2007944221
crossref_primary_10_1002_adfm_201705771
crossref_citationtrail_10_1002_adfm_201705771
wiley_primary_10_1002_adfm_201705771_ADFM201705771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 28, 2018
PublicationDateYYYYMMDD 2018-02-28
PublicationDate_xml – month: 02
  year: 2018
  text: February 28, 2018
  day: 28
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2013; 4
2012; 101
2006; 73
2016; 109
2015; 98
2008; 7
2013; 103
2016; 94
2008; 100
2012; 108
2017; 95
2015; 24
2010; 22
2016; 6
2014; 5
2012; 3
2011; 106
1994; 161
2005; 95
2007; 6
2005; 308
2009; 460
2005; 38
2006; 442
2010; 9
e_1_2_7_5_1
Kadlec F. (e_1_2_7_26_1) 2016; 94
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
Scoot J. F. (e_1_2_7_6_1) 2007; 6
e_1_2_7_27_1
e_1_2_7_28_1
Shang D.‐S. (e_1_2_7_29_1) 2015; 24
Sergienko I. A. (e_1_2_7_16_1) 2006; 73
e_1_2_7_30_1
Lujan M. (e_1_2_7_12_1) 1994; 161
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 106
  start-page: 087201
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 161
  start-page: 77
  year: 1994
  publication-title: Ferroelectrics
– volume: 5
  start-page: 4208
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 256
  year: 2007
  publication-title: Nat. Mater.
– volume: 22
  start-page: 1554
  year: 2010
  publication-title: Adv. Mater.
– volume: 3
  start-page: 93
  year: 2012
  publication-title: Annu. Rev. Condens. Matter Phys.
– volume: 108
  start-page: 177201
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 024419
  year: 2016
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 021001
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 38
  start-page: 123
  year: 2005
  publication-title: J. Phys. D: Appl. Phys.
– volume: 442
  start-page: 759
  year: 2006
  publication-title: Nature
– volume: 460
  start-page: 81
  year: 2009
  publication-title: Nature
– volume: 24
  start-page: 068402
  year: 2015
  publication-title: Chin. Phys. B
– volume: 6
  start-page: 34473
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 7
  start-page: 425
  year: 2008
  publication-title: Nat. Mater.
– volume: 100
  start-page: 047601
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 797
  year: 2010
  publication-title: Nat. Mater.
– volume: 308
  start-page: 508
  year: 2005
  publication-title: Science
– volume: 95
  start-page: 057205
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 824
  year: 2007
  publication-title: Nat. Mater.
– volume: 109
  start-page: 252902
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 95
  start-page: 094405
  year: 2017
  publication-title: Phys. Rev. B
– volume: 73
  start-page: 0944343
  year: 2006
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 064028
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 4
  start-page: 1990
  year: 2013
  publication-title: Nat. Commun.
– volume: 101
  start-page: 122903
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 032906
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 2104
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 8
  start-page: 519
  year: 2017
  publication-title: Nat. Commun.
– ident: e_1_2_7_10_1
  doi: 10.1088/0022-3727/38/8/R01
– volume: 73
  start-page: 0944343
  year: 2006
  ident: e_1_2_7_16_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.094434
– ident: e_1_2_7_18_1
  doi: 10.1103/PhysRevLett.100.047601
– volume: 94
  start-page: 024419
  year: 2016
  ident: e_1_2_7_26_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.024419
– ident: e_1_2_7_9_1
  doi: 10.1038/srep34473
– volume: 24
  start-page: 068402
  year: 2015
  ident: e_1_2_7_29_1
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/24/6/068402
– volume: 161
  start-page: 77
  year: 1994
  ident: e_1_2_7_12_1
  publication-title: Ferroelectrics
  doi: 10.1080/00150199408213356
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.200901961
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevApplied.6.021001
– ident: e_1_2_7_25_1
  doi: 10.1063/1.4753973
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms5208
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat2189
– ident: e_1_2_7_23_1
  doi: 10.1103/PhysRevLett.106.087201
– ident: e_1_2_7_4_1
  doi: 10.1038/nature08128
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat2023
– ident: e_1_2_7_21_1
  doi: 10.1038/nmat2826
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1110549
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-017-00637-x
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevLett.95.057205
– ident: e_1_2_7_22_1
  doi: 10.1103/PhysRevLett.108.177201
– ident: e_1_2_7_20_1
  doi: 10.1146/annurev-conmatphys-020911-125101
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat2009
– volume: 6
  start-page: 256
  year: 2007
  ident: e_1_2_7_6_1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1868
– ident: e_1_2_7_30_1
  doi: 10.1111/jace.13573
– ident: e_1_2_7_19_1
  doi: 10.1103/PhysRevB.95.094405
– ident: e_1_2_7_14_1
  doi: 10.1063/1.4972304
– ident: e_1_2_7_11_1
  doi: 10.1038/nature05023
– ident: e_1_2_7_13_1
  doi: 10.1103/PhysRevApplied.6.064028
– ident: e_1_2_7_24_1
  doi: 10.1063/1.4816268
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms2990
SSID ssj0017734
Score 2.538667
Snippet The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computer memory
Coupling
Data storage
Electric polarization
Ferroelectric materials
Ferroelectricity
Ferromagnetism
Heterostructures
hexaferrites
Magnetization
magnetoelectric
Materials science
Memory devices
Multiferroic materials
multiferroics
nonvolatile memory
Random access memory
Room temperature
Title Room‐Temperature Nonvolatile Memory Based on a Single‐Phase Multiferroic Hexaferrite
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201705771
https://www.proquest.com/docview/2007944221
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pkk82mx2otRayIbaG3sE8USyJ9gHryJ_gb_SXOJm2sggh62yQ7m2Rnd_ZLduYbhE4yWjNXUocJKp2gISKHa-U6zO7hAFwOKLWxw93rsDMILod0uBTFn_NDFD_c7MzI7LWd4FxM6p-koVwZG0lu6WBYFkRuHbYsKrot-KM8xvJt5dCzDl7ecMHa6JL6V_Gvq9In1FwGrNmK095EfPGsuaPJQ202FTX58o3G8T8vs4U25nAUN_Pxs41WdLKD1pdICnfR8Baw9fvrW18Dws4ZmPF1moBZA6WONO5aX91nfAbLocJpgjnugdxIg8jNHZzEWYyv0eNxei9xRz9xWwaku4cG7Yv-eceZ52NwJHzHeg6YRcMUl75NoxCFVAF-MB5xQ-43lGCCUWIaOtJcU59pGnJqjGLCCyQjQvvc30elJE30AcIS2lN-pCPPFYFxA7hzKLhRlITK04aWkbPQRyznZOU2Z8YozmmWSWx7LC56rIxOi_qPOU3HjzUrC_XG8-k6sbk4wS4FhMBlkunpl1biZqvdLY4O_yJ0hNagHOXh8RVUmo5n-hgAzlRU0Wqz1b3qVbPB_AFdH_XS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-EcUCvgA4pQ2duI4e-BQWFZb2l2hspX2FvwzFqirLNpuBeXEI_AqvAqPwJMwzl9bJISE1AO3xLGdxJ7xzNgz3wA8qWDNYisjZaSN0p7JI40ujlQ4wyF1OZUyxA6PxtnwIH09ldMV-N7GwtT4EN2GW-CMar0ODB42pLdOUUO18yGUPODBKMUbv8pdPPlEVtvR850-TfFTIQavJi-HUZNYILJkkPGI-Nsrp20S8gHkmXQkCD0XcaaTnjPKKCl8D3PUKBOFMtPSe6cMT60SBhOdUL-X4HJIIx7g-vv7HWIVV6o-yM54cCnj0xYnMhZb57_3vBw8VW7PqsiVjBtchx_t6NSuLYebx0uzab_8Bhz5Xw3fDbjWaNxsu2aRm7CC5S1YO4PDeBum-2Q-_Pz6bYJkRNQg02w8L2nlJrqdIRsFd-QT9oIkvmPzkmn2ltrNkJq8eU-FrApj9rhYzD9YNsTPOlyTMn8HDi7k1-7Cajkv8R4wS_25JMecxyb1cUpvzoz2TorMcfRyHaKWAArb4LGHtCCzokaSFkWYoaKboXV41tX_WCOR_LHmRktPRbMiHYV0o7T0pkLQY1ERxl96Kbb7g1F3d_9fGj2GK8PJaK_Y2xnvPoCrVJ7XaAAbsLpcHOND0ueW5lHFQQzeXTTN_QI8rFMf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKwoLwqCgW8ALFKGztxnFmwKAyjKWVGVWml2QU_rgVilKmmU0FZ8Ql8Sn-FX-BLuM6rLRJCQuqCXR62k_i-Y99zAZ5WsGaxlZEy0kZpz-SRRhdHKqzhkLucShlyh0fjbHiQvpnIyRKctrkwNT5E98MtSEalr4OAHzq_eQYaqp0PmeQBDkYp3myr3MGTzxS0Hb3Y7hOFnwkxeL3_ahg1dQUiS_EYj0i8vXLaJqEcQJ5JR3bQcxFnOuk5o4ySwvcwR40yUSgzLb13yvDUKmEw0QmNewWuplncC8Ui-nsdYBVXql7HznjYUcYnLUxkLDYvvu9FM3jm2573kCsTN1iBH-3k1DtbPm0cL8yG_fobbuT_NHu34Gbjb7OtWkBuwxKWd-DGORTGuzDZo-Dh57fv-0ghRA0xzcazkvQ2ce0U2ShsRj5hL8neOzYrmWbvqN8UqcvuB7rIqiRmj_P57KNlQ_yiwzG58vfg4FI-bRWWy1mJ94FZGs8lOeY8NqmPU3pyZrR3UmSOo5drELX0L2yDxh6KgkyLGkdaFIFCRUehNXjetT-scUj-2HK9Zaei0UdHodgoKd5UCLotKr74yyjFVn8w6s4e_EunJ3Bttz8o3m6Pdx7Cdbqc11AA67C8mB_jI3LmFuZxJT8M3l82y_0C1uFRzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature+Nonvolatile+Memory+Based+on+a+Single%E2%80%90Phase+Multiferroic+Hexaferrite&rft.jtitle=Advanced+functional+materials&rft.au=Zhai%2C+Kun&rft.au=Da%E2%80%90Shan+Shang&rft.au=Yi%E2%80%90Sheng+Chai&rft.au=Li%2C+Gang&rft.date=2018-02-28&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201705771&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon