Room‐Temperature Nonvolatile Memory Based on a Single‐Phase Multiferroic Hexaferrite
The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
28.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics.
A nonvolatile memory with low energy consumption is achieved by using a single‐phase multiferroic materials, Sr3Co2Fe24O41, based on its nonlinear magnetoelectric effects at room temperature. Instead of using the states of magnetization, electric polarization, and resistance to store binary information, this type of nonvolatile memory employs the states (magnitude and sign) of the magnetoelectric coefficients to encode binary information. |
---|---|
AbstractList | The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics. The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr3Co2Fe24O41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics. A nonvolatile memory with low energy consumption is achieved by using a single‐phase multiferroic materials, Sr3Co2Fe24O41, based on its nonlinear magnetoelectric effects at room temperature. Instead of using the states of magnetization, electric polarization, and resistance to store binary information, this type of nonvolatile memory employs the states (magnitude and sign) of the magnetoelectric coefficients to encode binary information. The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory devices. Current studies on magnetoelectric (ME) applications mainly focus on ferromagnetic/ferroelectric heterostructures because single‐phase multiferroics with strong magnetoelectric coupling at room temperature are still very rare. Here a type of nonvolatile memory device is presented solely based on a single‐phase multiferroic hexaferrite Sr 3 Co 2 Fe 24 O 41 which exhibits nonlinear magnetoelectric effects at room temperature. The principle is to store binary information by employing the states (magnitude and sign) of the first‐order and the second‐order magnetoelectric coefficients (α and β), instead of using magnetization, electric polarization, and resistance. The experiments demonstrate repeatable nonvolatile switch of α and β by applying pulsed electric fields at room temperature, respectively. Such kind of memory device using single‐phase multiferroics paves a pathway toward practical applications of spin‐driven multiferroics. |
Author | Chai, Yi‐Sheng Cai, Jian‐Wang Zhai, Kun Li, Gang Shen, Bao‐Gen Sun, Young Shang, Da‐Shan |
Author_xml | – sequence: 1 givenname: Kun surname: Zhai fullname: Zhai, Kun organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Da‐Shan surname: Shang fullname: Shang, Da‐Shan organization: Chinese Academy of Sciences – sequence: 3 givenname: Yi‐Sheng surname: Chai fullname: Chai, Yi‐Sheng organization: Chinese Academy of Sciences – sequence: 4 givenname: Gang surname: Li fullname: Li, Gang organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Jian‐Wang surname: Cai fullname: Cai, Jian‐Wang organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Bao‐Gen surname: Shen fullname: Shen, Bao‐Gen organization: Chinese Academy of Sciences – sequence: 7 givenname: Young orcidid: 0000-0001-8879-3508 surname: Sun fullname: Sun, Young email: youngsun@iphy.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkM1Kw0AURgepYFvduh5wnTo_SSZZ1mqt0Kpohe6GSXJHU5JMnSRqdz6Cz-iTOKVSQRBX9-PynXvh9FCnMhUgdEzJgBLCTlWmywEjVJBACLqHujSkoccJizq7TBcHqFfXS-JqgvtdtLgzpvx8_5hDuQKrmtYCvjbViylUkxeAZ1Aau8ZnqoYMmworfJ9XjwU45PbJLfGsLZpcg7UmT_EE3tQm5w0con2tihqOvmcfPYwv5qOJN725vBoNp17KI049SqkWmUp5qgIShUFGSKQpI6HicZaIRARMxxCBgoALCEIVaJ2JhPqpYAlwxfvoZHt3Zc1zC3Ujl6a1lXspGSEi9n3GqGsNtq3Umrq2oOXK5qWya0mJ3NiTG3tyZ88B_i8gzRunxFSNVXnxNxZvsVcnb_3PEzk8H89-2C-Glolr |
CitedBy_id | crossref_primary_10_1007_s11433_020_1635_3 crossref_primary_10_1039_D1NR06598J crossref_primary_10_7566_JPSJ_91_033701 crossref_primary_10_1039_D0CP03003A crossref_primary_10_1021_acs_inorgchem_9b03724 crossref_primary_10_1016_j_jallcom_2022_167433 crossref_primary_10_1016_j_jallcom_2018_11_256 crossref_primary_10_1021_acsomega_3c08360 crossref_primary_10_1088_1361_648X_ac40ae crossref_primary_10_1007_s10948_022_06341_2 crossref_primary_10_1016_j_mseb_2025_118072 crossref_primary_10_1002_pssr_202000506 crossref_primary_10_1103_PhysRevB_110_014430 crossref_primary_10_1039_C8NR03259A crossref_primary_10_1016_j_jallcom_2020_154482 crossref_primary_10_1016_j_jallcom_2019_153130 crossref_primary_10_1016_j_progsolidstchem_2023_100404 crossref_primary_10_1088_1361_648X_ac965c crossref_primary_10_1021_acs_inorgchem_5c00147 crossref_primary_10_7498_aps_67_20180857 crossref_primary_10_1103_PhysRevB_98_144405 crossref_primary_10_1088_1402_4896_ad7b85 crossref_primary_10_1002_adma_202306117 crossref_primary_10_1039_D4QI01301H crossref_primary_10_1063_5_0045273 crossref_primary_10_1002_adfm_202108950 crossref_primary_10_1016_j_jmmm_2024_171968 crossref_primary_10_1051_epjap_2019180168 crossref_primary_10_1002_pssb_201900257 crossref_primary_10_1039_C8NR03924K crossref_primary_10_1016_j_jmmm_2023_171229 crossref_primary_10_3390_cryst11050531 crossref_primary_10_1021_acsami_2c13088 crossref_primary_10_1039_D0TC03210G crossref_primary_10_31613_ceramist_2021_24_3_03 crossref_primary_10_1016_j_matlet_2019_03_139 crossref_primary_10_1063_5_0204347 crossref_primary_10_1039_C9TC00477G crossref_primary_10_1016_j_cap_2019_09_007 crossref_primary_10_1016_j_ceramint_2019_05_269 crossref_primary_10_1142_S2010135X25500018 crossref_primary_10_1016_j_jallcom_2022_167935 crossref_primary_10_1002_aelm_201900280 crossref_primary_10_1039_D0NR07911A crossref_primary_10_1016_j_jallcom_2021_160422 crossref_primary_10_1016_j_ceramint_2021_07_090 crossref_primary_10_1038_s41467_023_43097_2 crossref_primary_10_1088_1361_6463_ac4a98 crossref_primary_10_1016_j_ceramint_2021_08_013 crossref_primary_10_1016_j_nantod_2022_101605 crossref_primary_10_1109_JSEN_2023_3327990 crossref_primary_10_1002_aelm_202101294 crossref_primary_10_1007_s10854_019_02477_5 crossref_primary_10_1002_adfm_201802338 crossref_primary_10_1016_j_jallcom_2021_163091 crossref_primary_10_1007_s42247_025_00996_y crossref_primary_10_1088_2053_1591_ab1a93 crossref_primary_10_7498_aps_67_20180712 crossref_primary_10_1016_j_ceramint_2019_10_051 crossref_primary_10_1021_acs_chemmater_4c01665 crossref_primary_10_1021_acsami_9b19510 crossref_primary_10_1016_j_ceramint_2019_09_053 crossref_primary_10_1088_1361_6463_aac7e2 crossref_primary_10_1016_j_jpcs_2019_03_015 crossref_primary_10_1002_aelm_201800186 crossref_primary_10_1021_acsanm_3c00630 crossref_primary_10_1111_jace_17105 crossref_primary_10_1007_s40843_020_1391_3 crossref_primary_10_1088_1402_4896_ada4ec crossref_primary_10_1016_j_jallcom_2022_164233 crossref_primary_10_1063_5_0044565 crossref_primary_10_1016_j_jallcom_2023_169343 crossref_primary_10_1016_j_jeurceramsoc_2023_07_027 crossref_primary_10_1103_PhysRevB_104_174415 crossref_primary_10_1107_S1600576723002133 crossref_primary_10_1039_D4NR01642D crossref_primary_10_1103_PhysRevB_109_024442 crossref_primary_10_3390_nano9020190 crossref_primary_10_1103_PhysRevB_98_104416 crossref_primary_10_1016_j_jallcom_2022_165918 crossref_primary_10_1088_1361_6463_ab3b33 crossref_primary_10_1088_1361_6463_ab4cbb |
Cites_doi | 10.1088/0022-3727/38/8/R01 10.1103/PhysRevB.73.094434 10.1103/PhysRevLett.100.047601 10.1103/PhysRevB.94.024419 10.1038/srep34473 10.1088/1674-1056/24/6/068402 10.1080/00150199408213356 10.1002/adma.200901961 10.1103/PhysRevApplied.6.021001 10.1063/1.4753973 10.1038/ncomms5208 10.1038/nmat2189 10.1103/PhysRevLett.106.087201 10.1038/nature08128 10.1038/nmat2023 10.1038/nmat2826 10.1126/science.1110549 10.1038/s41467-017-00637-x 10.1103/PhysRevLett.95.057205 10.1103/PhysRevLett.108.177201 10.1146/annurev-conmatphys-020911-125101 10.1038/nmat2009 10.1038/nmat1868 10.1111/jace.13573 10.1103/PhysRevB.95.094405 10.1063/1.4972304 10.1038/nature05023 10.1103/PhysRevApplied.6.064028 10.1063/1.4816268 10.1038/ncomms2990 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201705771 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201705771 ADFM201705771 |
Genre | article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: XDB07030200 – fundername: National Natural Science Foundation of China funderid: 11534015; 51725104; 51671213; 11674348 – fundername: National Key Research and Development Program of China funderid: 2016YFA0300701 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3831-111f7dac3ca50865d008f1206a39db7b752f9e8eae537e56a5ffd7b14c72be3a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:20:07 EDT 2025 Tue Jul 01 04:11:43 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Aug 20 07:27:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3831-111f7dac3ca50865d008f1206a39db7b752f9e8eae537e56a5ffd7b14c72be3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8879-3508 |
PQID | 2007944221 |
PQPubID | 2045204 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2007944221 crossref_primary_10_1002_adfm_201705771 crossref_citationtrail_10_1002_adfm_201705771 wiley_primary_10_1002_adfm_201705771_ADFM201705771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 28, 2018 |
PublicationDateYYYYMMDD | 2018-02-28 |
PublicationDate_xml | – month: 02 year: 2018 text: February 28, 2018 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 4 2012; 101 2006; 73 2016; 109 2015; 98 2008; 7 2013; 103 2016; 94 2008; 100 2012; 108 2017; 95 2015; 24 2010; 22 2016; 6 2014; 5 2012; 3 2011; 106 1994; 161 2005; 95 2007; 6 2005; 308 2009; 460 2005; 38 2006; 442 2010; 9 e_1_2_7_5_1 Kadlec F. (e_1_2_7_26_1) 2016; 94 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_10_1 Scoot J. F. (e_1_2_7_6_1) 2007; 6 e_1_2_7_27_1 e_1_2_7_28_1 Shang D.‐S. (e_1_2_7_29_1) 2015; 24 Sergienko I. A. (e_1_2_7_16_1) 2006; 73 e_1_2_7_30_1 Lujan M. (e_1_2_7_12_1) 1994; 161 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 106 start-page: 087201 year: 2011 publication-title: Phys. Rev. Lett. – volume: 161 start-page: 77 year: 1994 publication-title: Ferroelectrics – volume: 5 start-page: 4208 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 256 year: 2007 publication-title: Nat. Mater. – volume: 22 start-page: 1554 year: 2010 publication-title: Adv. Mater. – volume: 3 start-page: 93 year: 2012 publication-title: Annu. Rev. Condens. Matter Phys. – volume: 108 start-page: 177201 year: 2012 publication-title: Phys. Rev. Lett. – volume: 94 start-page: 024419 year: 2016 publication-title: Phys. Rev. B – volume: 6 start-page: 021001 year: 2016 publication-title: Phys. Rev. Appl. – volume: 38 start-page: 123 year: 2005 publication-title: J. Phys. D: Appl. Phys. – volume: 442 start-page: 759 year: 2006 publication-title: Nature – volume: 460 start-page: 81 year: 2009 publication-title: Nature – volume: 24 start-page: 068402 year: 2015 publication-title: Chin. Phys. B – volume: 6 start-page: 34473 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 7 start-page: 425 year: 2008 publication-title: Nat. Mater. – volume: 100 start-page: 047601 year: 2008 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 797 year: 2010 publication-title: Nat. Mater. – volume: 308 start-page: 508 year: 2005 publication-title: Science – volume: 95 start-page: 057205 year: 2005 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 824 year: 2007 publication-title: Nat. Mater. – volume: 109 start-page: 252902 year: 2016 publication-title: Appl. Phys. Lett. – volume: 95 start-page: 094405 year: 2017 publication-title: Phys. Rev. B – volume: 73 start-page: 0944343 year: 2006 publication-title: Phys. Rev. B – volume: 6 start-page: 064028 year: 2016 publication-title: Phys. Rev. Appl. – volume: 4 start-page: 1990 year: 2013 publication-title: Nat. Commun. – volume: 101 start-page: 122903 year: 2012 publication-title: Appl. Phys. Lett. – volume: 103 start-page: 032906 year: 2013 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 2104 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 8 start-page: 519 year: 2017 publication-title: Nat. Commun. – ident: e_1_2_7_10_1 doi: 10.1088/0022-3727/38/8/R01 – volume: 73 start-page: 0944343 year: 2006 ident: e_1_2_7_16_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.094434 – ident: e_1_2_7_18_1 doi: 10.1103/PhysRevLett.100.047601 – volume: 94 start-page: 024419 year: 2016 ident: e_1_2_7_26_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.024419 – ident: e_1_2_7_9_1 doi: 10.1038/srep34473 – volume: 24 start-page: 068402 year: 2015 ident: e_1_2_7_29_1 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/6/068402 – volume: 161 start-page: 77 year: 1994 ident: e_1_2_7_12_1 publication-title: Ferroelectrics doi: 10.1080/00150199408213356 – ident: e_1_2_7_15_1 doi: 10.1002/adma.200901961 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevApplied.6.021001 – ident: e_1_2_7_25_1 doi: 10.1063/1.4753973 – ident: e_1_2_7_27_1 doi: 10.1038/ncomms5208 – ident: e_1_2_7_7_1 doi: 10.1038/nmat2189 – ident: e_1_2_7_23_1 doi: 10.1103/PhysRevLett.106.087201 – ident: e_1_2_7_4_1 doi: 10.1038/nature08128 – ident: e_1_2_7_2_1 doi: 10.1038/nmat2023 – ident: e_1_2_7_21_1 doi: 10.1038/nmat2826 – ident: e_1_2_7_1_1 doi: 10.1126/science.1110549 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-017-00637-x – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevLett.95.057205 – ident: e_1_2_7_22_1 doi: 10.1103/PhysRevLett.108.177201 – ident: e_1_2_7_20_1 doi: 10.1146/annurev-conmatphys-020911-125101 – ident: e_1_2_7_3_1 doi: 10.1038/nmat2009 – volume: 6 start-page: 256 year: 2007 ident: e_1_2_7_6_1 publication-title: Nat. Mater. doi: 10.1038/nmat1868 – ident: e_1_2_7_30_1 doi: 10.1111/jace.13573 – ident: e_1_2_7_19_1 doi: 10.1103/PhysRevB.95.094405 – ident: e_1_2_7_14_1 doi: 10.1063/1.4972304 – ident: e_1_2_7_11_1 doi: 10.1038/nature05023 – ident: e_1_2_7_13_1 doi: 10.1103/PhysRevApplied.6.064028 – ident: e_1_2_7_24_1 doi: 10.1063/1.4816268 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms2990 |
SSID | ssj0017734 |
Score | 2.538667 |
Snippet | The cross‐coupling between electric polarization and magnetization in multiferroic materials provides a great potential for creating next‐generation memory... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computer memory Coupling Data storage Electric polarization Ferroelectric materials Ferroelectricity Ferromagnetism Heterostructures hexaferrites Magnetization magnetoelectric Materials science Memory devices Multiferroic materials multiferroics nonvolatile memory Random access memory Room temperature |
Title | Room‐Temperature Nonvolatile Memory Based on a Single‐Phase Multiferroic Hexaferrite |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201705771 https://www.proquest.com/docview/2007944221 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9pkk82mx2otRayIbaG3sE8USyJ9gHryJ_gb_SXOJm2sggh62yQ7m2Rnd_ZLduYbhE4yWjNXUocJKp2gISKHa-U6zO7hAFwOKLWxw93rsDMILod0uBTFn_NDFD_c7MzI7LWd4FxM6p-koVwZG0lu6WBYFkRuHbYsKrot-KM8xvJt5dCzDl7ecMHa6JL6V_Gvq9In1FwGrNmK095EfPGsuaPJQ202FTX58o3G8T8vs4U25nAUN_Pxs41WdLKD1pdICnfR8Baw9fvrW18Dws4ZmPF1moBZA6WONO5aX91nfAbLocJpgjnugdxIg8jNHZzEWYyv0eNxei9xRz9xWwaku4cG7Yv-eceZ52NwJHzHeg6YRcMUl75NoxCFVAF-MB5xQ-43lGCCUWIaOtJcU59pGnJqjGLCCyQjQvvc30elJE30AcIS2lN-pCPPFYFxA7hzKLhRlITK04aWkbPQRyznZOU2Z8YozmmWSWx7LC56rIxOi_qPOU3HjzUrC_XG8-k6sbk4wS4FhMBlkunpl1biZqvdLY4O_yJ0hNagHOXh8RVUmo5n-hgAzlRU0Wqz1b3qVbPB_AFdH_XS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-EcUCvgA4pQ2duI4e-BQWFZb2l2hspX2FvwzFqirLNpuBeXEI_AqvAqPwJMwzl9bJISE1AO3xLGdxJ7xzNgz3wA8qWDNYisjZaSN0p7JI40ujlQ4wyF1OZUyxA6PxtnwIH09ldMV-N7GwtT4EN2GW-CMar0ODB42pLdOUUO18yGUPODBKMUbv8pdPPlEVtvR850-TfFTIQavJi-HUZNYILJkkPGI-Nsrp20S8gHkmXQkCD0XcaaTnjPKKCl8D3PUKBOFMtPSe6cMT60SBhOdUL-X4HJIIx7g-vv7HWIVV6o-yM54cCnj0xYnMhZb57_3vBw8VW7PqsiVjBtchx_t6NSuLYebx0uzab_8Bhz5Xw3fDbjWaNxsu2aRm7CC5S1YO4PDeBum-2Q-_Pz6bYJkRNQg02w8L2nlJrqdIRsFd-QT9oIkvmPzkmn2ltrNkJq8eU-FrApj9rhYzD9YNsTPOlyTMn8HDi7k1-7Cajkv8R4wS_25JMecxyb1cUpvzoz2TorMcfRyHaKWAArb4LGHtCCzokaSFkWYoaKboXV41tX_WCOR_LHmRktPRbMiHYV0o7T0pkLQY1ERxl96Kbb7g1F3d_9fGj2GK8PJaK_Y2xnvPoCrVJ7XaAAbsLpcHOND0ueW5lHFQQzeXTTN_QI8rFMf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKwoLwqCgW8ALFKGztxnFmwKAyjKWVGVWml2QU_rgVilKmmU0FZ8Ql8Sn-FX-BLuM6rLRJCQuqCXR62k_i-Y99zAZ5WsGaxlZEy0kZpz-SRRhdHKqzhkLucShlyh0fjbHiQvpnIyRKctrkwNT5E98MtSEalr4OAHzq_eQYaqp0PmeQBDkYp3myr3MGTzxS0Hb3Y7hOFnwkxeL3_ahg1dQUiS_EYj0i8vXLaJqEcQJ5JR3bQcxFnOuk5o4ySwvcwR40yUSgzLb13yvDUKmEw0QmNewWuplncC8Ui-nsdYBVXql7HznjYUcYnLUxkLDYvvu9FM3jm2573kCsTN1iBH-3k1DtbPm0cL8yG_fobbuT_NHu34Gbjb7OtWkBuwxKWd-DGORTGuzDZo-Dh57fv-0ghRA0xzcazkvQ2ce0U2ShsRj5hL8neOzYrmWbvqN8UqcvuB7rIqiRmj_P57KNlQ_yiwzG58vfg4FI-bRWWy1mJ94FZGs8lOeY8NqmPU3pyZrR3UmSOo5drELX0L2yDxh6KgkyLGkdaFIFCRUehNXjetT-scUj-2HK9Zaei0UdHodgoKd5UCLotKr74yyjFVn8w6s4e_EunJ3Bttz8o3m6Pdx7Cdbqc11AA67C8mB_jI3LmFuZxJT8M3l82y_0C1uFRzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature+Nonvolatile+Memory+Based+on+a+Single%E2%80%90Phase+Multiferroic+Hexaferrite&rft.jtitle=Advanced+functional+materials&rft.au=Zhai%2C+Kun&rft.au=Da%E2%80%90Shan+Shang&rft.au=Yi%E2%80%90Sheng+Chai&rft.au=Li%2C+Gang&rft.date=2018-02-28&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201705771&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |