Tuning Ion Transport at the Anode‐Electrolyte Interface via a Sulfonate‐Rich Ion‐Exchange Layer for Durable Zinc‐Iodine Batteries
Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing tha...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 13 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202203790 |
Cover
Abstract | Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption.
An in‐depth understanding of the corrosion mechanism of polyiodide on zinc, leads to the development of a sulfonate‐rich ion‐exchange layer, to prevent polyiodide permeation, while also facilitating desolvation of Zn(H2O)62+ and restricting the undesirable 2D diffusion of Zn2+. The resulting zinc‐iodine battery can work over 6000 cycles with good capacity retention (90.2%) and reversibility (99.89%). |
---|---|
AbstractList | Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption. Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn 2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H 2 O) 6 2+ and restricting undesirable 2D diffusion of Zn 2+ by chemisorption. Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth occurring on the anode seriously hinder their future application. Here, the corrosion mechanism of polyiodide is revealed in detail, showing that it can spontaneously react with zinc and cause rapid battery failure. To address this issue, a sulfonate‐rich ion‐exchange layer (SC‐PSS) is purposely constructed to modulate the transport and reaction chemistry of polyiodide and Zn2+ at the zinc/electrolyte interface. The resulting ZIBs can work properly over 6000 cycles with high‐capacity retention (90.2%) and reversibility (99.89%). Theoretical calculations and experimental characterization reveal that the SC‐PPS layer blocks polyiodide permeation through electrostatic repulsion, while facilitating desolvation of Zn(H2O)62+ and restricting undesirable 2D diffusion of Zn2+ by chemisorption. An in‐depth understanding of the corrosion mechanism of polyiodide on zinc, leads to the development of a sulfonate‐rich ion‐exchange layer, to prevent polyiodide permeation, while also facilitating desolvation of Zn(H2O)62+ and restricting the undesirable 2D diffusion of Zn2+. The resulting zinc‐iodine battery can work over 6000 cycles with good capacity retention (90.2%) and reversibility (99.89%). |
Author | Huang, Jiajia Lai, Feili Ge, Lingfeng Brett, Dan J.L. Hofkens, Johan Zhang, Leiqian Guo, Hele Zhang, Mingjie Wang, Jingtao He, Guanjie Liu, Tianxi Tian, Zhihong |
Author_xml | – sequence: 1 givenname: Leiqian surname: Zhang fullname: Zhang, Leiqian organization: Zhengzhou University – sequence: 2 givenname: Jiajia surname: Huang fullname: Huang, Jiajia email: huangjiajia@zzu.edu.cn organization: Zhengzhou University – sequence: 3 givenname: Hele surname: Guo fullname: Guo, Hele organization: KU Leuven – sequence: 4 givenname: Lingfeng surname: Ge fullname: Ge, Lingfeng organization: University of Bristol – sequence: 5 givenname: Zhihong surname: Tian fullname: Tian, Zhihong organization: Henan University – sequence: 6 givenname: Mingjie surname: Zhang fullname: Zhang, Mingjie organization: Zhengzhou University – sequence: 7 givenname: Jingtao surname: Wang fullname: Wang, Jingtao organization: Zhengzhou University – sequence: 8 givenname: Guanjie surname: He fullname: He, Guanjie organization: University College London – sequence: 9 givenname: Tianxi surname: Liu fullname: Liu, Tianxi organization: Jiangnan University – sequence: 10 givenname: Johan surname: Hofkens fullname: Hofkens, Johan organization: Max Planck Institute for Polymer Research – sequence: 11 givenname: Dan J.L. surname: Brett fullname: Brett, Dan J.L. organization: University College London – sequence: 12 givenname: Feili orcidid: 0000-0002-4945-0737 surname: Lai fullname: Lai, Feili email: feili.lai@kuleuven.be organization: Max Planck Institute for Polymer Research |
BookMark | eNqFkE9PGzEQxS1EJSDlytlSzwnj9Xr_HFMIECltpTa9cFlNvGNitNip1wvkxpUbn5FPwq5SUalS1bm8Obzfe9I7YvvOO2LsRMBEACSnSO5ukkCSgMxL2GOHIhPpOCtS2H__ZXLAjtv2FvpLSwFSHrLnZeesu-Fz7_gyoGs3PkSOkcc18anzNb0-vcwa0jH4ZhuJz12kYFATv7fIkf_oGuMdxsH33er1kDQgj3qN7ob4ArcUuPGBn3cBVw3xa-t075j72jrinzH2gZbaj-yDwaal4986Yj8vZsuzq_Hi2-X8bLoYa1lIGNd5CnUBKk2VLBQIXetSAWSpFErBqlQik7oWiEBS5bVZmVyoIstkbmRhpJAj9mmXuwn-V0dtrG59F1xfWSV5qcqkgL5oxCY7lw6-bQOZahPsHYZtJaAaFq-Gxav3xXsg_QvQNmK03sWAtvk3Vu6wB9vQ9j8l1XT29csf9g26X5tN |
CitedBy_id | crossref_primary_10_1002_adma_202408213 crossref_primary_10_1016_j_cej_2024_151629 crossref_primary_10_1021_acsnano_3c10081 crossref_primary_10_1039_D4EE01313A crossref_primary_10_1002_sus2_189 crossref_primary_10_1039_D4EE06048B crossref_primary_10_1002_advs_202402821 crossref_primary_10_1016_j_nanoen_2025_110876 crossref_primary_10_1039_D4SC05127K crossref_primary_10_1002_ange_202318149 crossref_primary_10_1039_D3EE02945J crossref_primary_10_1002_ange_202407067 crossref_primary_10_1002_aenm_202401737 crossref_primary_10_1021_acsenergylett_4c02684 crossref_primary_10_1039_D3CS00771E crossref_primary_10_1002_adfm_202310995 crossref_primary_10_1002_ange_202300418 crossref_primary_10_1002_tcr_202300212 crossref_primary_10_26599_NRE_2023_9120094 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1002_aenm_202301743 crossref_primary_10_1002_anie_202303011 crossref_primary_10_1002_adma_202403097 crossref_primary_10_1002_cnl2_155 crossref_primary_10_1038_s41467_024_53800_6 crossref_primary_10_1002_smll_202310293 crossref_primary_10_1039_D3SC06150G crossref_primary_10_1002_adfm_202424423 crossref_primary_10_1002_aenm_202402586 crossref_primary_10_1002_ange_202422163 crossref_primary_10_1002_anie_202310284 crossref_primary_10_1021_jacs_3c12695 crossref_primary_10_1002_smll_202405522 crossref_primary_10_1002_anie_202407067 crossref_primary_10_1002_smll_202405487 crossref_primary_10_1002_anie_202300418 crossref_primary_10_1002_anie_202422163 crossref_primary_10_1002_adfm_202409099 crossref_primary_10_1002_adfm_202304223 crossref_primary_10_1021_acsenergylett_4c02573 crossref_primary_10_1016_j_est_2023_110086 crossref_primary_10_1007_s40843_024_2971_y crossref_primary_10_1002_adfm_202410712 crossref_primary_10_1039_D3SC06935D crossref_primary_10_1002_ange_202303011 crossref_primary_10_1039_D4EE05527F crossref_primary_10_1039_D4EE02592J crossref_primary_10_1016_j_cej_2023_148479 crossref_primary_10_1002_adma_202304983 crossref_primary_10_1002_ange_202310284 crossref_primary_10_1002_aenm_202401321 crossref_primary_10_3390_ma17071646 crossref_primary_10_1002_adfm_202309350 crossref_primary_10_1002_aenm_202400033 crossref_primary_10_1016_j_materresbull_2024_113250 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_aenm_202401479 crossref_primary_10_1002_adfm_202304811 crossref_primary_10_1002_anie_202302701 crossref_primary_10_1002_cnma_202400004 crossref_primary_10_1002_aenm_202303221 crossref_primary_10_1039_D4EE05873A crossref_primary_10_1002_smll_202307021 crossref_primary_10_1021_acssuschemeng_3c01867 crossref_primary_10_1021_jacs_3c12638 crossref_primary_10_1002_aenm_202302738 crossref_primary_10_1007_s11426_024_2133_1 crossref_primary_10_1002_adfm_202423115 crossref_primary_10_1002_advs_202305061 crossref_primary_10_1016_j_cej_2024_148807 crossref_primary_10_1016_j_mser_2024_100844 crossref_primary_10_1002_anie_202318149 crossref_primary_10_1002_ange_202302701 crossref_primary_10_1002_adma_202313610 crossref_primary_10_1021_acsami_4c11422 crossref_primary_10_3390_batteries10120416 crossref_primary_10_1002_aenm_202404814 crossref_primary_10_1021_acssuschemeng_4c06869 crossref_primary_10_1021_acsenergylett_4c02235 crossref_primary_10_1002_adma_202306531 crossref_primary_10_1002_cphc_202400231 crossref_primary_10_1002_aenm_202302187 crossref_primary_10_1021_acs_nanolett_3c04222 crossref_primary_10_1039_D3TA01904G crossref_primary_10_1039_D3EE03297C |
Cites_doi | 10.1002/adma.202004240 10.1016/j.desal.2014.04.001 10.1016/S0378-7753(01)00789-3 10.1007/BF01029593 10.1021/acs.nanolett.2c01235 10.1038/s41565-021-00905-4 10.1039/C9EE02526J 10.1002/batt.202100221 10.1126/sciadv.abp8960 10.1002/ange.202014447 10.1023/A:1018431619595 10.1149/1.2186037 10.1002/aenm.202103705 10.1016/j.ensm.2022.10.027 10.1021/acsenergylett.9b00433 10.1002/ange.202005472 10.1063/1.478522 10.1016/j.cej.2020.126517 10.1016/S0010-938X(03)00107-0 10.1021/acsami.7b01705 10.1039/D2TA04015H 10.1021/acs.iecr.0c04308 10.1002/jcc.21759 10.1002/adma.202006897 10.1016/j.electacta.2018.11.131 10.1016/j.jechem.2020.09.035 10.1016/j.joule.2020.03.002 10.1038/s41467-020-20331-9 10.1002/anie.202014447 10.1016/S1381-5148(02)00173-6 10.1021/jacs.1c06923 10.1002/eem2.12067 10.1002/jcc.22885 10.1021/acsnano.2c06220 10.1039/D0EE02079F 10.1039/C8CS00493E 10.1002/adma.202108856 10.1002/anie.202005472 10.1039/c0ee00770f 10.1038/s41928-018-0048-6 10.1002/advs.202105598 10.1021/acs.nanolett.6b04755 10.1038/526S93a 10.1021/cm070356a 10.1016/j.esci.2022.03.002 10.1002/advs.202004142 10.1021/acssuschemeng.0c05283 10.1016/j.reactfunctpolym.2015.02.006 10.1016/j.jmgm.2012.07.004 10.1039/b515623h 10.1002/aenm.202103557 10.1093/nsr/nwac268 10.1039/C9EE00596J 10.1149/1.2404065 10.1016/0263-7855(96)00018-5 10.1038/s41560-021-00797-7 10.1039/b508541a 10.1002/smll.202107971 10.1023/A:1017580025961 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202203790 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202203790 AENM202203790 |
Genre | article |
GrantInformation_xml | – fundername: Research Foundation‐Flanders funderid: 1298323N – fundername: National Natural Science Foundation of China funderid: 51873198; 21875033; 21674019; 52161135302 – fundername: Research Foundation‐Flanders funderid: G0F2322N; G983.19N; G0A5817N; ZW15_09‐G0H6316N; Meth/15/04 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3830-d740d80544538501cdc95006431550b95163cd1aa0e357dfbf71586637f38f313 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:14 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 01:43:48 EDT 2025 Wed Jun 11 08:26:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3830-d740d80544538501cdc95006431550b95163cd1aa0e357dfbf71586637f38f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4945-0737 |
PQID | 2795928038 |
PQPubID | 886389 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2795928038 crossref_primary_10_1002_aenm_202203790 crossref_citationtrail_10_1002_aenm_202203790 wiley_primary_10_1002_aenm_202203790_AENM202203790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2001; 102 2002; 53 2019; 12 2021; 404 2020 2020; 59 132 2020; 59 2020; 13 2022; 22 2017; 9 2005; 25 2020; 8 2020; 4 2020; 3 2021; 33 2000 2018; 1 2015; 88 2022; 34 2003; 45 2021; 8 2023; 54 2007; 19 1972; 119 2021; 6 2019; 4 2006; 8 1997; 27 2006; 153 2011; 32 2015; 526 2012; 38 2021; 143 2020; 32 2011; 4 1996; 14 2012; 33 2021; 58 2021; 16 2021; 12 2022; 5 2017; 17 2022; 8 2019; 48 2022; 9 2022; 12 2021 2021; 60 133 1999; 110 2005; 7 2022; 10 2022; 2 2013 1992; 22 2022; 16 2019; 296 2022; 18 2001; 31 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 Lyday P. A. (e_1_2_8_8_1) 2000 e_1_2_8_4_1 e_1_2_8_6_1 Wei Y.‐J. (e_1_2_8_27_1) 2005; 25 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 (e_1_2_8_35_2) 2020; 132 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 12 start-page: 3288 year: 2019 publication-title: Energy Environ. Sci. – volume: 53 start-page: 193 year: 2002 publication-title: React. Funct. Polym. – volume: 1 start-page: 204 year: 2018 publication-title: Nat. Electron. – volume: 18 year: 2022 publication-title: Small – volume: 7 start-page: 3297 year: 2005 publication-title: Phys. Chem. Chem. Phys. – volume: 110 start-page: 6158 year: 1999 publication-title: J. Chem. Phys. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 4 start-page: 1012 year: 2019 publication-title: ACS Energy Lett. – volume: 4 start-page: 1147 year: 2011 publication-title: Energy Environ. Sci. – volume: 38 start-page: 314 year: 2012 publication-title: J. Mol. Graph Modell. – volume: 31 start-page: 685 year: 2001 publication-title: J. Appl. Electrochem. – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comp. Chem. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 88 start-page: 47 year: 2015 publication-title: React. Funct. Polym. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 19 start-page: 2034 year: 2007 publication-title: Chem. Mater. – volume: 54 start-page: 339 year: 2023 publication-title: Energy Storage Mater. – volume: 8 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 2 start-page: 209 year: 2022 publication-title: eScience – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 404 year: 2021 publication-title: Chem. Eng. J. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 119 start-page: 1649 year: 1972 publication-title: J. Electrochem. Soc. – volume: 34 year: 2022 publication-title: Adv Mater – volume: 60 133 start-page: 3791 3835 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 59 132 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 16 year: 2022 publication-title: ACS Nano – year: 2000 – volume: 5 year: 2022 publication-title: Batteries Supercaps – volume: 153 start-page: C357 year: 2006 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 1057 year: 2006 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 1104 year: 1992 publication-title: J. Appl. Electrochem. – volume: 45 start-page: 2705 year: 2003 publication-title: Corros. Sci. – volume: 102 start-page: 139 year: 2001 publication-title: J. Power Sources – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 673 year: 1997 publication-title: J. Appl. Electrochem. – volume: 6 start-page: 398 year: 2021 publication-title: Nat. Energy – volume: 16 start-page: 902 year: 2021 publication-title: Nat. Nanotechnol. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 146 year: 2020 publication-title: Energy Environ. Mater. – volume: 48 start-page: 463 year: 2019 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graphics – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 526 start-page: S93 year: 2015 publication-title: Nature – volume: 296 start-page: 755 year: 2019 publication-title: Electrochim. Acta – publication-title: Natl. Sci. Rev. – volume: 22 start-page: 4223 year: 2022 publication-title: Nano Lett. – volume: 58 start-page: 147 year: 2021 publication-title: J. Energy Chem. – volume: 25 start-page: 86 year: 2005 publication-title: Spectrosc. Spect. Anal. – volume: 12 start-page: 170 year: 2021 publication-title: Nat. Commun. – volume: 344 start-page: 306 year: 2014 publication-title: Desalination – volume: 13 start-page: 3330 year: 2020 publication-title: Energy Environ. Sci. – year: 2013 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202004240 – ident: e_1_2_8_23_1 doi: 10.1016/j.desal.2014.04.001 – ident: e_1_2_8_49_1 doi: 10.1016/S0378-7753(01)00789-3 – ident: e_1_2_8_37_1 doi: 10.1007/BF01029593 – ident: e_1_2_8_18_1 doi: 10.1021/acs.nanolett.2c01235 – ident: e_1_2_8_34_1 doi: 10.1038/s41565-021-00905-4 – ident: e_1_2_8_20_1 doi: 10.1039/C9EE02526J – ident: e_1_2_8_28_1 doi: 10.1002/batt.202100221 – ident: e_1_2_8_19_1 doi: 10.1126/sciadv.abp8960 – ident: e_1_2_8_10_2 doi: 10.1002/ange.202014447 – ident: e_1_2_8_43_1 doi: 10.1023/A:1018431619595 – ident: e_1_2_8_48_1 doi: 10.1149/1.2186037 – ident: e_1_2_8_33_1 doi: 10.1002/aenm.202103705 – ident: e_1_2_8_15_1 doi: 10.1016/j.ensm.2022.10.027 – ident: e_1_2_8_45_1 doi: 10.1021/acsenergylett.9b00433 – volume: 132 year: 2020 ident: e_1_2_8_35_2 publication-title: Angew. Chem. doi: 10.1002/ange.202005472 – ident: e_1_2_8_53_1 doi: 10.1063/1.478522 – ident: e_1_2_8_32_1 doi: 10.1016/j.cej.2020.126517 – ident: e_1_2_8_38_1 doi: 10.1016/S0010-938X(03)00107-0 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.7b01705 – ident: e_1_2_8_41_1 doi: 10.1039/D2TA04015H – ident: e_1_2_8_25_1 doi: 10.1021/acs.iecr.0c04308 – ident: e_1_2_8_56_1 doi: 10.1002/jcc.21759 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202006897 – ident: e_1_2_8_16_1 doi: 10.1016/j.electacta.2018.11.131 – ident: e_1_2_8_52_1 doi: 10.1016/j.jechem.2020.09.035 – ident: e_1_2_8_36_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-020-20331-9 – ident: e_1_2_8_10_1 doi: 10.1002/anie.202014447 – ident: e_1_2_8_30_1 doi: 10.1016/S1381-5148(02)00173-6 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.1c06923 – ident: e_1_2_8_21_1 doi: 10.1002/eem2.12067 – ident: e_1_2_8_60_1 doi: 10.1002/jcc.22885 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.2c06220 – ident: e_1_2_8_2_1 doi: 10.1039/D0EE02079F – ident: e_1_2_8_26_1 doi: 10.1039/C8CS00493E – ident: e_1_2_8_13_1 doi: 10.1002/adma.202108856 – ident: e_1_2_8_35_1 doi: 10.1002/anie.202005472 – ident: e_1_2_8_24_1 doi: 10.1039/c0ee00770f – ident: e_1_2_8_3_1 doi: 10.1038/s41928-018-0048-6 – ident: e_1_2_8_51_1 doi: 10.1002/advs.202105598 – ident: e_1_2_8_44_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_8_1_1 doi: 10.1038/526S93a – ident: e_1_2_8_29_1 doi: 10.1021/cm070356a – ident: e_1_2_8_11_1 doi: 10.1016/j.esci.2022.03.002 – ident: e_1_2_8_4_1 doi: 10.1002/advs.202004142 – ident: e_1_2_8_17_1 doi: 10.1021/acssuschemeng.0c05283 – ident: e_1_2_8_31_1 doi: 10.1016/j.reactfunctpolym.2015.02.006 – ident: e_1_2_8_59_1 doi: 10.1016/j.jmgm.2012.07.004 – ident: e_1_2_8_55_1 doi: 10.1039/b515623h – ident: e_1_2_8_42_1 doi: 10.1002/aenm.202103557 – ident: e_1_2_8_57_1 – ident: e_1_2_8_6_1 doi: 10.1093/nsr/nwac268 – volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2000 ident: e_1_2_8_8_1 – ident: e_1_2_8_39_1 doi: 10.1039/C9EE00596J – ident: e_1_2_8_47_1 doi: 10.1149/1.2404065 – ident: e_1_2_8_58_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_8_22_1 doi: 10.1038/s41560-021-00797-7 – ident: e_1_2_8_54_1 doi: 10.1039/b508541a – ident: e_1_2_8_40_1 doi: 10.1002/smll.202107971 – volume: 25 start-page: 86 year: 2005 ident: e_1_2_8_27_1 publication-title: Spectrosc. Spect. Anal. – ident: e_1_2_8_50_1 doi: 10.1023/A:1017580025961 |
SSID | ssj0000491033 |
Score | 2.656825 |
Snippet | Rechargeable aqueous zinc‐iodine batteries (ZIBs) are considered a promising newly‐developing energy‐storage system, but the corrosion and dendritic growth... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | anodic protection Chemisorption Corrosion mechanisms Energy storage Iodine Ion transport ion‐exchange layers polyiodide corrosion mechanism Rechargeable batteries Zinc zinc‐iodine batteries |
Title | Tuning Ion Transport at the Anode‐Electrolyte Interface via a Sulfonate‐Rich Ion‐Exchange Layer for Durable Zinc‐Iodine Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203790 https://www.proquest.com/docview/2795928038 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSBxWASdOmvRYsV26q7YcaKWKS-Q49qqoamFJEHDiyo2X4YV4EmZsx03FAguXqLUmTuX5Mp6Zznwm5DEvGRPK_K1uSLWZDsBL0AFsBaFkKgXYYHPyZNobzePTRbLodL63qpbqqngqP1_YV_I_WoUx0Ct2yf6DZv2kMACfQb9wBQ3D9XI6rk1W4wQ06EnKXXfiIcT1pfKlDEN72s3qU-VqJbWAF_oDdmSB7VhpzKFvpbHbHmfd3v7RNggfjgW46KY08ag-N11Xr5ewII3cyaZEr9WSdjbliQ3HbVNtoGy7IbjKdo1-yV2P1fJdC7Wj2o2fLsWbpd9GXtSbZt_0Q8qlGc60cjuyS2hEvFUHczmz2TLX4FwEvcxlSFV7zJJAeRvP21jmF-4dlotWqDUSFEQR46k9yHSXpHv6Mj-ej8f5bLiYXSH7UZpidcD-4GgyfuWTexB2hYyb5o7mFzaEoSx6tvuIXYdoG-W0YyXj7MxukOsuSqEDC7mbpKPWt8i1FnflbfLVgo8CTKgHHxUVBfBRA74fX761YEc97CjAjgrqYQdyCDicCW9xUKMGahSgRh3UKEINJCzIqAfZHTI_Hs6ejwJ3rkcgecZZUIIFKDOGNFA8S1goS9lPjG-M8XIBPn-PyzIUgimepKUudBomGbjGqeaZ5iG_S_bWm7W6R6gsOBIswTrqOI5VCPE5U7FQhQQbJFnaJUGzuLl0pPd49soqt3TdUY7KyL0yuuSJl39r6V5-K3nQ6Cp3JuF9HqX9pI_nvWVdEhn9_WWWfDCcTvy3-3-e8wG5un1fDshedV6rh-ASV8UjB8CfmE-1UQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Ion+Transport+at+the+Anode%E2%80%90Electrolyte+Interface+via+a+Sulfonate%E2%80%90Rich+Ion%E2%80%90Exchange+Layer+for+Durable+Zinc%E2%80%90Iodine+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Leiqian&rft.au=Huang%2C+Jiajia&rft.au=Guo%2C+Hele&rft.au=Ge%2C+Lingfeng&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=13&rft_id=info:doi/10.1002%2Faenm.202203790&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |