Drought impacts on microbial trait distribution and feedback to soil carbon cycling

Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collectiv...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 36; no. 6; pp. 1442 - 1456
Main Authors Malik, Ashish A., Bouskill, Nicholas J.
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.06.2022
British Ecological Society; Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies. Read the free Plain Language Summary for this article on the Journal blog. सारांश जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा। इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं। इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है। इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा। Read the free Plain Language Summary for this article on the Journal blog.
AbstractList Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies. Read the free Plain Language Summary for this article on the Journal blog. जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा। इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं। इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है। इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा।
Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait-based ecology to link drought-impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life-history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y-A-S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade-offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y-A-S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem-level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought-response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies.
Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems.Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry.This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought.The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced.To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies.Read the free Plain Language Summary for this article on the Journal blog.
Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies. Read the free Plain Language Summary for this article on the Journal blog. सारांश जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा। इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं। इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है। इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा। Read the free Plain Language Summary for this article on the Journal blog.
Author Malik, Ashish A.
Bouskill, Nicholas J.
Author_xml – sequence: 1
  givenname: Ashish A.
  orcidid: 0000-0003-4866-9072
  surname: Malik
  fullname: Malik, Ashish A.
  email: ashish.malik@abdn.ac.uk
  organization: University of Aberdeen
– sequence: 2
  givenname: Nicholas J.
  surname: Bouskill
  fullname: Bouskill, Nicholas J.
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/servlets/purl/1855202$$D View this record in Osti.gov
BookMark eNqFkDtPwzAUhS1UJNrCzGrBnNaPOI8RlRaQKjHQ3bIdp3VJ42I7Qv33OKRiYADfwZLvOcf3fhMwam2rAbjFaIbjmWOasYSklM1wijC6AOOflxEYI5KVSZFm9ApMvN8jhEpGyBi8PTrbbXcBmsNRqOChbeHBKGelEQ0MTpgAK-ODM7ILJjZFW8Fa60oK9Q6Dhd6aBirhZOypk2pMu70Gl7VovL4531OwWS03i-dk_fr0snhYJ4oWFCUlyVFW6YrlBSlKmiEpUZ2XopKUYiJyLHGOmCS5kFWZUS3SWlOcU1xlRZqWdAruhljrg-FemaDVTtm21SpwXDBGEImi-0F0dPaj0z7wve1cG8fiJMspKyiONQVsUMXFvXe65jFN9Pv2BBqOEe8Z854o74nyb8bRN__lOzpzEO70h-P806dp9Ok_OV8tF4PvC9TkjMQ
CitedBy_id crossref_primary_10_1111_ele_14488
crossref_primary_10_3390_land13111759
crossref_primary_10_1016_j_geoderma_2024_116832
crossref_primary_10_3389_fmicb_2023_1141436
crossref_primary_10_1111_ejss_70044
crossref_primary_10_5194_soil_11_121_2025
crossref_primary_10_1016_j_agee_2024_109276
crossref_primary_10_1016_j_still_2023_105951
crossref_primary_10_1016_j_scitotenv_2023_163416
crossref_primary_10_1111_1365_2745_14115
crossref_primary_10_1016_j_soilbio_2025_109787
crossref_primary_10_3390_microorganisms11071650
crossref_primary_10_1016_j_apsoil_2025_105951
crossref_primary_10_1016_j_tim_2023_03_002
crossref_primary_10_1016_j_jenvman_2025_124534
crossref_primary_10_1016_j_jenvman_2024_120318
crossref_primary_10_1016_j_soilbio_2022_108924
crossref_primary_10_1007_s11104_023_06093_5
crossref_primary_10_1016_j_scitotenv_2023_164785
crossref_primary_10_1007_s00374_024_01802_3
crossref_primary_10_1016_j_geoderma_2023_116668
crossref_primary_10_1016_j_jsames_2024_105323
crossref_primary_10_1007_s11104_023_06302_1
crossref_primary_10_1093_ismejo_wrae224
crossref_primary_10_1038_s41558_024_02000_7
crossref_primary_10_1016_j_apsoil_2025_105942
crossref_primary_10_1016_j_apsoil_2023_105101
crossref_primary_10_3389_fevo_2023_1173750
crossref_primary_10_1111_gcb_17292
crossref_primary_10_1016_j_scitotenv_2022_156351
crossref_primary_10_1016_j_jenvman_2024_123846
crossref_primary_10_1093_ismeco_ycae116
crossref_primary_10_1038_s41396_023_01486_x
crossref_primary_10_1007_s10533_022_01009_4
crossref_primary_10_1038_s41558_023_01881_4
crossref_primary_10_1016_j_apsoil_2022_104588
crossref_primary_10_1111_oik_10411
crossref_primary_10_3389_fpls_2023_1221288
crossref_primary_10_1111_1365_2745_14448
crossref_primary_10_1016_j_micres_2025_128075
crossref_primary_10_1111_gcb_70065
crossref_primary_10_3389_fsoil_2023_1267685
crossref_primary_10_1186_s12864_022_09019_0
crossref_primary_10_1007_s42729_024_02120_1
crossref_primary_10_1002_imt2_66
crossref_primary_10_1016_j_soilbio_2023_109252
crossref_primary_10_1016_j_geoderma_2024_116869
crossref_primary_10_1038_s41467_024_50368_z
crossref_primary_10_1038_s41467_023_41524_y
crossref_primary_10_1038_s41477_024_01749_1
crossref_primary_10_1038_s41564_023_01432_9
Cites_doi 10.1111/1758‐2229.12711
10.1016/j.tim.2006.04.003
10.1016/j.fmrre.2004.10.003
10.1890/11‐0026.1
10.1073/pnas.1402591111
10.1111/1365‐2745.13550
10.1073/pnas.1808274115
10.1016/j.soilbio.2013.03.034
10.1016/j.soilbio.2012.03.026
10.1016/j.soilbio.2004.08.004
10.1111/1758‐2229.12849
10.1111/gcb.14482
10.1146/annurev‐micro‐020518‐115504
10.1016/j.soilbio.2012.08.014
10.1146/annurev‐micro‐090110‐102815
10.1007/BF01343734
10.1007/s10533‐011‐9641‐8
10.1126/science.aac9323
10.1016/j.advwatres.2006.05.025
10.1038/s41467‐021‐23553‐7
10.1099/00221287‐136‐12‐2527
10.1016/j.geoderma.2019.01.053
10.1016/S0341‐8162(03)00087‐0
10.1007/s00248‐014‐0436‐z
10.1186/1471‐2180‐8‐5
10.1007/s00572‐005‐0020‐y
10.3389/fmicb.2012.00364
10.1038/nature23021
10.1038/s41467‐020‐19574‐3
10.1128/MMBR.53.1.121‐147.1989
10.1016/j.soilbio.2012.09.005
10.1038/nclimate1633
10.1111/j.1574‐6976.2000.tb00542.x
10.1146/annurev‐physiol‐021317‐121351
10.1016/j.soilbio.2020.107819
10.1111/j.1461‐0248.2012.01848.x
10.1128/msystems.00061‐19
10.1038/s41396‐019‐0510‐0
10.3389/fmicb.2012.00348
10.1016/j.jmb.2018.02.001
10.1038/s41467‐018‐03352‐3
10.1021/bi0347297
10.1038/s41467‐017‐00407‐9
10.1016/j.soilbio.2005.02.023
10.1007/s002030050649
10.1007/s002030000192
10.1016/j.soilbio.2014.02.008
10.1073/pnas.0807935105
10.1016/S1095‐6433(01)00442‐1
10.1038/s41561‐021‐00698‐0
10.1371/journal.pone.0035205
10.1038/s41564‐018‐0201‐z
10.1029/2011MS000045
10.1016/j.soilbio.2013.12.008
10.1016/j.soilbio.2017.01.001
10.1146/annurev‐ecolsys‐110617‐062614
10.3389/fmicb.2016.00323
10.1016/j.jmb.2016.08.003
10.1093/bioinformatics/btz059
10.1038/nature10386
10.1016/j.geoderma.2017.06.010
10.1016/j.mib.2017.10.015
10.1038/s41396‐020‐0683‐6
10.1073/pnas.2016810118
10.1038/nrmicro.2017.16
10.1038/nrmicro2504
10.1111/ele.13241
10.1038/s41467‐018‐05516‐7
10.1038/ncomms13630
10.1038/nrmicro1659
10.3389/fmicb.2016.00525
10.1016/j.soilbio.2016.06.032
10.1016/j.soilbio.2020.107742
10.1016/j.soilbio.2013.07.014
10.1002/iroh.201501817
10.1007/s40641‐018‐0103‐4
10.1126/science.aaz5192
10.3389/fmicb.2021.679793
10.1016/j.soilbio.2013.01.002
10.1007/s00442‐004‐1713‐1
10.1007/BF00408306
10.1038/ncomms9960
10.1016/j.soilbio.2004.09.014
10.1890/13‐1031.1
10.1111/gcb.13923
10.1016/j.ecolmodel.2019.05.007
10.1038/s41586‐018‐0207‐y
10.1007/s10533‐011‐9672‐1
10.1016/j.celrep.2021.108854
10.1126/science.aaf4268
10.1016/S0038‐0717(02)00007‐X
10.1104/pp.102.017277
10.1038/s41558‐019‐0630‐6
10.1128/aem.61.1.218‐221.1995
10.1038/s41467‐017‐01320‐x
10.1111/j.1469‐8137.1990.tb04715.x
10.1038/nclimate2438
10.1038/s41467‐019‐08719‐8
10.1007/s00253‐008‐1712‐y
10.1038/s41396‐020‐00787‐9
10.1016/j.soilbio.2021.108400
10.1016/j.soilbio.2018.05.027
10.1073/pnas.1204306109
10.1038/s41598‐018‐37565‐9
10.1111/j.0269‐8463.2004.00896.x
10.1111/j.1461‐0248.2012.01807.x
10.1111/1365‐2745.13327
10.1016/j.geoderma.2019.114069
10.1016/j.soilbio.2015.06.002
10.1128/MMBR.63.2.334‐348.1999
10.1890/06‐0219
10.1038/s41467‐021‐25675‐4
10.1016/j.ibiod.2017.06.014
10.1016/j.soilbio.2009.06.016
10.1890/12‐2018.1
10.1038/s43247‐020‐00031‐4
10.1890/12‐1243.1
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
OIOZB
OTOTI
DOI 10.1111/1365-2435.14010
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1456
ExternalDocumentID 1855202
10_1111_1365_2435_14010
FEC14010
Genre commentary
GrantInformation_xml – fundername: US Department of Energy, Office of Science (BER)
  funderid: Early Career Research Program #FP00005182; DE‐SC0020382
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
UMP
ID FETCH-LOGICAL-c3830-92706ded578289360bb0f79adb3312a71b1705b27abd963ea4fe31731d684493
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu May 18 22:40:13 EDT 2023
Sun Jul 13 05:19:26 EDT 2025
Tue Jul 01 01:15:53 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Wed Jan 22 16:24:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-92706ded578289360bb0f79adb3312a71b1705b27abd963ea4fe31731d684493
Notes Handling Editor
Pablo García‐Palacios
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0003-4866-9072
0000000348669072
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14010
PQID 2673583131
PQPubID 1066355
PageCount 15
ParticipantIDs osti_scitechconnect_1855202
proquest_journals_2673583131
crossref_citationtrail_10_1111_1365_2435_14010
crossref_primary_10_1111_1365_2435_14010
wiley_primary_10_1111_1365_2435_14010_FEC14010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Functional ecology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
British Ecological Society; Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: British Ecological Society; Wiley
References 2011; 478
2013; 66
2009; 81
2016; 428
2019; 11
2019; 10
2013; 64
2021; 162
2020; 14
2008; 105
2020; 11
2012; 15
2018; 42
2003; 53
2018; 49
2018; 9
1998; 170
2018; 3
2013; 59
2018; 4
2001; 130
2013; 57
2019; 22
2015; 88
2019; 25
2013; 112
2011; 65
2007; 5
2014; 95
2003; 42
2019; 9
2019; 4
2020; 143
2019; 35
2020; 147
2011; 3
2019; 342
2012; 109
2011; 9
2018; 24
2012; 50
2015; 350
2017; 548
2016; 7
2015; 69
1990; 116
1989; 53
2018; 115
2007; 88
2017; 305
2017; 8
2009; 41
2014; 70
1988; 150
2020; 361
2018; 124
2018; 126
1958; 10
2018; 80
2020; 368
2016; 101
2000; 174
2008; 8
2019; 406
2007; 30
2005; 29
1995; 61
2021; 34
1990; 136
2020; 1
2005; 142
2013; 94
2021; 118
2016; 354
2005; 37
2021; 109
2015; 6
2015; 5
2019; 73
2000; 24
2006; 16
2002; 34
2006; 14
1999; 63
2014; 111
2020; 108
2003; 131
2012; 93
2021; 13
2018; 430
2021; 15
2012; 3
2021; 12
2017; 15
2004; 18
2021
2018; 558
2014; 73
2012; 7
2017; 107
e_1_2_15_108_1
e_1_2_15_104_1
e_1_2_15_42_1
e_1_2_15_88_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_80_1
e_1_2_15_27_1
e_1_2_15_61_1
e_1_2_15_111_1
e_1_2_15_46_1
e_1_2_15_84_1
e_1_2_15_23_1
e_1_2_15_65_1
e_1_2_15_7_1
e_1_2_15_116_1
e_1_2_15_31_1
e_1_2_15_77_1
e_1_2_15_58_1
e_1_2_15_100_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_50_1
e_1_2_15_92_1
e_1_2_15_35_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_54_1
e_1_2_15_96_1
e_1_2_15_109_1
e_1_2_15_105_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_89_1
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_112_1
e_1_2_15_2_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_6_1
e_1_2_15_117_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_59_1
e_1_2_15_17_1
e_1_2_15_70_1
e_1_2_15_93_1
e_1_2_15_101_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_97_1
e_1_2_15_106_1
e_1_2_15_21_1
e_1_2_15_67_1
e_1_2_15_40_1
e_1_2_15_29_1
e_1_2_15_113_1
e_1_2_15_48_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_63_1
e_1_2_15_44_1
e_1_2_15_86_1
e_1_2_15_9_1
e_1_2_15_118_1
e_1_2_15_90_1
e_1_2_15_5_1
e_1_2_15_114_1
e_1_2_15_10_1
e_1_2_15_56_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_94_1
e_1_2_15_102_1
e_1_2_15_37_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_52_1
e_1_2_15_98_1
e_1_2_15_33_1
e_1_2_15_75_1
e_1_2_15_107_1
e_1_2_15_103_1
e_1_2_15_19_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_110_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_83_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_87_1
e_1_2_15_8_1
e_1_2_15_4_1
e_1_2_15_115_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_99_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_91_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
e_1_2_15_95_1
References_xml – volume: 37
  start-page: 1805
  issue: 10
  year: 2005
  end-page: 1813
  article-title: Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations
  publication-title: Soil Biology and Biochemistry
– volume: 101
  start-page: 1
  year: 2016
  end-page: 5
  article-title: On the origin of carbon dioxide released from rewetted soils
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 1348
  issue: 1
  year: 2018
  article-title: Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions
  publication-title: Nature Communications
– volume: 131
  start-page: 1628
  issue: 4
  year: 2003
  end-page: 1637
  article-title: Glucosylglycerol, a compatible solute, sustains cell division under salt stress
  publication-title: Plant Physiology
– volume: 9
  start-page: 3033
  issue: 1
  year: 2018
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 14
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Defining trait‐based microbial strategies with consequences for soil carbon cycling under climate change
  publication-title: The ISME Journal
– volume: 548
  start-page: 202
  issue: 7666
  year: 2017
  end-page: 205
  article-title: Global patterns of drought recovery
  publication-title: Nature
– volume: 15
  start-page: 1058
  issue: 9
  year: 2012
  end-page: 1070
  article-title: A trait‐based approach for modelling microbial litter decomposition
  publication-title: Ecology Letters
– volume: 88
  start-page: 314
  year: 2015
  end-page: 322
  article-title: Prolonged drought changes the bacterial growth response to rewetting
  publication-title: Soil Biology and Biochemistry
– volume: 64
  start-page: 68
  year: 2013
  end-page: 79
  article-title: Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland
  publication-title: Soil Biology and Biochemistry
– volume: 150
  start-page: 348
  issue: 4
  year: 1988
  end-page: 357
  article-title: Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of K‐12 to elevated sodium chloride concentrations
  publication-title: Archives of Microbiology
– volume: 37
  start-page: 455
  issue: 3
  year: 2005
  end-page: 461
  article-title: Drought decreases soil enzyme activity in a Mediterranean L. forest
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 266
  issue: 3
  year: 2018
  end-page: 286
  article-title: Drought, heat, and the carbon cycle: A review
  publication-title: Current Climate Change Reports
– volume: 108
  start-page: 876
  issue: 3
  year: 2020
  end-page: 893
  article-title: Using proxies of microbial community‐weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands
  publication-title: Journal of Ecology
– volume: 6
  start-page: 8960
  issue: 1
  year: 2015
  article-title: Social dynamics within decomposer communities lead to nitrogen retention and organic matter build‐up in soils
  publication-title: Nature Communications
– volume: 25
  start-page: 12
  issue: 1
  year: 2019
  end-page: 24
  article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Global Change Biology
– volume: 406
  start-page: 121
  year: 2019
  end-page: 132
  article-title: Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients
  publication-title: Ecological Modelling
– volume: 118
  issue: 12
  year: 2021
  article-title: Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 109
  start-page: 35
  issue: 1/3
  year: 2012
  end-page: 47
  article-title: A trait‐based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning
  publication-title: Biogeochemistry
– volume: 69
  start-page: 843
  issue: 4
  year: 2015
  end-page: 854
  article-title: Short‐term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest
  publication-title: Microbial Ecology
– volume: 124
  start-page: 227
  year: 2018
  end-page: 235
  article-title: The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 323
  year: 2016
  article-title: Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition
  publication-title: Frontiers in Microbiology
– volume: 9
  start-page: 866
  issue: 1
  year: 2019
  article-title: Environmental filtering of bacterial functional diversity along an aridity gradient
  publication-title: Scientific Reports
– volume: 361
  year: 2020
  article-title: Responses of soil carbon decomposition to drying‐rewetting cycles: A meta‐analysis
  publication-title: Geoderma
– volume: 305
  start-page: 219
  year: 2017
  end-page: 227
  article-title: Soil respiration and microbial biomass in multiple drying and rewetting cycles – Effect of glucose addition
  publication-title: Geoderma
– volume: 107
  start-page: 104
  year: 2017
  end-page: 113
  article-title: Consequences of drought tolerance traits for microbial decomposition in the DEMENT model
  publication-title: Soil Biology and Biochemistry
– volume: 50
  start-page: 167
  year: 2012
  end-page: 173
  article-title: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 263
  issue: 3
  year: 2000
  end-page: 290
  article-title: Ecological significance of compatible solute accumulation by micro‐organisms: From single cells to global climate
  publication-title: FEMS Microbiology Reviews
– volume: 115
  start-page: 9791
  issue: 39
  year: 2018
  end-page: 9796
  article-title: Cell‐to‐cell bacterial interactions promoted by drier conditions on soil surfaces
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 63
  start-page: 334
  issue: 2
  year: 1999
  end-page: 348
  article-title: Bioenergetic aspects of halophilism
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 368
  start-page: 270
  issue: 6488
  year: 2020
  end-page: 274
  article-title: Harnessing rhizosphere microbiomes for drought‐resilient crop production
  publication-title: Science
– volume: 109
  start-page: 10931
  issue: 27
  year: 2012
  end-page: 10936
  article-title: Rainfall‐induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 119
  issue: 2
  year: 2011
  end-page: 130
  article-title: Microbial seed banks: The ecological and evolutionary implications of dormancy
  publication-title: Nature Reviews Microbiology
– volume: 57
  start-page: 356
  year: 2013
  end-page: 361
  article-title: Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland
  publication-title: Soil Biology and Biochemistry
– volume: 112
  start-page: 71
  issue: 1–3
  year: 2013
  end-page: 80
  article-title: Effects of salinity on microbial tolerance to drying and rewetting
  publication-title: Biogeochemistry
– volume: 3
  start-page: 977
  issue: 9
  year: 2018
  end-page: 982
  article-title: Understanding how microbiomes influence the systems they inhabit
  publication-title: Nature Microbiology
– volume: 94
  start-page: 714
  issue: 3
  year: 2013
  end-page: 725
  article-title: Microbial abundance and composition influence litter decomposition response to environmental change
  publication-title: Ecology
– volume: 34
  issue: 11
  year: 2021
  article-title: Stress‐induced growth rate reduction restricts metabolic resource utilization to modulate osmo‐adaptation time
  publication-title: Cell Reports
– volume: 1
  start-page: 36
  issue: 1
  year: 2020
  article-title: Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization
  publication-title: Communications Earth & Environment
– volume: 3
  start-page: M03001
  issue: 3
  year: 2011
  article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 7
  issue: 4
  year: 2012
  article-title: Fast, multiphase volume adaptation to hyperosmotic shock by
  publication-title: PLoS ONE
– volume: 12
  start-page: 1674
  year: 2021
  article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil
  publication-title: Frontiers in Microbiology
– volume: 93
  start-page: 930
  issue: 4
  year: 2012
  end-page: 938
  article-title: Responses of soil microbial communities to water stress: Results from a meta‐analysis
  publication-title: Ecology
– volume: 29
  start-page: 281
  issue: 2
  year: 2005
  end-page: 301
  article-title: Molecular insights into the initiation of sporulation in Gram‐positive bacteria: New technologies for an old phenomenon
  publication-title: FEMS Microbiology Reviews
– volume: 350
  issue: 6261
  year: 2015
  article-title: Microbiomes in light of traits: A phylogenetic perspective
  publication-title: Science
– volume: 8
  start-page: 396
  issue: 1
  year: 2017
  article-title: Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding
  publication-title: Nature Communications
– volume: 428
  start-page: 3752
  issue: 19
  year: 2016
  end-page: 3775
  article-title: Molecular mechanisms of two‐component signal transduction
  publication-title: Molecular Basis of Signal Transduction
– volume: 126
  start-page: 189
  year: 2018
  end-page: 203
  article-title: Next generation modeling of microbial souring – Parameterization through genomic information
  publication-title: International Biodeterioration & Biodegradation
– volume: 111
  start-page: 7807
  issue: 21
  year: 2014
  end-page: 7812
  article-title: Response of growth rate to osmotic shock
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 81
  start-page: 927
  issue: 5
  year: 2009
  end-page: 941
  article-title: A dormancy state in nonspore‐forming bacteria
  publication-title: Applied Microbiology and Biotechnology
– volume: 73
  start-page: 69
  year: 2014
  end-page: 83
  article-title: A theoretical analysis of microbial eco‐physiological and diffusion limitations to carbon cycling in drying soils
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 1428
  issue: 4
  year: 2018
  end-page: 1451
  article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress‐induced modifications in plant chemistry
  publication-title: Global Change Biology
– volume: 354
  issue: 6318
  year: 2016
  article-title: Mechanisms of bacterial persistence during stress and antibiotic exposure
  publication-title: Science
– volume: 142
  start-page: 465
  issue: 3
  year: 2005
  end-page: 473
  article-title: Interactive effects of elevated CO , N deposition and climate change on plant litter quality in a California annual grassland
  publication-title: Oecologia
– volume: 15
  start-page: 1257
  issue: 11
  year: 2012
  end-page: 1265
  article-title: The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems
  publication-title: Ecology Letters
– volume: 57
  start-page: 644
  year: 2013
  end-page: 653
  article-title: Microbial community response to varying magnitudes of desiccation in soil: A test of the osmolyte accumulation hypothesis
  publication-title: Soil Biology and Biochemistry
– volume: 49
  start-page: 409
  issue: 1
  year: 2018
  end-page: 432
  article-title: Life in dry soils: Effects of drought on soil microbial communities and processes
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 7
  start-page: 1
  issue: Apr
  year: 2016
  end-page: 11
  article-title: Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism
  publication-title: Frontiers in Microbiology
– volume: 116
  start-page: 277
  issue: 2
  year: 1990
  end-page: 283
  article-title: Compatible solutes – The mycological dimension and their role as physiological buffering agents
  publication-title: New Phytologist
– volume: 174
  start-page: 217
  issue: 4
  year: 2000
  end-page: 224
  article-title: Physiological roles of trehalose in bacteria and yeasts: A comparative analysis
  publication-title: Archives of Microbiology
– volume: 11
  start-page: 20
  issue: 1
  year: 2019
  end-page: 22
  article-title: Next‐generation experiments linking community structure and ecosystem functioning
  publication-title: Environmental Microbiology Reports
– volume: 65
  start-page: 215
  issue: 1
  year: 2011
  end-page: 238
  article-title: Bacterial osmoregulation: A paradigm for the study of cellular homeostasis
  publication-title: Annual Review of Microbiology
– volume: 88
  start-page: 1386
  issue: 6
  year: 2007
  end-page: 1394
  article-title: Microbial stress‐response physiology and its implications
  publication-title: Ecology
– volume: 9
  start-page: 948
  issue: 12
  year: 2019
  end-page: 953
  article-title: Increasing impacts of extreme droughts on vegetation productivity under climate change
  publication-title: Nature Climate Change
– volume: 147
  year: 2020
  article-title: Rewetting of soil: Revisiting the origin of soil CO emissions
  publication-title: Soil Biology and Biochemistry
– volume: 61
  start-page: 218
  issue: 1
  year: 1995
  end-page: 221
  article-title: Mechanisms for soil moisture effects on activity of nitrifying bacteria
  publication-title: Applied and Environmental Microbiology
– volume: 5
  start-page: 56
  issue: 1
  year: 2015
  end-page: 60
  article-title: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
  publication-title: Nature Climate Change
– volume: 42
  start-page: 12596
  issue: 43
  year: 2003
  end-page: 12609
  article-title: Roles of cytoplasmic osmolytes, water, and crowding in the response of to osmotic stress: Biophysical basis of osmoprotection by glycine betaine
  publication-title: Biochemistry
– volume: 10
  start-page: 890
  issue: 1
  year: 2019
  article-title: Extreme slow growth as alternative strategy to survive deep starvation in bacteria
  publication-title: Nature Communications
– volume: 105
  start-page: 18188
  issue: 47
  year: 2008
  end-page: 18193
  article-title: Defined spatial structure stabilizes a synthetic multispecies bacterial community
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 136
  start-page: 2527
  issue: 12
  year: 1990
  end-page: 2535
  article-title: The effects of osmotic upshock on the intracellular solute pools of
  publication-title: Journal of General Microbiology
– volume: 143
  year: 2020
  article-title: Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass ( ) root biomass and soil water potential
  publication-title: Soil Biology and Biochemistry
– volume: 16
  start-page: 99
  issue: 2
  year: 2006
  end-page: 109
  article-title: Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations
  publication-title: Mycorrhiza
– volume: 5
  start-page: 431
  issue: 6
  year: 2007
  end-page: 440
  article-title: Mechanosensitive channels in bacteria: Signs of closure?
  publication-title: Nature Reviews Microbiology
– volume: 109
  start-page: 3195
  issue: 9
  year: 2021
  end-page: 3210
  article-title: Drought legacy affects microbial community trait distributions related to moisture along a savannah grassland precipitation gradient
  publication-title: Journal of Ecology
– volume: 12
  start-page: 5308
  issue: 1
  year: 2021
  article-title: Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community
  publication-title: Nature Communications
– volume: 558
  start-page: 440
  issue: 7710
  year: 2018
  end-page: 444
  article-title: Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis
  publication-title: Nature
– volume: 14
  start-page: 271
  issue: 6
  year: 2006
  end-page: 276
  article-title: Wake up! Peptidoglycan lysis and bacterial non‐growth states
  publication-title: Trends in Microbiology
– volume: 94
  start-page: 2334
  issue: 10
  year: 2013
  end-page: 2345
  article-title: Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales
  publication-title: Ecology
– volume: 80
  start-page: 71
  issue: 1
  year: 2018
  end-page: 93
  article-title: Bacterial mechanosensors
  publication-title: Annual Review of Physiology
– volume: 22
  start-page: 838
  issue: 5
  year: 2019
  end-page: 846
  article-title: The rate of environmental fluctuations shapes ecological dynamics in a two‐species microbial system
  publication-title: Ecology Letters
– volume: 8
  start-page: 5
  issue: 1
  year: 2008
  article-title: Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence
  publication-title: BMC Microbiology
– volume: 30
  start-page: 1505
  issue: 6–7
  year: 2007
  end-page: 1527
  article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – A review
  publication-title: Advances in Water Resources
– volume: 35
  start-page: 3224
  issue: 18
  year: 2019
  end-page: 3231
  article-title: Predicting the optimal growth temperatures of prokaryotes using only genome derived features
  publication-title: Bioinformatics
– volume: 12
  start-page: 3209
  issue: 1
  year: 2021
  article-title: Genome‐resolved metagenomics reveals role of iron metabolism in drought‐induced rhizosphere microbiome dynamics
  publication-title: Nature Communications
– volume: 14
  start-page: 2236
  issue: 9
  year: 2020
  end-page: 2247
  article-title: Drought and plant litter chemistry alter microbial gene expression and metabolite production
  publication-title: The ISME Journal
– volume: 130
  start-page: 437
  issue: 3
  year: 2001
  end-page: 460
  article-title: Osmosensing and osmoregulatory compatible solute accumulation by bacteria
  publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
– volume: 13
  start-page: 3
  issue: 1
  year: 2021
  end-page: 7
  article-title: Are we really studying persister cells?
  publication-title: Environmental Microbiology Reports
– volume: 162
  year: 2021
  article-title: The mechanisms underpinning microbial resilience to drying and rewetting – A model analysis
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 52
  issue: 1
  year: 2012
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 101
  start-page: 78
  issue: 1–2
  year: 2016
  end-page: 86
  article-title: Fungal species diversity affects leaf decomposition after drought
  publication-title: International Review of Hydrobiology
– volume: 66
  start-page: 188
  year: 2013
  end-page: 192
  article-title: Microbial growth responses upon rewetting soil dried for four days or one year
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 1
  year: 2012
  end-page: 11
  article-title: Microbial control over carbon cycling in soil
  publication-title: Frontiers in Microbiology
– volume: 53
  start-page: 121
  issue: 1
  year: 1989
  end-page: 147
  article-title: Physiological and genetic responses of bacteria to osmotic stress
  publication-title: Microbiological Reviews
– volume: 34
  start-page: 777
  issue: 6
  year: 2002
  end-page: 787
  article-title: Effects of drying–rewetting frequency on soil carbon and nitrogen transformations
  publication-title: Soil Biology and Biochemistry
– volume: 3
  year: 2012
  article-title: Trait‐based representation of biological nitrification: Model development, testing, and predicted community composition
  publication-title: Frontiers in Microbiology
– volume: 53
  start-page: 349
  issue: 4
  year: 2003
  end-page: 363
  article-title: Enzyme activities along a climatic transect in the Judean Desert
  publication-title: Catena
– volume: 18
  start-page: 648
  issue: 5
  year: 2004
  end-page: 655
  article-title: Changing precipitation patterns alter plant community dynamics and succession in an ex‐arable grassland
  publication-title: Functional Ecology
– year: 2021
  article-title: Recent European drought extremes beyond Common Era background variability
  publication-title: Nature Geoscience
– volume: 15
  start-page: 285
  year: 2017
  end-page: 296
  article-title: Xerotolerant bacteria: Surviving through a dry spell
  publication-title: Nature Reviews Microbiology
– volume: 15
  start-page: 450
  issue: 2
  year: 2021
  end-page: 460
  article-title: Rapid evolution destabilizes species interactions in a fluctuating environment
  publication-title: The ISME Journal
– volume: 7
  year: 2016
  article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
– volume: 10
  start-page: 9
  issue: 1
  year: 1958
  end-page: 31
  article-title: The effect of soil drying on humus decomposition and nitrogen availability
  publication-title: Plant and Soil
– volume: 8
  start-page: 1335
  issue: 1
  year: 2017
  article-title: Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought
  publication-title: Nature Communications
– volume: 170
  start-page: 319
  issue: 5
  year: 1998
  end-page: 330
  article-title: Uptake and synthesis of compatible solutes as microbial stress responses to high‐osmolality environments
  publication-title: Archives of Microbiology
– volume: 59
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models
  publication-title: Soil Biology and Biochemistry
– volume: 37
  start-page: 937
  issue: 5
  year: 2005
  end-page: 944
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biology and Biochemistry
– volume: 478
  start-page: 49
  issue: 7367
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 4
  start-page: 1
  issue: 4
  year: 2019
  end-page: 16
  article-title: Metaphenomic responses of a native prairie soil microbiome to moisture perturbations
  publication-title: mSystems
– volume: 342
  start-page: 12
  year: 2019
  end-page: 19
  article-title: Drying and rewetting effects on organic matter mineralisation of contrasting soils after 36 years of storage
  publication-title: Geoderma
– volume: 11
  start-page: 5798
  issue: 1
  year: 2020
  article-title: Alaskan carbon‐climate feedbacks will be weaker than inferred from short‐term experiments
  publication-title: Nature Communications
– volume: 70
  start-page: 22
  year: 2014
  end-page: 32
  article-title: Response of osmolytes in soil to drying and rewetting
  publication-title: Soil Biology and Biochemistry
– volume: 95
  start-page: 1162
  issue: 5
  year: 2014
  end-page: 1172
  article-title: Growth and death of bacteria and fungi underlie rainfall‐induced carbon dioxide pulses from seasonally dried soil
  publication-title: Ecology
– volume: 73
  start-page: 313
  issue: 1
  year: 2019
  end-page: 334
  article-title: Responses of microorganisms to osmotic stress
  publication-title: Annual Review of Microbiology
– volume: 430
  start-page: 853
  issue: 6
  year: 2018
  end-page: 866
  article-title: Energy coupling efficiency in the type I ABC transporter GlnPQ
  publication-title: Journal of Molecular Biology
– volume: 41
  start-page: 1923
  issue: 9
  year: 2009
  end-page: 1934
  article-title: Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment
  publication-title: Soil Biology and Biochemistry
– volume: 42
  start-page: 62
  year: 2018
  end-page: 70
  article-title: Regulation of microbial growth by turgor pressure
  publication-title: Current Opinion in Microbiology
– ident: e_1_2_15_10_1
  doi: 10.1111/1758‐2229.12711
– ident: e_1_2_15_53_1
  doi: 10.1016/j.tim.2006.04.003
– ident: e_1_2_15_101_1
  doi: 10.1016/j.fmrre.2004.10.003
– ident: e_1_2_15_66_1
  doi: 10.1890/11‐0026.1
– ident: e_1_2_15_82_1
  doi: 10.1073/pnas.1402591111
– ident: e_1_2_15_59_1
  doi: 10.1111/1365‐2745.13550
– ident: e_1_2_15_104_1
  doi: 10.1073/pnas.1808274115
– ident: e_1_2_15_6_1
  doi: 10.1016/j.soilbio.2013.03.034
– ident: e_1_2_15_47_1
  doi: 10.1016/j.soilbio.2012.03.026
– ident: e_1_2_15_85_1
  doi: 10.1016/j.soilbio.2004.08.004
– ident: e_1_2_15_98_1
  doi: 10.1111/1758‐2229.12849
– ident: e_1_2_15_96_1
  doi: 10.1111/gcb.14482
– ident: e_1_2_15_22_1
  doi: 10.1146/annurev‐micro‐020518‐115504
– ident: e_1_2_15_51_1
  doi: 10.1016/j.soilbio.2012.08.014
– ident: e_1_2_15_112_1
  doi: 10.1146/annurev‐micro‐090110‐102815
– ident: e_1_2_15_11_1
  doi: 10.1007/BF01343734
– ident: e_1_2_15_106_1
  doi: 10.1007/s10533‐011‐9641‐8
– ident: e_1_2_15_67_1
  doi: 10.1126/science.aac9323
– ident: e_1_2_15_74_1
  doi: 10.1016/j.advwatres.2006.05.025
– ident: e_1_2_15_115_1
  doi: 10.1038/s41467‐021‐23553‐7
– ident: e_1_2_15_111_1
  doi: 10.1099/00221287‐136‐12‐2527
– ident: e_1_2_15_49_1
  doi: 10.1016/j.geoderma.2019.01.053
– ident: e_1_2_15_61_1
  doi: 10.1016/S0341‐8162(03)00087‐0
– ident: e_1_2_15_107_1
  doi: 10.1007/s00248‐014‐0436‐z
– ident: e_1_2_15_46_1
  doi: 10.1186/1471‐2180‐8‐5
– ident: e_1_2_15_13_1
  doi: 10.1007/s00572‐005‐0020‐y
– ident: e_1_2_15_18_1
  doi: 10.3389/fmicb.2012.00364
– ident: e_1_2_15_91_1
  doi: 10.1038/nature23021
– ident: e_1_2_15_17_1
  doi: 10.1038/s41467‐020‐19574‐3
– ident: e_1_2_15_31_1
  doi: 10.1128/MMBR.53.1.121‐147.1989
– ident: e_1_2_15_15_1
  doi: 10.1016/j.soilbio.2012.09.005
– ident: e_1_2_15_32_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_15_110_1
  doi: 10.1111/j.1574‐6976.2000.tb00542.x
– ident: e_1_2_15_29_1
  doi: 10.1146/annurev‐physiol‐021317‐121351
– ident: e_1_2_15_8_1
  doi: 10.1016/j.soilbio.2020.107819
– ident: e_1_2_15_105_1
  doi: 10.1111/j.1461‐0248.2012.01848.x
– ident: e_1_2_15_83_1
  doi: 10.1128/msystems.00061‐19
– ident: e_1_2_15_63_1
  doi: 10.1038/s41396‐019‐0510‐0
– ident: e_1_2_15_89_1
  doi: 10.3389/fmicb.2012.00348
– ident: e_1_2_15_62_1
  doi: 10.1016/j.jmb.2018.02.001
– ident: e_1_2_15_73_1
  doi: 10.1038/s41467‐018‐03352‐3
– ident: e_1_2_15_26_1
  doi: 10.1021/bi0347297
– ident: e_1_2_15_72_1
  doi: 10.1038/s41467‐017‐00407‐9
– ident: e_1_2_15_99_1
  doi: 10.1016/j.soilbio.2005.02.023
– ident: e_1_2_15_54_1
  doi: 10.1007/s002030050649
– ident: e_1_2_15_7_1
  doi: 10.1007/s002030000192
– ident: e_1_2_15_65_1
  doi: 10.1016/j.soilbio.2014.02.008
– ident: e_1_2_15_55_1
  doi: 10.1073/pnas.0807935105
– ident: e_1_2_15_113_1
  doi: 10.1016/S1095‐6433(01)00442‐1
– ident: e_1_2_15_24_1
  doi: 10.1038/s41561‐021‐00698‐0
– ident: e_1_2_15_76_1
  doi: 10.1371/journal.pone.0035205
– ident: e_1_2_15_42_1
  doi: 10.1038/s41564‐018‐0201‐z
– ident: e_1_2_15_57_1
  doi: 10.1029/2011MS000045
– ident: e_1_2_15_108_1
  doi: 10.1016/j.soilbio.2013.12.008
– ident: e_1_2_15_3_1
  doi: 10.1016/j.soilbio.2017.01.001
– ident: e_1_2_15_87_1
  doi: 10.1146/annurev‐ecolsys‐110617‐062614
– ident: e_1_2_15_19_1
  doi: 10.3389/fmicb.2016.00323
– ident: e_1_2_15_118_1
  doi: 10.1016/j.jmb.2016.08.003
– ident: e_1_2_15_86_1
  doi: 10.1093/bioinformatics/btz059
– ident: e_1_2_15_90_1
  doi: 10.1038/nature10386
– ident: e_1_2_15_93_1
  doi: 10.1016/j.geoderma.2017.06.010
– ident: e_1_2_15_81_1
  doi: 10.1016/j.mib.2017.10.015
– ident: e_1_2_15_64_1
  doi: 10.1038/s41396‐020‐0683‐6
– ident: e_1_2_15_109_1
  doi: 10.1073/pnas.2016810118
– ident: e_1_2_15_58_1
  doi: 10.1038/nrmicro.2017.16
– ident: e_1_2_15_60_1
  doi: 10.1038/nrmicro2504
– ident: e_1_2_15_80_1
  doi: 10.1111/ele.13241
– ident: e_1_2_15_33_1
  doi: 10.1038/s41467‐018‐05516‐7
– ident: e_1_2_15_52_1
  doi: 10.1038/ncomms13630
– ident: e_1_2_15_16_1
  doi: 10.1038/nrmicro1659
– ident: e_1_2_15_20_1
  doi: 10.3389/fmicb.2016.00525
– ident: e_1_2_15_39_1
  doi: 10.1016/j.soilbio.2016.06.032
– ident: e_1_2_15_92_1
  doi: 10.1016/j.soilbio.2020.107742
– ident: e_1_2_15_68_1
  doi: 10.1016/j.soilbio.2013.07.014
– ident: e_1_2_15_40_1
  doi: 10.1002/iroh.201501817
– ident: e_1_2_15_94_1
  doi: 10.1007/s40641‐018‐0103‐4
– ident: e_1_2_15_34_1
  doi: 10.1126/science.aaz5192
– ident: e_1_2_15_36_1
  doi: 10.3389/fmicb.2021.679793
– ident: e_1_2_15_71_1
  doi: 10.1016/j.soilbio.2013.01.002
– ident: e_1_2_15_44_1
  doi: 10.1007/s00442‐004‐1713‐1
– ident: e_1_2_15_35_1
  doi: 10.1007/BF00408306
– ident: e_1_2_15_50_1
  doi: 10.1038/ncomms9960
– ident: e_1_2_15_5_1
  doi: 10.1016/j.soilbio.2004.09.014
– ident: e_1_2_15_12_1
  doi: 10.1890/13‐1031.1
– ident: e_1_2_15_102_1
  doi: 10.1111/gcb.13923
– ident: e_1_2_15_27_1
  doi: 10.1016/j.ecolmodel.2019.05.007
– ident: e_1_2_15_30_1
  doi: 10.1038/s41586‐018‐0207‐y
– ident: e_1_2_15_9_1
  doi: 10.1007/s10533‐011‐9672‐1
– ident: e_1_2_15_14_1
  doi: 10.1016/j.celrep.2021.108854
– ident: e_1_2_15_43_1
  doi: 10.1126/science.aaf4268
– ident: e_1_2_15_38_1
  doi: 10.1016/S0038‐0717(02)00007‐X
– ident: e_1_2_15_37_1
  doi: 10.1104/pp.102.017277
– ident: e_1_2_15_114_1
  doi: 10.1038/s41558‐019‐0630‐6
– ident: e_1_2_15_100_1
  doi: 10.1128/aem.61.1.218‐221.1995
– ident: e_1_2_15_95_1
  doi: 10.1038/s41467‐017‐01320‐x
– ident: e_1_2_15_48_1
  doi: 10.1111/j.1469‐8137.1990.tb04715.x
– ident: e_1_2_15_103_1
  doi: 10.1038/nclimate2438
– ident: e_1_2_15_41_1
  doi: 10.1038/s41467‐019‐08719‐8
– ident: e_1_2_15_84_1
  doi: 10.1007/s00253‐008‐1712‐y
– ident: e_1_2_15_79_1
  doi: 10.1038/s41396‐020‐00787‐9
– ident: e_1_2_15_21_1
  doi: 10.1016/j.soilbio.2021.108400
– ident: e_1_2_15_45_1
  doi: 10.1016/j.soilbio.2018.05.027
– ident: e_1_2_15_78_1
  doi: 10.1073/pnas.1204306109
– ident: e_1_2_15_97_1
  doi: 10.1038/s41598‐018‐37565‐9
– ident: e_1_2_15_70_1
  doi: 10.1111/j.0269‐8463.2004.00896.x
– ident: e_1_2_15_2_1
  doi: 10.1111/j.1461‐0248.2012.01807.x
– ident: e_1_2_15_77_1
  doi: 10.1111/1365‐2745.13327
– ident: e_1_2_15_117_1
  doi: 10.1016/j.geoderma.2019.114069
– ident: e_1_2_15_69_1
  doi: 10.1016/j.soilbio.2015.06.002
– ident: e_1_2_15_75_1
  doi: 10.1128/MMBR.63.2.334‐348.1999
– ident: e_1_2_15_88_1
  doi: 10.1890/06‐0219
– ident: e_1_2_15_25_1
  doi: 10.1038/s41467‐021‐25675‐4
– ident: e_1_2_15_28_1
  doi: 10.1016/j.ibiod.2017.06.014
– ident: e_1_2_15_56_1
  doi: 10.1016/j.soilbio.2009.06.016
– ident: e_1_2_15_116_1
  doi: 10.1890/12‐2018.1
– ident: e_1_2_15_23_1
  doi: 10.1038/s43247‐020‐00031‐4
– ident: e_1_2_15_4_1
  doi: 10.1890/12‐1243.1
SSID ssj0009522
Score 2.5966392
Snippet Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1442
SubjectTerms Carbon
Carbon cycle
Decomposition
Drought
Drying
drying–rewetting
Ecosystem studies
Ecosystems
Environmental changes
Environmental conditions
Environmental gradient
Environmental impact
Feedback
microbial traits
Microorganisms
Organic matter
Physiology
Resource availability
soil carbon
Soil chemistry
Soil microorganisms
Soil organic matter
Soil stabilization
Soils
water stress
Title Drought impacts on microbial trait distribution and feedback to soil carbon cycling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14010
https://www.proquest.com/docview/2673583131
https://www.osti.gov/servlets/purl/1855202
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66IHjxLeqq5ODBS5c26Tabo6y7iAcRH-At5FURtRVbD_rrnUlbXQUR8RbahDSPyXyTznxDyAHjgnEJAsh9LqJUGBFJ0PuRS0xmQQPx3Acv37Ps5Do9vRl23oQYC9PwQ3xcuKFkhPMaBVybakbIG_8s0PYDtBHQascnCIsu2AztbvMfgWUyAk3LW3If9OX51v6LXuqVIF9fMOcscg2qZ7pMTPfRjcfJ_eClNgP79o3P8V-jWiFLLTClR81OWiVzvlgjC02qylcoTWxb2px8xsZBg_ZwqNbJ5XFI-VPTJvKyomVBH-8C0RPUw1wUNXXI09um2KK6cDQH7Wm0vad1Savy7oFa_WzgnX3FmM3bDXI1nVyNT6I2Z0NkwdaNI8lEnDnvkCUfoFAWGxPnQmpnOE-YFolB_h7DhDYOZN_rNPcAYXjislGaSr5JekVZ-C1C4SwxPs4181KmwyQ3biQcHDk8ybUcObZNBt2CKdvymeNQHlRn1-BcKpxLFeZymxx-NHhqqDx-rtrHHaAAhSCVrkWfI1srwDZDFkPPu93GUK3EV4plgg9HPOEJfFhY4d86UdPJOBR2_tqgTxYZRmGEy6Bd0qufX_weYKPa7JN5lp7vByF4B0N5_0c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECYKB0W7NH0Fce2mHDp0kSGRsmiOgS3DTV0PrQtkI_hSESSRAlsZkl-fO0pKnABFUXQjIFF8frw76u47Qj4zLhiXAEDuCxGlwohIgtyPXGIyCxKIFz54-a6yxa_05HR8uhML0_BD3F-4ITLCeY0AxwvpHZQ3Dlog7kdoJIDZvod5vZE_f_aD7RDvNn8SWCYjkLW8pfdBb54nH3gkmXoVIOyR1rmruwbhM98ntut243NyPrquzcjePmF0_L9xvSavWt2UHjeb6Q155su35HmTrfIGSrltSwf5Q3gcVGjPh-078nMWsv7UtAm-3NKqpJdngesJ3sN0FDV1SNXbZtmiunS0AAFqtD2ndUW31dkFtXpj4Jm9wbDN3-_Jep6vp4uoTdsQWTB340gyEWfOOyTKB20oi42JCyG1M5wnTIvEIIWPYUIbB_D3Oi08aDE8cdkkTSU_IL2yKv0hoXCcGB8Xmnkp03FSGDcRDk4dnhRaThzrk1G3Ysq2lOY4lAvVmTY4lwrnUoW57JMv9xWuGjaPP786wC2gQBFBNl2Lbke2VqDejFkMLQ-7naFa0G8VywQfT3jCE-hYWOK_NaLm-TQUPvxrhU_kxWL9famWX1ffBuQlw6CMcDc0JL16c-0_gqpUm6OAhTtNsgKb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yongRn6jrIwcPXipt0m02R9FdfCGCCt5CniJqK2497L93Ju3qKoh4C7Rp2km_zEwy8w0h-4wLxiUAkPsgklwYkUjQ-4nLTGFBA_HgY5TvVXF6l5_f9ybRhJgL0_BDfG64ITLieo0Af3VhCuRNfBZo-0P0EcBrn8UjP4zqYvn1FO9uc5DACpmAquUtuw8G8_x4wDfF1KkAYN-MzmnTNeqe4RJZbI1GetTM8jKZ8eUKmWvKSI6hNbBta33wlbcGHVrgjlbJzUksx1PTJityRKuSvjxGEia4D-tE1NQhh25b_orq0tEAms1o-0Trio6qx2dq9ZuBa3aM-ZQPa-R2OLg9Pk3aegqJBT80TSQTaeG8QwZ7MFOK1Jg0CKmd4TxjWmQGuXUME9o4wKXXefBgXvDMFf08l3yddMqq9BuEAs6NT4NmXsq8lwXj-sLBcsCzoGXfsU1yOJGlsi3XOH7Ks5r4HCh8hcJXUfib5OCzw2tDs_H7rV2cHAUWAtLcWowHsrUCu6PHUhh5ezJnqkXjSLFC8F6fZzyDF4vz-Ncgajg4jo2t_3bYI_PXJ0N1eXZ10SULDJMl4p7NNunUb-9-B0yY2uzGn_QD0_Dggw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+impacts+on+microbial+trait+distribution+and+feedback+to+soil+carbon+cycling&rft.jtitle=Functional+ecology&rft.au=Malik%2C+Ashish+A.&rft.au=Bouskill%2C+Nicholas+J.&rft.date=2022-06-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1442&rft.epage=1456&rft_id=info:doi/10.1111%2F1365-2435.14010&rft.externalDBID=10.1111%252F1365-2435.14010&rft.externalDocID=FEC14010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon