Dramatic and Reversible Water‐Induced Stiffening Driven by Phase Separation within Polymer Gels
Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softeni...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials.
An unprecedented polymer material with a dramatic and reversible water‐induced stiffening (stiffness increase as much as 104 times) is introduced based on phase separation, differing from traditional ones that are usually weakened upon hydration. A universal approach for water‐induced stiffening is proposed and verified on various systems. This work would pave the way for the design and development of water‐responsive polymer materials. |
---|---|
AbstractList | Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials.
An unprecedented polymer material with a dramatic and reversible water‐induced stiffening (stiffness increase as much as 104 times) is introduced based on phase separation, differing from traditional ones that are usually weakened upon hydration. A universal approach for water‐induced stiffening is proposed and verified on various systems. This work would pave the way for the design and development of water‐responsive polymer materials. Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 104 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials. Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among the triggers owing to its wide abundance, green characteristics, as well as mild conditions involved. However, ubiquitous water‐induced softening would prevent polymer materials from applications with high humidity or aqueous environment. Herein, an unprecedented polymer gel material is reported that exhibits a dramatic and reversible water‐induced stiffening base on phase separation, differing from traditional ones that are usually weakened upon hydration due to the plasticizing effect. The material shows a large stiffness change in Young's modulus (as much as 10 4 times), which is much larger than that induced by glass transition and comparable to that caused by crystallization‐melting process. The polymer materials are fabricated in a facile way by introducing an ionic liquid and a lithium salt into a poly(benzyl methacrylate) network. Moreover, the volume remains almost unchanged during the reversible soft–stiff transition. A universal approach of water‐induced stiffening is proposed and verified on various systems. As for demonstration, this material is used for humidity‐induced shape memory. This work offers an effective method for developing water‐induced stiffened material and will pave the way toward potential applications for water‐responsive polymer materials. |
Author | Zhang, Qi Zhu, Shiping Yao, Le Zhu, He Ming, Xiaoqing |
Author_xml | – sequence: 1 givenname: Xiaoqing surname: Ming fullname: Ming, Xiaoqing organization: The Chinese University of Hong Kong – sequence: 2 givenname: Le surname: Yao fullname: Yao, Le organization: The Chinese University of Hong Kong – sequence: 3 givenname: He surname: Zhu fullname: Zhu, He organization: The Chinese University of Hong Kong – sequence: 4 givenname: Qi orcidid: 0000-0002-5770-4426 surname: Zhang fullname: Zhang, Qi email: qizhang@cuhk.edu.cn organization: The Chinese University of Hong Kong – sequence: 5 givenname: Shiping surname: Zhu fullname: Zhu, Shiping email: shipingzhu@cuhk.edu.cn organization: The Chinese University of Hong Kong |
BookMark | eNqFkMtOAjEUhhuDiYBuXTdxDbbTzm1JQJAEI_ES3U067RkpmelgO0Bm5yP4jD6JgxhMTIyrcxb_95-Tr4NapjSA0DklfUqIdylUVvQ94lESRz45Qm0a0KDHiBe1Djt9PkEd55aE0DBkvI3EyIpCVFpiYRS-gw1Yp9Mc8JOowH68vU-NWktQ-L7SWQZGmxc8snoDBqc1ni-EA3wPK2GbjtLgra4W2uB5mdcFWDyB3J2i40zkDs6-Zxc9jq8ehte92e1kOhzMepJFjPR87nE_kzSlkqQxEzEF4avQ9xQPw4xzCYQxRVUmeUppABziOALhyZQDjaRiXXSx713Z8nUNrkqW5dqa5mTiBSymvs-Y36T4PiVt6ZyFLJG6-vq9skLnCSXJTmayk5kcZDZY_xe2sroQtv4biPfAVudQ_5NOBqPxzQ_7CWVvi1Y |
CitedBy_id | crossref_primary_10_1002_cjoc_202200631 crossref_primary_10_1126_sciadv_adl2737 crossref_primary_10_1002_adfm_202400203 crossref_primary_10_1021_acsami_2c04510 crossref_primary_10_1002_app_53285 crossref_primary_10_1021_acsami_4c17511 crossref_primary_10_1016_j_cej_2023_145704 crossref_primary_10_1002_adfm_202401999 crossref_primary_10_1002_sstr_202200108 crossref_primary_10_3390_biomimetics9040200 crossref_primary_10_3390_gels8020101 crossref_primary_10_1021_acsnano_3c06322 crossref_primary_10_1038_s41467_023_42209_2 crossref_primary_10_1002_adma_202406915 crossref_primary_10_1021_acsmacrolett_2c00161 crossref_primary_10_1002_adma_202308520 crossref_primary_10_1002_adma_202312816 crossref_primary_10_1016_j_compositesb_2025_112291 crossref_primary_10_1021_acsnano_4c13111 crossref_primary_10_1002_adma_202201914 crossref_primary_10_1002_agt2_249 crossref_primary_10_1016_j_mtchem_2023_101762 crossref_primary_10_1002_smll_202401164 crossref_primary_10_1002_advs_202405021 crossref_primary_10_1021_jacsau_3c00326 crossref_primary_10_1126_sciadv_adg4031 crossref_primary_10_1021_acs_langmuir_3c02930 crossref_primary_10_1002_adfm_202411560 crossref_primary_10_1002_adfm_202416599 crossref_primary_10_1002_marc_202300736 crossref_primary_10_1016_j_eurpolymj_2023_112192 crossref_primary_10_1016_j_progpolymsci_2024_101847 crossref_primary_10_1039_D4CC06078D |
Cites_doi | 10.1016/j.polymer.2011.01.037 10.1073/pnas.1609341113 10.1002/adma.201704407 10.1098/rsif.2009.0184 10.1021/acs.macromol.9b02618 10.1002/anie.201310385 10.1002/bies.20597 10.1002/adma.201905878 10.1021/la062986h 10.1016/j.progpolymsci.2015.04.001 10.1242/jeb.205.2.159 10.1038/ncomms1336 10.1021/acs.macromol.7b00840 10.1039/c1sm06619f 10.1002/adma.201905111 10.1038/s41563-019-0434-0 10.1016/S0945-053X(96)90151-1 10.1177/0021998314525982 10.1002/anie.201410139 10.1242/jeb.199.8.1817 10.1039/D0MH02069A 10.1038/nmat2614 10.1524/zpch.2006.220.10.1395 10.1038/nature08863 10.1021/ma101413j 10.1242/jeb.203.10.1539 10.1039/C4CC10282G 10.1126/science.1153307 10.1021/ja067986i 10.1074/jbc.M009597200 10.1351/PAC-CON-08-09-04 10.1126/sciadv.1500778 10.1126/science.1230262 10.1038/s41467-021-21599-1 10.1242/jeb.202.17.2291 10.1143/JJAP.34.4997 10.1016/j.mattod.2017.10.010 10.1002/adma.201900561 10.1039/C8PY01286E 10.1021/acs.chemrev.7b00168 10.1039/C9EE00252A 10.1002/adfm.201903543 10.1002/adma.201502967 10.1039/b714376a |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202109850 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202109850 ADFM202109850 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Program funderid: KQTD20170810141424366 – fundername: National Natural Science Foundation of China funderid: 22078276; 22005260 – fundername: Guangdong Introducing Innovative and Entrepreneurial Teams funderid: 2017ZT07C291 – fundername: Shenzhen Key Laboratory of Advanced Materials Product Engineering funderid: ZDSYS20190911164401990 – fundername: Presidential Fund funderid: PF01000949 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3830-54245fc1b1c0b93a91ea5d752d477f44ce033d1dfc4b116e4e998ea2cb4e18cd3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:17:06 EDT 2025 Tue Jul 01 00:30:23 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Wed Jan 22 16:25:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3830-54245fc1b1c0b93a91ea5d752d477f44ce033d1dfc4b116e4e998ea2cb4e18cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5770-4426 |
PQID | 2639155335 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2639155335 crossref_citationtrail_10_1002_adfm_202109850 crossref_primary_10_1002_adfm_202109850 wiley_primary_10_1002_adfm_202109850_ADFM202109850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2007; 129 2011; 2 2019; 31 2009; 81 2015; 51 2019; 10 2019; 12 1995; 34 2010; 464 2015; 54 2014; 49 2011; 52 2019; 18 1999; 202 2008; 4 2020; 32 2018; 21 1996; 15 2017; 117 2001; 276 2007; 29 2017; 50 2010; 43 2015; 27 2015; 49 2016; 2 2021; 12 2020; 53 2013; 339 2000; 203 2008; 319 2002; 205 2016; 113 2006; 220 2019; 29 2018; 30 1996; 199 2009; 6 2007; 23 2010; 9 2012; 8 2014; 53 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 199 start-page: 1817 year: 1996 publication-title: J. Exp. Biol. – volume: 27 start-page: 6990 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 1230 year: 2021 publication-title: Mater. Horiz. – volume: 129 start-page: 506 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 4997 year: 1995 publication-title: Jpn. J. Appl. Phys. – volume: 319 start-page: 1370 year: 2008 publication-title: Science – volume: 54 start-page: 3400 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 2 start-page: 337 year: 2011 publication-title: Nat. Commun. – volume: 53 start-page: 885 year: 2020 publication-title: Macromolecules – volume: 51 start-page: 5448 year: 2015 publication-title: Chem. Commun. – volume: 23 start-page: 988 year: 2007 publication-title: Langmuir – volume: 50 start-page: 4780 year: 2017 publication-title: Macromolecules – volume: 49 start-page: 79 year: 2015 publication-title: Prog. Polym. Sci. – volume: 4 start-page: 1151 year: 2008 publication-title: Soft Matter – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 15 start-page: 99 year: 1996 publication-title: Matrix Biol. – volume: 29 start-page: 645 year: 2007 publication-title: BioEssays – volume: 205 start-page: 159 year: 2002 publication-title: J. Exp. Biol. – volume: 81 start-page: 1829 year: 2009 publication-title: Pure Appl. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 339 start-page: 186 year: 2013 publication-title: Science – volume: 9 start-page: 101 year: 2010 publication-title: Nat. Mater. – volume: 53 start-page: 4418 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 49 start-page: 1799 year: 2014 publication-title: J. Compos. Mater. – volume: 8 start-page: 2230 year: 2012 publication-title: Soft Matter – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 52 start-page: 1589 year: 2011 publication-title: Polymer – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 464 start-page: 267 year: 2010 publication-title: Nature – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 203 start-page: 1539 year: 2000 publication-title: J. Exp. Biol. – volume: 21 start-page: 563 year: 2018 publication-title: Mater. Today – volume: 10 start-page: 1036 year: 2019 publication-title: Polym. Chem. – volume: 43 start-page: 9495 year: 2010 publication-title: Macromolecules – volume: 276 year: 2001 publication-title: J. Biol. Chem. – volume: 220 start-page: 1395 year: 2006 publication-title: Z. Phys. Chem. – volume: 12 start-page: 972 year: 2019 publication-title: Energy Environ. Sci. – volume: 202 start-page: 2291 year: 1999 publication-title: J. Exp. Biol. – volume: 18 start-page: 874 year: 2019 publication-title: Nat. Mater. – volume: 12 start-page: 1312 year: 2021 publication-title: Nat. Commun. – volume: 6 start-page: 951 year: 2009 publication-title: J. R. Soc., Interface – ident: e_1_2_9_33_1 doi: 10.1016/j.polymer.2011.01.037 – ident: e_1_2_9_25_1 doi: 10.1073/pnas.1609341113 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201704407 – ident: e_1_2_9_14_1 doi: 10.1098/rsif.2009.0184 – ident: e_1_2_9_35_1 doi: 10.1021/acs.macromol.9b02618 – ident: e_1_2_9_10_1 doi: 10.1002/anie.201310385 – ident: e_1_2_9_24_1 doi: 10.1002/bies.20597 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201905878 – ident: e_1_2_9_31_1 doi: 10.1021/la062986h – ident: e_1_2_9_43_1 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: e_1_2_9_23_1 doi: 10.1242/jeb.205.2.159 – ident: e_1_2_9_16_1 doi: 10.1038/ncomms1336 – ident: e_1_2_9_34_1 doi: 10.1021/acs.macromol.7b00840 – ident: e_1_2_9_19_1 doi: 10.1039/c1sm06619f – ident: e_1_2_9_9_1 doi: 10.1002/adma.201905111 – ident: e_1_2_9_38_1 doi: 10.1038/s41563-019-0434-0 – ident: e_1_2_9_26_1 doi: 10.1016/S0945-053X(96)90151-1 – ident: e_1_2_9_36_1 doi: 10.1177/0021998314525982 – ident: e_1_2_9_2_1 doi: 10.1002/anie.201410139 – ident: e_1_2_9_21_1 doi: 10.1242/jeb.199.8.1817 – ident: e_1_2_9_20_1 doi: 10.1039/D0MH02069A – ident: e_1_2_9_8_1 doi: 10.1038/nmat2614 – ident: e_1_2_9_39_1 doi: 10.1524/zpch.2006.220.10.1395 – ident: e_1_2_9_42_1 doi: 10.1038/nature08863 – ident: e_1_2_9_15_1 doi: 10.1021/ma101413j – ident: e_1_2_9_22_1 doi: 10.1242/jeb.203.10.1539 – ident: e_1_2_9_40_1 doi: 10.1039/C4CC10282G – ident: e_1_2_9_1_1 doi: 10.1126/science.1153307 – ident: e_1_2_9_18_1 doi: 10.1021/ja067986i – ident: e_1_2_9_28_1 doi: 10.1074/jbc.M009597200 – ident: e_1_2_9_32_1 doi: 10.1351/PAC-CON-08-09-04 – ident: e_1_2_9_3_1 doi: 10.1126/sciadv.1500778 – ident: e_1_2_9_12_1 doi: 10.1126/science.1230262 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-021-21599-1 – ident: e_1_2_9_27_1 doi: 10.1242/jeb.202.17.2291 – ident: e_1_2_9_41_1 doi: 10.1143/JJAP.34.4997 – ident: e_1_2_9_37_1 doi: 10.1016/j.mattod.2017.10.010 – ident: e_1_2_9_11_1 doi: 10.1002/adma.201900561 – ident: e_1_2_9_44_1 doi: 10.1039/C8PY01286E – ident: e_1_2_9_4_1 doi: 10.1021/acs.chemrev.7b00168 – ident: e_1_2_9_13_1 doi: 10.1039/C9EE00252A – ident: e_1_2_9_17_1 doi: 10.1002/adfm.201903543 – ident: e_1_2_9_29_1 doi: 10.1002/adma.201502967 – ident: e_1_2_9_7_1 doi: 10.1039/b714376a |
SSID | ssj0017734 |
Score | 2.5807018 |
Snippet | Responsive polymer materials possessing variable mechanical properties have shown promising practical applications, whereas water has clear advantages among... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aqueous environments Crystallization Glass transition Humidity Ionic liquids Lithium Materials science Mechanical properties Modulus of elasticity Phase separation Polymer gels Polymers responsive polymers Shape memory Stiffening Stiffness water‐induced stiffening |
Title | Dramatic and Reversible Water‐Induced Stiffening Driven by Phase Separation within Polymer Gels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202109850 https://www.proquest.com/docview/2639155335 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQLDDwjyg_lQckptDYcZxmrCilQhQhSkW3yD47AlFSFNoBJh6BZ-RJsJ02FCSEBGMkO0p857vvzufvEDogRkcocPCUEb7HQiKMHZTUM1gWGGjJU9eSpXPB2z121g_7M7f4C36IMuFmd4az13aDC_lU-yQNFSq1N8lNyBLXXdBuC7YsKroq-aNIFBXHypzYAi_Sn7I2-rT2dfpXr_QJNWcBq_M4rRUkpt9aFJrcH41H8ghevtE4_udnVtHyBI7iRqE_a2hOZ-toaYakcAOJZi4crysWmcJX2tVxyIHGNwam5u-vb7b7B2iFuyPbbMXmWXAzt0YUy2d8eWvcJO7qgmJ8mGGb-L3L8OVw8Pygc3xqfPMm6rVOro_b3qQxgwcmoPW90B6XpkAkAV_GgYiJFqGKQqpYFKWM2R5kgSIqBSYJ4ZppE9RpQUEybXRABVtoPhtmehthymMNBhKBDH0GXAshgcdK0ACIon69grypYBKYsJbb5hmDpOBbpolduqRcugo6LMc_FnwdP47cm8o5mezbp4RyR5gfBGEFUSewX96SNJqtTvm085dJu2iR2jsVrrBtD82P8rHeN0hnJKtoodHsnHerTqs_AKDL984 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEsgPIQAwW8ALFKGzuO0yy6qAjD9DFV1YeYXepXBGLIoHQqNF3xCfwKv8In9Evq6zzaIiGkSl10Gcmx4tx77XPt63MA3lDnI0wLHRhn_IDHVLp5ULHAYVnNtVWi8JIsw20xOOAbo3g0B7_buzA1P0S34YaR4edrDHDckF4-Zw2VpsCr5C5nSVfisKmr3LSzHy5rO1pdz5yJ3zLW_7D_fhA0wgKBdglZGMR43FdoqqgOVRrJlFoZmyRmhidJwTlqaEWGmkJzRamw3LqkxEqmFbduDCZy_d6C2ygjjnT92W7HWEWTpD7IFhRLyuio5YkM2fLl7728Dp6D24sQ2a9x_Qfwp_07dWnL16XjqVrSJ38RR96o3_cQ7jeIm6zVIbIAc7Z8BPcu8DA-BplV0lPXElkasmt9qYoaW_LJIfHq9OcvFDjR1pC9KerJ4FYSySpcJ4iakZ3PDgmQPVuzqE9KgnvbX0qyMxnPvtmKfHTw4wkcXMsYn8J8OSntMyBMpFY71KdVHHItrJRKi9RIFmlqWLjSg6D1hFw3xOyoDzLOa0pplqOp8s5UPXjXtf9eU5L8s-Vi61h5MzUd5Ux4TYAoinvAvIf8p5d8LesPu6fnV3npNdwZ7A-38q317c0XcJfhFRJfx7cI89Pq2L50wG6qXvlQInB43c53Bsh9VQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RkKr2AP0VS6H1oVVPgdhxHHLoATUsUApaQVH3ltpjR1TdZlFYVG1PfYQ-Cq_SV-BJsJ0foFJVqRKHHiM5VpyZsb-xx98H8JJaH2EoMNDW-AGPqbTzoGKBxbLI0ShReEmWvX2xfcTfDePhDJy3d2Fqfohuw81Fhp-vXYCf6GLtijRU6sLdJLcpS7oeh01Z5a6ZfrNJ2-mbncxa-BVj_c0Pb7eDRlcgQJuPhUHsTvsKpIpiqNJIptTIWCcx0zxJCs6dhFakqS6QK0qF4cbmJEYyVNzYIejI9nsH5rgIUycWkR10hFU0SepzbEFdRRkdtjSRIVu7-b03l8ErbHsdIfslrr8Av9qfU1e2fFk9m6hV_P4bb-T_9PcewHyDt8lGHSAPYcaUj-D-NRbGxyCzSnriWiJLTQ6ML1RRI0M-WhxeXfz46eRN0GhyOHFqMm4jiWSVWyWImpLBscUB5NDUHOrjkrid7c8lGYxH06-mIlsWfDyBo1sZ41OYLcelWQTCRGrQYj5UcchRGCkVilRLFiHVLFzvQdA6Qo4NLbtTBxnlNaE0y52p8s5UPXjdtT-pCUn-2HK59au8mZhOcya8IkAUxT1g3kH-0ku-kfX3uqelf3npBdwdZP38_c7-7jO4x9z9EV_Etwyzk-rMrFhUN1HPfSAR-HTbvncJV3lTvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dramatic+and+Reversible+Water%E2%80%90Induced+Stiffening+Driven+by+Phase+Separation+within+Polymer+Gels&rft.jtitle=Advanced+functional+materials&rft.au=Ming%2C+Xiaoqing&rft.au=Yao%2C+Le&rft.au=Zhu%2C+He&rft.au=Zhang%2C+Qi&rft.date=2022-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=12&rft_id=info:doi/10.1002%2Fadfm.202109850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202109850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |