Isolation of Silk Mesostructures for Electronic and Environmental Applications

A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and function...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 51
Main Authors Zheng, Ke, Zhong, Jiajia, Qi, Zeming, Ling, Shengjie, Kaplan, David L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 19.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields. An environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is designed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. These silk mesostructures can be further assembled into polymorphic materials, showing promising applications in electronic and environmental fields.
AbstractList A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields.
A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields. An environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is designed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. These silk mesostructures can be further assembled into polymorphic materials, showing promising applications in electronic and environmental fields.
Author Ling, Shengjie
Qi, Zeming
Kaplan, David L.
Zheng, Ke
Zhong, Jiajia
Author_xml – sequence: 1
  givenname: Ke
  surname: Zheng
  fullname: Zheng, Ke
  organization: ShanghaiTech University
– sequence: 2
  givenname: Jiajia
  surname: Zhong
  fullname: Zhong, Jiajia
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Zeming
  surname: Qi
  fullname: Qi, Zeming
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
  email: lingshj@shanghaitech.edu.cn
  organization: ShanghaiTech University
– sequence: 5
  givenname: David L.
  orcidid: 0000-0002-9245-7774
  surname: Kaplan
  fullname: Kaplan, David L.
  email: david.kaplan@tufts.edu
  organization: Tufts University
BookMark eNqFkM1LAzEQxYNUsFavngOet-Zjd7N7LLXVQqsHFbyFbDaB1HSzJlml_73bVioI4mlm4P1m5r1zMGhcowC4wmiMESI3otabMUG4QDkt0AkY4hznCUWkGBx7_HoGzkNYI4QZo-kQPCyCsyIa10Cn4ZOxb3ClggvRdzJ2XgWonYczq2T0rjESiqaGs-bD9NNGNVFYOGlba-R-R7gAp1rYoC6_6wi8zGfP0_tk-Xi3mE6WiaQFRQnWWZ4JUZRaEibSoia1IKKSImd5WZWokhmrC0m0SBGjFcvSshY17a0pxTDN6QhcH_a23r13KkS-dp1v-pOc4IylvWtEe1V6UEnvQvBKc2ni_tHohbEcI75Lju-S48fkemz8C2u92Qi__RsoD8CnsWr7j5pPbuerH_YLUTyEGQ
CitedBy_id crossref_primary_10_1021_acssuschemeng_9b05261
crossref_primary_10_1002_marc_202100891
crossref_primary_10_1016_j_coco_2019_03_004
crossref_primary_10_1007_s10853_020_05086_4
crossref_primary_10_1002_adfm_202102923
crossref_primary_10_1002_smll_202102660
crossref_primary_10_1016_j_actbio_2023_06_044
crossref_primary_10_1016_j_ijbiomac_2022_10_228
crossref_primary_10_1021_acsnano_0c04686
crossref_primary_10_1021_acsestengg_4c00184
crossref_primary_10_3390_polym15071645
crossref_primary_10_1007_s10570_021_03676_2
crossref_primary_10_1021_acs_biomac_0c00223
crossref_primary_10_1002_adma_202105196
crossref_primary_10_34133_2022_9854063
crossref_primary_10_1016_j_ijbiomac_2023_125126
crossref_primary_10_1021_acsnano_1c00346
crossref_primary_10_1002_app_54981
crossref_primary_10_1021_acsbiomaterials_1c01565
crossref_primary_10_1016_j_ijbiomac_2024_130059
crossref_primary_10_1002_mabi_202000357
crossref_primary_10_1016_j_ijbiomac_2021_01_159
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1021_acsami_9b13543
crossref_primary_10_1016_j_cej_2019_05_163
crossref_primary_10_3390_polym15020375
crossref_primary_10_1002_cssc_201902979
crossref_primary_10_1007_s41365_019_0696_x
crossref_primary_10_1016_j_carbon_2024_119227
crossref_primary_10_1021_acsomega_8b03542
crossref_primary_10_1016_j_jhazmat_2019_121823
crossref_primary_10_1021_acs_biomac_0c00097
crossref_primary_10_1002_advs_201902743
crossref_primary_10_1186_s11671_019_3080_1
crossref_primary_10_1016_j_matt_2019_02_003
crossref_primary_10_1016_j_memsci_2024_122741
crossref_primary_10_3390_polym12051151
crossref_primary_10_1016_j_nanoen_2020_104610
crossref_primary_10_1039_D1SM01120K
crossref_primary_10_1002_adfm_202008552
crossref_primary_10_1021_acssuschemeng_9b07668
crossref_primary_10_1002_pc_28044
crossref_primary_10_34133_2021_1843061
crossref_primary_10_1016_j_ijbiomac_2024_137719
crossref_primary_10_3390_polym11121933
crossref_primary_10_1021_acsabm_9b00576
crossref_primary_10_2174_1389203724666230412092734
crossref_primary_10_3389_fbioe_2021_746016
crossref_primary_10_1016_j_ijbiomac_2024_138245
crossref_primary_10_1016_j_esci_2025_100395
crossref_primary_10_1016_j_nanoen_2021_106529
crossref_primary_10_1021_acsami_0c20330
crossref_primary_10_1002_marc_202000435
crossref_primary_10_1039_D1MH01433A
crossref_primary_10_1002_admt_202000928
crossref_primary_10_1021_acsbiomaterials_9b00305
crossref_primary_10_1021_acs_chemrev_9b00416
crossref_primary_10_1039_D1TA10865D
crossref_primary_10_1016_j_indcrop_2022_115861
Cites_doi 10.1016/j.progpolymsci.2007.05.013
10.1098/rspb.1996.0023
10.1073/pnas.0604035103
10.1038/nnano.2011.102
10.1103/PhysRevLett.82.944
10.1002/app.30072
10.1039/C6RA09428G
10.1039/b803869d
10.1002/adfm.201001397
10.1007/s11051-006-9162-x
10.1016/j.dci.2017.12.010
10.1016/j.addr.2010.03.009
10.1021/acsnano.6b07781
10.1016/j.carbpol.2014.04.047
10.1016/j.ijbiomac.2011.09.026
10.1515/HF.2005.016
10.1093/jee/tox140
10.1016/j.jhazmat.2009.12.031
10.1039/C0NR00583E
10.1021/bm700966g
10.1021/acs.biomac.7b01691
10.1016/j.ijpharm.2009.12.052
10.1021/bm900520n
10.1039/C3SM52845F
10.2147/IJN.S5581
10.1007/s10853-009-3874-0
10.1002/smll.201402985
10.1016/j.actbio.2016.09.042
10.1039/c0cs00108b
10.1002/adfm.201600813
10.1021/la903111j
10.1039/c3tb21582b
10.1039/C8GC01609G
10.1016/j.carbpol.2018.01.096
10.1021/nl101341w
10.1016/j.carbon.2006.02.038
10.1002/adma.200801332
10.1016/j.carbon.2014.09.095
10.1016/j.carbpol.2009.10.045
10.1021/bm049300p
10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V
10.1002/9781118609958.ch7
10.1016/j.carbpol.2016.05.042
10.1021/bm700769p
10.1021/mz400639y
10.1063/1.2450666
10.1063/1.4800865
10.1140/epje/e2005-00021-2
10.1038/nature03680
10.1126/science.1157996
10.1038/natrevmats.2018.16
10.1016/j.matdes.2014.09.066
10.1002/adma.200800757
10.1016/j.polymdegradstab.2014.06.006
10.1007/s00339-007-4175-6
10.1038/nnano.2010.59
10.1016/j.sbi.2006.03.007
10.1039/c3py00508a
10.1038/nnano.2010.2
10.1002/adma.201601783
10.1038/ncomms15902
10.1007/s10570-009-9277-1
10.1002/adhm.201300034
10.1016/j.carbpol.2008.07.021
10.1021/bm060154s
10.1021/ie9011672
10.1021/acs.biomac.6b00863
10.1063/1.3546170
10.1038/35069000
10.1039/C5CS00074B
10.4028/www.scientific.net/AMR.1101.307
10.1016/S0921-5093(01)01807-X
10.1021/acsnano.8b02430
10.1021/bm900414t
10.1021/bm049717v
10.1021/es800422x
10.1021/acs.nanolett.6b01195
10.3390/ijms14011629
10.1016/j.biortech.2007.04.029
10.1007/s10570-008-9269-6
10.1039/b600098n
10.1126/science.1188936
10.1073/pnas.1219476110
10.1088/0957-0233/22/2/024005
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201806380
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201806380
ADFM201806380
Genre article
GrantInformation_xml – fundername: ShanghaiTech University
– fundername: Shanghai Pujiang Program
  funderid: 18PJ1408600
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3830-1f565aa89fc27a48d2da2abca6769b90bc57d8c2fa4073b7549dad3180ee71363
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 03:47:01 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 04:11:53 EDT 2025
Wed Jan 22 16:22:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-1f565aa89fc27a48d2da2abca6769b90bc57d8c2fa4073b7549dad3180ee71363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9245-7774
PQID 2157430203
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2157430203
crossref_citationtrail_10_1002_adfm_201806380
crossref_primary_10_1002_adfm_201806380
wiley_primary_10_1002_adfm_201806380_ADFM201806380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 19, 2018
PublicationDateYYYYMMDD 2018-12-19
PublicationDate_xml – month: 12
  year: 2018
  text: December 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2017; 8
2013; 4
2013; 2
2017; 47
2010; 388
2008; 9
2004; 5
2009; 113
2011; 98
1996; 263
2018; 83
2017; 110
1999; 82
2007; 32
2009; 48
2010; 62
2001; 410
2018; 3
2013; 14
2010; 26
2009; 10
2014; 3
2014; 2
2015; 81
2015; 44
2015; 1101
2007; 9
2011; 22
2011; 21
2013; 113
2013; 110
2008; 20
2010; 5
2009; 16
2014; 10
2016; 151
2010; 329
2009; 21
2010; 79
1997; 64
2006; 16
2018; 189
2002; 334
2015; 11
2005; 435
2011; 40
2006; 7
2007; 90
2008; 10
2008; 99
2006; 2
2008; 321
2011; 3
2016; 17
2011; 6
2016; 16
2018; 20
2012; 50
2010; 45
2018; 19
2014; 108
2016; 6
2009; 75
2015; 116
2006; 44
2017; 11
2015; 65
2010; 177
2005; 6
2013
2009; 4
2008; 42
2005; 59
2018; 12
2016; 28
2005; 16
2016; 26
2007; 89
2006; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 16
  start-page: 199
  year: 2005
  publication-title: Eur. Phys. J. E
– volume: 10
  start-page: 2626
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 772
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 102
  year: 2005
  publication-title: Holzforschung
– volume: 113
  start-page: 154307
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 1992
  year: 2009
  publication-title: Biomacromolecules
– volume: 12
  start-page: 6968
  year: 2018
  publication-title: ACS Nano
– volume: 16
  start-page: 3795
  year: 2016
  publication-title: Nano Lett..
– volume: 4
  start-page: 5401
  year: 2013
  publication-title: Polym. Chem.
– volume: 22
  start-page: 024005
  year: 2011
  publication-title: Meas. Sci. Technol.
– volume: 42
  start-page: 5580
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 410
  start-page: 541
  year: 2001
  publication-title: Nature
– volume: 5
  start-page: 423
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 2116
  year: 2014
  publication-title: Soft Matter
– volume: 81
  start-page: 607
  year: 2015
  publication-title: Carbon
– volume: 20
  start-page: 3625
  year: 2018
  publication-title: Green Chem.
– volume: 62
  start-page: 1497
  year: 2010
  publication-title: Adv. Drug Delivery Rev.
– volume: 82
  start-page: 944
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 3557
  year: 2008
  publication-title: Adv. Mater.
– volume: 79
  start-page: 1086
  year: 2010
  publication-title: Carbohydr. Polym.
– volume: 75
  start-page: 180
  year: 2009
  publication-title: Carbohydr. Polym.
– volume: 3
  start-page: 18016
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 83
  start-page: 22
  year: 2018
  publication-title: Dev. Comp. Immunol.
– volume: 16
  start-page: 227
  year: 2009
  publication-title: Cellulose
– volume: 11
  start-page: 1039
  year: 2015
  publication-title: Small
– volume: 64
  start-page: 1185
  year: 1997
  publication-title: J. Appl. Polym. Sci.
– volume: 44
  start-page: 7881
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 885
  year: 2007
  publication-title: J. Nanopart. Res.
– volume: 19
  start-page: 1999
  year: 2018
  publication-title: Biomacromolecules
– volume: 21
  start-page: 487
  year: 2009
  publication-title: Adv. Mater.
– volume: 2
  start-page: 3879
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 334
  start-page: 173
  year: 2002
  publication-title: Mater. Sci. Eng., A
– volume: 9
  start-page: 192
  year: 2008
  publication-title: Biomacromolecules
– volume: 28
  start-page: 7783
  year: 2016
  publication-title: Adv. Mater.
– volume: 388
  start-page: 242
  year: 2010
  publication-title: Int. J. Pharm.
– volume: 90
  start-page: 073112
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 377
  year: 2006
  publication-title: Soft Matter
– volume: 4
  start-page: 115
  year: 2009
  publication-title: Int. J. Nanomed.
– volume: 3
  start-page: 146
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 45
  start-page: 1
  year: 2010
  publication-title: J. Mater. Sci.
– volume: 263
  start-page: 147
  year: 1996
  publication-title: Proc. R. Soc. London., Ser. B
– volume: 26
  start-page: 4480
  year: 2010
  publication-title: Langmuir
– volume: 5
  start-page: 91
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 108
  start-page: 133
  year: 2014
  publication-title: Polym. Degrad. Stab.
– volume: 2
  start-page: 1606
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 6
  start-page: 1048
  year: 2005
  publication-title: Biomacromolecules
– volume: 14
  start-page: 1629
  year: 2013
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: 965
  year: 2008
  publication-title: Green Chem.
– volume: 189
  start-page: 178
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 6
  start-page: 469
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 47
  start-page: 60
  year: 2017
  publication-title: Acta Biomater.
– volume: 329
  start-page: 528
  year: 2010
  publication-title: Science
– volume: 48
  start-page: 11211
  year: 2009
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 1214
  year: 2017
  publication-title: ACS Nano
– volume: 6
  start-page: 69465
  year: 2016
  publication-title: RSC Adv.
– volume: 110
  start-page: 5468
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 15806
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 99
  start-page: 1664
  year: 2008
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 2247
  year: 2004
  publication-title: Biomacromolecules
– volume: 17
  start-page: 3000
  year: 2016
  publication-title: Biomacromolecules
– volume: 65
  start-page: 766
  year: 2015
  publication-title: Mater. Des.
– volume: 89
  start-page: 461
  year: 2007
  publication-title: Appl. Phys. A
– volume: 10
  start-page: 2571
  year: 2009
  publication-title: Biomacromolecules
– volume: 44
  start-page: 1624
  year: 2006
  publication-title: Carbon
– volume: 98
  start-page: 041901
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 1687
  year: 2006
  publication-title: Biomacromolecules
– volume: 177
  start-page: 290
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 15902
  year: 2017
  publication-title: Nat. Commun.
– volume: 110
  start-page: 1404
  year: 2017
  publication-title: J. Econ. Entom.
– volume: 151
  start-page: 373
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 32
  start-page: 991
  year: 2007
  publication-title: Prog. Polym. Sci.
– volume: 113
  start-page: 1270
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– volume: 9
  start-page: 57
  year: 2008
  publication-title: Biomacromolecules
– volume: 16
  start-page: 260
  year: 2006
  publication-title: Curr. Opin. Struct. Biol.
– volume: 16
  start-page: 455
  year: 2009
  publication-title: Cellulose
– volume: 40
  start-page: 3941
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 69
  year: 2012
  publication-title: Int. J. Biol. Macromol.
– volume: 26
  start-page: 5534
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 116
  start-page: 286
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 435
  start-page: 773
  year: 2005
  publication-title: Nature
– year: 2013
– volume: 3
  start-page: 71
  year: 2011
  publication-title: Nanoscale
– volume: 1101
  start-page: 307
  year: 2015
  publication-title: Adv. Mater. Res.
– ident: e_1_2_7_12_1
  doi: 10.1016/j.progpolymsci.2007.05.013
– ident: e_1_2_7_6_1
  doi: 10.1098/rspb.1996.0023
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.0604035103
– ident: e_1_2_7_57_1
  doi: 10.1038/nnano.2011.102
– ident: e_1_2_7_72_1
  doi: 10.1103/PhysRevLett.82.944
– ident: e_1_2_7_21_1
  doi: 10.1002/app.30072
– ident: e_1_2_7_77_1
  doi: 10.1039/C6RA09428G
– ident: e_1_2_7_31_1
  doi: 10.1039/b803869d
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.201001397
– ident: e_1_2_7_50_1
  doi: 10.1007/s11051-006-9162-x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.dci.2017.12.010
– ident: e_1_2_7_51_1
  doi: 10.1016/j.addr.2010.03.009
– ident: e_1_2_7_79_1
  doi: 10.1021/acsnano.6b07781
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbpol.2014.04.047
– ident: e_1_2_7_65_1
  doi: 10.1016/j.ijbiomac.2011.09.026
– ident: e_1_2_7_19_1
  doi: 10.1515/HF.2005.016
– ident: e_1_2_7_38_1
  doi: 10.1093/jee/tox140
– ident: e_1_2_7_78_1
  doi: 10.1016/j.jhazmat.2009.12.031
– ident: e_1_2_7_26_1
  doi: 10.1039/C0NR00583E
– ident: e_1_2_7_29_1
  doi: 10.1021/bm700966g
– ident: e_1_2_7_60_1
  doi: 10.1021/acs.biomac.7b01691
– ident: e_1_2_7_49_1
  doi: 10.1016/j.ijpharm.2009.12.052
– ident: e_1_2_7_67_1
  doi: 10.1021/bm900520n
– ident: e_1_2_7_42_1
  doi: 10.1039/C3SM52845F
– ident: e_1_2_7_48_1
  doi: 10.2147/IJN.S5581
– ident: e_1_2_7_68_1
  doi: 10.1007/s10853-009-3874-0
– ident: e_1_2_7_4_1
  doi: 10.1002/smll.201402985
– ident: e_1_2_7_39_1
  doi: 10.1016/j.actbio.2016.09.042
– ident: e_1_2_7_71_1
  doi: 10.1039/c0cs00108b
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201600813
– ident: e_1_2_7_69_1
  doi: 10.1021/la903111j
– ident: e_1_2_7_33_1
  doi: 10.1039/c3tb21582b
– ident: e_1_2_7_36_1
  doi: 10.1039/C8GC01609G
– ident: e_1_2_7_41_1
  doi: 10.1016/j.carbpol.2018.01.096
– ident: e_1_2_7_8_1
  doi: 10.1021/nl101341w
– ident: e_1_2_7_73_1
  doi: 10.1016/j.carbon.2006.02.038
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.200801332
– ident: e_1_2_7_81_1
  doi: 10.1016/j.carbon.2014.09.095
– ident: e_1_2_7_15_1
  doi: 10.1016/j.carbpol.2009.10.045
– ident: e_1_2_7_24_1
  doi: 10.1021/bm049300p
– ident: e_1_2_7_16_1
  doi: 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V
– ident: e_1_2_7_25_1
  doi: 10.1002/9781118609958.ch7
– ident: e_1_2_7_64_1
  doi: 10.1016/j.carbpol.2016.05.042
– ident: e_1_2_7_22_1
  doi: 10.1021/bm700769p
– ident: e_1_2_7_59_1
  doi: 10.1021/mz400639y
– ident: e_1_2_7_32_1
  doi: 10.1063/1.2450666
– ident: e_1_2_7_66_1
  doi: 10.1063/1.4800865
– ident: e_1_2_7_47_1
  doi: 10.1140/epje/e2005-00021-2
– ident: e_1_2_7_11_1
  doi: 10.1038/nature03680
– ident: e_1_2_7_62_1
  doi: 10.1126/science.1157996
– ident: e_1_2_7_2_1
  doi: 10.1038/natrevmats.2018.16
– ident: e_1_2_7_61_1
  doi: 10.1016/j.matdes.2014.09.066
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.200800757
– ident: e_1_2_7_83_1
  doi: 10.1016/j.polymdegradstab.2014.06.006
– ident: e_1_2_7_13_1
  doi: 10.1007/s00339-007-4175-6
– ident: e_1_2_7_58_1
  doi: 10.1038/nnano.2010.59
– ident: e_1_2_7_9_1
  doi: 10.1016/j.sbi.2006.03.007
– ident: e_1_2_7_84_1
  doi: 10.1039/c3py00508a
– ident: e_1_2_7_80_1
  doi: 10.1038/nnano.2010.2
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201601783
– ident: e_1_2_7_55_1
  doi: 10.1038/ncomms15902
– ident: e_1_2_7_23_1
  doi: 10.1007/s10570-009-9277-1
– ident: e_1_2_7_53_1
  doi: 10.1002/adhm.201300034
– ident: e_1_2_7_30_1
  doi: 10.1016/j.carbpol.2008.07.021
– ident: e_1_2_7_27_1
  doi: 10.1021/bm060154s
– ident: e_1_2_7_14_1
  doi: 10.1021/ie9011672
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.biomac.6b00863
– ident: e_1_2_7_75_1
  doi: 10.1063/1.3546170
– ident: e_1_2_7_5_1
  doi: 10.1038/35069000
– ident: e_1_2_7_43_1
  doi: 10.1039/C5CS00074B
– ident: e_1_2_7_54_1
  doi: 10.4028/www.scientific.net/AMR.1101.307
– ident: e_1_2_7_74_1
  doi: 10.1016/S0921-5093(01)01807-X
– ident: e_1_2_7_37_1
  doi: 10.1021/acsnano.8b02430
– ident: e_1_2_7_28_1
  doi: 10.1021/bm900414t
– ident: e_1_2_7_3_1
  doi: 10.1021/bm049717v
– ident: e_1_2_7_82_1
  doi: 10.1021/es800422x
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.nanolett.6b01195
– ident: e_1_2_7_52_1
  doi: 10.3390/ijms14011629
– ident: e_1_2_7_18_1
  doi: 10.1016/j.biortech.2007.04.029
– ident: e_1_2_7_20_1
  doi: 10.1007/s10570-008-9269-6
– ident: e_1_2_7_45_1
  doi: 10.1039/b600098n
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1188936
– ident: e_1_2_7_10_1
  doi: 10.1073/pnas.1219476110
– ident: e_1_2_7_70_1
  doi: 10.1088/0957-0233/22/2/024005
SSID ssj0017734
Score 2.5113277
Snippet A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Fibers
Materials science
Mechanical properties
nanofertilizers
Nanoparticles
Nanorods
organic solvent recycling
Silk
silk mesostructures
silk paper
Water treatment
Title Isolation of Silk Mesostructures for Electronic and Environmental Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806380
https://www.proquest.com/docview/2157430203
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kXvTgW6zWsgfBU9pkm3azx2JbqpgerIXewr4C0pIKbS_-emfzahRE0EtIYHdJdmZ3vsnMfAtwF0i0UUy6Dm58ePGlcLjPqMNdhe4zVZ6Rtt45nPTGM_9p3p1Xqvgzfojyh5tdGel-bRe4kOv2jjRU6NhWknuBNbrWabcJWxYVvZT8UR5jWVi559kEL29esDa6tP21-1ertIOaVcCaWpzRMYjiXbNEk0Vru5Et9fGNxvE_H3MCRzkcJf1Mf05hzyRncFghKTyHySOqZyo_sorJ9G25IKFZrzLi2S166wRxLxmWx-kQkWgy3NXP2eErUfILmI2Grw9jJz-FwVHovbqOFyPmEyLgsaJM-IGmWlAhlbDJsZK7UnWZDhSNBfqGHcnQ4dRC41bhGoMecK9zCbVklZgrIJ5B9MQE9wWiCtQDrtCEctoz2o2F1KwOTiGFSOUU5fakjGWUkSvTyM5TVM5THe7L9u8ZOcePLRuFUKN8ka4jRDuIn2wotg40lc4vo0T9wSgsn67_0ukGDuy9TYjxeANqKCtzi7BmI5uw3x-Ez9NmqsKfZGTv3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPagH30YUdQ8mngrtUrrtkQgElHJQSLg1-2piIMUEuPjrnekLMDEmemnSZrdpd2Z3vtmd-YaQB1-CjeLStmDhg4srhRW4nFmBrcB9ZsoxEvOdw6HXG7vPk2YRTYi5MBk_RLnhhjMjXa9xguOGdH3NGip0jKnkjo9WF7z2PSzrjfT57deSQcrhPDtY9hwM8XImBW-jzerb_bft0hpsbkLW1OZ0j4ksvjYLNZnWVktZU5_fiBz_9Tsn5ChHpLSVqdAp2THJGTnc4Ck8J8M-aGgqQjqP6dv7bEpDs5hn3LMrcNgpQF_aKSvqUJFo2lmn0OHrNw7KL8i42xk99ay8EIOlwIG1LScG2CeEH8SKceH6mmnBhFQC42NlYEvV5NpXLBbgHjYkB59TCw2rhW0MOMFe45LsJvPEXBHqGABQXASuAGABqhAosKIB84y2YyE1rxCrEEOkcpZyLJYxizJ-ZRbhOEXlOFXIY9n-I-Pn-LFltZBqlM_TRQSAByAUnsZWCEvF88tbola7G5Z313_pdE_2e6NwEA36w5cbcoDPMT7GCapkF-RmbgHlLOVdqsdf3TjyZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQfTBb3E6NQ-CT93arGuax-E2nLoh6mBvIV8F2egG21786730a50ggr4UWpLQ5i653zV3v0PoNpRgo6h0Hdj44OJL4TCfEoe5Ctxnojwjbb7zYBg8jPzHcWtcyuJP-SGKH252ZST7tV3gcx011qShQkc2k9wLrdEFp33bD1xmizd0XgsCKY_S9Fw58GyElzfOaRtd0tjsv2mW1lizjFgTk9M7QCJ_2TTSZFJfLWVdfX7jcfzP1xyi_QyP4naqQEdoy8THaK_EUniChn3Qz0SAeBbht4_pBA_MYpYyz67AXccAfHG3qKeDRaxxd51AZ4cvHZOfolGv-37_4GRlGBwF7qvreBGAPiFCFilChR9qogURUgkbHSuZK1WL6lCRSIBz2JQUPE4tNOwVrjHgAgfNM1SJZ7E5R9gzAJ-oYL4AWAGKwBTYUEYCo91ISE2ryMmlwFXGUW5LZUx5yq5MuJ0nXsxTFd0V7ecpO8ePLWu5UHm2Shcc4A4AKHsWW0Ukkc4vo_B2pzco7i7-0ukG7bx0evy5P3y6RLv2sQ2O8VgNVUBs5gogzlJeJ1r8BQuD8RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolation+of+Silk+Mesostructures+for+Electronic+and+Environmental+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Zheng%2C+Ke&rft.au=Zhong%2C+Jiajia&rft.au=Qi%2C+Zeming&rft.au=Ling%2C+Shengjie&rft.date=2018-12-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=51&rft_id=info:doi/10.1002%2Fadfm.201806380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon