Isolation of Silk Mesostructures for Electronic and Environmental Applications
A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and function...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 51 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
19.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields.
An environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is designed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. These silk mesostructures can be further assembled into polymorphic materials, showing promising applications in electronic and environmental fields. |
---|---|
AbstractList | A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields. A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These mesoscale building blocks are typically well organized into sophisticated arrangements and contribute robust mechanical performance and functions as part of natural silk fibers. However, it remains a major challenge to directly isolate these mesostructures for engineering applications. Here, an environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is developed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. On the basis of the advantages of these mesosilks in tunable sizes, sharp size distributions, high modulus, excellent redispersibility, as well as versatile processability, the applications of these mesosilks in electronic and environmental fields are further explored, including water treatment, recycling organic solvent, paper sensors, and nanofertilizers. These explorations open a new avenue for silk fiber applications while also providing a pathway to help address critical issues in electronic and environmental fields. An environmentally friendly and scalable “partial dissolution and physical dispersion” strategy is designed to exfoliate silk fibers into different mesostructures, including microfibrils, nanofibrils, nanorods, and nanoparticles. These silk mesostructures can be further assembled into polymorphic materials, showing promising applications in electronic and environmental fields. |
Author | Ling, Shengjie Qi, Zeming Kaplan, David L. Zheng, Ke Zhong, Jiajia |
Author_xml | – sequence: 1 givenname: Ke surname: Zheng fullname: Zheng, Ke organization: ShanghaiTech University – sequence: 2 givenname: Jiajia surname: Zhong fullname: Zhong, Jiajia organization: Chinese Academy of Sciences – sequence: 3 givenname: Zeming surname: Qi fullname: Qi, Zeming organization: University of Science and Technology of China – sequence: 4 givenname: Shengjie surname: Ling fullname: Ling, Shengjie email: lingshj@shanghaitech.edu.cn organization: ShanghaiTech University – sequence: 5 givenname: David L. orcidid: 0000-0002-9245-7774 surname: Kaplan fullname: Kaplan, David L. email: david.kaplan@tufts.edu organization: Tufts University |
BookMark | eNqFkM1LAzEQxYNUsFavngOet-Zjd7N7LLXVQqsHFbyFbDaB1HSzJlml_73bVioI4mlm4P1m5r1zMGhcowC4wmiMESI3otabMUG4QDkt0AkY4hznCUWkGBx7_HoGzkNYI4QZo-kQPCyCsyIa10Cn4ZOxb3ClggvRdzJ2XgWonYczq2T0rjESiqaGs-bD9NNGNVFYOGlba-R-R7gAp1rYoC6_6wi8zGfP0_tk-Xi3mE6WiaQFRQnWWZ4JUZRaEibSoia1IKKSImd5WZWokhmrC0m0SBGjFcvSshY17a0pxTDN6QhcH_a23r13KkS-dp1v-pOc4IylvWtEe1V6UEnvQvBKc2ni_tHohbEcI75Lju-S48fkemz8C2u92Qi__RsoD8CnsWr7j5pPbuerH_YLUTyEGQ |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_9b05261 crossref_primary_10_1002_marc_202100891 crossref_primary_10_1016_j_coco_2019_03_004 crossref_primary_10_1007_s10853_020_05086_4 crossref_primary_10_1002_adfm_202102923 crossref_primary_10_1002_smll_202102660 crossref_primary_10_1016_j_actbio_2023_06_044 crossref_primary_10_1016_j_ijbiomac_2022_10_228 crossref_primary_10_1021_acsnano_0c04686 crossref_primary_10_1021_acsestengg_4c00184 crossref_primary_10_3390_polym15071645 crossref_primary_10_1007_s10570_021_03676_2 crossref_primary_10_1021_acs_biomac_0c00223 crossref_primary_10_1002_adma_202105196 crossref_primary_10_34133_2022_9854063 crossref_primary_10_1016_j_ijbiomac_2023_125126 crossref_primary_10_1021_acsnano_1c00346 crossref_primary_10_1002_app_54981 crossref_primary_10_1021_acsbiomaterials_1c01565 crossref_primary_10_1016_j_ijbiomac_2024_130059 crossref_primary_10_1002_mabi_202000357 crossref_primary_10_1016_j_ijbiomac_2021_01_159 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1021_acsami_9b13543 crossref_primary_10_1016_j_cej_2019_05_163 crossref_primary_10_3390_polym15020375 crossref_primary_10_1002_cssc_201902979 crossref_primary_10_1007_s41365_019_0696_x crossref_primary_10_1016_j_carbon_2024_119227 crossref_primary_10_1021_acsomega_8b03542 crossref_primary_10_1016_j_jhazmat_2019_121823 crossref_primary_10_1021_acs_biomac_0c00097 crossref_primary_10_1002_advs_201902743 crossref_primary_10_1186_s11671_019_3080_1 crossref_primary_10_1016_j_matt_2019_02_003 crossref_primary_10_1016_j_memsci_2024_122741 crossref_primary_10_3390_polym12051151 crossref_primary_10_1016_j_nanoen_2020_104610 crossref_primary_10_1039_D1SM01120K crossref_primary_10_1002_adfm_202008552 crossref_primary_10_1021_acssuschemeng_9b07668 crossref_primary_10_1002_pc_28044 crossref_primary_10_34133_2021_1843061 crossref_primary_10_1016_j_ijbiomac_2024_137719 crossref_primary_10_3390_polym11121933 crossref_primary_10_1021_acsabm_9b00576 crossref_primary_10_2174_1389203724666230412092734 crossref_primary_10_3389_fbioe_2021_746016 crossref_primary_10_1016_j_ijbiomac_2024_138245 crossref_primary_10_1016_j_esci_2025_100395 crossref_primary_10_1016_j_nanoen_2021_106529 crossref_primary_10_1021_acsami_0c20330 crossref_primary_10_1002_marc_202000435 crossref_primary_10_1039_D1MH01433A crossref_primary_10_1002_admt_202000928 crossref_primary_10_1021_acsbiomaterials_9b00305 crossref_primary_10_1021_acs_chemrev_9b00416 crossref_primary_10_1039_D1TA10865D crossref_primary_10_1016_j_indcrop_2022_115861 |
Cites_doi | 10.1016/j.progpolymsci.2007.05.013 10.1098/rspb.1996.0023 10.1073/pnas.0604035103 10.1038/nnano.2011.102 10.1103/PhysRevLett.82.944 10.1002/app.30072 10.1039/C6RA09428G 10.1039/b803869d 10.1002/adfm.201001397 10.1007/s11051-006-9162-x 10.1016/j.dci.2017.12.010 10.1016/j.addr.2010.03.009 10.1021/acsnano.6b07781 10.1016/j.carbpol.2014.04.047 10.1016/j.ijbiomac.2011.09.026 10.1515/HF.2005.016 10.1093/jee/tox140 10.1016/j.jhazmat.2009.12.031 10.1039/C0NR00583E 10.1021/bm700966g 10.1021/acs.biomac.7b01691 10.1016/j.ijpharm.2009.12.052 10.1021/bm900520n 10.1039/C3SM52845F 10.2147/IJN.S5581 10.1007/s10853-009-3874-0 10.1002/smll.201402985 10.1016/j.actbio.2016.09.042 10.1039/c0cs00108b 10.1002/adfm.201600813 10.1021/la903111j 10.1039/c3tb21582b 10.1039/C8GC01609G 10.1016/j.carbpol.2018.01.096 10.1021/nl101341w 10.1016/j.carbon.2006.02.038 10.1002/adma.200801332 10.1016/j.carbon.2014.09.095 10.1016/j.carbpol.2009.10.045 10.1021/bm049300p 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V 10.1002/9781118609958.ch7 10.1016/j.carbpol.2016.05.042 10.1021/bm700769p 10.1021/mz400639y 10.1063/1.2450666 10.1063/1.4800865 10.1140/epje/e2005-00021-2 10.1038/nature03680 10.1126/science.1157996 10.1038/natrevmats.2018.16 10.1016/j.matdes.2014.09.066 10.1002/adma.200800757 10.1016/j.polymdegradstab.2014.06.006 10.1007/s00339-007-4175-6 10.1038/nnano.2010.59 10.1016/j.sbi.2006.03.007 10.1039/c3py00508a 10.1038/nnano.2010.2 10.1002/adma.201601783 10.1038/ncomms15902 10.1007/s10570-009-9277-1 10.1002/adhm.201300034 10.1016/j.carbpol.2008.07.021 10.1021/bm060154s 10.1021/ie9011672 10.1021/acs.biomac.6b00863 10.1063/1.3546170 10.1038/35069000 10.1039/C5CS00074B 10.4028/www.scientific.net/AMR.1101.307 10.1016/S0921-5093(01)01807-X 10.1021/acsnano.8b02430 10.1021/bm900414t 10.1021/bm049717v 10.1021/es800422x 10.1021/acs.nanolett.6b01195 10.3390/ijms14011629 10.1016/j.biortech.2007.04.029 10.1007/s10570-008-9269-6 10.1039/b600098n 10.1126/science.1188936 10.1073/pnas.1219476110 10.1088/0957-0233/22/2/024005 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201806380 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201806380 ADFM201806380 |
Genre | article |
GrantInformation_xml | – fundername: ShanghaiTech University – fundername: Shanghai Pujiang Program funderid: 18PJ1408600 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3830-1f565aa89fc27a48d2da2abca6769b90bc57d8c2fa4073b7549dad3180ee71363 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:47:01 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 04:11:53 EDT 2025 Wed Jan 22 16:22:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3830-1f565aa89fc27a48d2da2abca6769b90bc57d8c2fa4073b7549dad3180ee71363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9245-7774 |
PQID | 2157430203 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2157430203 crossref_citationtrail_10_1002_adfm_201806380 crossref_primary_10_1002_adfm_201806380 wiley_primary_10_1002_adfm_201806380_ADFM201806380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 19, 2018 |
PublicationDateYYYYMMDD | 2018-12-19 |
PublicationDate_xml | – month: 12 year: 2018 text: December 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2017; 8 2013; 4 2013; 2 2017; 47 2010; 388 2008; 9 2004; 5 2009; 113 2011; 98 1996; 263 2018; 83 2017; 110 1999; 82 2007; 32 2009; 48 2010; 62 2001; 410 2018; 3 2013; 14 2010; 26 2009; 10 2014; 3 2014; 2 2015; 81 2015; 44 2015; 1101 2007; 9 2011; 22 2011; 21 2013; 113 2013; 110 2008; 20 2010; 5 2009; 16 2014; 10 2016; 151 2010; 329 2009; 21 2010; 79 1997; 64 2006; 16 2018; 189 2002; 334 2015; 11 2005; 435 2011; 40 2006; 7 2007; 90 2008; 10 2008; 99 2006; 2 2008; 321 2011; 3 2016; 17 2011; 6 2016; 16 2018; 20 2012; 50 2010; 45 2018; 19 2014; 108 2016; 6 2009; 75 2015; 116 2006; 44 2017; 11 2015; 65 2010; 177 2005; 6 2013 2009; 4 2008; 42 2005; 59 2018; 12 2016; 28 2005; 16 2016; 26 2007; 89 2006; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 16 start-page: 199 year: 2005 publication-title: Eur. Phys. J. E – volume: 10 start-page: 2626 year: 2010 publication-title: Nano Lett. – volume: 21 start-page: 772 year: 2011 publication-title: Adv. Funct. Mater. – volume: 59 start-page: 102 year: 2005 publication-title: Holzforschung – volume: 113 start-page: 154307 year: 2013 publication-title: J. Appl. Phys. – volume: 10 start-page: 1992 year: 2009 publication-title: Biomacromolecules – volume: 12 start-page: 6968 year: 2018 publication-title: ACS Nano – volume: 16 start-page: 3795 year: 2016 publication-title: Nano Lett.. – volume: 4 start-page: 5401 year: 2013 publication-title: Polym. Chem. – volume: 22 start-page: 024005 year: 2011 publication-title: Meas. Sci. Technol. – volume: 42 start-page: 5580 year: 2008 publication-title: Environ. Sci. Technol. – volume: 410 start-page: 541 year: 2001 publication-title: Nature – volume: 5 start-page: 423 year: 2010 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 2116 year: 2014 publication-title: Soft Matter – volume: 81 start-page: 607 year: 2015 publication-title: Carbon – volume: 20 start-page: 3625 year: 2018 publication-title: Green Chem. – volume: 62 start-page: 1497 year: 2010 publication-title: Adv. Drug Delivery Rev. – volume: 82 start-page: 944 year: 1999 publication-title: Phys. Rev. Lett. – volume: 20 start-page: 3557 year: 2008 publication-title: Adv. Mater. – volume: 79 start-page: 1086 year: 2010 publication-title: Carbohydr. Polym. – volume: 75 start-page: 180 year: 2009 publication-title: Carbohydr. Polym. – volume: 3 start-page: 18016 year: 2018 publication-title: Nat. Rev. Mater. – volume: 83 start-page: 22 year: 2018 publication-title: Dev. Comp. Immunol. – volume: 16 start-page: 227 year: 2009 publication-title: Cellulose – volume: 11 start-page: 1039 year: 2015 publication-title: Small – volume: 64 start-page: 1185 year: 1997 publication-title: J. Appl. Polym. Sci. – volume: 44 start-page: 7881 year: 2015 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 885 year: 2007 publication-title: J. Nanopart. Res. – volume: 19 start-page: 1999 year: 2018 publication-title: Biomacromolecules – volume: 21 start-page: 487 year: 2009 publication-title: Adv. Mater. – volume: 2 start-page: 3879 year: 2014 publication-title: J. Mater. Chem. B – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 334 start-page: 173 year: 2002 publication-title: Mater. Sci. Eng., A – volume: 9 start-page: 192 year: 2008 publication-title: Biomacromolecules – volume: 28 start-page: 7783 year: 2016 publication-title: Adv. Mater. – volume: 388 start-page: 242 year: 2010 publication-title: Int. J. Pharm. – volume: 90 start-page: 073112 year: 2007 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 377 year: 2006 publication-title: Soft Matter – volume: 4 start-page: 115 year: 2009 publication-title: Int. J. Nanomed. – volume: 3 start-page: 146 year: 2014 publication-title: ACS Macro Lett. – volume: 45 start-page: 1 year: 2010 publication-title: J. Mater. Sci. – volume: 263 start-page: 147 year: 1996 publication-title: Proc. R. Soc. London., Ser. B – volume: 26 start-page: 4480 year: 2010 publication-title: Langmuir – volume: 5 start-page: 91 year: 2010 publication-title: Nat. Nanotechnol. – volume: 108 start-page: 133 year: 2014 publication-title: Polym. Degrad. Stab. – volume: 2 start-page: 1606 year: 2013 publication-title: Adv. Healthcare Mater. – volume: 6 start-page: 1048 year: 2005 publication-title: Biomacromolecules – volume: 14 start-page: 1629 year: 2013 publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 965 year: 2008 publication-title: Green Chem. – volume: 189 start-page: 178 year: 2018 publication-title: Carbohydr. Polym. – volume: 6 start-page: 469 year: 2011 publication-title: Nat. Nanotechnol. – volume: 47 start-page: 60 year: 2017 publication-title: Acta Biomater. – volume: 329 start-page: 528 year: 2010 publication-title: Science – volume: 48 start-page: 11211 year: 2009 publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 1214 year: 2017 publication-title: ACS Nano – volume: 6 start-page: 69465 year: 2016 publication-title: RSC Adv. – volume: 110 start-page: 5468 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 103 start-page: 15806 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 1664 year: 2008 publication-title: Bioresour. Technol. – volume: 5 start-page: 2247 year: 2004 publication-title: Biomacromolecules – volume: 17 start-page: 3000 year: 2016 publication-title: Biomacromolecules – volume: 65 start-page: 766 year: 2015 publication-title: Mater. Des. – volume: 89 start-page: 461 year: 2007 publication-title: Appl. Phys. A – volume: 10 start-page: 2571 year: 2009 publication-title: Biomacromolecules – volume: 44 start-page: 1624 year: 2006 publication-title: Carbon – volume: 98 start-page: 041901 year: 2011 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 1687 year: 2006 publication-title: Biomacromolecules – volume: 177 start-page: 290 year: 2010 publication-title: J. Hazard. Mater. – volume: 8 start-page: 15902 year: 2017 publication-title: Nat. Commun. – volume: 110 start-page: 1404 year: 2017 publication-title: J. Econ. Entom. – volume: 151 start-page: 373 year: 2016 publication-title: Carbohydr. Polym. – volume: 32 start-page: 991 year: 2007 publication-title: Prog. Polym. Sci. – volume: 113 start-page: 1270 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 57 year: 2008 publication-title: Biomacromolecules – volume: 16 start-page: 260 year: 2006 publication-title: Curr. Opin. Struct. Biol. – volume: 16 start-page: 455 year: 2009 publication-title: Cellulose – volume: 40 start-page: 3941 year: 2011 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 69 year: 2012 publication-title: Int. J. Biol. Macromol. – volume: 26 start-page: 5534 year: 2016 publication-title: Adv. Funct. Mater. – volume: 116 start-page: 286 year: 2015 publication-title: Carbohydr. Polym. – volume: 435 start-page: 773 year: 2005 publication-title: Nature – year: 2013 – volume: 3 start-page: 71 year: 2011 publication-title: Nanoscale – volume: 1101 start-page: 307 year: 2015 publication-title: Adv. Mater. Res. – ident: e_1_2_7_12_1 doi: 10.1016/j.progpolymsci.2007.05.013 – ident: e_1_2_7_6_1 doi: 10.1098/rspb.1996.0023 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.0604035103 – ident: e_1_2_7_57_1 doi: 10.1038/nnano.2011.102 – ident: e_1_2_7_72_1 doi: 10.1103/PhysRevLett.82.944 – ident: e_1_2_7_21_1 doi: 10.1002/app.30072 – ident: e_1_2_7_77_1 doi: 10.1039/C6RA09428G – ident: e_1_2_7_31_1 doi: 10.1039/b803869d – ident: e_1_2_7_44_1 doi: 10.1002/adfm.201001397 – ident: e_1_2_7_50_1 doi: 10.1007/s11051-006-9162-x – ident: e_1_2_7_40_1 doi: 10.1016/j.dci.2017.12.010 – ident: e_1_2_7_51_1 doi: 10.1016/j.addr.2010.03.009 – ident: e_1_2_7_79_1 doi: 10.1021/acsnano.6b07781 – ident: e_1_2_7_17_1 doi: 10.1016/j.carbpol.2014.04.047 – ident: e_1_2_7_65_1 doi: 10.1016/j.ijbiomac.2011.09.026 – ident: e_1_2_7_19_1 doi: 10.1515/HF.2005.016 – ident: e_1_2_7_38_1 doi: 10.1093/jee/tox140 – ident: e_1_2_7_78_1 doi: 10.1016/j.jhazmat.2009.12.031 – ident: e_1_2_7_26_1 doi: 10.1039/C0NR00583E – ident: e_1_2_7_29_1 doi: 10.1021/bm700966g – ident: e_1_2_7_60_1 doi: 10.1021/acs.biomac.7b01691 – ident: e_1_2_7_49_1 doi: 10.1016/j.ijpharm.2009.12.052 – ident: e_1_2_7_67_1 doi: 10.1021/bm900520n – ident: e_1_2_7_42_1 doi: 10.1039/C3SM52845F – ident: e_1_2_7_48_1 doi: 10.2147/IJN.S5581 – ident: e_1_2_7_68_1 doi: 10.1007/s10853-009-3874-0 – ident: e_1_2_7_4_1 doi: 10.1002/smll.201402985 – ident: e_1_2_7_39_1 doi: 10.1016/j.actbio.2016.09.042 – ident: e_1_2_7_71_1 doi: 10.1039/c0cs00108b – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201600813 – ident: e_1_2_7_69_1 doi: 10.1021/la903111j – ident: e_1_2_7_33_1 doi: 10.1039/c3tb21582b – ident: e_1_2_7_36_1 doi: 10.1039/C8GC01609G – ident: e_1_2_7_41_1 doi: 10.1016/j.carbpol.2018.01.096 – ident: e_1_2_7_8_1 doi: 10.1021/nl101341w – ident: e_1_2_7_73_1 doi: 10.1016/j.carbon.2006.02.038 – ident: e_1_2_7_46_1 doi: 10.1002/adma.200801332 – ident: e_1_2_7_81_1 doi: 10.1016/j.carbon.2014.09.095 – ident: e_1_2_7_15_1 doi: 10.1016/j.carbpol.2009.10.045 – ident: e_1_2_7_24_1 doi: 10.1021/bm049300p – ident: e_1_2_7_16_1 doi: 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V – ident: e_1_2_7_25_1 doi: 10.1002/9781118609958.ch7 – ident: e_1_2_7_64_1 doi: 10.1016/j.carbpol.2016.05.042 – ident: e_1_2_7_22_1 doi: 10.1021/bm700769p – ident: e_1_2_7_59_1 doi: 10.1021/mz400639y – ident: e_1_2_7_32_1 doi: 10.1063/1.2450666 – ident: e_1_2_7_66_1 doi: 10.1063/1.4800865 – ident: e_1_2_7_47_1 doi: 10.1140/epje/e2005-00021-2 – ident: e_1_2_7_11_1 doi: 10.1038/nature03680 – ident: e_1_2_7_62_1 doi: 10.1126/science.1157996 – ident: e_1_2_7_2_1 doi: 10.1038/natrevmats.2018.16 – ident: e_1_2_7_61_1 doi: 10.1016/j.matdes.2014.09.066 – ident: e_1_2_7_63_1 doi: 10.1002/adma.200800757 – ident: e_1_2_7_83_1 doi: 10.1016/j.polymdegradstab.2014.06.006 – ident: e_1_2_7_13_1 doi: 10.1007/s00339-007-4175-6 – ident: e_1_2_7_58_1 doi: 10.1038/nnano.2010.59 – ident: e_1_2_7_9_1 doi: 10.1016/j.sbi.2006.03.007 – ident: e_1_2_7_84_1 doi: 10.1039/c3py00508a – ident: e_1_2_7_80_1 doi: 10.1038/nnano.2010.2 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201601783 – ident: e_1_2_7_55_1 doi: 10.1038/ncomms15902 – ident: e_1_2_7_23_1 doi: 10.1007/s10570-009-9277-1 – ident: e_1_2_7_53_1 doi: 10.1002/adhm.201300034 – ident: e_1_2_7_30_1 doi: 10.1016/j.carbpol.2008.07.021 – ident: e_1_2_7_27_1 doi: 10.1021/bm060154s – ident: e_1_2_7_14_1 doi: 10.1021/ie9011672 – ident: e_1_2_7_34_1 doi: 10.1021/acs.biomac.6b00863 – ident: e_1_2_7_75_1 doi: 10.1063/1.3546170 – ident: e_1_2_7_5_1 doi: 10.1038/35069000 – ident: e_1_2_7_43_1 doi: 10.1039/C5CS00074B – ident: e_1_2_7_54_1 doi: 10.4028/www.scientific.net/AMR.1101.307 – ident: e_1_2_7_74_1 doi: 10.1016/S0921-5093(01)01807-X – ident: e_1_2_7_37_1 doi: 10.1021/acsnano.8b02430 – ident: e_1_2_7_28_1 doi: 10.1021/bm900414t – ident: e_1_2_7_3_1 doi: 10.1021/bm049717v – ident: e_1_2_7_82_1 doi: 10.1021/es800422x – ident: e_1_2_7_76_1 doi: 10.1021/acs.nanolett.6b01195 – ident: e_1_2_7_52_1 doi: 10.3390/ijms14011629 – ident: e_1_2_7_18_1 doi: 10.1016/j.biortech.2007.04.029 – ident: e_1_2_7_20_1 doi: 10.1007/s10570-008-9269-6 – ident: e_1_2_7_45_1 doi: 10.1039/b600098n – ident: e_1_2_7_1_1 doi: 10.1126/science.1188936 – ident: e_1_2_7_10_1 doi: 10.1073/pnas.1219476110 – ident: e_1_2_7_70_1 doi: 10.1088/0957-0233/22/2/024005 |
SSID | ssj0017734 |
Score | 2.5113277 |
Snippet | A ubiquitous feature of natural silk fibers is the presence of well‐organized mesostructures, including microfibrils, nanofibrils, and nanoparticles. These... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Fibers Materials science Mechanical properties nanofertilizers Nanoparticles Nanorods organic solvent recycling Silk silk mesostructures silk paper Water treatment |
Title | Isolation of Silk Mesostructures for Electronic and Environmental Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806380 https://www.proquest.com/docview/2157430203 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kXvTgW6zWsgfBU9pkm3azx2JbqpgerIXewr4C0pIKbS_-emfzahRE0EtIYHdJdmZ3vsnMfAtwF0i0UUy6Dm58ePGlcLjPqMNdhe4zVZ6Rtt45nPTGM_9p3p1Xqvgzfojyh5tdGel-bRe4kOv2jjRU6NhWknuBNbrWabcJWxYVvZT8UR5jWVi559kEL29esDa6tP21-1ertIOaVcCaWpzRMYjiXbNEk0Vru5Et9fGNxvE_H3MCRzkcJf1Mf05hzyRncFghKTyHySOqZyo_sorJ9G25IKFZrzLi2S166wRxLxmWx-kQkWgy3NXP2eErUfILmI2Grw9jJz-FwVHovbqOFyPmEyLgsaJM-IGmWlAhlbDJsZK7UnWZDhSNBfqGHcnQ4dRC41bhGoMecK9zCbVklZgrIJ5B9MQE9wWiCtQDrtCEctoz2o2F1KwOTiGFSOUU5fakjGWUkSvTyM5TVM5THe7L9u8ZOcePLRuFUKN8ka4jRDuIn2wotg40lc4vo0T9wSgsn67_0ukGDuy9TYjxeANqKCtzi7BmI5uw3x-Ez9NmqsKfZGTv3Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPagH30YUdQ8mngrtUrrtkQgElHJQSLg1-2piIMUEuPjrnekLMDEmemnSZrdpd2Z3vtmd-YaQB1-CjeLStmDhg4srhRW4nFmBrcB9ZsoxEvOdw6HXG7vPk2YRTYi5MBk_RLnhhjMjXa9xguOGdH3NGip0jKnkjo9WF7z2PSzrjfT57deSQcrhPDtY9hwM8XImBW-jzerb_bft0hpsbkLW1OZ0j4ksvjYLNZnWVktZU5_fiBz_9Tsn5ChHpLSVqdAp2THJGTnc4Ck8J8M-aGgqQjqP6dv7bEpDs5hn3LMrcNgpQF_aKSvqUJFo2lmn0OHrNw7KL8i42xk99ay8EIOlwIG1LScG2CeEH8SKceH6mmnBhFQC42NlYEvV5NpXLBbgHjYkB59TCw2rhW0MOMFe45LsJvPEXBHqGABQXASuAGABqhAosKIB84y2YyE1rxCrEEOkcpZyLJYxizJ-ZRbhOEXlOFXIY9n-I-Pn-LFltZBqlM_TRQSAByAUnsZWCEvF88tbola7G5Z313_pdE_2e6NwEA36w5cbcoDPMT7GCapkF-RmbgHlLOVdqsdf3TjyZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQfTBb3E6NQ-CT93arGuax-E2nLoh6mBvIV8F2egG21786730a50ggr4UWpLQ5i653zV3v0PoNpRgo6h0Hdj44OJL4TCfEoe5Ctxnojwjbb7zYBg8jPzHcWtcyuJP-SGKH252ZST7tV3gcx011qShQkc2k9wLrdEFp33bD1xmizd0XgsCKY_S9Fw58GyElzfOaRtd0tjsv2mW1lizjFgTk9M7QCJ_2TTSZFJfLWVdfX7jcfzP1xyi_QyP4naqQEdoy8THaK_EUniChn3Qz0SAeBbht4_pBA_MYpYyz67AXccAfHG3qKeDRaxxd51AZ4cvHZOfolGv-37_4GRlGBwF7qvreBGAPiFCFilChR9qogURUgkbHSuZK1WL6lCRSIBz2JQUPE4tNOwVrjHgAgfNM1SJZ7E5R9gzAJ-oYL4AWAGKwBTYUEYCo91ISE2ryMmlwFXGUW5LZUx5yq5MuJ0nXsxTFd0V7ecpO8ePLWu5UHm2Shcc4A4AKHsWW0Ukkc4vo_B2pzco7i7-0ukG7bx0evy5P3y6RLv2sQ2O8VgNVUBs5gogzlJeJ1r8BQuD8RQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolation+of+Silk+Mesostructures+for+Electronic+and+Environmental+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Zheng%2C+Ke&rft.au=Zhong%2C+Jiajia&rft.au=Qi%2C+Zeming&rft.au=Ling%2C+Shengjie&rft.date=2018-12-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=51&rft_id=info:doi/10.1002%2Fadfm.201806380&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |