Dramatic and Reversible Water‐Induced Stiffening Driven by Phase Separation within Polymer Gels

Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softeni...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 12
Main Authors Ming, Xiaoqing, Yao, Le, Zhu, He, Zhang, Qi, Zhu, Shiping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials. An unprecedented polymer material with a dramatic and reversible water‐induced stiffening (stiffness increase as much as 104 times) is introduced based on phase separation, differing from traditional ones that are usually weakened upon hydration. A universal approach for water‐induced stiffening is proposed and verified on various systems. This work would pave the way for the design and development of water‐responsive polymer materials.
AbstractList Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials. An unprecedented polymer material with a dramatic and reversible water‐induced stiffening (stiffness increase as much as 104 times) is introduced based on phase separation, differing from traditional ones that are usually weakened upon hydration. A universal approach for water‐induced stiffening is proposed and verified on various systems. This work would pave the way for the design and development of water‐responsive polymer materials.
Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials.
Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 10 4 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials.
Author Zhang, Qi
Zhu, Shiping
Yao, Le
Zhu, He
Ming, Xiaoqing
Author_xml – sequence: 1
  givenname: Xiaoqing
  surname: Ming
  fullname: Ming, Xiaoqing
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Le
  surname: Yao
  fullname: Yao, Le
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: He
  surname: Zhu
  fullname: Zhu, He
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Qi
  orcidid: 0000-0002-5770-4426
  surname: Zhang
  fullname: Zhang, Qi
  email: qizhang@cuhk.edu.cn
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Shiping
  surname: Zhu
  fullname: Zhu, Shiping
  email: shipingzhu@cuhk.edu.cn
  organization: The Chinese University of Hong Kong
BookMark eNqFkMtOAjEUhhuDiYBuXTdxDbbTzm1JQJAEI_ES3U067RkpmelgO0Bm5yP4jD6JgxhMTIyrcxb_95-Tr4NapjSA0DklfUqIdylUVvQ94lESRz45Qm0a0KDHiBe1Djt9PkEd55aE0DBkvI3EyIpCVFpiYRS-gw1Yp9Mc8JOowH68vU-NWktQ-L7SWQZGmxc8snoDBqc1ni-EA3wPK2GbjtLgra4W2uB5mdcFWDyB3J2i40zkDs6-Zxc9jq8ehte92e1kOhzMepJFjPR87nE_kzSlkqQxEzEF4avQ9xQPw4xzCYQxRVUmeUppABziOALhyZQDjaRiXXSx713Z8nUNrkqW5dqa5mTiBSymvs-Y36T4PiVt6ZyFLJG6-vq9skLnCSXJTmayk5kcZDZY_xe2sroQtv4biPfAVudQ_5NOBqPxzQ_7CWVvi1Y
CitedBy_id crossref_primary_10_1002_cjoc_202200631
crossref_primary_10_1126_sciadv_adl2737
crossref_primary_10_1002_adfm_202400203
crossref_primary_10_1021_acsami_2c04510
crossref_primary_10_1002_app_53285
crossref_primary_10_1021_acsami_4c17511
crossref_primary_10_1016_j_cej_2023_145704
crossref_primary_10_1002_adfm_202401999
crossref_primary_10_1002_sstr_202200108
crossref_primary_10_3390_biomimetics9040200
crossref_primary_10_3390_gels8020101
crossref_primary_10_1021_acsnano_3c06322
crossref_primary_10_1038_s41467_023_42209_2
crossref_primary_10_1002_adma_202406915
crossref_primary_10_1021_acsmacrolett_2c00161
crossref_primary_10_1002_adma_202308520
crossref_primary_10_1002_adma_202312816
crossref_primary_10_1016_j_compositesb_2025_112291
crossref_primary_10_1021_acsnano_4c13111
crossref_primary_10_1002_adma_202201914
crossref_primary_10_1002_agt2_249
crossref_primary_10_1016_j_mtchem_2023_101762
crossref_primary_10_1002_smll_202401164
crossref_primary_10_1002_advs_202405021
crossref_primary_10_1021_jacsau_3c00326
crossref_primary_10_1126_sciadv_adg4031
crossref_primary_10_1021_acs_langmuir_3c02930
crossref_primary_10_1002_adfm_202411560
crossref_primary_10_1002_adfm_202416599
crossref_primary_10_1002_marc_202300736
crossref_primary_10_1016_j_eurpolymj_2023_112192
crossref_primary_10_1016_j_progpolymsci_2024_101847
crossref_primary_10_1039_D4CC06078D
Cites_doi 10.1016/j.polymer.2011.01.037
10.1073/pnas.1609341113
10.1002/adma.201704407
10.1098/rsif.2009.0184
10.1021/acs.macromol.9b02618
10.1002/anie.201310385
10.1002/bies.20597
10.1002/adma.201905878
10.1021/la062986h
10.1016/j.progpolymsci.2015.04.001
10.1242/jeb.205.2.159
10.1038/ncomms1336
10.1021/acs.macromol.7b00840
10.1039/c1sm06619f
10.1002/adma.201905111
10.1038/s41563-019-0434-0
10.1016/S0945-053X(96)90151-1
10.1177/0021998314525982
10.1002/anie.201410139
10.1242/jeb.199.8.1817
10.1039/D0MH02069A
10.1038/nmat2614
10.1524/zpch.2006.220.10.1395
10.1038/nature08863
10.1021/ma101413j
10.1242/jeb.203.10.1539
10.1039/C4CC10282G
10.1126/science.1153307
10.1021/ja067986i
10.1074/jbc.M009597200
10.1351/PAC-CON-08-09-04
10.1126/sciadv.1500778
10.1126/science.1230262
10.1038/s41467-021-21599-1
10.1242/jeb.202.17.2291
10.1143/JJAP.34.4997
10.1016/j.mattod.2017.10.010
10.1002/adma.201900561
10.1039/C8PY01286E
10.1021/acs.chemrev.7b00168
10.1039/C9EE00252A
10.1002/adfm.201903543
10.1002/adma.201502967
10.1039/b714376a
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202109850
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202109850
ADFM202109850
Genre article
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  funderid: KQTD20170810141424366
– fundername: National Natural Science Foundation of China
  funderid: 22078276; 22005260
– fundername: Guangdong Introducing Innovative and Entrepreneurial Teams
  funderid: 2017ZT07C291
– fundername: Shenzhen Key Laboratory of Advanced Materials Product Engineering
  funderid: ZDSYS20190911164401990
– fundername: Presidential Fund
  funderid: PF01000949
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3830-54245fc1b1c0b93a91ea5d752d477f44ce033d1dfc4b116e4e998ea2cb4e18cd3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:17:06 EDT 2025
Tue Jul 01 00:30:23 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Jan 22 16:25:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-54245fc1b1c0b93a91ea5d752d477f44ce033d1dfc4b116e4e998ea2cb4e18cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5770-4426
PQID 2639155335
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2639155335
crossref_citationtrail_10_1002_adfm_202109850
crossref_primary_10_1002_adfm_202109850
wiley_primary_10_1002_adfm_202109850_ADFM202109850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2007; 129
2011; 2
2019; 31
2009; 81
2015; 51
2019; 10
2019; 12
1995; 34
2010; 464
2015; 54
2014; 49
2011; 52
2019; 18
1999; 202
2008; 4
2020; 32
2018; 21
1996; 15
2017; 117
2001; 276
2007; 29
2017; 50
2010; 43
2015; 27
2015; 49
2016; 2
2021; 12
2020; 53
2013; 339
2000; 203
2008; 319
2002; 205
2016; 113
2006; 220
2019; 29
2018; 30
1996; 199
2009; 6
2007; 23
2010; 9
2012; 8
2014; 53
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 199
  start-page: 1817
  year: 1996
  publication-title: J. Exp. Biol.
– volume: 27
  start-page: 6990
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1230
  year: 2021
  publication-title: Mater. Horiz.
– volume: 129
  start-page: 506
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 4997
  year: 1995
  publication-title: Jpn. J. Appl. Phys.
– volume: 319
  start-page: 1370
  year: 2008
  publication-title: Science
– volume: 54
  start-page: 3400
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 2
  start-page: 337
  year: 2011
  publication-title: Nat. Commun.
– volume: 53
  start-page: 885
  year: 2020
  publication-title: Macromolecules
– volume: 51
  start-page: 5448
  year: 2015
  publication-title: Chem. Commun.
– volume: 23
  start-page: 988
  year: 2007
  publication-title: Langmuir
– volume: 50
  start-page: 4780
  year: 2017
  publication-title: Macromolecules
– volume: 49
  start-page: 79
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 4
  start-page: 1151
  year: 2008
  publication-title: Soft Matter
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 15
  start-page: 99
  year: 1996
  publication-title: Matrix Biol.
– volume: 29
  start-page: 645
  year: 2007
  publication-title: BioEssays
– volume: 205
  start-page: 159
  year: 2002
  publication-title: J. Exp. Biol.
– volume: 81
  start-page: 1829
  year: 2009
  publication-title: Pure Appl. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 339
  start-page: 186
  year: 2013
  publication-title: Science
– volume: 9
  start-page: 101
  year: 2010
  publication-title: Nat. Mater.
– volume: 53
  start-page: 4418
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 49
  start-page: 1799
  year: 2014
  publication-title: J. Compos. Mater.
– volume: 8
  start-page: 2230
  year: 2012
  publication-title: Soft Matter
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 52
  start-page: 1589
  year: 2011
  publication-title: Polymer
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 464
  start-page: 267
  year: 2010
  publication-title: Nature
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 203
  start-page: 1539
  year: 2000
  publication-title: J. Exp. Biol.
– volume: 21
  start-page: 563
  year: 2018
  publication-title: Mater. Today
– volume: 10
  start-page: 1036
  year: 2019
  publication-title: Polym. Chem.
– volume: 43
  start-page: 9495
  year: 2010
  publication-title: Macromolecules
– volume: 276
  year: 2001
  publication-title: J. Biol. Chem.
– volume: 220
  start-page: 1395
  year: 2006
  publication-title: Z. Phys. Chem.
– volume: 12
  start-page: 972
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 202
  start-page: 2291
  year: 1999
  publication-title: J. Exp. Biol.
– volume: 18
  start-page: 874
  year: 2019
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1312
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  start-page: 951
  year: 2009
  publication-title: J. R. Soc., Interface
– ident: e_1_2_9_33_1
  doi: 10.1016/j.polymer.2011.01.037
– ident: e_1_2_9_25_1
  doi: 10.1073/pnas.1609341113
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201704407
– ident: e_1_2_9_14_1
  doi: 10.1098/rsif.2009.0184
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.macromol.9b02618
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.201310385
– ident: e_1_2_9_24_1
  doi: 10.1002/bies.20597
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201905878
– ident: e_1_2_9_31_1
  doi: 10.1021/la062986h
– ident: e_1_2_9_43_1
  doi: 10.1016/j.progpolymsci.2015.04.001
– ident: e_1_2_9_23_1
  doi: 10.1242/jeb.205.2.159
– ident: e_1_2_9_16_1
  doi: 10.1038/ncomms1336
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.macromol.7b00840
– ident: e_1_2_9_19_1
  doi: 10.1039/c1sm06619f
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201905111
– ident: e_1_2_9_38_1
  doi: 10.1038/s41563-019-0434-0
– ident: e_1_2_9_26_1
  doi: 10.1016/S0945-053X(96)90151-1
– ident: e_1_2_9_36_1
  doi: 10.1177/0021998314525982
– ident: e_1_2_9_2_1
  doi: 10.1002/anie.201410139
– ident: e_1_2_9_21_1
  doi: 10.1242/jeb.199.8.1817
– ident: e_1_2_9_20_1
  doi: 10.1039/D0MH02069A
– ident: e_1_2_9_8_1
  doi: 10.1038/nmat2614
– ident: e_1_2_9_39_1
  doi: 10.1524/zpch.2006.220.10.1395
– ident: e_1_2_9_42_1
  doi: 10.1038/nature08863
– ident: e_1_2_9_15_1
  doi: 10.1021/ma101413j
– ident: e_1_2_9_22_1
  doi: 10.1242/jeb.203.10.1539
– ident: e_1_2_9_40_1
  doi: 10.1039/C4CC10282G
– ident: e_1_2_9_1_1
  doi: 10.1126/science.1153307
– ident: e_1_2_9_18_1
  doi: 10.1021/ja067986i
– ident: e_1_2_9_28_1
  doi: 10.1074/jbc.M009597200
– ident: e_1_2_9_32_1
  doi: 10.1351/PAC-CON-08-09-04
– ident: e_1_2_9_3_1
  doi: 10.1126/sciadv.1500778
– ident: e_1_2_9_12_1
  doi: 10.1126/science.1230262
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-021-21599-1
– ident: e_1_2_9_27_1
  doi: 10.1242/jeb.202.17.2291
– ident: e_1_2_9_41_1
  doi: 10.1143/JJAP.34.4997
– ident: e_1_2_9_37_1
  doi: 10.1016/j.mattod.2017.10.010
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201900561
– ident: e_1_2_9_44_1
  doi: 10.1039/C8PY01286E
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.chemrev.7b00168
– ident: e_1_2_9_13_1
  doi: 10.1039/C9EE00252A
– ident: e_1_2_9_17_1
  doi: 10.1002/adfm.201903543
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.201502967
– ident: e_1_2_9_7_1
  doi: 10.1039/b714376a
SSID ssj0017734
Score 2.5807018
Snippet Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aqueous environments
Crystallization
Glass transition
Humidity
Ionic liquids
Lithium
Materials science
Mechanical properties
Modulus of elasticity
Phase separation
Polymer gels
Polymers
responsive polymers
Shape memory
Stiffening
Stiffness
water‐induced stiffening
Title Dramatic and Reversible Water‐Induced Stiffening Driven by Phase Separation within Polymer Gels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202109850
https://www.proquest.com/docview/2639155335
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQLDDwjyg_lQckptDYcZxmrCilQhQhSkW3yD47AlFSFNoBJh6BZ-RJsJ02FCSEBGMkO0p857vvzufvEDogRkcocPCUEb7HQiKMHZTUM1gWGGjJU9eSpXPB2z121g_7M7f4C36IMuFmd4az13aDC_lU-yQNFSq1N8lNyBLXXdBuC7YsKroq-aNIFBXHypzYAi_Sn7I2-rT2dfpXr_QJNWcBq_M4rRUkpt9aFJrcH41H8ghevtE4_udnVtHyBI7iRqE_a2hOZ-toaYakcAOJZi4crysWmcJX2tVxyIHGNwam5u-vb7b7B2iFuyPbbMXmWXAzt0YUy2d8eWvcJO7qgmJ8mGGb-L3L8OVw8Pygc3xqfPMm6rVOro_b3qQxgwcmoPW90B6XpkAkAV_GgYiJFqGKQqpYFKWM2R5kgSIqBSYJ4ZppE9RpQUEybXRABVtoPhtmehthymMNBhKBDH0GXAshgcdK0ACIon69grypYBKYsJbb5hmDpOBbpolduqRcugo6LMc_FnwdP47cm8o5mezbp4RyR5gfBGEFUSewX96SNJqtTvm085dJu2iR2jsVrrBtD82P8rHeN0hnJKtoodHsnHerTqs_AKDL984
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEsgPIQAwW8ALFKGzuO0yy6qAjD9DFV1YeYXepXBGLIoHQqNF3xCfwKv8In9Evq6zzaIiGkSl10Gcmx4tx77XPt63MA3lDnI0wLHRhn_IDHVLp5ULHAYVnNtVWi8JIsw20xOOAbo3g0B7_buzA1P0S34YaR4edrDHDckF4-Zw2VpsCr5C5nSVfisKmr3LSzHy5rO1pdz5yJ3zLW_7D_fhA0wgKBdglZGMR43FdoqqgOVRrJlFoZmyRmhidJwTlqaEWGmkJzRamw3LqkxEqmFbduDCZy_d6C2ygjjnT92W7HWEWTpD7IFhRLyuio5YkM2fLl7728Dp6D24sQ2a9x_Qfwp_07dWnL16XjqVrSJ38RR96o3_cQ7jeIm6zVIbIAc7Z8BPcu8DA-BplV0lPXElkasmt9qYoaW_LJIfHq9OcvFDjR1pC9KerJ4FYSySpcJ4iakZ3PDgmQPVuzqE9KgnvbX0qyMxnPvtmKfHTw4wkcXMsYn8J8OSntMyBMpFY71KdVHHItrJRKi9RIFmlqWLjSg6D1hFw3xOyoDzLOa0pplqOp8s5UPXjXtf9eU5L8s-Vi61h5MzUd5Ux4TYAoinvAvIf8p5d8LesPu6fnV3npNdwZ7A-38q317c0XcJfhFRJfx7cI89Pq2L50wG6qXvlQInB43c53Bsh9VQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkKr2AP0VS6H1oVVPgdhxHHLoATUsUApaQVH3ltpjR1TdZlFYVG1PfYQ-Cq_SV-BJsJ0foFJVqRKHHiM5VpyZsb-xx98H8JJaH2EoMNDW-AGPqbTzoGKBxbLI0ShReEmWvX2xfcTfDePhDJy3d2Fqfohuw81Fhp-vXYCf6GLtijRU6sLdJLcpS7oeh01Z5a6ZfrNJ2-mbncxa-BVj_c0Pb7eDRlcgQJuPhUHsTvsKpIpiqNJIptTIWCcx0zxJCs6dhFakqS6QK0qF4cbmJEYyVNzYIejI9nsH5rgIUycWkR10hFU0SepzbEFdRRkdtjSRIVu7-b03l8ErbHsdIfslrr8Av9qfU1e2fFk9m6hV_P4bb-T_9PcewHyDt8lGHSAPYcaUj-D-NRbGxyCzSnriWiJLTQ6ML1RRI0M-WhxeXfz46eRN0GhyOHFqMm4jiWSVWyWImpLBscUB5NDUHOrjkrid7c8lGYxH06-mIlsWfDyBo1sZ41OYLcelWQTCRGrQYj5UcchRGCkVilRLFiHVLFzvQdA6Qo4NLbtTBxnlNaE0y52p8s5UPXjdtT-pCUn-2HK59au8mZhOcya8IkAUxT1g3kH-0ku-kfX3uqelf3npBdwdZP38_c7-7jO4x9z9EV_Etwyzk-rMrFhUN1HPfSAR-HTbvncJV3lTvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dramatic+and+Reversible+Water%E2%80%90Induced+Stiffening+Driven+by+Phase+Separation+within+Polymer+Gels&rft.jtitle=Advanced+functional+materials&rft.au=Ming%2C+Xiaoqing&rft.au=Yao%2C+Le&rft.au=Zhu%2C+He&rft.au=Zhang%2C+Qi&rft.date=2022-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=12&rft_id=info:doi/10.1002%2Fadfm.202109850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202109850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon