Designer Exosomes for Active Targeted Chemo‐Photothermal Synergistic Tumor Therapy

Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug releas...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 18
Main Authors Wang, Jie, Dong, Yue, Li, Yiwei, Li, Wei, Cheng, Kai, Qian, Yuan, Xu, Guoqiang, Zhang, Xiaoshuai, Hu, Liang, Chen, Peng, Du, Wei, Feng, Xiaojun, Zhao, Yuan‐Di, Zhang, Zhihong, Liu, Bi‐Feng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future. A biological and synthetic hybrid designer exosome is presented with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. The dual ligand engineered exosomes are shown to significantly increase accumulation at the target tumor site and can burst release drug under controllable near‐infrared irradiation in vitro and in vivo.
AbstractList Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future.
Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future. A biological and synthetic hybrid designer exosome is presented with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. The dual ligand engineered exosomes are shown to significantly increase accumulation at the target tumor site and can burst release drug under controllable near‐infrared irradiation in vitro and in vivo.
Author Zhang, Zhihong
Li, Wei
Hu, Liang
Zhao, Yuan‐Di
Li, Yiwei
Liu, Bi‐Feng
Zhang, Xiaoshuai
Dong, Yue
Cheng, Kai
Wang, Jie
Xu, Guoqiang
Qian, Yuan
Chen, Peng
Feng, Xiaojun
Du, Wei
Author_xml – sequence: 1
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Yue
  surname: Dong
  fullname: Dong, Yue
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Yiwei
  surname: Li
  fullname: Li, Yiwei
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Kai
  surname: Cheng
  fullname: Cheng, Kai
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Yuan
  surname: Qian
  fullname: Qian, Yuan
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Guoqiang
  surname: Xu
  fullname: Xu, Guoqiang
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Xiaoshuai
  surname: Zhang
  fullname: Zhang, Xiaoshuai
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Huazhong University of Science and Technology
– sequence: 11
  givenname: Wei
  surname: Du
  fullname: Du, Wei
  organization: Huazhong University of Science and Technology
– sequence: 12
  givenname: Xiaojun
  surname: Feng
  fullname: Feng, Xiaojun
  organization: Huazhong University of Science and Technology
– sequence: 13
  givenname: Yuan‐Di
  surname: Zhao
  fullname: Zhao, Yuan‐Di
  organization: Huazhong University of Science and Technology
– sequence: 14
  givenname: Zhihong
  surname: Zhang
  fullname: Zhang, Zhihong
  organization: Huazhong University of Science and Technology
– sequence: 15
  givenname: Bi‐Feng
  orcidid: 0000-0002-2135-0873
  surname: Liu
  fullname: Liu, Bi‐Feng
  email: bfliu@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNqFkMtKAzEUhoNUsK1uXQ-4bs1tZjLL0osKFQVHcBfSJNOmzExqkqqz8xF8Rp_EKZUKgrg6P5zvOwf-HujUttYAnCM4RBDiS6GKaoghSmFKEngEuihByYBAzDqHjJ5OQM_7NWyxlNAuyCfam2WtXTR9s95W2keFddFIBvOio1y4pQ5aReOVruzn-8f9ygYbVtpVoowemtZbGh-MjPJt1Wp5uxGb5hQcF6L0-ux79sHjbJqPrwfzu6ub8Wg-kIQROKBCFkqoWGeUYiZIjAkTNFFJhiCiTOFFFhPERFzIYpGqDGpCY0VYojFiUiHSBxf7uxtnn7faB762W1e3LzmGhKSQpWnWUnRPSWe9d7rg0gQRjK2DE6bkCPJdf3zXHz_012rDX9rGmUq45m8h2wuvptTNPzQfTWa3P-4XYRiGcg
CitedBy_id crossref_primary_10_1016_j_critrevonc_2022_103628
crossref_primary_10_1021_acsami_3c00446
crossref_primary_10_3390_ijms232415815
crossref_primary_10_1002_adhm_202402673
crossref_primary_10_1007_s12598_022_02116_9
crossref_primary_10_1016_j_jconrel_2022_12_027
crossref_primary_10_1186_s12951_022_01389_7
crossref_primary_10_1002_smll_202102220
crossref_primary_10_1016_j_cej_2020_125939
crossref_primary_10_1021_acsami_8b18146
crossref_primary_10_1021_acsapm_3c02949
crossref_primary_10_1016_j_jcis_2024_09_224
crossref_primary_10_3390_ijms23094773
crossref_primary_10_1016_j_biomaterials_2021_121234
crossref_primary_10_1002_nano_202100142
crossref_primary_10_1016_j_matdes_2025_113633
crossref_primary_10_1039_D4NA00393D
crossref_primary_10_1002_wnan_1792
crossref_primary_10_1016_j_jcis_2021_12_009
crossref_primary_10_1016_j_talanta_2019_03_069
crossref_primary_10_1021_acs_biomac_9b01472
crossref_primary_10_1039_C9AN00777F
crossref_primary_10_1039_D2NH00070A
crossref_primary_10_1016_j_semcancer_2021_09_005
crossref_primary_10_1088_2516_1091_ac73c9
crossref_primary_10_1007_s11426_020_9943_9
crossref_primary_10_1021_acsami_4c05160
crossref_primary_10_1016_j_ccr_2020_213506
crossref_primary_10_1002_adma_202201054
crossref_primary_10_1002_adma_202201051
crossref_primary_10_1002_adfm_202311315
crossref_primary_10_1002_adma_202302323
crossref_primary_10_1002_smll_202007174
crossref_primary_10_1016_j_cej_2020_126525
crossref_primary_10_1210_endocr_bqaa250
crossref_primary_10_1039_D3AN02032K
crossref_primary_10_1021_acsnano_8b07224
crossref_primary_10_1080_1061186X_2022_2114000
crossref_primary_10_1007_s40259_020_00434_x
crossref_primary_10_1088_1361_6528_abb0b8
crossref_primary_10_1016_j_nano_2022_102523
crossref_primary_10_1016_j_biomaterials_2021_121056
crossref_primary_10_1016_j_mtbio_2024_101217
crossref_primary_10_1088_1748_605X_abd2c8
crossref_primary_10_1016_j_semcancer_2021_02_010
crossref_primary_10_1021_acsami_0c07372
crossref_primary_10_1002_adma_202004754
crossref_primary_10_1002_adbi_201900008
crossref_primary_10_1002_cmdc_202400410
crossref_primary_10_1039_D2SC03298H
crossref_primary_10_1016_j_apsb_2022_02_027
crossref_primary_10_1002_adfm_202201800
crossref_primary_10_1016_j_jconrel_2023_09_016
crossref_primary_10_1002_adma_201802896
crossref_primary_10_1080_10717544_2022_2104404
crossref_primary_10_3390_cancers13133324
crossref_primary_10_1039_D0TB00649A
crossref_primary_10_1002_adma_202201406
crossref_primary_10_1016_j_cej_2020_127879
crossref_primary_10_1021_acsami_9b21166
crossref_primary_10_1021_acsbiomaterials_2c01025
crossref_primary_10_1021_acs_analchem_9b02268
crossref_primary_10_3390_cancers15102838
crossref_primary_10_1002_smll_201903761
crossref_primary_10_1016_j_biochi_2019_07_009
crossref_primary_10_1016_j_ijbiomac_2024_139363
crossref_primary_10_1186_s13765_019_0433_5
crossref_primary_10_1021_jacsau_3c00611
crossref_primary_10_1039_D3BM01170D
crossref_primary_10_1016_j_biomaterials_2020_120467
crossref_primary_10_1080_10717544_2022_2105444
crossref_primary_10_3389_fbioe_2022_1032318
crossref_primary_10_1039_C9BM01495K
crossref_primary_10_1021_acs_nanolett_9b02841
crossref_primary_10_1002_smll_202001177
crossref_primary_10_1021_acsbiomaterials_3c01347
crossref_primary_10_1186_s12951_022_01643_y
crossref_primary_10_1021_acs_chemrev_8b00401
crossref_primary_10_3390_ijms252413724
crossref_primary_10_1002_adma_202005709
crossref_primary_10_1360_SSV_2021_0451
crossref_primary_10_1021_acsanm_2c01426
crossref_primary_10_1002_smll_202104585
crossref_primary_10_1016_j_semcancer_2021_02_006
crossref_primary_10_1002_advs_202002499
crossref_primary_10_1016_j_bios_2020_112884
crossref_primary_10_2147_CMAR_S321225
crossref_primary_10_1002_mabi_202100082
crossref_primary_10_1016_j_matt_2021_10_010
crossref_primary_10_1016_j_jconrel_2022_07_020
crossref_primary_10_1186_s12951_022_01591_7
crossref_primary_10_2147_IJN_S310357
crossref_primary_10_1021_acsbiomaterials_9b01161
crossref_primary_10_1002_advs_201901293
crossref_primary_10_1016_j_addr_2023_115139
crossref_primary_10_1039_D4TB01995D
crossref_primary_10_1016_j_mtcomm_2022_104672
crossref_primary_10_1039_D4NA00501E
crossref_primary_10_1021_acs_analchem_8b03959
crossref_primary_10_1002_adma_202107406
crossref_primary_10_1016_j_biomaterials_2021_120964
crossref_primary_10_1063_5_0185934
crossref_primary_10_1016_j_colsurfb_2023_113665
crossref_primary_10_3390_ijms21176048
crossref_primary_10_1021_acs_analchem_0c01387
crossref_primary_10_1039_D0LC00149J
crossref_primary_10_1021_acsbiomaterials_3c01404
crossref_primary_10_1016_j_jconrel_2022_05_062
crossref_primary_10_1155_2022_6430565
crossref_primary_10_1002_adfm_202301138
crossref_primary_10_1016_j_biomaterials_2019_01_026
crossref_primary_10_1039_C8DT04280B
crossref_primary_10_1016_j_ccr_2021_214325
crossref_primary_10_1016_j_semcancer_2022_02_006
crossref_primary_10_1016_j_addr_2021_05_011
crossref_primary_10_1016_j_biomaterials_2019_05_004
crossref_primary_10_3390_pharmaceutics13101593
crossref_primary_10_1021_acsami_1c00016
crossref_primary_10_3390_cancers11121979
crossref_primary_10_1021_acs_analchem_8b05982
crossref_primary_10_1002_adfm_201903850
crossref_primary_10_1080_13543776_2023_2195093
crossref_primary_10_1039_D4TA03929G
crossref_primary_10_3390_antibiotics11030356
crossref_primary_10_34133_2021_9862876
crossref_primary_10_3390_biomedicines9080968
Cites_doi 10.1016/j.biomaterials.2015.10.027
10.1002/adma.201603114
10.1248/cpb.55.1192
10.1083/jcb.201211138
10.1038/nbt.1807
10.1111/j.1751-1097.2008.00530.x
10.1002/adma.201605604
10.1002/adma.201503799
10.1126/scitranslmed.aac5608
10.1016/j.addr.2012.08.008
10.1021/acsnano.5b08145
10.1186/bcr3426
10.1002/smll.200801018
10.1007/BF02787837
10.1021/ja057254a
10.1021/acsami.7b06464
10.1002/smll.201600365
10.1016/j.bbcan.2014.04.005
10.1002/adma.201504009
10.1039/C7NR04425A
10.1021/ja802656d
10.1016/j.jconrel.2013.03.018
10.2217/nnm.13.117
10.1021/ja311180x
10.1021/ja304499q
10.1038/mt.2012.180
10.1021/ja410028q
10.1021/ja511656q
10.1021/acsnano.6b05630
10.1016/j.addr.2012.08.007
10.1016/j.jconrel.2015.03.033
10.1021/acsnano.5b06939
10.1021/bc300175d
10.1038/ncb1596
10.1021/nn306015c
10.1002/adma.201602486
10.1021/nn3006619
10.1021/nn301135w
10.1002/anie.200805572
10.1021/nn800072t
10.1021/nn2026353
10.1007/s12035-013-8544-1
10.1021/nn402232g
10.1021/ja111448t
10.1002/smll.200700595
10.1016/j.jconrel.2013.03.036
10.1038/nmat1615
10.1080/14686996.2016.1240006
10.1021/nn103575a
10.1039/C5NR05067G
10.1038/nmat3776
10.1021/bm300646q
10.1002/adfm.201504899
10.1016/j.biomaterials.2016.08.015
10.7150/thno.18133
10.1039/c0nr00932f
10.1016/j.jconrel.2016.01.009
10.1016/j.biomaterials.2013.11.083
10.1021/nl5045378
10.1002/adfm.201601430
10.1002/adfm.201502469
10.1038/nri2567
10.1002/adfm.201600498
10.1021/acsnano.6b07607
10.1038/nri855
10.1038/ncb1800
10.1038/nrc2444
10.1038/nbt.1830
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201707360
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201707360
ADFM201707360
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2016YFF0100801
– fundername: National Natural Science Foundation of China
  funderid: 21775049; 21475049; 31471257; 21275060
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3830-4acfdad5e94428a35238a46d6910148d2b95318a5fcfb7d90e345d386e218cd13
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:47:07 EDT 2025
Tue Jul 01 04:11:45 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Jan 22 16:24:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-4acfdad5e94428a35238a46d6910148d2b95318a5fcfb7d90e345d386e218cd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2135-0873
PQID 2033708779
PQPubID 2045204
PageCount 14
ParticipantIDs proquest_journals_2033708779
crossref_citationtrail_10_1002_adfm_201707360
crossref_primary_10_1002_adfm_201707360
wiley_primary_10_1002_adfm_201707360_ADFM201707360
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 4, 2018
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: May 4, 2018
  day: 04
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013 2011 2013 2009; 8 133 7 5
2006 2016 2016 2016; 128 12 26 106
2017; 7
2013 2013; 15 65
2013; 65
2017 2017; 9 9
2009 2012 2013 2012 2011; 85 13 135 6 3
1997; 67
2016; 10
2013; 169
2008; 8
2017; 29
2016; 17
2008 2006; 4 5
2013 2014 2011; 7 35 29
2015; 7
2011; 5
2014; 136
2014; 1846
2008 2013 2016; 2 12 28
2008 2009 2007; 10 9 9
2012; 134
2015 2014; 207 49
2015 2017 2013; 207 11 7
2016 2015 2012 2016 2015 2011 2009 2016 2008 2016 2016; 26 25 23 75 15 5 48 28 130 28 28
2013 2016; 21 26
2017 2016; 11 224
2013; 135
2012; 6
2015 2007; 7 55
2013 2002; 200 2
2011; 29
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_9_3
e_1_2_7_4_10
e_1_2_7_4_11
e_1_2_7_25_5
e_1_2_7_25_4
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_4_7
e_1_2_7_4_6
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_27_4
e_1_2_7_29_2
e_1_2_7_4_9
e_1_2_7_4_8
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
References_xml – volume: 10 9 9
  start-page: 1470 581 654
  year: 2008 2009 2007
  publication-title: Nat. Cell Biol. Nat. Rev. Immunol. Nat. Cell Biol.
– volume: 21 26
  start-page: 185 5804
  year: 2013 2016
  publication-title: Mol. Ther. Adv. Funct. Mater.
– volume: 6
  start-page: 4169
  year: 2012
  publication-title: ACS Nano
– volume: 7 35 29
  start-page: 7698 2383 325
  year: 2013 2014 2011
  publication-title: ACS Nano Biomaterials Nat. Biotechnol.
– volume: 9 9
  start-page: 27441 15598
  year: 2017 2017
  publication-title: ACS Appl. Mater. Interfaces Nanoscale
– volume: 2 12 28
  start-page: 889 991 5542
  year: 2008 2013 2016
  publication-title: ACS Nano Nat. Mater. Adv. Mater.
– volume: 128 12 26 106
  start-page: 2115 2731 4169 13
  year: 2006 2016 2016 2016
  publication-title: J. Am. Chem. Soc. Small Adv. Funct. Mater. Biomaterials
– volume: 10
  start-page: 3323
  year: 2016
  publication-title: ACS Nano
– volume: 8 133 7 5
  start-page: 1323 10459 2610 1030
  year: 2013 2011 2013 2009
  publication-title: Nanomedicine J. Am. Chem. Soc. ACS Nano Small
– volume: 85 13 135 6 3
  start-page: 848 2219 18920 7681 1724
  year: 2009 2012 2013 2012 2011
  publication-title: Photochem. Photobiol. Biomacromolecules J. Am. Chem. Soc. ACS Nano Nanoscale
– volume: 15 65
  start-page: 310 383
  year: 2013 2013
  publication-title: Breast Cancer Res. Adv. Drug Delivery Rev.
– volume: 1846
  start-page: 75
  year: 2014
  publication-title: Biochim. Biophys. Acta, Rev. Cancer
– volume: 29
  start-page: 1605604
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2948
  year: 2011
  publication-title: ACS Nano
– volume: 11 224
  start-page: 69 77
  year: 2017 2016
  publication-title: ACS Nano J. Controlled Release
– volume: 65
  start-page: 391
  year: 2013
  publication-title: Adv. Drug Delivery Rev.
– volume: 7
  start-page: 315ra190
  year: 2015
  publication-title: Sci. Transl. Med.
– volume: 4 5
  start-page: 26 245
  year: 2008 2006
  publication-title: Small Nat. Mater.
– volume: 7
  start-page: 789
  year: 2017
  publication-title: Theranostics
– volume: 26 25 23 75 15 5 48 28 130 28 28
  start-page: 2207 5602 1322 193 842 8710 1807 8950 8175 9341 8218
  year: 2016 2015 2012 2016 2015 2011 2009 2016 2008 2016 2016
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Bioconjugate Chem. Biomaterials Nano Lett. ACS Nano Angew. Chem., Int. Ed. Adv. Mater. J. Am. Chem. Soc. Adv. Mater. Adv. Mater.
– volume: 10
  start-page: 3637
  year: 2016
  publication-title: ACS Nano
– volume: 200 2
  start-page: 373 569
  year: 2013 2002
  publication-title: J. Cell Biol. Nat. Rev. Immunol.
– volume: 207 49
  start-page: 18 590
  year: 2015 2014
  publication-title: J. Controlled Release Mol. Neurobiol.
– volume: 169
  start-page: 48
  year: 2013
  publication-title: J. Controlled Release
– volume: 17
  start-page: 677
  year: 2016
  publication-title: Sci. Technol. Adv. Mater.
– volume: 8
  start-page: 618
  year: 2008
  publication-title: Nat. Rev. Cancer
– volume: 169
  start-page: 112
  year: 2013
  publication-title: J. Controlled Release
– volume: 136
  start-page: 17734
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7 55
  start-page: 18584 1192
  year: 2015 2007
  publication-title: Nanoscale Chem. Pharm. Bull.
– volume: 207 11 7
  start-page: 18 277 7698
  year: 2015 2017 2013
  publication-title: J. Controlled Release ACS Nano ACS Nano
– volume: 67
  start-page: 1
  year: 1997
  publication-title: Appl. Biochem. Biotechnol.
– volume: 135
  start-page: 933
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 13256
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 341
  year: 2011
  publication-title: Nat. Biotechnol.
– ident: e_1_2_7_4_4
  doi: 10.1016/j.biomaterials.2015.10.027
– ident: e_1_2_7_4_8
  doi: 10.1002/adma.201603114
– ident: e_1_2_7_22_2
  doi: 10.1248/cpb.55.1192
– ident: e_1_2_7_5_1
  doi: 10.1083/jcb.201211138
– ident: e_1_2_7_8_1
  doi: 10.1038/nbt.1807
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1751-1097.2008.00530.x
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201605604
– ident: e_1_2_7_4_10
  doi: 10.1002/adma.201503799
– ident: e_1_2_7_12_1
  doi: 10.1126/scitranslmed.aac5608
– ident: e_1_2_7_10_1
  doi: 10.1016/j.addr.2012.08.008
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.5b08145
– ident: e_1_2_7_29_1
  doi: 10.1186/bcr3426
– ident: e_1_2_7_1_4
  doi: 10.1002/smll.200801018
– ident: e_1_2_7_17_1
  doi: 10.1007/BF02787837
– ident: e_1_2_7_27_1
  doi: 10.1021/ja057254a
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.7b06464
– ident: e_1_2_7_27_2
  doi: 10.1002/smll.201600365
– ident: e_1_2_7_13_1
  doi: 10.1016/j.bbcan.2014.04.005
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.201504009
– ident: e_1_2_7_21_2
  doi: 10.1039/C7NR04425A
– ident: e_1_2_7_4_9
  doi: 10.1021/ja802656d
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jconrel.2013.03.018
– ident: e_1_2_7_1_1
  doi: 10.2217/nnm.13.117
– ident: e_1_2_7_32_1
  doi: 10.1021/ja311180x
– ident: e_1_2_7_33_1
  doi: 10.1021/ja304499q
– ident: e_1_2_7_14_1
  doi: 10.1038/mt.2012.180
– ident: e_1_2_7_25_3
  doi: 10.1021/ja410028q
– ident: e_1_2_7_28_1
  doi: 10.1021/ja511656q
– ident: e_1_2_7_31_2
  doi: 10.1021/acsnano.6b05630
– ident: e_1_2_7_29_2
  doi: 10.1016/j.addr.2012.08.007
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jconrel.2015.03.033
– ident: e_1_2_7_15_1
  doi: 10.1021/acsnano.5b06939
– ident: e_1_2_7_4_3
  doi: 10.1021/bc300175d
– ident: e_1_2_7_7_3
  doi: 10.1038/ncb1596
– ident: e_1_2_7_1_3
  doi: 10.1021/nn306015c
– ident: e_1_2_7_4_11
  doi: 10.1002/adma.201602486
– ident: e_1_2_7_23_1
  doi: 10.1021/nn3006619
– ident: e_1_2_7_25_4
  doi: 10.1021/nn301135w
– ident: e_1_2_7_4_7
  doi: 10.1002/anie.200805572
– ident: e_1_2_7_3_1
  doi: 10.1021/nn800072t
– ident: e_1_2_7_4_6
  doi: 10.1021/nn2026353
– ident: e_1_2_7_11_2
  doi: 10.1007/s12035-013-8544-1
– ident: e_1_2_7_31_3
  doi: 10.1021/nn402232g
– ident: e_1_2_7_1_2
  doi: 10.1021/ja111448t
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jconrel.2015.03.033
– ident: e_1_2_7_2_1
  doi: 10.1002/smll.200700595
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jconrel.2013.03.036
– ident: e_1_2_7_2_2
  doi: 10.1038/nmat1615
– ident: e_1_2_7_20_1
  doi: 10.1080/14686996.2016.1240006
– ident: e_1_2_7_19_1
  doi: 10.1021/nn103575a
– ident: e_1_2_7_22_1
  doi: 10.1039/C5NR05067G
– ident: e_1_2_7_3_2
  doi: 10.1038/nmat3776
– ident: e_1_2_7_25_2
  doi: 10.1021/bm300646q
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201504899
– ident: e_1_2_7_27_4
  doi: 10.1016/j.biomaterials.2016.08.015
– ident: e_1_2_7_34_1
  doi: 10.7150/thno.18133
– ident: e_1_2_7_25_5
  doi: 10.1039/c0nr00932f
– ident: e_1_2_7_24_2
  doi: 10.1016/j.jconrel.2016.01.009
– ident: e_1_2_7_9_2
  doi: 10.1016/j.biomaterials.2013.11.083
– ident: e_1_2_7_4_5
  doi: 10.1021/nl5045378
– ident: e_1_2_7_14_2
  doi: 10.1002/adfm.201601430
– ident: e_1_2_7_9_1
  doi: 10.1021/nn402232g
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.201502469
– ident: e_1_2_7_7_2
  doi: 10.1038/nri2567
– ident: e_1_2_7_27_3
  doi: 10.1002/adfm.201600498
– ident: e_1_2_7_24_1
  doi: 10.1021/acsnano.6b07607
– ident: e_1_2_7_5_2
  doi: 10.1038/nri855
– ident: e_1_2_7_7_1
  doi: 10.1038/ncb1800
– ident: e_1_2_7_30_1
  doi: 10.1038/nrc2444
– ident: e_1_2_7_9_3
  doi: 10.1038/nbt.1830
SSID ssj0017734
Score 2.60047
Snippet Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Blood circulation
Cancer
chemo‐photothermal tumor therapy
Controlled release
Drug delivery systems
dual targeting
exosomes
Gold
Hyperthermia
Materials science
Nanorods
near infrared light
remotely controlled release
Stability
Synthetic products
Therapy
Tumors
Title Designer Exosomes for Active Targeted Chemo‐Photothermal Synergistic Tumor Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201707360
https://www.proquest.com/docview/2033708779
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidow-CT93WW5o8DrcxxIm4DvZWTpoUQbfKuoH65E_wN_pLTNLLNkEEfWtpTmhzzkm-k57zBaELRoWwAIPJLQqmjL-wCYxw07YJwbENNIrVhv7gFvdH7vXYG69U8Wf8EOWGm_IMPV8rBweWNpekocBjVUlu-dJIsQraVcKWQkX3JX-U5fvZb2VsqQQva1ywNrbs5rr4-qq0hJqrgFWvOL1dBMW7Zokmj43FnDWit280jv_5mD20k8NRo53Zzz7aENMDtL1CUniIgo5O8hAzo_uSpMlEpIYEukZbT5RGoDPJBTcU80Dy-f5x95DMdVXXRPY7fFWlhZoL2ggWEykWZCwGR2jU6wZXfTM_i8GMZAzbMl2IYg7cE9SVAQtI2OYQcDHHVB32S7jNqPRmAl4cxczntCUc1-MOwUJiiIhbzjGqTJOpOEGGXJWBMsxU6OT6LiU8Amh5nNgQgy9IFZmFLsIoJypX52U8hRnFsh2q0QrL0aqiy7L9c0bR8WPLWqHaMHfVVD51HF_RItIqsrWOfuklbHd6g_Lu9C9CZ2hLXhOdOOnWUGU-W4hzCW7mrI42253BzbCuDfkLbRT0Ag
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHdkShQA5InNI2m2MfK9qqQFshSKXeIm8RErRBbSoBJz6Bb-RLsJ2lLRJCgmMSj5XYM_YbZ-YNAOcUC2ERSExuYWJK_wuahCJu2jZCMLIJZpE60O_1YWfgXg-9PJpQ5cKk_BDFgZuyDL1eKwNXB9K1OWso4ZFKJbd8qaVQeu2rqqy39qruCgYpy_fTH8vQUiFe1jDnbazbtWX55X1pDjYXIavec9pbgOZvm4aaPFZnCa2yt29Ejv_6nG2wmSFSo5Gq0A5YEeNdsLHAU7gHgqaO8xATo_UST-ORmBoS6xoNvVYagQ4mF9xQ5APx5_vH7UOc6MSukez3_lVlF2o6aCOYjaRYkBIZ7INBuxVcdsysHIPJpBtbN13CIk64J7ArfRYikZuDiAs5xKreL-I2xdKgEfEiFlGf47pwXI87CAoJIxi3nANQGsdjcQgMuTETTCFV3pPruxhxRkjd48gmEfEFKgMzn4yQZVzlqmTGU5iyLNuhGq2wGK0yuCjaP6csHT-2rORzG2bWOpVPHcdXzIi4DGw9Sb_0Ejaa7V5xdfQXoTOw1gl63bB71b85BuvyPtJxlG4FlJLJTJxIrJPQU63NX_4D9ok
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZxO7YPgU7de0jR5HG5jXjaGdrC3ctqkCLp17ALqkz_B3-gvMUm3bhNE0Me2OaFNzsn5TnrOF4QuIiaEDQRMbjMwZfxFTIgoNx2HUpI4wOJEbeg3W6TRwTddr7tQxZ_xQ-Qbbsoy9HqtDHzAk_KcNBR4oirJbV8qKZFB-xomFlV6Xb3PCaRs38_-KxNbZXjZ3Rlto-WUl-WX3dIcay4iVu1y6tsIZi-bZZo8lSbjqBS_feNx_M_X7KCtKR41KpkC7aIV0d9DmwsshfsoqOosDzE0ai_pKO2JkSGRrlHRK6UR6FRywQ1FPZB-vn-0H9OxLuvqyX4fXlVtoSaDNoJJT4oFGY3BAerUa8FVw5wexmDGMoi1TAxxwoF7gmEZsYDEbS4FTDhh6rRfyp2ISXOm4CVxEvmcWcLFHncpERJExNx2D9FqP-2LI2RItwwsIpGKnbCPGeUxgOVx6kACvqAFZM7mIoynTOXqwIznMONYdkI1WmE-WgV0mbcfZBwdP7YszqY2nNrqSD51XV_xIrICcvQc_dJLWKnWm_nV8V-EztF6u1oP765btydoQ96mOokSF9HqeDgRpxLojKMzrctfOdP1QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designer+Exosomes+for+Active+Targeted+Chemo%E2%80%90Photothermal+Synergistic+Tumor+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Jie&rft.au=Dong%2C+Yue&rft.au=Li%2C+Yiwei&rft.au=Li%2C+Wei&rft.date=2018-05-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201707360&rft.externalDBID=10.1002%252Fadfm.201707360&rft.externalDocID=ADFM201707360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon