Twisted Quadrupole Topological Photonic Crystals

Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 14; no. 8
Main Authors Zhou, Xiaoxi, Lin, Zhi‐Kang, Lu, Weixin, Lai, Yun, Hou, Bo, Jiang, Jian‐Hua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons. Twisting is a novel way for the manipulation of waves in 2D electronic and photonic systems. While Moiré patterns are formed by twisting in bilayers or trilayers, here, it is demonstrated that lateral heterostructures of twisted 2D photonic crystals lead to higher‐order topology and induce corner states. This provides a convenient approach toward higher‐order topological phenomena in dielectric photonic metamaterials.
AbstractList Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons. Twisting is a novel way for the manipulation of waves in 2D electronic and photonic systems. While Moiré patterns are formed by twisting in bilayers or trilayers, here, it is demonstrated that lateral heterostructures of twisted 2D photonic crystals lead to higher‐order topology and induce corner states. This provides a convenient approach toward higher‐order topological phenomena in dielectric photonic metamaterials.
Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D flux‐threading lattices that exhibit higher‐order topological wave trapping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, quadrupole topological PhCs triggered by a twisting degree‐of‐freedom are unveiled. Using a topologically trivial PhC as the motherboard, it is shown that twisting induces quadrupole topological PhCs without flux‐threading. The twisting‐induced crystalline symmetry enriches the Wannier polarizations and leads to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. This study paves the way toward topological twist photonics as well as the quadrupole topology in the quasi‐continuum regime for phonons and polaritons.
Author Hou, Bo
Lin, Zhi‐Kang
Jiang, Jian‐Hua
Lu, Weixin
Lai, Yun
Zhou, Xiaoxi
Author_xml – sequence: 1
  givenname: Xiaoxi
  surname: Zhou
  fullname: Zhou, Xiaoxi
  organization: Soochow University
– sequence: 2
  givenname: Zhi‐Kang
  surname: Lin
  fullname: Lin, Zhi‐Kang
  organization: Soochow University
– sequence: 3
  givenname: Weixin
  surname: Lu
  fullname: Lu, Weixin
  organization: Soochow University
– sequence: 4
  givenname: Yun
  surname: Lai
  fullname: Lai, Yun
  organization: Nanjing University
– sequence: 5
  givenname: Bo
  surname: Hou
  fullname: Hou, Bo
  email: houbo@suda.edu.cn
  organization: Soochow University
– sequence: 6
  givenname: Jian‐Hua
  orcidid: 0000-0001-6505-0998
  surname: Jiang
  fullname: Jiang, Jian‐Hua
  email: jianhuajiang@suda.edu.cn
  organization: Soochow University
BookMark eNqFkN9LwzAQx4NMcJu--lzwufOaH236KMNfMNiU-RzSNNWM2tQkZey_N2WiIIj3cN_j7j538J2hSWc7jdBlBosMAF-3vXULDBhiZHCCphnPScp5WU6-aw5naOb9DoDFyKcItnvjg66Tp0HWbuhtq5OtjWJfjZJtsnmzwXZGJUt38EG2_hydNlH0xZfO0cvd7Xb5kK7W94_Lm1WqCCeQkiavMS2YqgpZlZpVeZNDUQHBZUPHLmE4A0aJLDgrqVQ8jiWrx6RwickcXR3v9s5-DNoHsbOD6-JLgSkhOGMFpXFrcdxSznrvdCN6Z96lO4gMxOiKGF0R365EgP4ClAkyGNsFJ037N1Yesb1p9eGfJ2K1WT__sJ9k23f1
CitedBy_id crossref_primary_10_7498_aps_71_20220978
crossref_primary_10_1103_PhysRevLett_126_226802
crossref_primary_10_1364_PRJ_418689
crossref_primary_10_1103_PhysRevApplied_17_054003
crossref_primary_10_3788_CJL231385
crossref_primary_10_1088_1367_2630_ac66f7
crossref_primary_10_1063_5_0039586
crossref_primary_10_1103_PhysRevApplied_19_024023
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_3390_photonics11010013
crossref_primary_10_1002_pssr_202400063
crossref_primary_10_1016_j_optlastec_2021_107616
crossref_primary_10_1016_j_optlastec_2023_109901
crossref_primary_10_1021_acs_nanolett_4c05951
crossref_primary_10_1103_PhysRevApplied_20_L051001
crossref_primary_10_1126_sciadv_adh8498
crossref_primary_10_1002_pssr_202100427
crossref_primary_10_1364_OME_415128
crossref_primary_10_1103_PhysRevB_104_L140306
crossref_primary_10_1103_PhysRevApplied_16_024032
crossref_primary_10_1038_s41377_021_00698_0
crossref_primary_10_1103_PhysRevB_109_L201122
crossref_primary_10_3390_sym15091651
crossref_primary_10_1103_PhysRevB_109_035148
crossref_primary_10_1088_2040_8986_ad584d
crossref_primary_10_1364_OL_505145
crossref_primary_10_1103_PhysRevLett_132_036603
crossref_primary_10_1088_1361_6633_ad9ed8
crossref_primary_10_1103_PhysRevA_106_013510
crossref_primary_10_1103_PhysRevB_107_094107
crossref_primary_10_1364_OE_438980
crossref_primary_10_1002_pssb_202100202
crossref_primary_10_1103_PhysRevB_108_085116
crossref_primary_10_1103_PhysRevApplied_23_034034
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1002_pssr_202300320
crossref_primary_10_1002_pssr_202300002
crossref_primary_10_1103_PhysRevB_109_045402
crossref_primary_10_1515_nanoph_2022_0309
crossref_primary_10_1364_OL_418570
crossref_primary_10_3390_app12041987
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1364_OL_530188
crossref_primary_10_1088_1361_648X_ad3abd
crossref_primary_10_1002_advs_202201568
crossref_primary_10_1038_s42254_021_00323_4
crossref_primary_10_1364_PRJ_506167
crossref_primary_10_1515_nanoph_2021_0762
crossref_primary_10_1364_OE_528646
crossref_primary_10_1002_pssr_202200264
crossref_primary_10_1103_PhysRevApplied_20_034028
Cites_doi 10.1088/1367-2630/ab3f71
10.1038/nature12066
10.1002/advs.201902724
10.1038/s41566-018-0179-3
10.1038/nphys2063
10.1038/ncomms13756
10.1038/nature26160
10.1038/s41567-018-0246-1
10.1038/s41566-019-0519-y
10.1103/PhysRevLett.122.233903
10.1038/nature25777
10.1103/RevModPhys.91.015006
10.1038/nphoton.2013.274
10.1103/PhysRevB.98.205147
10.1038/s41563-018-0251-x
10.1103/PhysRevB.96.245115
10.1038/nature25156
10.1126/science.aaq0327
10.1103/PhysRevB.98.201114
10.1103/PhysRevB.92.125153
10.1103/PhysRevB.93.075110
10.1038/nmat4573
10.1103/PhysRevLett.120.026801
10.1038/s41467-018-04861-x
10.1126/science.aah6442
10.1126/sciadv.aat0346
10.1038/nmat3520
10.1038/s41586-018-0829-0
10.1103/PhysRevLett.119.246401
10.1038/s41567-019-0472-1
10.1126/science.aau7707
10.1038/s41467-019-13861-4
10.1038/nphoton.2014.248
10.1103/PhysRevLett.120.217401
10.1103/PhysRevB.98.241103
10.1038/nature08293
10.1103/PhysRevB.97.241405
10.1038/nphys1463
10.1103/PhysRevLett.106.093903
10.1038/s41567-018-0224-7
10.1364/OPTICA.6.000786
10.1038/nature26154
10.1103/PhysRevLett.114.037402
10.1038/s41563-018-0252-9
10.1103/PhysRevLett.119.246402
10.1103/PhysRevLett.122.233902
10.1103/PhysRevLett.109.106402
10.1038/ncomms11619
10.1038/s41566-019-0452-0
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202000010
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202000010
LPOR202000010
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11474212
– fundername: Government of Jiangsu Province
  funderid: Jiangsu Specially‐Appointed Professor funding
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3830-3f6d2475cb7ab9e5b6f607b0329f45cb735210543a78594ac8607a5d07a5c2923
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 12:08:02 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Tue Jul 01 04:32:34 EDT 2025
Wed Jan 22 16:32:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-3f6d2475cb7ab9e5b6f607b0329f45cb735210543a78594ac8607a5d07a5c2923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6505-0998
PQID 2433215744
PQPubID 1016358
PageCount 9
ParticipantIDs proquest_journals_2433215744
crossref_primary_10_1002_lpor_202000010
crossref_citationtrail_10_1002_lpor_202000010
wiley_primary_10_1002_lpor_202000010_LPOR202000010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 119
2018; 120
2019; 91
2017; 8
2019; 6
2015; 92
2019; 13
2019; 15
2019; 18
2019; 565
2016; 93
2020; 11
2013; 7
2016; 15
2017; 357
2019; 122
2011; 7
2012; 109
2019; 363
2020; 7
2018; 9
2017; 96
2016; 7
2014; 5
2018; 4
2011; 106
2018; 359
2018; 556
2013; 12
2015; 114
2019; 21
2018; 555
2013; 496
2019
2018
2009; 461
2018; 12
2014; 8
2018; 98
2018; 97
2010; 6
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
He L. (e_1_2_7_53_1) 2019
Liu Y. H. (e_1_2_7_24_1) 2018
e_1_2_7_51_1
e_1_2_7_30_1
Wieder B. J. (e_1_2_7_52_1) 2019
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Chen W. J. (e_1_2_7_37_1) 2014; 5
e_1_2_7_38_1
References_xml – year: 2019
  publication-title: arXiv:1908.00016
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 555
  start-page: 342
  year: 2018
  publication-title: Nature
– volume: 357
  start-page: 61
  year: 2017
  publication-title: Science
– volume: 91
  year: 2019
  publication-title: Rev. Mod. Phys.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 918
  year: 2018
  publication-title: Nat. Phys.
– year: 2018
  publication-title: arXiv:1812.11846
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 6782
  year: 2014
  publication-title: Nat. Commun.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 907
  year: 2011
  publication-title: Nat. Phys.
– volume: 8
  start-page: 821
  year: 2014
  publication-title: Nat. Photonics
– volume: 14
  start-page: 925
  year: 2018
  publication-title: Nat. Phys.
– volume: 565
  start-page: 622
  year: 2019
  publication-title: Nature
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 556
  start-page: 80
  year: 2018
  publication-title: Nature
– volume: 496
  start-page: 196
  year: 2013
  publication-title: Nature
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 15
  start-page: 542
  year: 2016
  publication-title: Nat. Mater.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 461
  start-page: 772
  year: 2009
  publication-title: Nature
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 65
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 359
  start-page: 666
  year: 2018
  publication-title: Science
– volume: 18
  start-page: 113
  year: 2019
  publication-title: Nat. Mater.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 363
  start-page: 148
  year: 2019
  publication-title: Science
– volume: 21
  year: 2019
  publication-title: New J. Phys.
– volume: 13
  start-page: 697
  year: 2019
  publication-title: Nat. Photonics
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 692
  year: 2019
  publication-title: Nat. Photonics
– volume: 12
  start-page: 408
  year: 2018
  publication-title: Nat. Photonics
– volume: 7
  start-page: 1001
  year: 2013
  publication-title: Nat. Photonics
– volume: 6
  start-page: 109
  year: 2010
  publication-title: Nat. Phys.
– volume: 18
  start-page: 108
  year: 2019
  publication-title: Nat. Mater.
– volume: 15
  start-page: 582
  year: 2019
  publication-title: Nat. Phys.
– volume: 6
  start-page: 786
  year: 2019
  publication-title: Optica
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 555
  start-page: 346
  year: 2018
  publication-title: Nature
– volume: 9
  start-page: 2462
  year: 2018
  publication-title: Nat. Commun.
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 233
  year: 2013
  publication-title: Nat. Mater.
– year: 2019
  publication-title: arXiv:1911.03980
– ident: e_1_2_7_51_1
  doi: 10.1088/1367-2630/ab3f71
– ident: e_1_2_7_36_1
  doi: 10.1038/nature12066
– ident: e_1_2_7_25_1
  doi: 10.1002/advs.201902724
– ident: e_1_2_7_13_1
  doi: 10.1038/s41566-018-0179-3
– ident: e_1_2_7_31_1
  doi: 10.1038/nphys2063
– ident: e_1_2_7_44_1
  doi: 10.1038/ncomms13756
– ident: e_1_2_7_29_1
  doi: 10.1038/nature26160
– ident: e_1_2_7_12_1
  doi: 10.1038/s41567-018-0246-1
– ident: e_1_2_7_20_1
  doi: 10.1038/s41566-019-0519-y
– ident: e_1_2_7_22_1
  doi: 10.1103/PhysRevLett.122.233903
– ident: e_1_2_7_11_1
  doi: 10.1038/nature25777
– ident: e_1_2_7_50_1
  doi: 10.1103/RevModPhys.91.015006
– ident: e_1_2_7_34_1
  doi: 10.1038/nphoton.2013.274
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevB.98.205147
– ident: e_1_2_7_15_1
  doi: 10.1038/s41563-018-0251-x
– ident: e_1_2_7_4_1
  doi: 10.1103/PhysRevB.96.245115
– ident: e_1_2_7_10_1
  doi: 10.1038/nature25156
– ident: e_1_2_7_45_1
  doi: 10.1126/science.aaq0327
– year: 2019
  ident: e_1_2_7_53_1
  publication-title: arXiv:1911.03980
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevB.98.201114
– ident: e_1_2_7_40_1
  doi: 10.1103/PhysRevB.92.125153
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRevB.93.075110
– ident: e_1_2_7_42_1
  doi: 10.1038/nmat4573
– ident: e_1_2_7_6_1
  doi: 10.1103/PhysRevLett.120.026801
– ident: e_1_2_7_47_1
  doi: 10.1038/s41467-018-04861-x
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aah6442
– ident: e_1_2_7_5_1
  doi: 10.1126/sciadv.aat0346
– ident: e_1_2_7_35_1
  doi: 10.1038/nmat3520
– year: 2018
  ident: e_1_2_7_24_1
  publication-title: arXiv:1812.11846
– ident: e_1_2_7_49_1
  doi: 10.1038/s41586-018-0829-0
– ident: e_1_2_7_2_1
  doi: 10.1103/PhysRevLett.119.246401
– ident: e_1_2_7_17_1
  doi: 10.1038/s41567-019-0472-1
– ident: e_1_2_7_48_1
  doi: 10.1126/science.aau7707
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-019-13861-4
– ident: e_1_2_7_38_1
  doi: 10.1038/nphoton.2014.248
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRevLett.120.217401
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRevB.98.241103
– ident: e_1_2_7_30_1
  doi: 10.1038/nature08293
– ident: e_1_2_7_7_1
  doi: 10.1103/PhysRevB.97.241405
– ident: e_1_2_7_27_1
  doi: 10.1038/nphys1463
– ident: e_1_2_7_32_1
  doi: 10.1103/PhysRevLett.106.093903
– ident: e_1_2_7_14_1
  doi: 10.1038/s41567-018-0224-7
– ident: e_1_2_7_23_1
  doi: 10.1364/OPTICA.6.000786
– ident: e_1_2_7_28_1
  doi: 10.1038/nature26154
– ident: e_1_2_7_39_1
  doi: 10.1103/PhysRevLett.114.037402
– ident: e_1_2_7_16_1
  doi: 10.1038/s41563-018-0252-9
– ident: e_1_2_7_3_1
  doi: 10.1103/PhysRevLett.119.246402
– ident: e_1_2_7_21_1
  doi: 10.1103/PhysRevLett.122.233902
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevLett.109.106402
– ident: e_1_2_7_43_1
  doi: 10.1038/ncomms11619
– volume: 5
  start-page: 6782
  year: 2014
  ident: e_1_2_7_37_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_19_1
  doi: 10.1038/s41566-019-0452-0
– year: 2019
  ident: e_1_2_7_52_1
  publication-title: arXiv:1908.00016
SSID ssj0055556
Score 2.5212417
Snippet Topological manipulation of waves is at the heart of cutting‐edge metamaterial research. Quadrupole topological insulators were recently discovered in 2D...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crystal lattices
Heterostructures
higher‐order topology
Metamaterials
Photonic crystals
Polaritons
quadrupole topology
Quadrupoles
Topological insulators
topological photonics
Topology
Twisting
Title Twisted Quadrupole Topological Photonic Crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202000010
https://www.proquest.com/docview/2433215744
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD7MkX5xWnU_og-NStTZO0fZThGCI6xwZ7K7kVwbKNtUX003vS2zZBBO1D6S2lTc5Jfick_yB0I7QGCBaBLc30X8KUtIWSvq0oi8GERIDjQu3ziY1m5GFO51uz-Et9iKbDzXhGUV8bB-ci7W9EQxPgU4jvcNE_bYJ2M2DLUNGk0Y-isBXTiwLm2RDqObVqo4P7u8l3W6UNam4Da9HiDNuI199aDjR56-WZ6MnPbzKO__mZQ3RQ4ah1V9rPEdrTi2PUrtDUqhw_PUHO9N3Yg7Jecq7W-WqZaGtarq9gStkavy4zI7JrDdYfwJtJeopmw_vpYGRXiy3YEoJUqItjpjDxqRQ-F6GmgsXM8YXj4TAm5iqQGrAY8bgf0JBwGcBtTpXZSQyYeIZai-VCnyPLDX03ZiE4t45J6HkidDwJWMkdpaSmbgfZdWZHslIiNwtiJFGpoYwjkx1Rkx0ddNs8vyo1OH58sluXXVT5YhphI9HmUp-QDsJFIfzyluhx_Dxpzi7-kugS7ZvjcqRgF7Wyda6vgF4ycV1Y6Bcf6eTN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yH_TFecXp1D4IPnVr06SXRxmOqXPO0YFvobkUwbKNbUX013vS25wggvah0DQJ7bkk3wnJdxC65EoBCOa-KfTxX-JKYXIpPFNSNwYT4j6OM7bPgdsbk7tnWu4m1Gdhcn6IasFNe0Y2XmsH1wvS7RVraAIAFQI8nC1QQ9S-qdN6Z1HVqGKQonBlB4x81zEh2LNK3kYLt9fbr89LK7D5FbJmc063jnj5tflWk9dWuuQt8fGNyPFfv7OLdgpEalznJrSHNtRkH9ULdGoUvr84QFb4pk1CGk9pJOfpbJooI8xTLGhFG8OX6VLz7Bqd-TtAzmRxiMbdm7DTM4t8C6aAOBWG49iVmHhUcC_igaLcjV3L45aDg5joUgBrAMeIE3k-DUgkfHgdUalvAgNSPEK1yXSijpFhB54duwH4t4pJ4Dg8sBwByDKypBSK2g1kltJmoiAj1zkxEpbTKGOmxcEqcTTQVVV_ltNw_FizWSqPFe64YFiztNnUI6SBcKaFX3ph_eHjqHo6-UujC7TVCx_6rH87uD9F27o83zjYRLXlPFVnAGaW_Dwz10-EOujo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQXxxXnE6tQ-CT926NEnbR9kcU8ecY4O9leZSBMs2thbRX-9Jb3OCCNqHQtMktOeSfCck30HomisFIJi7ptDHfwmTwuRSOKakLAQT4i4OU7bPAetNyMOUTr-c4s_4IcoFN-0Z6XitHXwhw-aaNDQCfArxHU7XpyFo3ybMcrVdd0YlgRSFKz1f5DLbhFjPKmgbLdzcbL85La2x5lfEmk453SoKio_Ndpq8NpKYN8THNx7H__zNPtrL8ahxmxnQAdpSs0NUzbGpkXv-6ghZ4zdtENJ4TgK5TBbzSBnjLMGCVrMxfJnHmmXXaC_fAXBGq2M06d6N2z0zz7ZgCohSYTAOmcTEoYI7AfcU5SxklsMtG3sh0aUA1QCMETtwXOqRQLjwOqBS3wQGnHiCKrP5TJ0io-U5rZB54N0qJJ5tc8-yBeDKwJJSKNqqIbMQti9yKnKdESPyMxJl7Gtx-KU4auimrL_ISDh-rFkvdOfnzrjyseZoa1GHkBrCqRJ-6cXvD59G5dPZXxpdoZ1hp-v37weP52hXF2e7BuuoEi8TdQFIJuaXqbF-Aun756A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twisted+Quadrupole+Topological+Photonic+Crystals&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Zhou%2C+Xiaoxi&rft.au=Lin%2C+Zhi%E2%80%90Kang&rft.au=Lu%2C+Weixin&rft.au=Lai%2C+Yun&rft.date=2020-08-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=14&rft.issue=8&rft_id=info:doi/10.1002%2Flpor.202000010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202000010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon