Drought impacts on microbial trait distribution and feedback to soil carbon cycling
Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collectiv...
Saved in:
Published in | Functional ecology Vol. 36; no. 6; pp. 1442 - 1456 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.06.2022
British Ecological Society; Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems.
Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry.
This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought.
The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced.
To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies.
Read the free Plain Language Summary for this article on the Journal blog.
सारांश
जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा।
इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं।
इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है।
इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा।
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems.
Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry.
This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought.
The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced.
To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies.
Read the free
Plain Language Summary
for this article on the Journal blog.
जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा।
इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं।
इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है।
इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा। Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait-based ecology to link drought-impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life-history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y-A-S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade-offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y-A-S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem-level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought-response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies. Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems.Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry.This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought.The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced.To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies.Read the free Plain Language Summary for this article on the Journal blog. Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic understanding. Therefore, there is a need to scale up the physiological response to changing water status from individual soil microbes to collective communities across different ecosystems. Here we propose the use of a framework that incorporates trait‐based ecology to link drought‐impacted microbial processes to rates of soil carbon decomposition and stabilisation. We briefly synthesise existing knowledge on the effects of drought on microbial physiology at the individual to community scale, before integrating this understanding within a framework incorporating life‐history strategy, ecological strategy and biochemistry. This framework highlights a dynamic allocation to high yield (Y), resource acquisition (A) and stress tolerance (S) pathways as environmental conditions change. Y‐A‐S strategies represent sets of traits that tend to correlate due to physiological or evolutionary trade‐offs. This framework enables assessment of microbial processes along two key environmental gradients of water and resource availability, both of which are constrained by drought. The variable chemistry of biomass and necromass produced under different physiological strategies in response to drying–rewetting impacts organic matter decomposition and stabilisation in soils, and should also be considered when quantifying soil carbon balance. We highlight that diversion of resources away from microbial growth can alter soil organic matter chemistry and its persistence depending on the kind of microbial compounds produced. To advance such a framework, we highlight avenues of research that would enable the further identification and quantification of traits linked to Y‐A‐S strategies and the physiological outcomes at the community level under drought and rewetting, and conclude by hypothesising how ecosystem‐level changes might feedback on to the soil carbon cycle. A scalable understanding of microbial drought‐response mechanisms affecting soil carbon cycling will transform the way microbial physiology is represented in ecosystem studies. Read the free Plain Language Summary for this article on the Journal blog. सारांश जलवायु परिवर्तन से सूखे की घटनाएं बढ़ रही हैं जिसके कारण कार्बन चक्र प्रभावित हो रही है। मिट्टी सूक्ष्मजीव अपघटन और कार्बन चक्र में केंद्रीय भूमिका निभाते हैं। सूक्ष्मजीव प्रक्रियाओं को सूखा कैसे प्रभावित करता है और पारिस्थितिकी तंत्र कार्बन संतुलन पर इसका क्या प्रभाव होता है, इसके परिणामों को मापना मुश्किल है। ऐसा करने के लिए, हमें सूक्ष्म जीवों की प्रतिक्रिया को बेहतर ढंग से समझना होगा। इस आलेख में हम एक ढांचे के उपयोग का प्रस्ताव रखते हैं जो वर्गीकरण से परे है और लक्षणों के रूप में सूक्ष्म जीव चयापचय पर केंद्रित है। इन लक्षणों को सूक्ष्मजीवों की प्रकट विशेषताओं के रूप में परिभाषित किया जा सकता है। सबसे पहले, हम सूक्ष्म जीव लक्षणों पर सूखे के प्रभावों के मौजूदा ज्ञान को संश्लेषित करते हैं। फिर हम सूखे प्रभावित सूक्ष्म जीव लक्षणों को मिट्टी कार्बन परिवर्तन की दरों से जोड़ने के लिए हमारे ढांचे के भीतर इस समझ को एकीकृत करते हैं। इस ढांचे के मुताबिक, सूक्ष्मजीव व्यक्तिगत स्तर पर वातावरण के उतार‐चढ़ाव के जवाब में अपने संसाधनों को आवंटित करते हैं। सूखा आसपास के वातावरण को बदल देता है लेकिन सूक्ष्म जीवों के भोजन की उपलब्धता को भी प्रभावित करता है। सूक्ष्मजीवों के बदलते लक्षणों के अनुसार हम उनकी तीन प्रमुख जीवन‐इतिहास रणनीतियों की परिकल्पना करते हैं: उच्च उपज, संसाधन अधिग्रहण, और तनाव सहिष्णुता। हमारे ढांचे के अनुसार, जब सूखे का दबाव कम होता है और सूक्ष्मजीवों के भोजन की कोई कमी नहीं होती है, तो सूक्ष्मजीवों की वृद्धि उपज अधिक होगी। सूक्ष्म जीवों के व्यक्तिगत स्तर पर लक्षणों के तालमेल का मिट्टी जीवों के सामुदायिक स्वास्थ्य पे प्रभाव पड़ता है जो मिट्टी कार्बन संतुलन को निर्धारित करता है। इस तरह के ढांचे को आगे बढ़ाने के लिए हम इस आलेख में नये शोध के मार्गों को प्रस्तावित करते हैं, जिससे सूखे के तहत समुदाय स्तर पर सूक्ष्मजीवों के लक्षणों और जीवन‐इतिहास रणनीतियों की पहचान और माप कर सकते हैं। हम सूक्ष्मजीवों के चयापचय को मिट्टी में कार्बन चक्र से जोड़ने के तरीकों का भी प्रस्ताव करते हैं। मिट्टी कार्बन चक्र को प्रभावित करने वाले सूक्ष्मजीव सूखे‐प्रतिक्रिया तंत्र की समझ पारिस्थितिकी तंत्र के अध्ययन में सूक्ष्मजीवों के प्रतिनिधित्व में क्रांति लाएगा। Read the free Plain Language Summary for this article on the Journal blog. |
Author | Malik, Ashish A. Bouskill, Nicholas J. |
Author_xml | – sequence: 1 givenname: Ashish A. orcidid: 0000-0003-4866-9072 surname: Malik fullname: Malik, Ashish A. email: ashish.malik@abdn.ac.uk organization: University of Aberdeen – sequence: 2 givenname: Nicholas J. surname: Bouskill fullname: Bouskill, Nicholas J. organization: Lawrence Berkeley National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1855202$$D View this record in Osti.gov |
BookMark | eNqFkDtPwzAUhS1UJNrCzGrBnNaPOI8RlRaQKjHQ3bIdp3VJ42I7Qv33OKRiYADfwZLvOcf3fhMwam2rAbjFaIbjmWOasYSklM1wijC6AOOflxEYI5KVSZFm9ApMvN8jhEpGyBi8PTrbbXcBmsNRqOChbeHBKGelEQ0MTpgAK-ODM7ILJjZFW8Fa60oK9Q6Dhd6aBirhZOypk2pMu70Gl7VovL4531OwWS03i-dk_fr0snhYJ4oWFCUlyVFW6YrlBSlKmiEpUZ2XopKUYiJyLHGOmCS5kFWZUS3SWlOcU1xlRZqWdAruhljrg-FemaDVTtm21SpwXDBGEImi-0F0dPaj0z7wve1cG8fiJMspKyiONQVsUMXFvXe65jFN9Pv2BBqOEe8Z854o74nyb8bRN__lOzpzEO70h-P806dp9Ok_OV8tF4PvC9TkjMQ |
CitedBy_id | crossref_primary_10_1111_ele_14488 crossref_primary_10_3390_land13111759 crossref_primary_10_1016_j_geoderma_2024_116832 crossref_primary_10_3389_fmicb_2023_1141436 crossref_primary_10_1111_ejss_70044 crossref_primary_10_5194_soil_11_121_2025 crossref_primary_10_1016_j_agee_2024_109276 crossref_primary_10_1016_j_still_2023_105951 crossref_primary_10_1016_j_scitotenv_2023_163416 crossref_primary_10_1111_1365_2745_14115 crossref_primary_10_1016_j_soilbio_2025_109787 crossref_primary_10_3390_microorganisms11071650 crossref_primary_10_1016_j_apsoil_2025_105951 crossref_primary_10_1016_j_tim_2023_03_002 crossref_primary_10_1016_j_jenvman_2025_124534 crossref_primary_10_1016_j_jenvman_2024_120318 crossref_primary_10_1016_j_soilbio_2022_108924 crossref_primary_10_1007_s11104_023_06093_5 crossref_primary_10_1016_j_scitotenv_2023_164785 crossref_primary_10_1007_s00374_024_01802_3 crossref_primary_10_1016_j_geoderma_2023_116668 crossref_primary_10_1016_j_jsames_2024_105323 crossref_primary_10_1007_s11104_023_06302_1 crossref_primary_10_1093_ismejo_wrae224 crossref_primary_10_1038_s41558_024_02000_7 crossref_primary_10_1016_j_apsoil_2025_105942 crossref_primary_10_1016_j_apsoil_2023_105101 crossref_primary_10_3389_fevo_2023_1173750 crossref_primary_10_1111_gcb_17292 crossref_primary_10_1016_j_scitotenv_2022_156351 crossref_primary_10_1016_j_jenvman_2024_123846 crossref_primary_10_1093_ismeco_ycae116 crossref_primary_10_1038_s41396_023_01486_x crossref_primary_10_1007_s10533_022_01009_4 crossref_primary_10_1038_s41558_023_01881_4 crossref_primary_10_1016_j_apsoil_2022_104588 crossref_primary_10_1111_oik_10411 crossref_primary_10_3389_fpls_2023_1221288 crossref_primary_10_1111_1365_2745_14448 crossref_primary_10_1016_j_micres_2025_128075 crossref_primary_10_1111_gcb_70065 crossref_primary_10_3389_fsoil_2023_1267685 crossref_primary_10_1186_s12864_022_09019_0 crossref_primary_10_1007_s42729_024_02120_1 crossref_primary_10_1002_imt2_66 crossref_primary_10_1016_j_soilbio_2023_109252 crossref_primary_10_1016_j_geoderma_2024_116869 crossref_primary_10_1038_s41467_024_50368_z crossref_primary_10_1038_s41467_023_41524_y crossref_primary_10_1038_s41477_024_01749_1 crossref_primary_10_1038_s41564_023_01432_9 |
Cites_doi | 10.1111/1758‐2229.12711 10.1016/j.tim.2006.04.003 10.1016/j.fmrre.2004.10.003 10.1890/11‐0026.1 10.1073/pnas.1402591111 10.1111/1365‐2745.13550 10.1073/pnas.1808274115 10.1016/j.soilbio.2013.03.034 10.1016/j.soilbio.2012.03.026 10.1016/j.soilbio.2004.08.004 10.1111/1758‐2229.12849 10.1111/gcb.14482 10.1146/annurev‐micro‐020518‐115504 10.1016/j.soilbio.2012.08.014 10.1146/annurev‐micro‐090110‐102815 10.1007/BF01343734 10.1007/s10533‐011‐9641‐8 10.1126/science.aac9323 10.1016/j.advwatres.2006.05.025 10.1038/s41467‐021‐23553‐7 10.1099/00221287‐136‐12‐2527 10.1016/j.geoderma.2019.01.053 10.1016/S0341‐8162(03)00087‐0 10.1007/s00248‐014‐0436‐z 10.1186/1471‐2180‐8‐5 10.1007/s00572‐005‐0020‐y 10.3389/fmicb.2012.00364 10.1038/nature23021 10.1038/s41467‐020‐19574‐3 10.1128/MMBR.53.1.121‐147.1989 10.1016/j.soilbio.2012.09.005 10.1038/nclimate1633 10.1111/j.1574‐6976.2000.tb00542.x 10.1146/annurev‐physiol‐021317‐121351 10.1016/j.soilbio.2020.107819 10.1111/j.1461‐0248.2012.01848.x 10.1128/msystems.00061‐19 10.1038/s41396‐019‐0510‐0 10.3389/fmicb.2012.00348 10.1016/j.jmb.2018.02.001 10.1038/s41467‐018‐03352‐3 10.1021/bi0347297 10.1038/s41467‐017‐00407‐9 10.1016/j.soilbio.2005.02.023 10.1007/s002030050649 10.1007/s002030000192 10.1016/j.soilbio.2014.02.008 10.1073/pnas.0807935105 10.1016/S1095‐6433(01)00442‐1 10.1038/s41561‐021‐00698‐0 10.1371/journal.pone.0035205 10.1038/s41564‐018‐0201‐z 10.1029/2011MS000045 10.1016/j.soilbio.2013.12.008 10.1016/j.soilbio.2017.01.001 10.1146/annurev‐ecolsys‐110617‐062614 10.3389/fmicb.2016.00323 10.1016/j.jmb.2016.08.003 10.1093/bioinformatics/btz059 10.1038/nature10386 10.1016/j.geoderma.2017.06.010 10.1016/j.mib.2017.10.015 10.1038/s41396‐020‐0683‐6 10.1073/pnas.2016810118 10.1038/nrmicro.2017.16 10.1038/nrmicro2504 10.1111/ele.13241 10.1038/s41467‐018‐05516‐7 10.1038/ncomms13630 10.1038/nrmicro1659 10.3389/fmicb.2016.00525 10.1016/j.soilbio.2016.06.032 10.1016/j.soilbio.2020.107742 10.1016/j.soilbio.2013.07.014 10.1002/iroh.201501817 10.1007/s40641‐018‐0103‐4 10.1126/science.aaz5192 10.3389/fmicb.2021.679793 10.1016/j.soilbio.2013.01.002 10.1007/s00442‐004‐1713‐1 10.1007/BF00408306 10.1038/ncomms9960 10.1016/j.soilbio.2004.09.014 10.1890/13‐1031.1 10.1111/gcb.13923 10.1016/j.ecolmodel.2019.05.007 10.1038/s41586‐018‐0207‐y 10.1007/s10533‐011‐9672‐1 10.1016/j.celrep.2021.108854 10.1126/science.aaf4268 10.1016/S0038‐0717(02)00007‐X 10.1104/pp.102.017277 10.1038/s41558‐019‐0630‐6 10.1128/aem.61.1.218‐221.1995 10.1038/s41467‐017‐01320‐x 10.1111/j.1469‐8137.1990.tb04715.x 10.1038/nclimate2438 10.1038/s41467‐019‐08719‐8 10.1007/s00253‐008‐1712‐y 10.1038/s41396‐020‐00787‐9 10.1016/j.soilbio.2021.108400 10.1016/j.soilbio.2018.05.027 10.1073/pnas.1204306109 10.1038/s41598‐018‐37565‐9 10.1111/j.0269‐8463.2004.00896.x 10.1111/j.1461‐0248.2012.01807.x 10.1111/1365‐2745.13327 10.1016/j.geoderma.2019.114069 10.1016/j.soilbio.2015.06.002 10.1128/MMBR.63.2.334‐348.1999 10.1890/06‐0219 10.1038/s41467‐021‐25675‐4 10.1016/j.ibiod.2017.06.014 10.1016/j.soilbio.2009.06.016 10.1890/12‐2018.1 10.1038/s43247‐020‐00031‐4 10.1890/12‐1243.1 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 OIOZB OTOTI |
DOI | 10.1111/1365-2435.14010 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1456 |
ExternalDocumentID | 1855202 10_1111_1365_2435_14010 FEC14010 |
Genre | commentary |
GrantInformation_xml | – fundername: US Department of Energy, Office of Science (BER) funderid: Early Career Research Program #FP00005182; DE‐SC0020382 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 AAPBV ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI UMP |
ID | FETCH-LOGICAL-c3830-92706ded578289360bb0f79adb3312a71b1705b27abd963ea4fe31731d684493 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Thu May 18 22:40:13 EDT 2023 Sun Jul 13 05:19:26 EDT 2025 Tue Jul 01 01:15:53 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Wed Jan 22 16:24:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3830-92706ded578289360bb0f79adb3312a71b1705b27abd963ea4fe31731d684493 |
Notes | Handling Editor Pablo García‐Palacios ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0003-4866-9072 0000000348669072 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14010 |
PQID | 2673583131 |
PQPubID | 1066355 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1855202 proquest_journals_2673583131 crossref_citationtrail_10_1111_1365_2435_14010 crossref_primary_10_1111_1365_2435_14010 wiley_primary_10_1111_1365_2435_14010_FEC14010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Functional ecology |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc British Ecological Society; Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: British Ecological Society; Wiley |
References | 2011; 478 2013; 66 2009; 81 2016; 428 2019; 11 2019; 10 2013; 64 2021; 162 2020; 14 2008; 105 2020; 11 2012; 15 2018; 42 2003; 53 2018; 49 2018; 9 1998; 170 2018; 3 2013; 59 2018; 4 2001; 130 2013; 57 2019; 22 2015; 88 2019; 25 2013; 112 2011; 65 2007; 5 2014; 95 2003; 42 2019; 9 2019; 4 2020; 143 2019; 35 2020; 147 2011; 3 2019; 342 2012; 109 2011; 9 2018; 24 2012; 50 2015; 350 2017; 548 2016; 7 2015; 69 1990; 116 1989; 53 2018; 115 2007; 88 2017; 305 2017; 8 2009; 41 2014; 70 1988; 150 2020; 361 2018; 124 2018; 126 1958; 10 2018; 80 2020; 368 2016; 101 2000; 174 2008; 8 2019; 406 2007; 30 2005; 29 1995; 61 2021; 34 1990; 136 2020; 1 2005; 142 2013; 94 2021; 118 2016; 354 2005; 37 2021; 109 2015; 6 2015; 5 2019; 73 2000; 24 2006; 16 2002; 34 2006; 14 1999; 63 2014; 111 2020; 108 2003; 131 2012; 93 2021; 13 2018; 430 2021; 15 2012; 3 2021; 12 2017; 15 2004; 18 2021 2018; 558 2014; 73 2012; 7 2017; 107 e_1_2_15_108_1 e_1_2_15_104_1 e_1_2_15_42_1 e_1_2_15_88_1 e_1_2_15_69_1 e_1_2_15_3_1 e_1_2_15_80_1 e_1_2_15_27_1 e_1_2_15_61_1 e_1_2_15_111_1 e_1_2_15_46_1 e_1_2_15_84_1 e_1_2_15_23_1 e_1_2_15_65_1 e_1_2_15_7_1 e_1_2_15_116_1 e_1_2_15_31_1 e_1_2_15_77_1 e_1_2_15_58_1 e_1_2_15_100_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_50_1 e_1_2_15_92_1 e_1_2_15_35_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_54_1 e_1_2_15_96_1 e_1_2_15_109_1 e_1_2_15_105_1 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_89_1 e_1_2_15_28_1 e_1_2_15_81_1 e_1_2_15_112_1 e_1_2_15_2_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_85_1 e_1_2_15_6_1 e_1_2_15_117_1 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_78_1 e_1_2_15_59_1 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_93_1 e_1_2_15_101_1 e_1_2_15_13_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_97_1 e_1_2_15_106_1 e_1_2_15_21_1 e_1_2_15_67_1 e_1_2_15_40_1 e_1_2_15_29_1 e_1_2_15_113_1 e_1_2_15_48_1 e_1_2_15_82_1 e_1_2_15_25_1 e_1_2_15_63_1 e_1_2_15_44_1 e_1_2_15_86_1 e_1_2_15_9_1 e_1_2_15_118_1 e_1_2_15_90_1 e_1_2_15_5_1 e_1_2_15_114_1 e_1_2_15_10_1 e_1_2_15_56_1 e_1_2_15_79_1 e_1_2_15_18_1 e_1_2_15_94_1 e_1_2_15_102_1 e_1_2_15_37_1 e_1_2_15_71_1 e_1_2_15_14_1 e_1_2_15_52_1 e_1_2_15_98_1 e_1_2_15_33_1 e_1_2_15_75_1 e_1_2_15_107_1 e_1_2_15_103_1 e_1_2_15_19_1 e_1_2_15_41_1 e_1_2_15_68_1 e_1_2_15_110_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_83_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_64_1 e_1_2_15_87_1 e_1_2_15_8_1 e_1_2_15_4_1 e_1_2_15_115_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_99_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_91_1 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 e_1_2_15_76_1 e_1_2_15_95_1 |
References_xml | – volume: 37 start-page: 1805 issue: 10 year: 2005 end-page: 1813 article-title: Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations publication-title: Soil Biology and Biochemistry – volume: 101 start-page: 1 year: 2016 end-page: 5 article-title: On the origin of carbon dioxide released from rewetted soils publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 1348 issue: 1 year: 2018 article-title: Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions publication-title: Nature Communications – volume: 131 start-page: 1628 issue: 4 year: 2003 end-page: 1637 article-title: Glucosylglycerol, a compatible solute, sustains cell division under salt stress publication-title: Plant Physiology – volume: 9 start-page: 3033 issue: 1 year: 2018 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 14 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Defining trait‐based microbial strategies with consequences for soil carbon cycling under climate change publication-title: The ISME Journal – volume: 548 start-page: 202 issue: 7666 year: 2017 end-page: 205 article-title: Global patterns of drought recovery publication-title: Nature – volume: 15 start-page: 1058 issue: 9 year: 2012 end-page: 1070 article-title: A trait‐based approach for modelling microbial litter decomposition publication-title: Ecology Letters – volume: 88 start-page: 314 year: 2015 end-page: 322 article-title: Prolonged drought changes the bacterial growth response to rewetting publication-title: Soil Biology and Biochemistry – volume: 64 start-page: 68 year: 2013 end-page: 79 article-title: Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland publication-title: Soil Biology and Biochemistry – volume: 150 start-page: 348 issue: 4 year: 1988 end-page: 357 article-title: Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of K‐12 to elevated sodium chloride concentrations publication-title: Archives of Microbiology – volume: 37 start-page: 455 issue: 3 year: 2005 end-page: 461 article-title: Drought decreases soil enzyme activity in a Mediterranean L. forest publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 266 issue: 3 year: 2018 end-page: 286 article-title: Drought, heat, and the carbon cycle: A review publication-title: Current Climate Change Reports – volume: 108 start-page: 876 issue: 3 year: 2020 end-page: 893 article-title: Using proxies of microbial community‐weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands publication-title: Journal of Ecology – volume: 6 start-page: 8960 issue: 1 year: 2015 article-title: Social dynamics within decomposer communities lead to nitrogen retention and organic matter build‐up in soils publication-title: Nature Communications – volume: 25 start-page: 12 issue: 1 year: 2019 end-page: 24 article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry publication-title: Global Change Biology – volume: 406 start-page: 121 year: 2019 end-page: 132 article-title: Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients publication-title: Ecological Modelling – volume: 118 issue: 12 year: 2021 article-title: Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 109 start-page: 35 issue: 1/3 year: 2012 end-page: 47 article-title: A trait‐based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning publication-title: Biogeochemistry – volume: 69 start-page: 843 issue: 4 year: 2015 end-page: 854 article-title: Short‐term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest publication-title: Microbial Ecology – volume: 124 start-page: 227 year: 2018 end-page: 235 article-title: The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 323 year: 2016 article-title: Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition publication-title: Frontiers in Microbiology – volume: 9 start-page: 866 issue: 1 year: 2019 article-title: Environmental filtering of bacterial functional diversity along an aridity gradient publication-title: Scientific Reports – volume: 361 year: 2020 article-title: Responses of soil carbon decomposition to drying‐rewetting cycles: A meta‐analysis publication-title: Geoderma – volume: 305 start-page: 219 year: 2017 end-page: 227 article-title: Soil respiration and microbial biomass in multiple drying and rewetting cycles – Effect of glucose addition publication-title: Geoderma – volume: 107 start-page: 104 year: 2017 end-page: 113 article-title: Consequences of drought tolerance traits for microbial decomposition in the DEMENT model publication-title: Soil Biology and Biochemistry – volume: 50 start-page: 167 year: 2012 end-page: 173 article-title: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 263 issue: 3 year: 2000 end-page: 290 article-title: Ecological significance of compatible solute accumulation by micro‐organisms: From single cells to global climate publication-title: FEMS Microbiology Reviews – volume: 115 start-page: 9791 issue: 39 year: 2018 end-page: 9796 article-title: Cell‐to‐cell bacterial interactions promoted by drier conditions on soil surfaces publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 63 start-page: 334 issue: 2 year: 1999 end-page: 348 article-title: Bioenergetic aspects of halophilism publication-title: Microbiology and Molecular Biology Reviews – volume: 368 start-page: 270 issue: 6488 year: 2020 end-page: 274 article-title: Harnessing rhizosphere microbiomes for drought‐resilient crop production publication-title: Science – volume: 109 start-page: 10931 issue: 27 year: 2012 end-page: 10936 article-title: Rainfall‐induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 119 issue: 2 year: 2011 end-page: 130 article-title: Microbial seed banks: The ecological and evolutionary implications of dormancy publication-title: Nature Reviews Microbiology – volume: 57 start-page: 356 year: 2013 end-page: 361 article-title: Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland publication-title: Soil Biology and Biochemistry – volume: 112 start-page: 71 issue: 1–3 year: 2013 end-page: 80 article-title: Effects of salinity on microbial tolerance to drying and rewetting publication-title: Biogeochemistry – volume: 3 start-page: 977 issue: 9 year: 2018 end-page: 982 article-title: Understanding how microbiomes influence the systems they inhabit publication-title: Nature Microbiology – volume: 94 start-page: 714 issue: 3 year: 2013 end-page: 725 article-title: Microbial abundance and composition influence litter decomposition response to environmental change publication-title: Ecology – volume: 34 issue: 11 year: 2021 article-title: Stress‐induced growth rate reduction restricts metabolic resource utilization to modulate osmo‐adaptation time publication-title: Cell Reports – volume: 1 start-page: 36 issue: 1 year: 2020 article-title: Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization publication-title: Communications Earth & Environment – volume: 3 start-page: M03001 issue: 3 year: 2011 article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model publication-title: Journal of Advances in Modeling Earth Systems – volume: 7 issue: 4 year: 2012 article-title: Fast, multiphase volume adaptation to hyperosmotic shock by publication-title: PLoS ONE – volume: 12 start-page: 1674 year: 2021 article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil publication-title: Frontiers in Microbiology – volume: 93 start-page: 930 issue: 4 year: 2012 end-page: 938 article-title: Responses of soil microbial communities to water stress: Results from a meta‐analysis publication-title: Ecology – volume: 29 start-page: 281 issue: 2 year: 2005 end-page: 301 article-title: Molecular insights into the initiation of sporulation in Gram‐positive bacteria: New technologies for an old phenomenon publication-title: FEMS Microbiology Reviews – volume: 350 issue: 6261 year: 2015 article-title: Microbiomes in light of traits: A phylogenetic perspective publication-title: Science – volume: 8 start-page: 396 issue: 1 year: 2017 article-title: Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding publication-title: Nature Communications – volume: 428 start-page: 3752 issue: 19 year: 2016 end-page: 3775 article-title: Molecular mechanisms of two‐component signal transduction publication-title: Molecular Basis of Signal Transduction – volume: 126 start-page: 189 year: 2018 end-page: 203 article-title: Next generation modeling of microbial souring – Parameterization through genomic information publication-title: International Biodeterioration & Biodegradation – volume: 111 start-page: 7807 issue: 21 year: 2014 end-page: 7812 article-title: Response of growth rate to osmotic shock publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 81 start-page: 927 issue: 5 year: 2009 end-page: 941 article-title: A dormancy state in nonspore‐forming bacteria publication-title: Applied Microbiology and Biotechnology – volume: 73 start-page: 69 year: 2014 end-page: 83 article-title: A theoretical analysis of microbial eco‐physiological and diffusion limitations to carbon cycling in drying soils publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 1428 issue: 4 year: 2018 end-page: 1451 article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress‐induced modifications in plant chemistry publication-title: Global Change Biology – volume: 354 issue: 6318 year: 2016 article-title: Mechanisms of bacterial persistence during stress and antibiotic exposure publication-title: Science – volume: 142 start-page: 465 issue: 3 year: 2005 end-page: 473 article-title: Interactive effects of elevated CO , N deposition and climate change on plant litter quality in a California annual grassland publication-title: Oecologia – volume: 15 start-page: 1257 issue: 11 year: 2012 end-page: 1265 article-title: The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems publication-title: Ecology Letters – volume: 57 start-page: 644 year: 2013 end-page: 653 article-title: Microbial community response to varying magnitudes of desiccation in soil: A test of the osmolyte accumulation hypothesis publication-title: Soil Biology and Biochemistry – volume: 49 start-page: 409 issue: 1 year: 2018 end-page: 432 article-title: Life in dry soils: Effects of drought on soil microbial communities and processes publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 7 start-page: 1 issue: Apr year: 2016 end-page: 11 article-title: Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism publication-title: Frontiers in Microbiology – volume: 116 start-page: 277 issue: 2 year: 1990 end-page: 283 article-title: Compatible solutes – The mycological dimension and their role as physiological buffering agents publication-title: New Phytologist – volume: 174 start-page: 217 issue: 4 year: 2000 end-page: 224 article-title: Physiological roles of trehalose in bacteria and yeasts: A comparative analysis publication-title: Archives of Microbiology – volume: 11 start-page: 20 issue: 1 year: 2019 end-page: 22 article-title: Next‐generation experiments linking community structure and ecosystem functioning publication-title: Environmental Microbiology Reports – volume: 65 start-page: 215 issue: 1 year: 2011 end-page: 238 article-title: Bacterial osmoregulation: A paradigm for the study of cellular homeostasis publication-title: Annual Review of Microbiology – volume: 88 start-page: 1386 issue: 6 year: 2007 end-page: 1394 article-title: Microbial stress‐response physiology and its implications publication-title: Ecology – volume: 9 start-page: 948 issue: 12 year: 2019 end-page: 953 article-title: Increasing impacts of extreme droughts on vegetation productivity under climate change publication-title: Nature Climate Change – volume: 147 year: 2020 article-title: Rewetting of soil: Revisiting the origin of soil CO emissions publication-title: Soil Biology and Biochemistry – volume: 61 start-page: 218 issue: 1 year: 1995 end-page: 221 article-title: Mechanisms for soil moisture effects on activity of nitrifying bacteria publication-title: Applied and Environmental Microbiology – volume: 5 start-page: 56 issue: 1 year: 2015 end-page: 60 article-title: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions publication-title: Nature Climate Change – volume: 42 start-page: 12596 issue: 43 year: 2003 end-page: 12609 article-title: Roles of cytoplasmic osmolytes, water, and crowding in the response of to osmotic stress: Biophysical basis of osmoprotection by glycine betaine publication-title: Biochemistry – volume: 10 start-page: 890 issue: 1 year: 2019 article-title: Extreme slow growth as alternative strategy to survive deep starvation in bacteria publication-title: Nature Communications – volume: 105 start-page: 18188 issue: 47 year: 2008 end-page: 18193 article-title: Defined spatial structure stabilizes a synthetic multispecies bacterial community publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 136 start-page: 2527 issue: 12 year: 1990 end-page: 2535 article-title: The effects of osmotic upshock on the intracellular solute pools of publication-title: Journal of General Microbiology – volume: 143 year: 2020 article-title: Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass ( ) root biomass and soil water potential publication-title: Soil Biology and Biochemistry – volume: 16 start-page: 99 issue: 2 year: 2006 end-page: 109 article-title: Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations publication-title: Mycorrhiza – volume: 5 start-page: 431 issue: 6 year: 2007 end-page: 440 article-title: Mechanosensitive channels in bacteria: Signs of closure? publication-title: Nature Reviews Microbiology – volume: 109 start-page: 3195 issue: 9 year: 2021 end-page: 3210 article-title: Drought legacy affects microbial community trait distributions related to moisture along a savannah grassland precipitation gradient publication-title: Journal of Ecology – volume: 12 start-page: 5308 issue: 1 year: 2021 article-title: Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community publication-title: Nature Communications – volume: 558 start-page: 440 issue: 7710 year: 2018 end-page: 444 article-title: Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis publication-title: Nature – volume: 14 start-page: 271 issue: 6 year: 2006 end-page: 276 article-title: Wake up! Peptidoglycan lysis and bacterial non‐growth states publication-title: Trends in Microbiology – volume: 94 start-page: 2334 issue: 10 year: 2013 end-page: 2345 article-title: Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales publication-title: Ecology – volume: 80 start-page: 71 issue: 1 year: 2018 end-page: 93 article-title: Bacterial mechanosensors publication-title: Annual Review of Physiology – volume: 22 start-page: 838 issue: 5 year: 2019 end-page: 846 article-title: The rate of environmental fluctuations shapes ecological dynamics in a two‐species microbial system publication-title: Ecology Letters – volume: 8 start-page: 5 issue: 1 year: 2008 article-title: Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence publication-title: BMC Microbiology – volume: 30 start-page: 1505 issue: 6–7 year: 2007 end-page: 1527 article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – A review publication-title: Advances in Water Resources – volume: 35 start-page: 3224 issue: 18 year: 2019 end-page: 3231 article-title: Predicting the optimal growth temperatures of prokaryotes using only genome derived features publication-title: Bioinformatics – volume: 12 start-page: 3209 issue: 1 year: 2021 article-title: Genome‐resolved metagenomics reveals role of iron metabolism in drought‐induced rhizosphere microbiome dynamics publication-title: Nature Communications – volume: 14 start-page: 2236 issue: 9 year: 2020 end-page: 2247 article-title: Drought and plant litter chemistry alter microbial gene expression and metabolite production publication-title: The ISME Journal – volume: 130 start-page: 437 issue: 3 year: 2001 end-page: 460 article-title: Osmosensing and osmoregulatory compatible solute accumulation by bacteria publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 13 start-page: 3 issue: 1 year: 2021 end-page: 7 article-title: Are we really studying persister cells? publication-title: Environmental Microbiology Reports – volume: 162 year: 2021 article-title: The mechanisms underpinning microbial resilience to drying and rewetting – A model analysis publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 52 issue: 1 year: 2012 end-page: 58 article-title: Increasing drought under global warming in observations and models publication-title: Nature Climate Change – volume: 101 start-page: 78 issue: 1–2 year: 2016 end-page: 86 article-title: Fungal species diversity affects leaf decomposition after drought publication-title: International Review of Hydrobiology – volume: 66 start-page: 188 year: 2013 end-page: 192 article-title: Microbial growth responses upon rewetting soil dried for four days or one year publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 1 year: 2012 end-page: 11 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology – volume: 53 start-page: 121 issue: 1 year: 1989 end-page: 147 article-title: Physiological and genetic responses of bacteria to osmotic stress publication-title: Microbiological Reviews – volume: 34 start-page: 777 issue: 6 year: 2002 end-page: 787 article-title: Effects of drying–rewetting frequency on soil carbon and nitrogen transformations publication-title: Soil Biology and Biochemistry – volume: 3 year: 2012 article-title: Trait‐based representation of biological nitrification: Model development, testing, and predicted community composition publication-title: Frontiers in Microbiology – volume: 53 start-page: 349 issue: 4 year: 2003 end-page: 363 article-title: Enzyme activities along a climatic transect in the Judean Desert publication-title: Catena – volume: 18 start-page: 648 issue: 5 year: 2004 end-page: 655 article-title: Changing precipitation patterns alter plant community dynamics and succession in an ex‐arable grassland publication-title: Functional Ecology – year: 2021 article-title: Recent European drought extremes beyond Common Era background variability publication-title: Nature Geoscience – volume: 15 start-page: 285 year: 2017 end-page: 296 article-title: Xerotolerant bacteria: Surviving through a dry spell publication-title: Nature Reviews Microbiology – volume: 15 start-page: 450 issue: 2 year: 2021 end-page: 460 article-title: Rapid evolution destabilizes species interactions in a fluctuating environment publication-title: The ISME Journal – volume: 7 year: 2016 article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications – volume: 10 start-page: 9 issue: 1 year: 1958 end-page: 31 article-title: The effect of soil drying on humus decomposition and nitrogen availability publication-title: Plant and Soil – volume: 8 start-page: 1335 issue: 1 year: 2017 article-title: Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought publication-title: Nature Communications – volume: 170 start-page: 319 issue: 5 year: 1998 end-page: 330 article-title: Uptake and synthesis of compatible solutes as microbial stress responses to high‐osmolality environments publication-title: Archives of Microbiology – volume: 59 start-page: 72 year: 2013 end-page: 85 article-title: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models publication-title: Soil Biology and Biochemistry – volume: 37 start-page: 937 issue: 5 year: 2005 end-page: 944 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biology and Biochemistry – volume: 478 start-page: 49 issue: 7367 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 4 start-page: 1 issue: 4 year: 2019 end-page: 16 article-title: Metaphenomic responses of a native prairie soil microbiome to moisture perturbations publication-title: mSystems – volume: 342 start-page: 12 year: 2019 end-page: 19 article-title: Drying and rewetting effects on organic matter mineralisation of contrasting soils after 36 years of storage publication-title: Geoderma – volume: 11 start-page: 5798 issue: 1 year: 2020 article-title: Alaskan carbon‐climate feedbacks will be weaker than inferred from short‐term experiments publication-title: Nature Communications – volume: 70 start-page: 22 year: 2014 end-page: 32 article-title: Response of osmolytes in soil to drying and rewetting publication-title: Soil Biology and Biochemistry – volume: 95 start-page: 1162 issue: 5 year: 2014 end-page: 1172 article-title: Growth and death of bacteria and fungi underlie rainfall‐induced carbon dioxide pulses from seasonally dried soil publication-title: Ecology – volume: 73 start-page: 313 issue: 1 year: 2019 end-page: 334 article-title: Responses of microorganisms to osmotic stress publication-title: Annual Review of Microbiology – volume: 430 start-page: 853 issue: 6 year: 2018 end-page: 866 article-title: Energy coupling efficiency in the type I ABC transporter GlnPQ publication-title: Journal of Molecular Biology – volume: 41 start-page: 1923 issue: 9 year: 2009 end-page: 1934 article-title: Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment publication-title: Soil Biology and Biochemistry – volume: 42 start-page: 62 year: 2018 end-page: 70 article-title: Regulation of microbial growth by turgor pressure publication-title: Current Opinion in Microbiology – ident: e_1_2_15_10_1 doi: 10.1111/1758‐2229.12711 – ident: e_1_2_15_53_1 doi: 10.1016/j.tim.2006.04.003 – ident: e_1_2_15_101_1 doi: 10.1016/j.fmrre.2004.10.003 – ident: e_1_2_15_66_1 doi: 10.1890/11‐0026.1 – ident: e_1_2_15_82_1 doi: 10.1073/pnas.1402591111 – ident: e_1_2_15_59_1 doi: 10.1111/1365‐2745.13550 – ident: e_1_2_15_104_1 doi: 10.1073/pnas.1808274115 – ident: e_1_2_15_6_1 doi: 10.1016/j.soilbio.2013.03.034 – ident: e_1_2_15_47_1 doi: 10.1016/j.soilbio.2012.03.026 – ident: e_1_2_15_85_1 doi: 10.1016/j.soilbio.2004.08.004 – ident: e_1_2_15_98_1 doi: 10.1111/1758‐2229.12849 – ident: e_1_2_15_96_1 doi: 10.1111/gcb.14482 – ident: e_1_2_15_22_1 doi: 10.1146/annurev‐micro‐020518‐115504 – ident: e_1_2_15_51_1 doi: 10.1016/j.soilbio.2012.08.014 – ident: e_1_2_15_112_1 doi: 10.1146/annurev‐micro‐090110‐102815 – ident: e_1_2_15_11_1 doi: 10.1007/BF01343734 – ident: e_1_2_15_106_1 doi: 10.1007/s10533‐011‐9641‐8 – ident: e_1_2_15_67_1 doi: 10.1126/science.aac9323 – ident: e_1_2_15_74_1 doi: 10.1016/j.advwatres.2006.05.025 – ident: e_1_2_15_115_1 doi: 10.1038/s41467‐021‐23553‐7 – ident: e_1_2_15_111_1 doi: 10.1099/00221287‐136‐12‐2527 – ident: e_1_2_15_49_1 doi: 10.1016/j.geoderma.2019.01.053 – ident: e_1_2_15_61_1 doi: 10.1016/S0341‐8162(03)00087‐0 – ident: e_1_2_15_107_1 doi: 10.1007/s00248‐014‐0436‐z – ident: e_1_2_15_46_1 doi: 10.1186/1471‐2180‐8‐5 – ident: e_1_2_15_13_1 doi: 10.1007/s00572‐005‐0020‐y – ident: e_1_2_15_18_1 doi: 10.3389/fmicb.2012.00364 – ident: e_1_2_15_91_1 doi: 10.1038/nature23021 – ident: e_1_2_15_17_1 doi: 10.1038/s41467‐020‐19574‐3 – ident: e_1_2_15_31_1 doi: 10.1128/MMBR.53.1.121‐147.1989 – ident: e_1_2_15_15_1 doi: 10.1016/j.soilbio.2012.09.005 – ident: e_1_2_15_32_1 doi: 10.1038/nclimate1633 – ident: e_1_2_15_110_1 doi: 10.1111/j.1574‐6976.2000.tb00542.x – ident: e_1_2_15_29_1 doi: 10.1146/annurev‐physiol‐021317‐121351 – ident: e_1_2_15_8_1 doi: 10.1016/j.soilbio.2020.107819 – ident: e_1_2_15_105_1 doi: 10.1111/j.1461‐0248.2012.01848.x – ident: e_1_2_15_83_1 doi: 10.1128/msystems.00061‐19 – ident: e_1_2_15_63_1 doi: 10.1038/s41396‐019‐0510‐0 – ident: e_1_2_15_89_1 doi: 10.3389/fmicb.2012.00348 – ident: e_1_2_15_62_1 doi: 10.1016/j.jmb.2018.02.001 – ident: e_1_2_15_73_1 doi: 10.1038/s41467‐018‐03352‐3 – ident: e_1_2_15_26_1 doi: 10.1021/bi0347297 – ident: e_1_2_15_72_1 doi: 10.1038/s41467‐017‐00407‐9 – ident: e_1_2_15_99_1 doi: 10.1016/j.soilbio.2005.02.023 – ident: e_1_2_15_54_1 doi: 10.1007/s002030050649 – ident: e_1_2_15_7_1 doi: 10.1007/s002030000192 – ident: e_1_2_15_65_1 doi: 10.1016/j.soilbio.2014.02.008 – ident: e_1_2_15_55_1 doi: 10.1073/pnas.0807935105 – ident: e_1_2_15_113_1 doi: 10.1016/S1095‐6433(01)00442‐1 – ident: e_1_2_15_24_1 doi: 10.1038/s41561‐021‐00698‐0 – ident: e_1_2_15_76_1 doi: 10.1371/journal.pone.0035205 – ident: e_1_2_15_42_1 doi: 10.1038/s41564‐018‐0201‐z – ident: e_1_2_15_57_1 doi: 10.1029/2011MS000045 – ident: e_1_2_15_108_1 doi: 10.1016/j.soilbio.2013.12.008 – ident: e_1_2_15_3_1 doi: 10.1016/j.soilbio.2017.01.001 – ident: e_1_2_15_87_1 doi: 10.1146/annurev‐ecolsys‐110617‐062614 – ident: e_1_2_15_19_1 doi: 10.3389/fmicb.2016.00323 – ident: e_1_2_15_118_1 doi: 10.1016/j.jmb.2016.08.003 – ident: e_1_2_15_86_1 doi: 10.1093/bioinformatics/btz059 – ident: e_1_2_15_90_1 doi: 10.1038/nature10386 – ident: e_1_2_15_93_1 doi: 10.1016/j.geoderma.2017.06.010 – ident: e_1_2_15_81_1 doi: 10.1016/j.mib.2017.10.015 – ident: e_1_2_15_64_1 doi: 10.1038/s41396‐020‐0683‐6 – ident: e_1_2_15_109_1 doi: 10.1073/pnas.2016810118 – ident: e_1_2_15_58_1 doi: 10.1038/nrmicro.2017.16 – ident: e_1_2_15_60_1 doi: 10.1038/nrmicro2504 – ident: e_1_2_15_80_1 doi: 10.1111/ele.13241 – ident: e_1_2_15_33_1 doi: 10.1038/s41467‐018‐05516‐7 – ident: e_1_2_15_52_1 doi: 10.1038/ncomms13630 – ident: e_1_2_15_16_1 doi: 10.1038/nrmicro1659 – ident: e_1_2_15_20_1 doi: 10.3389/fmicb.2016.00525 – ident: e_1_2_15_39_1 doi: 10.1016/j.soilbio.2016.06.032 – ident: e_1_2_15_92_1 doi: 10.1016/j.soilbio.2020.107742 – ident: e_1_2_15_68_1 doi: 10.1016/j.soilbio.2013.07.014 – ident: e_1_2_15_40_1 doi: 10.1002/iroh.201501817 – ident: e_1_2_15_94_1 doi: 10.1007/s40641‐018‐0103‐4 – ident: e_1_2_15_34_1 doi: 10.1126/science.aaz5192 – ident: e_1_2_15_36_1 doi: 10.3389/fmicb.2021.679793 – ident: e_1_2_15_71_1 doi: 10.1016/j.soilbio.2013.01.002 – ident: e_1_2_15_44_1 doi: 10.1007/s00442‐004‐1713‐1 – ident: e_1_2_15_35_1 doi: 10.1007/BF00408306 – ident: e_1_2_15_50_1 doi: 10.1038/ncomms9960 – ident: e_1_2_15_5_1 doi: 10.1016/j.soilbio.2004.09.014 – ident: e_1_2_15_12_1 doi: 10.1890/13‐1031.1 – ident: e_1_2_15_102_1 doi: 10.1111/gcb.13923 – ident: e_1_2_15_27_1 doi: 10.1016/j.ecolmodel.2019.05.007 – ident: e_1_2_15_30_1 doi: 10.1038/s41586‐018‐0207‐y – ident: e_1_2_15_9_1 doi: 10.1007/s10533‐011‐9672‐1 – ident: e_1_2_15_14_1 doi: 10.1016/j.celrep.2021.108854 – ident: e_1_2_15_43_1 doi: 10.1126/science.aaf4268 – ident: e_1_2_15_38_1 doi: 10.1016/S0038‐0717(02)00007‐X – ident: e_1_2_15_37_1 doi: 10.1104/pp.102.017277 – ident: e_1_2_15_114_1 doi: 10.1038/s41558‐019‐0630‐6 – ident: e_1_2_15_100_1 doi: 10.1128/aem.61.1.218‐221.1995 – ident: e_1_2_15_95_1 doi: 10.1038/s41467‐017‐01320‐x – ident: e_1_2_15_48_1 doi: 10.1111/j.1469‐8137.1990.tb04715.x – ident: e_1_2_15_103_1 doi: 10.1038/nclimate2438 – ident: e_1_2_15_41_1 doi: 10.1038/s41467‐019‐08719‐8 – ident: e_1_2_15_84_1 doi: 10.1007/s00253‐008‐1712‐y – ident: e_1_2_15_79_1 doi: 10.1038/s41396‐020‐00787‐9 – ident: e_1_2_15_21_1 doi: 10.1016/j.soilbio.2021.108400 – ident: e_1_2_15_45_1 doi: 10.1016/j.soilbio.2018.05.027 – ident: e_1_2_15_78_1 doi: 10.1073/pnas.1204306109 – ident: e_1_2_15_97_1 doi: 10.1038/s41598‐018‐37565‐9 – ident: e_1_2_15_70_1 doi: 10.1111/j.0269‐8463.2004.00896.x – ident: e_1_2_15_2_1 doi: 10.1111/j.1461‐0248.2012.01807.x – ident: e_1_2_15_77_1 doi: 10.1111/1365‐2745.13327 – ident: e_1_2_15_117_1 doi: 10.1016/j.geoderma.2019.114069 – ident: e_1_2_15_69_1 doi: 10.1016/j.soilbio.2015.06.002 – ident: e_1_2_15_75_1 doi: 10.1128/MMBR.63.2.334‐348.1999 – ident: e_1_2_15_88_1 doi: 10.1890/06‐0219 – ident: e_1_2_15_25_1 doi: 10.1038/s41467‐021‐25675‐4 – ident: e_1_2_15_28_1 doi: 10.1016/j.ibiod.2017.06.014 – ident: e_1_2_15_56_1 doi: 10.1016/j.soilbio.2009.06.016 – ident: e_1_2_15_116_1 doi: 10.1890/12‐2018.1 – ident: e_1_2_15_23_1 doi: 10.1038/s43247‐020‐00031‐4 – ident: e_1_2_15_4_1 doi: 10.1890/12‐1243.1 |
SSID | ssj0009522 |
Score | 2.5966392 |
Snippet | Quantifying the impact of drought on microbial processes and its consequences for soil carbon cycling is hindered by the lack of underlying mechanistic... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1442 |
SubjectTerms | Carbon Carbon cycle Decomposition Drought Drying drying–rewetting Ecosystem studies Ecosystems Environmental changes Environmental conditions Environmental gradient Environmental impact Feedback microbial traits Microorganisms Organic matter Physiology Resource availability soil carbon Soil chemistry Soil microorganisms Soil organic matter Soil stabilization Soils water stress |
Title | Drought impacts on microbial trait distribution and feedback to soil carbon cycling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14010 https://www.proquest.com/docview/2673583131 https://www.osti.gov/servlets/purl/1855202 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66IHjxLeqq5ODBS5c26Tabo6y7iAcRH-At5FURtRVbD_rrnUlbXQUR8RbahDSPyXyTznxDyAHjgnEJAsh9LqJUGBFJ0PuRS0xmQQPx3Acv37Ps5Do9vRl23oQYC9PwQ3xcuKFkhPMaBVybakbIG_8s0PYDtBHQascnCIsu2AztbvMfgWUyAk3LW3If9OX51v6LXuqVIF9fMOcscg2qZ7pMTPfRjcfJ_eClNgP79o3P8V-jWiFLLTClR81OWiVzvlgjC02qylcoTWxb2px8xsZBg_ZwqNbJ5XFI-VPTJvKyomVBH-8C0RPUw1wUNXXI09um2KK6cDQH7Wm0vad1Savy7oFa_WzgnX3FmM3bDXI1nVyNT6I2Z0NkwdaNI8lEnDnvkCUfoFAWGxPnQmpnOE-YFolB_h7DhDYOZN_rNPcAYXjislGaSr5JekVZ-C1C4SwxPs4181KmwyQ3biQcHDk8ybUcObZNBt2CKdvymeNQHlRn1-BcKpxLFeZymxx-NHhqqDx-rtrHHaAAhSCVrkWfI1srwDZDFkPPu93GUK3EV4plgg9HPOEJfFhY4d86UdPJOBR2_tqgTxYZRmGEy6Bd0qufX_weYKPa7JN5lp7vByF4B0N5_0c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECYKB0W7NH0Fce2mHDp0kSGRsmiOgS3DTV0PrQtkI_hSESSRAlsZkl-fO0pKnABFUXQjIFF8frw76u47Qj4zLhiXAEDuCxGlwohIgtyPXGIyCxKIFz54-a6yxa_05HR8uhML0_BD3F-4ITLCeY0AxwvpHZQ3Dlog7kdoJIDZvod5vZE_f_aD7RDvNn8SWCYjkLW8pfdBb54nH3gkmXoVIOyR1rmruwbhM98ntut243NyPrquzcjePmF0_L9xvSavWt2UHjeb6Q155su35HmTrfIGSrltSwf5Q3gcVGjPh-078nMWsv7UtAm-3NKqpJdngesJ3sN0FDV1SNXbZtmiunS0AAFqtD2ndUW31dkFtXpj4Jm9wbDN3-_Jep6vp4uoTdsQWTB340gyEWfOOyTKB20oi42JCyG1M5wnTIvEIIWPYUIbB_D3Oi08aDE8cdkkTSU_IL2yKv0hoXCcGB8Xmnkp03FSGDcRDk4dnhRaThzrk1G3Ysq2lOY4lAvVmTY4lwrnUoW57JMv9xWuGjaPP786wC2gQBFBNl2Lbke2VqDejFkMLQ-7naFa0G8VywQfT3jCE-hYWOK_NaLm-TQUPvxrhU_kxWL9famWX1ffBuQlw6CMcDc0JL16c-0_gqpUm6OAhTtNsgKb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yongRn6jrIwcPXipt0m02R9FdfCGCCt5CniJqK2497L93Ju3qKoh4C7Rp2km_zEwy8w0h-4wLxiUAkPsgklwYkUjQ-4nLTGFBA_HgY5TvVXF6l5_f9ybRhJgL0_BDfG64ITLieo0Af3VhCuRNfBZo-0P0EcBrn8UjP4zqYvn1FO9uc5DACpmAquUtuw8G8_x4wDfF1KkAYN-MzmnTNeqe4RJZbI1GetTM8jKZ8eUKmWvKSI6hNbBta33wlbcGHVrgjlbJzUksx1PTJityRKuSvjxGEia4D-tE1NQhh25b_orq0tEAms1o-0Trio6qx2dq9ZuBa3aM-ZQPa-R2OLg9Pk3aegqJBT80TSQTaeG8QwZ7MFOK1Jg0CKmd4TxjWmQGuXUME9o4wKXXefBgXvDMFf08l3yddMqq9BuEAs6NT4NmXsq8lwXj-sLBcsCzoGXfsU1yOJGlsi3XOH7Ks5r4HCh8hcJXUfib5OCzw2tDs_H7rV2cHAUWAtLcWowHsrUCu6PHUhh5ezJnqkXjSLFC8F6fZzyDF4vz-Ncgajg4jo2t_3bYI_PXJ0N1eXZ10SULDJMl4p7NNunUb-9-B0yY2uzGn_QD0_Dggw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+impacts+on+microbial+trait+distribution+and+feedback+to+soil+carbon+cycling&rft.jtitle=Functional+ecology&rft.au=Malik%2C+Ashish+A.&rft.au=Bouskill%2C+Nicholas+J.&rft.date=2022-06-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1442&rft.epage=1456&rft_id=info:doi/10.1111%2F1365-2435.14010&rft.externalDBID=10.1111%252F1365-2435.14010&rft.externalDocID=FEC14010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |