Tuning Ion Transport at the Anode‐Electrolyte Interface via a Sulfonate‐Rich Ion‐Exchange Layer for Durable Zinc‐Iodine Batteries

Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing tha...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 13
Main Authors Zhang, Leiqian, Huang, Jiajia, Guo, Hele, Ge, Lingfeng, Tian, Zhihong, Zhang, Mingjie, Wang, Jingtao, He, Guanjie, Liu, Tianxi, Hofkens, Johan, Brett, Dan J.L., Lai, Feili
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202203790

Cover

Abstract Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption. An in‐depth understanding of the corrosion mechanism of polyiodide on zinc, leads to the development of a sulfonate‐rich ion‐exchange layer, to prevent polyiodide permeation, while also facilitating desolvation of Zn(H2O)62+ and restricting the undesirable 2D diffusion of Zn2+. The resulting zinc‐iodine battery can work over 6000 cycles with good capacity retention (90.2%) and reversibility (99.89%).
AbstractList Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption.
Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn 2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H 2 O) 6 2+ and restricting undesirable 2D diffusion of Zn 2+ by chemisorption.
Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption. An in‐depth understanding of the corrosion mechanism of polyiodide on zinc, leads to the development of a sulfonate‐rich ion‐exchange layer, to prevent polyiodide permeation, while also facilitating desolvation of Zn(H2O)62+ and restricting the undesirable 2D diffusion of Zn2+. The resulting zinc‐iodine battery can work over 6000 cycles with good capacity retention (90.2%) and reversibility (99.89%).
Author Huang, Jiajia
Lai, Feili
Ge, Lingfeng
Brett, Dan J.L.
Hofkens, Johan
Zhang, Leiqian
Guo, Hele
Zhang, Mingjie
Wang, Jingtao
He, Guanjie
Liu, Tianxi
Tian, Zhihong
Author_xml – sequence: 1
  givenname: Leiqian
  surname: Zhang
  fullname: Zhang, Leiqian
  organization: Zhengzhou University
– sequence: 2
  givenname: Jiajia
  surname: Huang
  fullname: Huang, Jiajia
  email: huangjiajia@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 3
  givenname: Hele
  surname: Guo
  fullname: Guo, Hele
  organization: KU Leuven
– sequence: 4
  givenname: Lingfeng
  surname: Ge
  fullname: Ge, Lingfeng
  organization: University of Bristol
– sequence: 5
  givenname: Zhihong
  surname: Tian
  fullname: Tian, Zhihong
  organization: Henan University
– sequence: 6
  givenname: Mingjie
  surname: Zhang
  fullname: Zhang, Mingjie
  organization: Zhengzhou University
– sequence: 7
  givenname: Jingtao
  surname: Wang
  fullname: Wang, Jingtao
  organization: Zhengzhou University
– sequence: 8
  givenname: Guanjie
  surname: He
  fullname: He, Guanjie
  organization: University College London
– sequence: 9
  givenname: Tianxi
  surname: Liu
  fullname: Liu, Tianxi
  organization: Jiangnan University
– sequence: 10
  givenname: Johan
  surname: Hofkens
  fullname: Hofkens, Johan
  organization: Max Planck Institute for Polymer Research
– sequence: 11
  givenname: Dan J.L.
  surname: Brett
  fullname: Brett, Dan J.L.
  organization: University College London
– sequence: 12
  givenname: Feili
  orcidid: 0000-0002-4945-0737
  surname: Lai
  fullname: Lai, Feili
  email: feili.lai@kuleuven.be
  organization: Max Planck Institute for Polymer Research
BookMark eNqFkE9PGzEQxS1EJSDlytlSzwnj9Xr_HFMIECltpTa9cFlNvGNitNip1wvkxpUbn5FPwq5SUalS1bm8Obzfe9I7YvvOO2LsRMBEACSnSO5ukkCSgMxL2GOHIhPpOCtS2H__ZXLAjtv2FvpLSwFSHrLnZeesu-Fz7_gyoGs3PkSOkcc18anzNb0-vcwa0jH4ZhuJz12kYFATv7fIkf_oGuMdxsH33er1kDQgj3qN7ob4ArcUuPGBn3cBVw3xa-t075j72jrinzH2gZbaj-yDwaal4986Yj8vZsuzq_Hi2-X8bLoYa1lIGNd5CnUBKk2VLBQIXetSAWSpFErBqlQik7oWiEBS5bVZmVyoIstkbmRhpJAj9mmXuwn-V0dtrG59F1xfWSV5qcqkgL5oxCY7lw6-bQOZahPsHYZtJaAaFq-Gxav3xXsg_QvQNmK03sWAtvk3Vu6wB9vQ9j8l1XT29csf9g26X5tN
CitedBy_id crossref_primary_10_1002_adma_202408213
crossref_primary_10_1016_j_cej_2024_151629
crossref_primary_10_1021_acsnano_3c10081
crossref_primary_10_1039_D4EE01313A
crossref_primary_10_1002_sus2_189
crossref_primary_10_1039_D4EE06048B
crossref_primary_10_1002_advs_202402821
crossref_primary_10_1016_j_nanoen_2025_110876
crossref_primary_10_1039_D4SC05127K
crossref_primary_10_1002_ange_202318149
crossref_primary_10_1039_D3EE02945J
crossref_primary_10_1002_ange_202407067
crossref_primary_10_1002_aenm_202401737
crossref_primary_10_1021_acsenergylett_4c02684
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1002_adfm_202310995
crossref_primary_10_1002_ange_202300418
crossref_primary_10_1002_tcr_202300212
crossref_primary_10_26599_NRE_2023_9120094
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1002_aenm_202301743
crossref_primary_10_1002_anie_202303011
crossref_primary_10_1002_adma_202403097
crossref_primary_10_1002_cnl2_155
crossref_primary_10_1038_s41467_024_53800_6
crossref_primary_10_1002_smll_202310293
crossref_primary_10_1039_D3SC06150G
crossref_primary_10_1002_adfm_202424423
crossref_primary_10_1002_aenm_202402586
crossref_primary_10_1002_ange_202422163
crossref_primary_10_1002_anie_202310284
crossref_primary_10_1021_jacs_3c12695
crossref_primary_10_1002_smll_202405522
crossref_primary_10_1002_anie_202407067
crossref_primary_10_1002_smll_202405487
crossref_primary_10_1002_anie_202300418
crossref_primary_10_1002_anie_202422163
crossref_primary_10_1002_adfm_202409099
crossref_primary_10_1002_adfm_202304223
crossref_primary_10_1021_acsenergylett_4c02573
crossref_primary_10_1016_j_est_2023_110086
crossref_primary_10_1007_s40843_024_2971_y
crossref_primary_10_1002_adfm_202410712
crossref_primary_10_1039_D3SC06935D
crossref_primary_10_1002_ange_202303011
crossref_primary_10_1039_D4EE05527F
crossref_primary_10_1039_D4EE02592J
crossref_primary_10_1016_j_cej_2023_148479
crossref_primary_10_1002_adma_202304983
crossref_primary_10_1002_ange_202310284
crossref_primary_10_1002_aenm_202401321
crossref_primary_10_3390_ma17071646
crossref_primary_10_1002_adfm_202309350
crossref_primary_10_1002_aenm_202400033
crossref_primary_10_1016_j_materresbull_2024_113250
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_aenm_202401479
crossref_primary_10_1002_adfm_202304811
crossref_primary_10_1002_anie_202302701
crossref_primary_10_1002_cnma_202400004
crossref_primary_10_1002_aenm_202303221
crossref_primary_10_1039_D4EE05873A
crossref_primary_10_1002_smll_202307021
crossref_primary_10_1021_acssuschemeng_3c01867
crossref_primary_10_1021_jacs_3c12638
crossref_primary_10_1002_aenm_202302738
crossref_primary_10_1007_s11426_024_2133_1
crossref_primary_10_1002_adfm_202423115
crossref_primary_10_1002_advs_202305061
crossref_primary_10_1016_j_cej_2024_148807
crossref_primary_10_1016_j_mser_2024_100844
crossref_primary_10_1002_anie_202318149
crossref_primary_10_1002_ange_202302701
crossref_primary_10_1002_adma_202313610
crossref_primary_10_1021_acsami_4c11422
crossref_primary_10_3390_batteries10120416
crossref_primary_10_1002_aenm_202404814
crossref_primary_10_1021_acssuschemeng_4c06869
crossref_primary_10_1021_acsenergylett_4c02235
crossref_primary_10_1002_adma_202306531
crossref_primary_10_1002_cphc_202400231
crossref_primary_10_1002_aenm_202302187
crossref_primary_10_1021_acs_nanolett_3c04222
crossref_primary_10_1039_D3TA01904G
crossref_primary_10_1039_D3EE03297C
Cites_doi 10.1002/adma.202004240
10.1016/j.desal.2014.04.001
10.1016/S0378-7753(01)00789-3
10.1007/BF01029593
10.1021/acs.nanolett.2c01235
10.1038/s41565-021-00905-4
10.1039/C9EE02526J
10.1002/batt.202100221
10.1126/sciadv.abp8960
10.1002/ange.202014447
10.1023/A:1018431619595
10.1149/1.2186037
10.1002/aenm.202103705
10.1016/j.ensm.2022.10.027
10.1021/acsenergylett.9b00433
10.1002/ange.202005472
10.1063/1.478522
10.1016/j.cej.2020.126517
10.1016/S0010-938X(03)00107-0
10.1021/acsami.7b01705
10.1039/D2TA04015H
10.1021/acs.iecr.0c04308
10.1002/jcc.21759
10.1002/adma.202006897
10.1016/j.electacta.2018.11.131
10.1016/j.jechem.2020.09.035
10.1016/j.joule.2020.03.002
10.1038/s41467-020-20331-9
10.1002/anie.202014447
10.1016/S1381-5148(02)00173-6
10.1021/jacs.1c06923
10.1002/eem2.12067
10.1002/jcc.22885
10.1021/acsnano.2c06220
10.1039/D0EE02079F
10.1039/C8CS00493E
10.1002/adma.202108856
10.1002/anie.202005472
10.1039/c0ee00770f
10.1038/s41928-018-0048-6
10.1002/advs.202105598
10.1021/acs.nanolett.6b04755
10.1038/526S93a
10.1021/cm070356a
10.1016/j.esci.2022.03.002
10.1002/advs.202004142
10.1021/acssuschemeng.0c05283
10.1016/j.reactfunctpolym.2015.02.006
10.1016/j.jmgm.2012.07.004
10.1039/b515623h
10.1002/aenm.202103557
10.1093/nsr/nwac268
10.1039/C9EE00596J
10.1149/1.2404065
10.1016/0263-7855(96)00018-5
10.1038/s41560-021-00797-7
10.1039/b508541a
10.1002/smll.202107971
10.1023/A:1017580025961
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202203790
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202203790
AENM202203790
Genre article
GrantInformation_xml – fundername: Research Foundation‐Flanders
  funderid: 1298323N
– fundername: National Natural Science Foundation of China
  funderid: 51873198; 21875033; 21674019; 52161135302
– fundername: Research Foundation‐Flanders
  funderid: G0F2322N; G983.19N; G0A5817N; ZW15_09‐G0H6316N; Meth/15/04
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3830-d740d80544538501cdc95006431550b95163cd1aa0e357dfbf71586637f38f313
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:14 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 01:43:48 EDT 2025
Wed Jun 11 08:26:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3830-d740d80544538501cdc95006431550b95163cd1aa0e357dfbf71586637f38f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4945-0737
PQID 2795928038
PQPubID 886389
PageCount 12
ParticipantIDs proquest_journals_2795928038
crossref_primary_10_1002_aenm_202203790
crossref_citationtrail_10_1002_aenm_202203790
wiley_primary_10_1002_aenm_202203790_AENM202203790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 102
2002; 53
2019; 12
2021; 404
2020 2020; 59 132
2020; 59
2020; 13
2022; 22
2017; 9
2005; 25
2020; 8
2020; 4
2020; 3
2021; 33
2000
2018; 1
2015; 88
2022; 34
2003; 45
2021; 8
2023; 54
2007; 19
1972; 119
2021; 6
2019; 4
2006; 8
1997; 27
2006; 153
2011; 32
2015; 526
2012; 38
2021; 143
2020; 32
2011; 4
1996; 14
2012; 33
2021; 58
2021; 16
2021; 12
2022; 5
2017; 17
2022; 8
2019; 48
2022; 9
2022; 12
2021 2021; 60 133
1999; 110
2005; 7
2022; 10
2022; 2
2013
1992; 22
2022; 16
2019; 296
2022; 18
2001; 31
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
Lyday P. A. (e_1_2_8_8_1) 2000
e_1_2_8_4_1
e_1_2_8_6_1
Wei Y.‐J. (e_1_2_8_27_1) 2005; 25
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
(e_1_2_8_35_2) 2020; 132
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 12
  start-page: 3288
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 193
  year: 2002
  publication-title: React. Funct. Polym.
– volume: 1
  start-page: 204
  year: 2018
  publication-title: Nat. Electron.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 4
  start-page: 1012
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1147
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 314
  year: 2012
  publication-title: J. Mol. Graph Modell.
– volume: 31
  start-page: 685
  year: 2001
  publication-title: J. Appl. Electrochem.
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comp. Chem.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 88
  start-page: 47
  year: 2015
  publication-title: React. Funct. Polym.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 19
  start-page: 2034
  year: 2007
  publication-title: Chem. Mater.
– volume: 54
  start-page: 339
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 8
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 2
  start-page: 209
  year: 2022
  publication-title: eScience
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 119
  start-page: 1649
  year: 1972
  publication-title: J. Electrochem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv Mater
– volume: 60 133
  start-page: 3791 3835
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 59 132
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– year: 2000
– volume: 5
  year: 2022
  publication-title: Batteries Supercaps
– volume: 153
  start-page: C357
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 1057
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 1104
  year: 1992
  publication-title: J. Appl. Electrochem.
– volume: 45
  start-page: 2705
  year: 2003
  publication-title: Corros. Sci.
– volume: 102
  start-page: 139
  year: 2001
  publication-title: J. Power Sources
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 673
  year: 1997
  publication-title: J. Appl. Electrochem.
– volume: 6
  start-page: 398
  year: 2021
  publication-title: Nat. Energy
– volume: 16
  start-page: 902
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 146
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 48
  start-page: 463
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 526
  start-page: S93
  year: 2015
  publication-title: Nature
– volume: 296
  start-page: 755
  year: 2019
  publication-title: Electrochim. Acta
– publication-title: Natl. Sci. Rev.
– volume: 22
  start-page: 4223
  year: 2022
  publication-title: Nano Lett.
– volume: 58
  start-page: 147
  year: 2021
  publication-title: J. Energy Chem.
– volume: 25
  start-page: 86
  year: 2005
  publication-title: Spectrosc. Spect. Anal.
– volume: 12
  start-page: 170
  year: 2021
  publication-title: Nat. Commun.
– volume: 344
  start-page: 306
  year: 2014
  publication-title: Desalination
– volume: 13
  start-page: 3330
  year: 2020
  publication-title: Energy Environ. Sci.
– year: 2013
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202004240
– ident: e_1_2_8_23_1
  doi: 10.1016/j.desal.2014.04.001
– ident: e_1_2_8_49_1
  doi: 10.1016/S0378-7753(01)00789-3
– ident: e_1_2_8_37_1
  doi: 10.1007/BF01029593
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.nanolett.2c01235
– ident: e_1_2_8_34_1
  doi: 10.1038/s41565-021-00905-4
– ident: e_1_2_8_20_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_8_28_1
  doi: 10.1002/batt.202100221
– ident: e_1_2_8_19_1
  doi: 10.1126/sciadv.abp8960
– ident: e_1_2_8_10_2
  doi: 10.1002/ange.202014447
– ident: e_1_2_8_43_1
  doi: 10.1023/A:1018431619595
– ident: e_1_2_8_48_1
  doi: 10.1149/1.2186037
– ident: e_1_2_8_33_1
  doi: 10.1002/aenm.202103705
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ensm.2022.10.027
– ident: e_1_2_8_45_1
  doi: 10.1021/acsenergylett.9b00433
– volume: 132
  year: 2020
  ident: e_1_2_8_35_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005472
– ident: e_1_2_8_53_1
  doi: 10.1063/1.478522
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cej.2020.126517
– ident: e_1_2_8_38_1
  doi: 10.1016/S0010-938X(03)00107-0
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.7b01705
– ident: e_1_2_8_41_1
  doi: 10.1039/D2TA04015H
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.iecr.0c04308
– ident: e_1_2_8_56_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202006897
– ident: e_1_2_8_16_1
  doi: 10.1016/j.electacta.2018.11.131
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jechem.2020.09.035
– ident: e_1_2_8_36_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-020-20331-9
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202014447
– ident: e_1_2_8_30_1
  doi: 10.1016/S1381-5148(02)00173-6
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.1c06923
– ident: e_1_2_8_21_1
  doi: 10.1002/eem2.12067
– ident: e_1_2_8_60_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.2c06220
– ident: e_1_2_8_2_1
  doi: 10.1039/D0EE02079F
– ident: e_1_2_8_26_1
  doi: 10.1039/C8CS00493E
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202108856
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.202005472
– ident: e_1_2_8_24_1
  doi: 10.1039/c0ee00770f
– ident: e_1_2_8_3_1
  doi: 10.1038/s41928-018-0048-6
– ident: e_1_2_8_51_1
  doi: 10.1002/advs.202105598
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_8_1_1
  doi: 10.1038/526S93a
– ident: e_1_2_8_29_1
  doi: 10.1021/cm070356a
– ident: e_1_2_8_11_1
  doi: 10.1016/j.esci.2022.03.002
– ident: e_1_2_8_4_1
  doi: 10.1002/advs.202004142
– ident: e_1_2_8_17_1
  doi: 10.1021/acssuschemeng.0c05283
– ident: e_1_2_8_31_1
  doi: 10.1016/j.reactfunctpolym.2015.02.006
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jmgm.2012.07.004
– ident: e_1_2_8_55_1
  doi: 10.1039/b515623h
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.202103557
– ident: e_1_2_8_57_1
– ident: e_1_2_8_6_1
  doi: 10.1093/nsr/nwac268
– volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2000
  ident: e_1_2_8_8_1
– ident: e_1_2_8_39_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_8_47_1
  doi: 10.1149/1.2404065
– ident: e_1_2_8_58_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_22_1
  doi: 10.1038/s41560-021-00797-7
– ident: e_1_2_8_54_1
  doi: 10.1039/b508541a
– ident: e_1_2_8_40_1
  doi: 10.1002/smll.202107971
– volume: 25
  start-page: 86
  year: 2005
  ident: e_1_2_8_27_1
  publication-title: Spectrosc. Spect. Anal.
– ident: e_1_2_8_50_1
  doi: 10.1023/A:1017580025961
SSID ssj0000491033
Score 2.656825
Snippet Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms anodic protection
Chemisorption
Corrosion mechanisms
Energy storage
Iodine
Ion transport
ion‐exchange layers
polyiodide corrosion mechanism
Rechargeable batteries
Zinc
zinc‐iodine batteries
Title Tuning Ion Transport at the Anode‐Electrolyte Interface via a Sulfonate‐Rich Ion‐Exchange Layer for Durable Zinc‐Iodine Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203790
https://www.proquest.com/docview/2795928038
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSBxWASdOmvRYsV26q7YcaKWKS-Q49qqoamFJEHDiyo2X4YV4EmZsx03FAguXqLUmTuX5Mp6Zznwm5DEvGRPK_K1uSLWZDsBL0AFsBaFkKgXYYHPyZNobzePTRbLodL63qpbqqngqP1_YV_I_WoUx0Ct2yf6DZv2kMACfQb9wBQ3D9XI6rk1W4wQ06EnKXXfiIcT1pfKlDEN72s3qU-VqJbWAF_oDdmSB7VhpzKFvpbHbHmfd3v7RNggfjgW46KY08ag-N11Xr5ewII3cyaZEr9WSdjbliQ3HbVNtoGy7IbjKdo1-yV2P1fJdC7Wj2o2fLsWbpd9GXtSbZt_0Q8qlGc60cjuyS2hEvFUHczmz2TLX4FwEvcxlSFV7zJJAeRvP21jmF-4dlotWqDUSFEQR46k9yHSXpHv6Mj-ej8f5bLiYXSH7UZpidcD-4GgyfuWTexB2hYyb5o7mFzaEoSx6tvuIXYdoG-W0YyXj7MxukOsuSqEDC7mbpKPWt8i1FnflbfLVgo8CTKgHHxUVBfBRA74fX761YEc97CjAjgrqYQdyCDicCW9xUKMGahSgRh3UKEINJCzIqAfZHTI_Hs6ejwJ3rkcgecZZUIIFKDOGNFA8S1goS9lPjG-M8XIBPn-PyzIUgimepKUudBomGbjGqeaZ5iG_S_bWm7W6R6gsOBIswTrqOI5VCPE5U7FQhQQbJFnaJUGzuLl0pPd49soqt3TdUY7KyL0yuuSJl39r6V5-K3nQ6Cp3JuF9HqX9pI_nvWVdEhn9_WWWfDCcTvy3-3-e8wG5un1fDshedV6rh-ASV8UjB8CfmE-1UQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Ion+Transport+at+the+Anode%E2%80%90Electrolyte+Interface+via+a+Sulfonate%E2%80%90Rich+Ion%E2%80%90Exchange+Layer+for+Durable+Zinc%E2%80%90Iodine+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Leiqian&rft.au=Huang%2C+Jiajia&rft.au=Guo%2C+Hele&rft.au=Ge%2C+Lingfeng&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft_id=info:doi/10.1002%2Faenm.202203790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon