Twisted Quadrupole Topological Photonic Crystals
Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the...
Saved in:
Published in | Laser & photonics reviews Vol. 14; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons.
Twisting is a novel way for the manipulation of waves in 2D electronic and photonic systems. While Moiré patterns are formed by twisting in bilayers or trilayers, here, it is demonstrated that lateral heterostructures of twisted 2D photonic crystals lead to higher‐order topology and induce corner states. This provides a convenient approach toward higher‐order topological phenomena in dielectric photonic metamaterials. |
---|---|
AbstractList | Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons.
Twisting is a novel way for the manipulation of waves in 2D electronic and photonic systems. While Moiré patterns are formed by twisting in bilayers or trilayers, here, it is demonstrated that lateral heterostructures of twisted 2D photonic crystals lead to higher‐order topology and induce corner states. This provides a convenient approach toward higher‐order topological phenomena in dielectric photonic metamaterials. Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons. |
Author | Hou, Bo Lin, Zhi‐Kang Jiang, Jian‐Hua Lu, Weixin Lai, Yun Zhou, Xiaoxi |
Author_xml | – sequence: 1 givenname: Xiaoxi surname: Zhou fullname: Zhou, Xiaoxi organization: Soochow University – sequence: 2 givenname: Zhi‐Kang surname: Lin fullname: Lin, Zhi‐Kang organization: Soochow University – sequence: 3 givenname: Weixin surname: Lu fullname: Lu, Weixin organization: Soochow University – sequence: 4 givenname: Yun surname: Lai fullname: Lai, Yun organization: Nanjing University – sequence: 5 givenname: Bo surname: Hou fullname: Hou, Bo email: houbo@suda.edu.cn organization: Soochow University – sequence: 6 givenname: Jian‐Hua orcidid: 0000-0001-6505-0998 surname: Jiang fullname: Jiang, Jian‐Hua email: jianhuajiang@suda.edu.cn organization: Soochow University |
BookMark | eNqFkN9LwzAQx4NMcJu--lzwufOaH236KMNfMNiU-RzSNNWM2tQkZey_N2WiIIj3cN_j7j538J2hSWc7jdBlBosMAF-3vXULDBhiZHCCphnPScp5WU6-aw5naOb9DoDFyKcItnvjg66Tp0HWbuhtq5OtjWJfjZJtsnmzwXZGJUt38EG2_hydNlH0xZfO0cvd7Xb5kK7W94_Lm1WqCCeQkiavMS2YqgpZlZpVeZNDUQHBZUPHLmE4A0aJLDgrqVQ8jiWrx6RwickcXR3v9s5-DNoHsbOD6-JLgSkhOGMFpXFrcdxSznrvdCN6Z96lO4gMxOiKGF0R365EgP4ClAkyGNsFJ037N1Yesb1p9eGfJ2K1WT__sJ9k23f1 |
CitedBy_id | crossref_primary_10_7498_aps_71_20220978 crossref_primary_10_1103_PhysRevLett_126_226802 crossref_primary_10_1364_PRJ_418689 crossref_primary_10_1103_PhysRevApplied_17_054003 crossref_primary_10_3788_CJL231385 crossref_primary_10_1088_1367_2630_ac66f7 crossref_primary_10_1063_5_0039586 crossref_primary_10_1103_PhysRevApplied_19_024023 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_3390_photonics11010013 crossref_primary_10_1002_pssr_202400063 crossref_primary_10_1016_j_optlastec_2021_107616 crossref_primary_10_1016_j_optlastec_2023_109901 crossref_primary_10_1021_acs_nanolett_4c05951 crossref_primary_10_1103_PhysRevApplied_20_L051001 crossref_primary_10_1126_sciadv_adh8498 crossref_primary_10_1002_pssr_202100427 crossref_primary_10_1364_OME_415128 crossref_primary_10_1103_PhysRevB_104_L140306 crossref_primary_10_1103_PhysRevApplied_16_024032 crossref_primary_10_1038_s41377_021_00698_0 crossref_primary_10_1103_PhysRevB_109_L201122 crossref_primary_10_3390_sym15091651 crossref_primary_10_1103_PhysRevB_109_035148 crossref_primary_10_1088_2040_8986_ad584d crossref_primary_10_1364_OL_505145 crossref_primary_10_1103_PhysRevLett_132_036603 crossref_primary_10_1088_1361_6633_ad9ed8 crossref_primary_10_1103_PhysRevA_106_013510 crossref_primary_10_1103_PhysRevB_107_094107 crossref_primary_10_1364_OE_438980 crossref_primary_10_1002_pssb_202100202 crossref_primary_10_1103_PhysRevB_108_085116 crossref_primary_10_1103_PhysRevApplied_23_034034 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1002_pssr_202300320 crossref_primary_10_1002_pssr_202300002 crossref_primary_10_1103_PhysRevB_109_045402 crossref_primary_10_1515_nanoph_2022_0309 crossref_primary_10_1364_OL_418570 crossref_primary_10_3390_app12041987 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1364_OL_530188 crossref_primary_10_1088_1361_648X_ad3abd crossref_primary_10_1002_advs_202201568 crossref_primary_10_1038_s42254_021_00323_4 crossref_primary_10_1364_PRJ_506167 crossref_primary_10_1515_nanoph_2021_0762 crossref_primary_10_1364_OE_528646 crossref_primary_10_1002_pssr_202200264 crossref_primary_10_1103_PhysRevApplied_20_034028 |
Cites_doi | 10.1088/1367-2630/ab3f71 10.1038/nature12066 10.1002/advs.201902724 10.1038/s41566-018-0179-3 10.1038/nphys2063 10.1038/ncomms13756 10.1038/nature26160 10.1038/s41567-018-0246-1 10.1038/s41566-019-0519-y 10.1103/PhysRevLett.122.233903 10.1038/nature25777 10.1103/RevModPhys.91.015006 10.1038/nphoton.2013.274 10.1103/PhysRevB.98.205147 10.1038/s41563-018-0251-x 10.1103/PhysRevB.96.245115 10.1038/nature25156 10.1126/science.aaq0327 10.1103/PhysRevB.98.201114 10.1103/PhysRevB.92.125153 10.1103/PhysRevB.93.075110 10.1038/nmat4573 10.1103/PhysRevLett.120.026801 10.1038/s41467-018-04861-x 10.1126/science.aah6442 10.1126/sciadv.aat0346 10.1038/nmat3520 10.1038/s41586-018-0829-0 10.1103/PhysRevLett.119.246401 10.1038/s41567-019-0472-1 10.1126/science.aau7707 10.1038/s41467-019-13861-4 10.1038/nphoton.2014.248 10.1103/PhysRevLett.120.217401 10.1103/PhysRevB.98.241103 10.1038/nature08293 10.1103/PhysRevB.97.241405 10.1038/nphys1463 10.1103/PhysRevLett.106.093903 10.1038/s41567-018-0224-7 10.1364/OPTICA.6.000786 10.1038/nature26154 10.1103/PhysRevLett.114.037402 10.1038/s41563-018-0252-9 10.1103/PhysRevLett.119.246402 10.1103/PhysRevLett.122.233902 10.1103/PhysRevLett.109.106402 10.1038/ncomms11619 10.1038/s41566-019-0452-0 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202000010 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202000010 LPOR202000010 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11474212 – fundername: Government of Jiangsu Province funderid: Jiangsu Specially‐Appointed Professor funding |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3830-3f6d2475cb7ab9e5b6f607b0329f45cb735210543a78594ac8607a5d07a5c2923 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 12:08:02 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 04:32:34 EDT 2025 Wed Jan 22 16:32:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3830-3f6d2475cb7ab9e5b6f607b0329f45cb735210543a78594ac8607a5d07a5c2923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6505-0998 |
PQID | 2433215744 |
PQPubID | 1016358 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2433215744 crossref_primary_10_1002_lpor_202000010 crossref_citationtrail_10_1002_lpor_202000010 wiley_primary_10_1002_lpor_202000010_LPOR202000010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 119 2018; 120 2019; 91 2017; 8 2019; 6 2015; 92 2019; 13 2019; 15 2019; 18 2019; 565 2016; 93 2020; 11 2013; 7 2016; 15 2017; 357 2019; 122 2011; 7 2012; 109 2019; 363 2020; 7 2018; 9 2017; 96 2016; 7 2014; 5 2018; 4 2011; 106 2018; 359 2018; 556 2013; 12 2015; 114 2019; 21 2018; 555 2013; 496 2019 2018 2009; 461 2018; 12 2014; 8 2018; 98 2018; 97 2010; 6 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 He L. (e_1_2_7_53_1) 2019 Liu Y. H. (e_1_2_7_24_1) 2018 e_1_2_7_51_1 e_1_2_7_30_1 Wieder B. J. (e_1_2_7_52_1) 2019 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 Chen W. J. (e_1_2_7_37_1) 2014; 5 e_1_2_7_38_1 |
References_xml | – year: 2019 publication-title: arXiv:1908.00016 – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 555 start-page: 342 year: 2018 publication-title: Nature – volume: 357 start-page: 61 year: 2017 publication-title: Science – volume: 91 year: 2019 publication-title: Rev. Mod. Phys. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 14 start-page: 918 year: 2018 publication-title: Nat. Phys. – year: 2018 publication-title: arXiv:1812.11846 – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 start-page: 6782 year: 2014 publication-title: Nat. Commun. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 7 start-page: 907 year: 2011 publication-title: Nat. Phys. – volume: 8 start-page: 821 year: 2014 publication-title: Nat. Photonics – volume: 14 start-page: 925 year: 2018 publication-title: Nat. Phys. – volume: 565 start-page: 622 year: 2019 publication-title: Nature – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 556 start-page: 80 year: 2018 publication-title: Nature – volume: 496 start-page: 196 year: 2013 publication-title: Nature – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 15 start-page: 542 year: 2016 publication-title: Nat. Mater. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 461 start-page: 772 year: 2009 publication-title: Nature – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 65 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 359 start-page: 666 year: 2018 publication-title: Science – volume: 18 start-page: 113 year: 2019 publication-title: Nat. Mater. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 363 start-page: 148 year: 2019 publication-title: Science – volume: 21 year: 2019 publication-title: New J. Phys. – volume: 13 start-page: 697 year: 2019 publication-title: Nat. Photonics – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 692 year: 2019 publication-title: Nat. Photonics – volume: 12 start-page: 408 year: 2018 publication-title: Nat. Photonics – volume: 7 start-page: 1001 year: 2013 publication-title: Nat. Photonics – volume: 6 start-page: 109 year: 2010 publication-title: Nat. Phys. – volume: 18 start-page: 108 year: 2019 publication-title: Nat. Mater. – volume: 15 start-page: 582 year: 2019 publication-title: Nat. Phys. – volume: 6 start-page: 786 year: 2019 publication-title: Optica – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 555 start-page: 346 year: 2018 publication-title: Nature – volume: 9 start-page: 2462 year: 2018 publication-title: Nat. Commun. – volume: 556 start-page: 43 year: 2018 publication-title: Nature – volume: 12 start-page: 233 year: 2013 publication-title: Nat. Mater. – year: 2019 publication-title: arXiv:1911.03980 – ident: e_1_2_7_51_1 doi: 10.1088/1367-2630/ab3f71 – ident: e_1_2_7_36_1 doi: 10.1038/nature12066 – ident: e_1_2_7_25_1 doi: 10.1002/advs.201902724 – ident: e_1_2_7_13_1 doi: 10.1038/s41566-018-0179-3 – ident: e_1_2_7_31_1 doi: 10.1038/nphys2063 – ident: e_1_2_7_44_1 doi: 10.1038/ncomms13756 – ident: e_1_2_7_29_1 doi: 10.1038/nature26160 – ident: e_1_2_7_12_1 doi: 10.1038/s41567-018-0246-1 – ident: e_1_2_7_20_1 doi: 10.1038/s41566-019-0519-y – ident: e_1_2_7_22_1 doi: 10.1103/PhysRevLett.122.233903 – ident: e_1_2_7_11_1 doi: 10.1038/nature25777 – ident: e_1_2_7_50_1 doi: 10.1103/RevModPhys.91.015006 – ident: e_1_2_7_34_1 doi: 10.1038/nphoton.2013.274 – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevB.98.205147 – ident: e_1_2_7_15_1 doi: 10.1038/s41563-018-0251-x – ident: e_1_2_7_4_1 doi: 10.1103/PhysRevB.96.245115 – ident: e_1_2_7_10_1 doi: 10.1038/nature25156 – ident: e_1_2_7_45_1 doi: 10.1126/science.aaq0327 – year: 2019 ident: e_1_2_7_53_1 publication-title: arXiv:1911.03980 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevB.98.201114 – ident: e_1_2_7_40_1 doi: 10.1103/PhysRevB.92.125153 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevB.93.075110 – ident: e_1_2_7_42_1 doi: 10.1038/nmat4573 – ident: e_1_2_7_6_1 doi: 10.1103/PhysRevLett.120.026801 – ident: e_1_2_7_47_1 doi: 10.1038/s41467-018-04861-x – ident: e_1_2_7_1_1 doi: 10.1126/science.aah6442 – ident: e_1_2_7_5_1 doi: 10.1126/sciadv.aat0346 – ident: e_1_2_7_35_1 doi: 10.1038/nmat3520 – year: 2018 ident: e_1_2_7_24_1 publication-title: arXiv:1812.11846 – ident: e_1_2_7_49_1 doi: 10.1038/s41586-018-0829-0 – ident: e_1_2_7_2_1 doi: 10.1103/PhysRevLett.119.246401 – ident: e_1_2_7_17_1 doi: 10.1038/s41567-019-0472-1 – ident: e_1_2_7_48_1 doi: 10.1126/science.aau7707 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-019-13861-4 – ident: e_1_2_7_38_1 doi: 10.1038/nphoton.2014.248 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevLett.120.217401 – ident: e_1_2_7_26_1 doi: 10.1103/PhysRevB.98.241103 – ident: e_1_2_7_30_1 doi: 10.1038/nature08293 – ident: e_1_2_7_7_1 doi: 10.1103/PhysRevB.97.241405 – ident: e_1_2_7_27_1 doi: 10.1038/nphys1463 – ident: e_1_2_7_32_1 doi: 10.1103/PhysRevLett.106.093903 – ident: e_1_2_7_14_1 doi: 10.1038/s41567-018-0224-7 – ident: e_1_2_7_23_1 doi: 10.1364/OPTICA.6.000786 – ident: e_1_2_7_28_1 doi: 10.1038/nature26154 – ident: e_1_2_7_39_1 doi: 10.1103/PhysRevLett.114.037402 – ident: e_1_2_7_16_1 doi: 10.1038/s41563-018-0252-9 – ident: e_1_2_7_3_1 doi: 10.1103/PhysRevLett.119.246402 – ident: e_1_2_7_21_1 doi: 10.1103/PhysRevLett.122.233902 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevLett.109.106402 – ident: e_1_2_7_43_1 doi: 10.1038/ncomms11619 – volume: 5 start-page: 6782 year: 2014 ident: e_1_2_7_37_1 publication-title: Nat. Commun. – ident: e_1_2_7_19_1 doi: 10.1038/s41566-019-0452-0 – year: 2019 ident: e_1_2_7_52_1 publication-title: arXiv:1908.00016 |
SSID | ssj0055556 |
Score | 2.5212417 |
Snippet | Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crystal lattices Heterostructures higher‐order topology Metamaterials Photonic crystals Polaritons quadrupole topology Quadrupoles Topological insulators topological photonics Topology Twisting |
Title | Twisted Quadrupole Topological Photonic Crystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202000010 https://www.proquest.com/docview/2433215744 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD7MkX5xWnU_og-NStTZO0fZThGCI6xwZ7K7kVwbKNtUX003vS2zZBBO1D6S2lTc5Jfick_yB0I7QGCBaBLc30X8KUtIWSvq0oi8GERIDjQu3ziY1m5GFO51uz-Et9iKbDzXhGUV8bB-ci7W9EQxPgU4jvcNE_bYJ2M2DLUNGk0Y-isBXTiwLm2RDqObVqo4P7u8l3W6UNam4Da9HiDNuI199aDjR56-WZ6MnPbzKO__mZQ3RQ4ah1V9rPEdrTi2PUrtDUqhw_PUHO9N3Yg7Jecq7W-WqZaGtarq9gStkavy4zI7JrDdYfwJtJeopmw_vpYGRXiy3YEoJUqItjpjDxqRQ-F6GmgsXM8YXj4TAm5iqQGrAY8bgf0JBwGcBtTpXZSQyYeIZai-VCnyPLDX03ZiE4t45J6HkidDwJWMkdpaSmbgfZdWZHslIiNwtiJFGpoYwjkx1Rkx0ddNs8vyo1OH58sluXXVT5YhphI9HmUp-QDsJFIfzyluhx_Dxpzi7-kugS7ZvjcqRgF7Wyda6vgF4ycV1Y6Bcf6eTN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yH_TFecXp1D4IPnVr06SXRxmOqXPO0YFvobkUwbKNbUX013vS25wggvah0DQJ7bkk3wnJdxC65EoBCOa-KfTxX-JKYXIpPFNSNwYT4j6OM7bPgdsbk7tnWu4m1Gdhcn6IasFNe0Y2XmsH1wvS7RVraAIAFQI8nC1QQ9S-qdN6Z1HVqGKQonBlB4x81zEh2LNK3kYLt9fbr89LK7D5FbJmc063jnj5tflWk9dWuuQt8fGNyPFfv7OLdgpEalznJrSHNtRkH9ULdGoUvr84QFb4pk1CGk9pJOfpbJooI8xTLGhFG8OX6VLz7Bqd-TtAzmRxiMbdm7DTM4t8C6aAOBWG49iVmHhUcC_igaLcjV3L45aDg5joUgBrAMeIE3k-DUgkfHgdUalvAgNSPEK1yXSijpFhB54duwH4t4pJ4Dg8sBwByDKypBSK2g1kltJmoiAj1zkxEpbTKGOmxcEqcTTQVVV_ltNw_FizWSqPFe64YFiztNnUI6SBcKaFX3ph_eHjqHo6-UujC7TVCx_6rH87uD9F27o83zjYRLXlPFVnAGaW_Dwz10-EOujo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQXxxXnE6tQ-CT926NEnbR9kcU8ecY4O9leZSBMs2thbRX-9Jb3OCCNqHQtMktOeSfCck30HomisFIJi7ptDHfwmTwuRSOKakLAQT4i4OU7bPAetNyMOUTr-c4s_4IcoFN-0Z6XitHXwhw-aaNDQCfArxHU7XpyFo3ybMcrVdd0YlgRSFKz1f5DLbhFjPKmgbLdzcbL85La2x5lfEmk453SoKio_Ndpq8NpKYN8THNx7H__zNPtrL8ahxmxnQAdpSs0NUzbGpkXv-6ghZ4zdtENJ4TgK5TBbzSBnjLMGCVrMxfJnHmmXXaC_fAXBGq2M06d6N2z0zz7ZgCohSYTAOmcTEoYI7AfcU5SxklsMtG3sh0aUA1QCMETtwXOqRQLjwOqBS3wQGnHiCKrP5TJ0io-U5rZB54N0qJJ5tc8-yBeDKwJJSKNqqIbMQti9yKnKdESPyMxJl7Gtx-KU4auimrL_ISDh-rFkvdOfnzrjyseZoa1GHkBrCqRJ-6cXvD59G5dPZXxpdoZ1hp-v37weP52hXF2e7BuuoEi8TdQFIJuaXqbF-Aun756A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twisted+Quadrupole+Topological+Photonic+Crystals&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Zhou%2C+Xiaoxi&rft.au=Lin%2C+Zhi%E2%80%90Kang&rft.au=Lu%2C+Weixin&rft.au=Lai%2C+Yun&rft.date=2020-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=8&rft_id=info:doi/10.1002%2Flpor.202000010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202000010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |