Designer Exosomes for Active Targeted Chemo‐Photothermal Synergistic Tumor Therapy
Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug releas...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
04.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future.
A biological and synthetic hybrid designer exosome is presented with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. The dual ligand engineered exosomes are shown to significantly increase accumulation at the target tumor site and can burst release drug under controllable near‐infrared irradiation in vitro and in vivo. |
---|---|
AbstractList | Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future. Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future. A biological and synthetic hybrid designer exosome is presented with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. The dual ligand engineered exosomes are shown to significantly increase accumulation at the target tumor site and can burst release drug under controllable near‐infrared irradiation in vitro and in vivo. |
Author | Zhang, Zhihong Li, Wei Hu, Liang Zhao, Yuan‐Di Li, Yiwei Liu, Bi‐Feng Zhang, Xiaoshuai Dong, Yue Cheng, Kai Wang, Jie Xu, Guoqiang Qian, Yuan Chen, Peng Feng, Xiaojun Du, Wei |
Author_xml | – sequence: 1 givenname: Jie surname: Wang fullname: Wang, Jie organization: Huazhong University of Science and Technology – sequence: 2 givenname: Yue surname: Dong fullname: Dong, Yue organization: Huazhong University of Science and Technology – sequence: 3 givenname: Yiwei surname: Li fullname: Li, Yiwei organization: Massachusetts Institute of Technology – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei organization: Huazhong University of Science and Technology – sequence: 5 givenname: Kai surname: Cheng fullname: Cheng, Kai organization: Huazhong University of Science and Technology – sequence: 6 givenname: Yuan surname: Qian fullname: Qian, Yuan organization: Huazhong University of Science and Technology – sequence: 7 givenname: Guoqiang surname: Xu fullname: Xu, Guoqiang organization: Huazhong University of Science and Technology – sequence: 8 givenname: Xiaoshuai surname: Zhang fullname: Zhang, Xiaoshuai organization: Huazhong University of Science and Technology – sequence: 9 givenname: Liang surname: Hu fullname: Hu, Liang organization: Chinese Academy of Sciences – sequence: 10 givenname: Peng surname: Chen fullname: Chen, Peng organization: Huazhong University of Science and Technology – sequence: 11 givenname: Wei surname: Du fullname: Du, Wei organization: Huazhong University of Science and Technology – sequence: 12 givenname: Xiaojun surname: Feng fullname: Feng, Xiaojun organization: Huazhong University of Science and Technology – sequence: 13 givenname: Yuan‐Di surname: Zhao fullname: Zhao, Yuan‐Di organization: Huazhong University of Science and Technology – sequence: 14 givenname: Zhihong surname: Zhang fullname: Zhang, Zhihong organization: Huazhong University of Science and Technology – sequence: 15 givenname: Bi‐Feng orcidid: 0000-0002-2135-0873 surname: Liu fullname: Liu, Bi‐Feng email: bfliu@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
BookMark | eNqFkMtKAzEUhoNUsK1uXQ-4bs1tZjLL0osKFQVHcBfSJNOmzExqkqqz8xF8Rp_EKZUKgrg6P5zvOwf-HujUttYAnCM4RBDiS6GKaoghSmFKEngEuihByYBAzDqHjJ5OQM_7NWyxlNAuyCfam2WtXTR9s95W2keFddFIBvOio1y4pQ5aReOVruzn-8f9ygYbVtpVoowemtZbGh-MjPJt1Wp5uxGb5hQcF6L0-ux79sHjbJqPrwfzu6ub8Wg-kIQROKBCFkqoWGeUYiZIjAkTNFFJhiCiTOFFFhPERFzIYpGqDGpCY0VYojFiUiHSBxf7uxtnn7faB762W1e3LzmGhKSQpWnWUnRPSWe9d7rg0gQRjK2DE6bkCPJdf3zXHz_012rDX9rGmUq45m8h2wuvptTNPzQfTWa3P-4XYRiGcg |
CitedBy_id | crossref_primary_10_1016_j_critrevonc_2022_103628 crossref_primary_10_1021_acsami_3c00446 crossref_primary_10_3390_ijms232415815 crossref_primary_10_1002_adhm_202402673 crossref_primary_10_1007_s12598_022_02116_9 crossref_primary_10_1016_j_jconrel_2022_12_027 crossref_primary_10_1186_s12951_022_01389_7 crossref_primary_10_1002_smll_202102220 crossref_primary_10_1016_j_cej_2020_125939 crossref_primary_10_1021_acsami_8b18146 crossref_primary_10_1021_acsapm_3c02949 crossref_primary_10_1016_j_jcis_2024_09_224 crossref_primary_10_3390_ijms23094773 crossref_primary_10_1016_j_biomaterials_2021_121234 crossref_primary_10_1002_nano_202100142 crossref_primary_10_1016_j_matdes_2025_113633 crossref_primary_10_1039_D4NA00393D crossref_primary_10_1002_wnan_1792 crossref_primary_10_1016_j_jcis_2021_12_009 crossref_primary_10_1016_j_talanta_2019_03_069 crossref_primary_10_1021_acs_biomac_9b01472 crossref_primary_10_1039_C9AN00777F crossref_primary_10_1039_D2NH00070A crossref_primary_10_1016_j_semcancer_2021_09_005 crossref_primary_10_1088_2516_1091_ac73c9 crossref_primary_10_1007_s11426_020_9943_9 crossref_primary_10_1021_acsami_4c05160 crossref_primary_10_1016_j_ccr_2020_213506 crossref_primary_10_1002_adma_202201054 crossref_primary_10_1002_adma_202201051 crossref_primary_10_1002_adfm_202311315 crossref_primary_10_1002_adma_202302323 crossref_primary_10_1002_smll_202007174 crossref_primary_10_1016_j_cej_2020_126525 crossref_primary_10_1210_endocr_bqaa250 crossref_primary_10_1039_D3AN02032K crossref_primary_10_1021_acsnano_8b07224 crossref_primary_10_1080_1061186X_2022_2114000 crossref_primary_10_1007_s40259_020_00434_x crossref_primary_10_1088_1361_6528_abb0b8 crossref_primary_10_1016_j_nano_2022_102523 crossref_primary_10_1016_j_biomaterials_2021_121056 crossref_primary_10_1016_j_mtbio_2024_101217 crossref_primary_10_1088_1748_605X_abd2c8 crossref_primary_10_1016_j_semcancer_2021_02_010 crossref_primary_10_1021_acsami_0c07372 crossref_primary_10_1002_adma_202004754 crossref_primary_10_1002_adbi_201900008 crossref_primary_10_1002_cmdc_202400410 crossref_primary_10_1039_D2SC03298H crossref_primary_10_1016_j_apsb_2022_02_027 crossref_primary_10_1002_adfm_202201800 crossref_primary_10_1016_j_jconrel_2023_09_016 crossref_primary_10_1002_adma_201802896 crossref_primary_10_1080_10717544_2022_2104404 crossref_primary_10_3390_cancers13133324 crossref_primary_10_1039_D0TB00649A crossref_primary_10_1002_adma_202201406 crossref_primary_10_1016_j_cej_2020_127879 crossref_primary_10_1021_acsami_9b21166 crossref_primary_10_1021_acsbiomaterials_2c01025 crossref_primary_10_1021_acs_analchem_9b02268 crossref_primary_10_3390_cancers15102838 crossref_primary_10_1002_smll_201903761 crossref_primary_10_1016_j_biochi_2019_07_009 crossref_primary_10_1016_j_ijbiomac_2024_139363 crossref_primary_10_1186_s13765_019_0433_5 crossref_primary_10_1021_jacsau_3c00611 crossref_primary_10_1039_D3BM01170D crossref_primary_10_1016_j_biomaterials_2020_120467 crossref_primary_10_1080_10717544_2022_2105444 crossref_primary_10_3389_fbioe_2022_1032318 crossref_primary_10_1039_C9BM01495K crossref_primary_10_1021_acs_nanolett_9b02841 crossref_primary_10_1002_smll_202001177 crossref_primary_10_1021_acsbiomaterials_3c01347 crossref_primary_10_1186_s12951_022_01643_y crossref_primary_10_1021_acs_chemrev_8b00401 crossref_primary_10_3390_ijms252413724 crossref_primary_10_1002_adma_202005709 crossref_primary_10_1360_SSV_2021_0451 crossref_primary_10_1021_acsanm_2c01426 crossref_primary_10_1002_smll_202104585 crossref_primary_10_1016_j_semcancer_2021_02_006 crossref_primary_10_1002_advs_202002499 crossref_primary_10_1016_j_bios_2020_112884 crossref_primary_10_2147_CMAR_S321225 crossref_primary_10_1002_mabi_202100082 crossref_primary_10_1016_j_matt_2021_10_010 crossref_primary_10_1016_j_jconrel_2022_07_020 crossref_primary_10_1186_s12951_022_01591_7 crossref_primary_10_2147_IJN_S310357 crossref_primary_10_1021_acsbiomaterials_9b01161 crossref_primary_10_1002_advs_201901293 crossref_primary_10_1016_j_addr_2023_115139 crossref_primary_10_1039_D4TB01995D crossref_primary_10_1016_j_mtcomm_2022_104672 crossref_primary_10_1039_D4NA00501E crossref_primary_10_1021_acs_analchem_8b03959 crossref_primary_10_1002_adma_202107406 crossref_primary_10_1016_j_biomaterials_2021_120964 crossref_primary_10_1063_5_0185934 crossref_primary_10_1016_j_colsurfb_2023_113665 crossref_primary_10_3390_ijms21176048 crossref_primary_10_1021_acs_analchem_0c01387 crossref_primary_10_1039_D0LC00149J crossref_primary_10_1021_acsbiomaterials_3c01404 crossref_primary_10_1016_j_jconrel_2022_05_062 crossref_primary_10_1155_2022_6430565 crossref_primary_10_1002_adfm_202301138 crossref_primary_10_1016_j_biomaterials_2019_01_026 crossref_primary_10_1039_C8DT04280B crossref_primary_10_1016_j_ccr_2021_214325 crossref_primary_10_1016_j_semcancer_2022_02_006 crossref_primary_10_1016_j_addr_2021_05_011 crossref_primary_10_1016_j_biomaterials_2019_05_004 crossref_primary_10_3390_pharmaceutics13101593 crossref_primary_10_1021_acsami_1c00016 crossref_primary_10_3390_cancers11121979 crossref_primary_10_1021_acs_analchem_8b05982 crossref_primary_10_1002_adfm_201903850 crossref_primary_10_1080_13543776_2023_2195093 crossref_primary_10_1039_D4TA03929G crossref_primary_10_3390_antibiotics11030356 crossref_primary_10_34133_2021_9862876 crossref_primary_10_3390_biomedicines9080968 |
Cites_doi | 10.1016/j.biomaterials.2015.10.027 10.1002/adma.201603114 10.1248/cpb.55.1192 10.1083/jcb.201211138 10.1038/nbt.1807 10.1111/j.1751-1097.2008.00530.x 10.1002/adma.201605604 10.1002/adma.201503799 10.1126/scitranslmed.aac5608 10.1016/j.addr.2012.08.008 10.1021/acsnano.5b08145 10.1186/bcr3426 10.1002/smll.200801018 10.1007/BF02787837 10.1021/ja057254a 10.1021/acsami.7b06464 10.1002/smll.201600365 10.1016/j.bbcan.2014.04.005 10.1002/adma.201504009 10.1039/C7NR04425A 10.1021/ja802656d 10.1016/j.jconrel.2013.03.018 10.2217/nnm.13.117 10.1021/ja311180x 10.1021/ja304499q 10.1038/mt.2012.180 10.1021/ja410028q 10.1021/ja511656q 10.1021/acsnano.6b05630 10.1016/j.addr.2012.08.007 10.1016/j.jconrel.2015.03.033 10.1021/acsnano.5b06939 10.1021/bc300175d 10.1038/ncb1596 10.1021/nn306015c 10.1002/adma.201602486 10.1021/nn3006619 10.1021/nn301135w 10.1002/anie.200805572 10.1021/nn800072t 10.1021/nn2026353 10.1007/s12035-013-8544-1 10.1021/nn402232g 10.1021/ja111448t 10.1002/smll.200700595 10.1016/j.jconrel.2013.03.036 10.1038/nmat1615 10.1080/14686996.2016.1240006 10.1021/nn103575a 10.1039/C5NR05067G 10.1038/nmat3776 10.1021/bm300646q 10.1002/adfm.201504899 10.1016/j.biomaterials.2016.08.015 10.7150/thno.18133 10.1039/c0nr00932f 10.1016/j.jconrel.2016.01.009 10.1016/j.biomaterials.2013.11.083 10.1021/nl5045378 10.1002/adfm.201601430 10.1002/adfm.201502469 10.1038/nri2567 10.1002/adfm.201600498 10.1021/acsnano.6b07607 10.1038/nri855 10.1038/ncb1800 10.1038/nrc2444 10.1038/nbt.1830 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201707360 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201707360 ADFM201707360 |
Genre | article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2016YFF0100801 – fundername: National Natural Science Foundation of China funderid: 21775049; 21475049; 31471257; 21275060 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3830-4acfdad5e94428a35238a46d6910148d2b95318a5fcfb7d90e345d386e218cd13 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:47:07 EDT 2025 Tue Jul 01 04:11:45 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Jan 22 16:24:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3830-4acfdad5e94428a35238a46d6910148d2b95318a5fcfb7d90e345d386e218cd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2135-0873 |
PQID | 2033708779 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2033708779 crossref_citationtrail_10_1002_adfm_201707360 crossref_primary_10_1002_adfm_201707360 wiley_primary_10_1002_adfm_201707360_ADFM201707360 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 4, 2018 |
PublicationDateYYYYMMDD | 2018-05-04 |
PublicationDate_xml | – month: 05 year: 2018 text: May 4, 2018 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013 2011 2013 2009; 8 133 7 5 2006 2016 2016 2016; 128 12 26 106 2017; 7 2013 2013; 15 65 2013; 65 2017 2017; 9 9 2009 2012 2013 2012 2011; 85 13 135 6 3 1997; 67 2016; 10 2013; 169 2008; 8 2017; 29 2016; 17 2008 2006; 4 5 2013 2014 2011; 7 35 29 2015; 7 2011; 5 2014; 136 2014; 1846 2008 2013 2016; 2 12 28 2008 2009 2007; 10 9 9 2012; 134 2015 2014; 207 49 2015 2017 2013; 207 11 7 2016 2015 2012 2016 2015 2011 2009 2016 2008 2016 2016; 26 25 23 75 15 5 48 28 130 28 28 2013 2016; 21 26 2017 2016; 11 224 2013; 135 2012; 6 2015 2007; 7 55 2013 2002; 200 2 2011; 29 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_9_3 e_1_2_7_4_10 e_1_2_7_4_11 e_1_2_7_25_5 e_1_2_7_25_4 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_4_7 e_1_2_7_4_6 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_27_4 e_1_2_7_29_2 e_1_2_7_4_9 e_1_2_7_4_8 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 |
References_xml | – volume: 10 9 9 start-page: 1470 581 654 year: 2008 2009 2007 publication-title: Nat. Cell Biol. Nat. Rev. Immunol. Nat. Cell Biol. – volume: 21 26 start-page: 185 5804 year: 2013 2016 publication-title: Mol. Ther. Adv. Funct. Mater. – volume: 6 start-page: 4169 year: 2012 publication-title: ACS Nano – volume: 7 35 29 start-page: 7698 2383 325 year: 2013 2014 2011 publication-title: ACS Nano Biomaterials Nat. Biotechnol. – volume: 9 9 start-page: 27441 15598 year: 2017 2017 publication-title: ACS Appl. Mater. Interfaces Nanoscale – volume: 2 12 28 start-page: 889 991 5542 year: 2008 2013 2016 publication-title: ACS Nano Nat. Mater. Adv. Mater. – volume: 128 12 26 106 start-page: 2115 2731 4169 13 year: 2006 2016 2016 2016 publication-title: J. Am. Chem. Soc. Small Adv. Funct. Mater. Biomaterials – volume: 10 start-page: 3323 year: 2016 publication-title: ACS Nano – volume: 8 133 7 5 start-page: 1323 10459 2610 1030 year: 2013 2011 2013 2009 publication-title: Nanomedicine J. Am. Chem. Soc. ACS Nano Small – volume: 85 13 135 6 3 start-page: 848 2219 18920 7681 1724 year: 2009 2012 2013 2012 2011 publication-title: Photochem. Photobiol. Biomacromolecules J. Am. Chem. Soc. ACS Nano Nanoscale – volume: 15 65 start-page: 310 383 year: 2013 2013 publication-title: Breast Cancer Res. Adv. Drug Delivery Rev. – volume: 1846 start-page: 75 year: 2014 publication-title: Biochim. Biophys. Acta, Rev. Cancer – volume: 29 start-page: 1605604 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 2948 year: 2011 publication-title: ACS Nano – volume: 11 224 start-page: 69 77 year: 2017 2016 publication-title: ACS Nano J. Controlled Release – volume: 65 start-page: 391 year: 2013 publication-title: Adv. Drug Delivery Rev. – volume: 7 start-page: 315ra190 year: 2015 publication-title: Sci. Transl. Med. – volume: 4 5 start-page: 26 245 year: 2008 2006 publication-title: Small Nat. Mater. – volume: 7 start-page: 789 year: 2017 publication-title: Theranostics – volume: 26 25 23 75 15 5 48 28 130 28 28 start-page: 2207 5602 1322 193 842 8710 1807 8950 8175 9341 8218 year: 2016 2015 2012 2016 2015 2011 2009 2016 2008 2016 2016 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Bioconjugate Chem. Biomaterials Nano Lett. ACS Nano Angew. Chem., Int. Ed. Adv. Mater. J. Am. Chem. Soc. Adv. Mater. Adv. Mater. – volume: 10 start-page: 3637 year: 2016 publication-title: ACS Nano – volume: 200 2 start-page: 373 569 year: 2013 2002 publication-title: J. Cell Biol. Nat. Rev. Immunol. – volume: 207 49 start-page: 18 590 year: 2015 2014 publication-title: J. Controlled Release Mol. Neurobiol. – volume: 169 start-page: 48 year: 2013 publication-title: J. Controlled Release – volume: 17 start-page: 677 year: 2016 publication-title: Sci. Technol. Adv. Mater. – volume: 8 start-page: 618 year: 2008 publication-title: Nat. Rev. Cancer – volume: 169 start-page: 112 year: 2013 publication-title: J. Controlled Release – volume: 136 start-page: 17734 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 55 start-page: 18584 1192 year: 2015 2007 publication-title: Nanoscale Chem. Pharm. Bull. – volume: 207 11 7 start-page: 18 277 7698 year: 2015 2017 2013 publication-title: J. Controlled Release ACS Nano ACS Nano – volume: 67 start-page: 1 year: 1997 publication-title: Appl. Biochem. Biotechnol. – volume: 135 start-page: 933 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 13256 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 341 year: 2011 publication-title: Nat. Biotechnol. – ident: e_1_2_7_4_4 doi: 10.1016/j.biomaterials.2015.10.027 – ident: e_1_2_7_4_8 doi: 10.1002/adma.201603114 – ident: e_1_2_7_22_2 doi: 10.1248/cpb.55.1192 – ident: e_1_2_7_5_1 doi: 10.1083/jcb.201211138 – ident: e_1_2_7_8_1 doi: 10.1038/nbt.1807 – ident: e_1_2_7_25_1 doi: 10.1111/j.1751-1097.2008.00530.x – ident: e_1_2_7_6_1 doi: 10.1002/adma.201605604 – ident: e_1_2_7_4_10 doi: 10.1002/adma.201503799 – ident: e_1_2_7_12_1 doi: 10.1126/scitranslmed.aac5608 – ident: e_1_2_7_10_1 doi: 10.1016/j.addr.2012.08.008 – ident: e_1_2_7_18_1 doi: 10.1021/acsnano.5b08145 – ident: e_1_2_7_29_1 doi: 10.1186/bcr3426 – ident: e_1_2_7_1_4 doi: 10.1002/smll.200801018 – ident: e_1_2_7_17_1 doi: 10.1007/BF02787837 – ident: e_1_2_7_27_1 doi: 10.1021/ja057254a – ident: e_1_2_7_21_1 doi: 10.1021/acsami.7b06464 – ident: e_1_2_7_27_2 doi: 10.1002/smll.201600365 – ident: e_1_2_7_13_1 doi: 10.1016/j.bbcan.2014.04.005 – ident: e_1_2_7_3_3 doi: 10.1002/adma.201504009 – ident: e_1_2_7_21_2 doi: 10.1039/C7NR04425A – ident: e_1_2_7_4_9 doi: 10.1021/ja802656d – ident: e_1_2_7_16_1 doi: 10.1016/j.jconrel.2013.03.018 – ident: e_1_2_7_1_1 doi: 10.2217/nnm.13.117 – ident: e_1_2_7_32_1 doi: 10.1021/ja311180x – ident: e_1_2_7_33_1 doi: 10.1021/ja304499q – ident: e_1_2_7_14_1 doi: 10.1038/mt.2012.180 – ident: e_1_2_7_25_3 doi: 10.1021/ja410028q – ident: e_1_2_7_28_1 doi: 10.1021/ja511656q – ident: e_1_2_7_31_2 doi: 10.1021/acsnano.6b05630 – ident: e_1_2_7_29_2 doi: 10.1016/j.addr.2012.08.007 – ident: e_1_2_7_11_1 doi: 10.1016/j.jconrel.2015.03.033 – ident: e_1_2_7_15_1 doi: 10.1021/acsnano.5b06939 – ident: e_1_2_7_4_3 doi: 10.1021/bc300175d – ident: e_1_2_7_7_3 doi: 10.1038/ncb1596 – ident: e_1_2_7_1_3 doi: 10.1021/nn306015c – ident: e_1_2_7_4_11 doi: 10.1002/adma.201602486 – ident: e_1_2_7_23_1 doi: 10.1021/nn3006619 – ident: e_1_2_7_25_4 doi: 10.1021/nn301135w – ident: e_1_2_7_4_7 doi: 10.1002/anie.200805572 – ident: e_1_2_7_3_1 doi: 10.1021/nn800072t – ident: e_1_2_7_4_6 doi: 10.1021/nn2026353 – ident: e_1_2_7_11_2 doi: 10.1007/s12035-013-8544-1 – ident: e_1_2_7_31_3 doi: 10.1021/nn402232g – ident: e_1_2_7_1_2 doi: 10.1021/ja111448t – ident: e_1_2_7_31_1 doi: 10.1016/j.jconrel.2015.03.033 – ident: e_1_2_7_2_1 doi: 10.1002/smll.200700595 – ident: e_1_2_7_26_1 doi: 10.1016/j.jconrel.2013.03.036 – ident: e_1_2_7_2_2 doi: 10.1038/nmat1615 – ident: e_1_2_7_20_1 doi: 10.1080/14686996.2016.1240006 – ident: e_1_2_7_19_1 doi: 10.1021/nn103575a – ident: e_1_2_7_22_1 doi: 10.1039/C5NR05067G – ident: e_1_2_7_3_2 doi: 10.1038/nmat3776 – ident: e_1_2_7_25_2 doi: 10.1021/bm300646q – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201504899 – ident: e_1_2_7_27_4 doi: 10.1016/j.biomaterials.2016.08.015 – ident: e_1_2_7_34_1 doi: 10.7150/thno.18133 – ident: e_1_2_7_25_5 doi: 10.1039/c0nr00932f – ident: e_1_2_7_24_2 doi: 10.1016/j.jconrel.2016.01.009 – ident: e_1_2_7_9_2 doi: 10.1016/j.biomaterials.2013.11.083 – ident: e_1_2_7_4_5 doi: 10.1021/nl5045378 – ident: e_1_2_7_14_2 doi: 10.1002/adfm.201601430 – ident: e_1_2_7_9_1 doi: 10.1021/nn402232g – ident: e_1_2_7_4_2 doi: 10.1002/adfm.201502469 – ident: e_1_2_7_7_2 doi: 10.1038/nri2567 – ident: e_1_2_7_27_3 doi: 10.1002/adfm.201600498 – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.6b07607 – ident: e_1_2_7_5_2 doi: 10.1038/nri855 – ident: e_1_2_7_7_1 doi: 10.1038/ncb1800 – ident: e_1_2_7_30_1 doi: 10.1038/nrc2444 – ident: e_1_2_7_9_3 doi: 10.1038/nbt.1830 |
SSID | ssj0017734 |
Score | 2.60047 |
Snippet | Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Blood circulation Cancer chemo‐photothermal tumor therapy Controlled release Drug delivery systems dual targeting exosomes Gold Hyperthermia Materials science Nanorods near infrared light remotely controlled release Stability Synthetic products Therapy Tumors |
Title | Designer Exosomes for Active Targeted Chemo‐Photothermal Synergistic Tumor Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201707360 https://www.proquest.com/docview/2033708779 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yX_TBuzidow-CT93WW5o8DrcxxIm4DvZWTpoUQbfKuoH65E_wN_pLTNLLNkEEfWtpTmhzzkm-k57zBaELRoWwAIPJLQqmjL-wCYxw07YJwbENNIrVhv7gFvdH7vXYG69U8Wf8EOWGm_IMPV8rBweWNpekocBjVUlu-dJIsQraVcKWQkX3JX-U5fvZb2VsqQQva1ywNrbs5rr4-qq0hJqrgFWvOL1dBMW7Zokmj43FnDWit280jv_5mD20k8NRo53Zzz7aENMDtL1CUniIgo5O8hAzo_uSpMlEpIYEukZbT5RGoDPJBTcU80Dy-f5x95DMdVXXRPY7fFWlhZoL2ggWEykWZCwGR2jU6wZXfTM_i8GMZAzbMl2IYg7cE9SVAQtI2OYQcDHHVB32S7jNqPRmAl4cxczntCUc1-MOwUJiiIhbzjGqTJOpOEGGXJWBMsxU6OT6LiU8Amh5nNgQgy9IFZmFLsIoJypX52U8hRnFsh2q0QrL0aqiy7L9c0bR8WPLWqHaMHfVVD51HF_RItIqsrWOfuklbHd6g_Lu9C9CZ2hLXhOdOOnWUGU-W4hzCW7mrI42253BzbCuDfkLbRT0Ag |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHdkShQA5InNI2m2MfK9qqQFshSKXeIm8RErRBbSoBJz6Bb-RLsJ2lLRJCgmMSj5XYM_YbZ-YNAOcUC2ERSExuYWJK_wuahCJu2jZCMLIJZpE60O_1YWfgXg-9PJpQ5cKk_BDFgZuyDL1eKwNXB9K1OWso4ZFKJbd8qaVQeu2rqqy39qruCgYpy_fTH8vQUiFe1jDnbazbtWX55X1pDjYXIavec9pbgOZvm4aaPFZnCa2yt29Ejv_6nG2wmSFSo5Gq0A5YEeNdsLHAU7gHgqaO8xATo_UST-ORmBoS6xoNvVYagQ4mF9xQ5APx5_vH7UOc6MSukez3_lVlF2o6aCOYjaRYkBIZ7INBuxVcdsysHIPJpBtbN13CIk64J7ArfRYikZuDiAs5xKreL-I2xdKgEfEiFlGf47pwXI87CAoJIxi3nANQGsdjcQgMuTETTCFV3pPruxhxRkjd48gmEfEFKgMzn4yQZVzlqmTGU5iyLNuhGq2wGK0yuCjaP6csHT-2rORzG2bWOpVPHcdXzIi4DGw9Sb_0Ejaa7V5xdfQXoTOw1gl63bB71b85BuvyPtJxlG4FlJLJTJxIrJPQU63NX_4D9ok |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZxO7YPgU7de0jR5HG5jXjaGdrC3ctqkCLp17ALqkz_B3-gvMUm3bhNE0Me2OaFNzsn5TnrOF4QuIiaEDQRMbjMwZfxFTIgoNx2HUpI4wOJEbeg3W6TRwTddr7tQxZ_xQ-Qbbsoy9HqtDHzAk_KcNBR4oirJbV8qKZFB-xomFlV6Xb3PCaRs38_-KxNbZXjZ3Rlto-WUl-WX3dIcay4iVu1y6tsIZi-bZZo8lSbjqBS_feNx_M_X7KCtKR41KpkC7aIV0d9DmwsshfsoqOosDzE0ai_pKO2JkSGRrlHRK6UR6FRywQ1FPZB-vn-0H9OxLuvqyX4fXlVtoSaDNoJJT4oFGY3BAerUa8FVw5wexmDGMoi1TAxxwoF7gmEZsYDEbS4FTDhh6rRfyp2ISXOm4CVxEvmcWcLFHncpERJExNx2D9FqP-2LI2RItwwsIpGKnbCPGeUxgOVx6kACvqAFZM7mIoynTOXqwIznMONYdkI1WmE-WgV0mbcfZBwdP7YszqY2nNrqSD51XV_xIrICcvQc_dJLWKnWm_nV8V-EztF6u1oP765btydoQ96mOokSF9HqeDgRpxLojKMzrctfOdP1QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designer+Exosomes+for+Active+Targeted+Chemo%E2%80%90Photothermal+Synergistic+Tumor+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Jie&rft.au=Dong%2C+Yue&rft.au=Li%2C+Yiwei&rft.au=Li%2C+Wei&rft.date=2018-05-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201707360&rft.externalDBID=10.1002%252Fadfm.201707360&rft.externalDocID=ADFM201707360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |