Comparative genomic insights into ecological adaptations and evolutionary dynamics of Trebouxiophyceae algae

The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic hete...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 26; no. 1; pp. 1 - 15
Main Authors Xiong, Qian, Zheng, Luqin, Zhang, Qi, Li, Tianli, Zheng, Lingling, Song, Lirong
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 20.08.2025
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions.
AbstractList Abstract Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Results Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Conclusions Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions.
The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions.
Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Results Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Conclusions Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions. Keywords: Trebouxiophyceae, Comprehensive genomic analysis, Phylogeney, Gene family expansion and contraction, Evolutionary analyses, Biosynthetic gene clusters (BGCs), Nitrogen transport and assimilation proteins, Hexose-proton symporter-like genes
ArticleNumber 764
Audience Academic
Author Zhang, Qi
Xiong, Qian
Zheng, Luqin
Song, Lirong
Li, Tianli
Zheng, Lingling
Author_xml – sequence: 1
  givenname: Qian
  surname: Xiong
  fullname: Xiong, Qian
– sequence: 2
  givenname: Luqin
  surname: Zheng
  fullname: Zheng, Luqin
– sequence: 3
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 4
  givenname: Tianli
  surname: Li
  fullname: Li, Tianli
– sequence: 5
  givenname: Lingling
  surname: Zheng
  fullname: Zheng, Lingling
– sequence: 6
  givenname: Lirong
  surname: Song
  fullname: Song, Lirong
BookMark eNptUk1r3DAQNSWFJmn_QE-CnnpwIlmyLJ9KWPqxECi06VmMpbFXwZaM5V3ifx9tXEINZQQajd57GjTvKrvwwWOWfWT0hjElbyMrlBQ5LcqcsZrzfHmTXTJRsbxgUlz8k7_LrmJ8pJRVqigvs34XhhEmmN0JSYc-DM4Q56PrDnNMyRwImtCHzhnoCVgY54QNPhLwluAp9MfzEaaF2MVDYkcSWvIwYROOTy6Mh8UgIIG-A3yfvW2hj_jh736d_fn29WH3I7__-X2_u7vPDVfFkkPDUUhGW46spZWxFdSlZUpQCWgkKCXQclOKtFiFKQqFsgUshLIGkF9n-1XXBnjU4-SG1J8O4PRLIUydhml2pkdd85aVjanqylBRt1xhncSbEkspsK5N0vqyao3HZkBr0M8T9BvR7Y13B92Fk2YFl5KWdVL4tCp0kB50vg0JZwYXjb5TZSH5eXYJdfMfVAqL6VPTtFuX6hvC5w0hYWZ8mjs4xqj3v39tscWKNVOIccL2tX9G9dlAejWQTgbSLwbSC38GGn-9rQ
Cites_doi 10.1007/s00300-007-0299-6
10.1186/s12864-021-08006-1
10.1371/journal.pgen.1004355
10.4319/lo.1999.44.3.0721
10.1007/978-3-642-22746-2_10
10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2
10.1146/annurev.nutr.22.110801.140547
10.1007/s00248-008-9449-9
10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K
10.1111/pre.12062
10.1016/S0378-1097(03)00394-X
10.1016/j.tplants.2010.07.003
10.1111/j.1529-8817.1995.tb02559.x
10.2216/10-79.1
10.1042/EBC20230089
10.1007/s10811-014-0431-2
10.1093/bioinformatics/btp348
10.1093/gbe/evy167
10.2216/i0031-8884-14-3-125.1
10.1111/j.2517-6161.1995.tb02031.x
10.1093/molbev/mst010
10.1093/femsec/fiw122
10.1002/bies.201300037
10.1186/s12864-020-06792-8
10.1016/j.hal.2004.08.012
10.1039/np9931000593
10.1093/botlinnean/boaa050
10.3390/md16010026
10.1093/bioinformatics/btv351
10.1017/CBO9780511790478.003
10.1007/BF00940435
10.1093/bioinformatics/btv033
10.1038/nmeth.1923
10.1007/s00253-012-4534-x
10.1371/journal.pone.0110154
10.1111/1755-0998.13096
10.1093/molbev/msw054
10.1111/jpy.12437
10.1104/pp.107.1.33
10.1017/S0024282921000335
10.1016/j.tips.2006.09.001
10.1007/s13127-014-0199-x
10.1111/jpy.12279
10.1016/j.biortech.2005.04.008
10.1093/bioinformatics/btu033
10.2216/i0031-8884-43-6-641.1
10.3732/ajb.0900323
10.1105/tpc.109.072363
10.1016/j.protis.2017.06.002
10.1111/tpj.13948
10.1371/journal.pone.0034791
10.1093/molbev/msm088
10.1016/j.nutres.2006.12.003
10.1186/s12862-014-0211-2
10.1111/j.1462-2920.2010.02386.x
10.1016/j.rser.2015.12.162
10.1093/bioinformatics/btt403
10.1111/j.1462-2920.2010.02333.x
10.1080/07352689.2011.615705
10.1186/1741-7007-4-12
10.1111/cbdd.12103
10.3389/fbioe.2020.00914
10.4161/psb.4.7.8540
10.1093/nar/gkl200
10.7717/peerj.1319
10.1371/journal.pone.0006978
10.1038/nature10074
10.1093/bioinformatics/btu031
10.1186/s12859-018-2203-5
10.1186/s13059-015-0721-2
10.7717/peerj.3982
10.1038/nmeth.2109
10.1128/AAC.48.11.4171-4176.2004
10.1016/j.mib.2006.01.001
10.1186/s12859-018-2129-y
10.2307/2656659
10.1089/omi.2011.0118
10.1111/jpy.13165
10.1104/pp.100.2.557
10.1093/aob/mcq206
10.1093/gigascience/gix120
10.1186/1471-2164-15-582
10.3732/ajb.91.10.1535
10.1186/gb-2012-13-5-r39
10.3390/jof9050546
10.1111/jpy.13431
10.1111/jpy.12446
10.1002/elsc.201400191
10.1105/tpc.13.7.1477
10.1016/S0021-9258(18)34831-2
ContentType Journal Article
Copyright COPYRIGHT 2025 BioMed Central Ltd.
The Author(s) 2025 2025
Copyright_xml – notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
ISR
5PM
DOA
DOI 10.1186/s12864-025-11933-y
DatabaseName CrossRef
Gale In Context: Science
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 15
ExternalDocumentID oai_doaj_org_article_93f15bc797c049f38e94edb5e564e99c
PMC12366059
A852631286
10_1186_s12864_025_11933_y
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
5PM
ID FETCH-LOGICAL-c382y-ab3e4610f3e1f07cd7a95d18406aec6a884ed3c54c5417e7e728e6fae248dcae3
IEDL.DBID DOA
ISSN 1471-2164
IngestDate Wed Aug 27 01:22:32 EDT 2025
Sat Aug 23 05:22:11 EDT 2025
Wed Aug 27 16:51:10 EDT 2025
Tue Sep 02 03:58:03 EDT 2025
Fri Aug 29 03:31:26 EDT 2025
Wed Aug 27 16:40:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382y-ab3e4610f3e1f07cd7a95d18406aec6a884ed3c54c5417e7e728e6fae248dcae3
OpenAccessLink https://doaj.org/article/93f15bc797c049f38e94edb5e564e99c
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_93f15bc797c049f38e94edb5e564e99c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12366059
gale_infotracmisc_A852631286
gale_infotracacademiconefile_A852631286
gale_incontextgauss_ISR_A852631286
crossref_primary_10_1186_s12864_025_11933_y
PublicationCentury 2000
PublicationDate 20250820
PublicationDateYYYYMMDD 2025-08-20
PublicationDate_xml – month: 8
  year: 2025
  text: 20250820
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC genomics
PublicationYear 2025
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References T Darienko (11933_CR52) 2015; 51
A Beatriz Juarez (11933_CR14) 2011; 50
N Heimerl (11933_CR67) 2018; 95
D Yan (11933_CR69) 2013; 97
NA Eckardt (11933_CR64) 2001; 13
CL Fan (11933_CR40) 2005; 4
R Ueno (11933_CR24) 2003; 223
11933_CR58
11933_CR59
V Ahmadjian (11933_CR74) 1988; 158
M Amparo Asensi-Fabado (11933_CR44) 2010; 15
11933_CR57
FA Simao (11933_CR88) 2015; 31
11933_CR102
K Katoh (11933_CR90) 2013; 30
E Liebminger (11933_CR49) 2009; 21
I Michalak (11933_CR56) 2015; 15
LA Lewis (11933_CR5) 2004; 91
FK Mendes (11933_CR99) 2020; 36
D Ohagan (11933_CR66) 1993; 10
11933_CR65
B Langmead (11933_CR84) 2012; 9
S Suzuki (11933_CR23) 2018; 8
R Stepanauskas (11933_CR43) 2002; 72
T Proeschold (11933_CR19) 2011; 13
SM Morris (11933_CR70) 2002; 22
V Ahmadjian (11933_CR76) 2022; 2
MG Ferruzzi (11933_CR46) 2007; 27
V Ahmadjian (11933_CR75) 1993
Z Yang (11933_CR98) 2007; 24
F Leliaert (11933_CR4) 2012; 31
VR Flechtner (11933_CR9) 2013; 6
LM Baird (11933_CR51) 2024; 68
S Li (11933_CR1) 2021; 57
M Zahradnikova (11933_CR31) 2017; 168
11933_CR78
Y Benjamini (11933_CR101) 1995; 57
S Perez-Ortega (11933_CR21) 2010; 97
C Hallmann (11933_CR32) 2016; 52
CF Quispe (11933_CR26) 2016; 18
11933_CR81
TJ Wheeler (11933_CR95) 2013; 29
Z-L Zheng (11933_CR68) 2009; 4
B Buedel (11933_CR8) 2009; 57
PA ARCHIBALD (11933_CR15) 1975; 14
T Friedl (11933_CR16) 1989; 164
11933_CR86
11933_CR83
11933_CR89
P Fermani (11933_CR12) 2007; 30
EB D’Alessandro (11933_CR47) 2016; 58
11933_CR93
T Friedl (11933_CR20) 2008
H Omote (11933_CR63) 2006; 27
F Foflonker (11933_CR39) 2016; 16
LM Casano (11933_CR17) 2011; 13
M Stanke (11933_CR85) 2006; 34
T Friedl (11933_CR2) 1995; 31
WB Sanders (11933_CR33) 2016; 52
D Mabhiza (11933_CR62) 2016; 2016
11933_CR13
M Krasovec (11933_CR27) 2018; 10
DRP Tulsiani (11933_CR48) 1982; 257
A Beck (11933_CR25) 2015; 15
K Fucikova (11933_CR10) 2014; 62
P Jones (11933_CR87) 2014; 30
J Champenois (11933_CR53) 2015; 27
FM Commichau (11933_CR72) 2006; 9
11933_CR28
SP Seitzinger (11933_CR42) 1999; 44
R Stadler (11933_CR73) 1995; 107
S Kumar (11933_CR94) 2016; 33
11933_CR29
G Suantika (11933_CR45) 2017; 12
11933_CR22
MN Xu (11933_CR34) 2020; 194
WB Sanders (11933_CR77) 2021; 53
YI Wolf (11933_CR41) 2013; 35
C Gietl (11933_CR50) 1992; 100
C Moritz (11933_CR80) 1996
11933_CR36
AE Allen (11933_CR71) 2011; 473
11933_CR37
XM Shi (11933_CR54) 1999; 43
11933_CR30
11933_CR6
WJ Henley (11933_CR38) 2004; 43
11933_CR7
DELHOYOA (11933_CR18) 2011; 107
11933_CR35
MD Guiry (11933_CR3) 2024; 60
A Maurya (11933_CR60) 2013; 81
A Stamatakis (11933_CR92) 2014; 30
S Mullin (11933_CR61) 2004; 48
D Darriba (11933_CR96) 2012; 9
D Zhang (11933_CR97) 2020; 20
XL Miao (11933_CR55) 2006; 97
D Li (11933_CR82) 2015; 31
S Capella-Gutierrez (11933_CR91) 2009; 25
P Cavacini (11933_CR11) 2001; 14
G Yu (11933_CR100) 2012; 16
DR Taub (11933_CR79) 2000; 87
References_xml – volume: 30
  start-page: 1381
  issue: 11
  year: 2007
  ident: 11933_CR12
  publication-title: Polar Biol
  doi: 10.1007/s00300-007-0299-6
– ident: 11933_CR102
  doi: 10.1186/s12864-021-08006-1
– ident: 11933_CR30
  doi: 10.1371/journal.pgen.1004355
– volume: 44
  start-page: 721
  issue: 3
  year: 1999
  ident: 11933_CR42
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1999.44.3.0721
– ident: 11933_CR6
  doi: 10.1007/978-3-642-22746-2_10
– volume: 72
  start-page: 579
  issue: 4
  year: 2002
  ident: 11933_CR43
  publication-title: Ecol Monogr
  doi: 10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2
– volume: 22
  start-page: 87
  year: 2002
  ident: 11933_CR70
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nutr.22.110801.140547
– volume: 57
  start-page: 229
  issue: 2
  year: 2009
  ident: 11933_CR8
  publication-title: Microb Ecol
  doi: 10.1007/s00248-008-9449-9
– volume: 43
  start-page: 109
  issue: 2
  year: 1999
  ident: 11933_CR54
  publication-title: Nahrung/Food
  doi: 10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K
– volume: 62
  start-page: 294
  issue: 4
  year: 2014
  ident: 11933_CR10
  publication-title: Phycol Res
  doi: 10.1111/pre.12062
– volume: 223
  start-page: 275
  issue: 2
  year: 2003
  ident: 11933_CR24
  publication-title: FEMS Microbiol Lett
  doi: 10.1016/S0378-1097(03)00394-X
– volume: 15
  start-page: 582
  issue: 10
  year: 2010
  ident: 11933_CR44
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.07.003
– volume: 31
  start-page: 632
  issue: 4
  year: 1995
  ident: 11933_CR2
  publication-title: J Phycol
  doi: 10.1111/j.1529-8817.1995.tb02559.x
– volume: 50
  start-page: 413
  issue: 4
  year: 2011
  ident: 11933_CR14
  publication-title: Phycologia
  doi: 10.2216/10-79.1
– volume: 68
  start-page: 221
  issue: 2
  year: 2024
  ident: 11933_CR51
  publication-title: Essays Biochem
  doi: 10.1042/EBC20230089
– volume: 36
  start-page: 5516
  issue: 22–23
  year: 2020
  ident: 11933_CR99
  publication-title: Bioinformatics
– volume: 27
  start-page: 1845
  issue: 5
  year: 2015
  ident: 11933_CR53
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-014-0431-2
– volume: 25
  start-page: 1972
  issue: 15
  year: 2009
  ident: 11933_CR91
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp348
– volume: 10
  start-page: 2347
  issue: 9
  year: 2018
  ident: 11933_CR27
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evy167
– volume: 14
  start-page: 125
  year: 1975
  ident: 11933_CR15
  publication-title: Chlorosarcinales) Phycologia
  doi: 10.2216/i0031-8884-14-3-125.1
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 11933_CR101
  publication-title: J Royal Stat Soc Ser B-Statistical Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 30
  start-page: 772
  issue: 4
  year: 2013
  ident: 11933_CR90
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– ident: 11933_CR13
  doi: 10.1093/femsec/fiw122
– volume: 35
  start-page: 829
  issue: 9
  year: 2013
  ident: 11933_CR41
  publication-title: Bioessays
  doi: 10.1002/bies.201300037
– ident: 11933_CR37
  doi: 10.1186/s12864-020-06792-8
– volume: 4
  start-page: 629
  issue: 3
  year: 2005
  ident: 11933_CR40
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2004.08.012
– volume: 10
  start-page: 593
  issue: 6
  year: 1993
  ident: 11933_CR66
  publication-title: Nat Prod Rep
  doi: 10.1039/np9931000593
– volume: 194
  start-page: 460
  issue: 4
  year: 2020
  ident: 11933_CR34
  publication-title: Bot J Linn Soc
  doi: 10.1093/botlinnean/boaa050
– ident: 11933_CR57
  doi: 10.3390/md16010026
– volume: 31
  start-page: 3210
  issue: 19
  year: 2015
  ident: 11933_CR88
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume-title: Molecular systematics
  year: 1996
  ident: 11933_CR80
– start-page: 9
  volume-title: Lichen biology
  year: 2008
  ident: 11933_CR20
  doi: 10.1017/CBO9780511790478.003
– volume: 164
  start-page: 145
  issue: 1–4
  year: 1989
  ident: 11933_CR16
  publication-title: Plant Syst Evol
  doi: 10.1007/BF00940435
– volume: 2
  start-page: 1
  year: 2022
  ident: 11933_CR76
  publication-title: ISS Symbiosis Int
– volume: 31
  start-page: 1674
  issue: 10
  year: 2015
  ident: 11933_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv033
– volume-title: The lichen symbiosis
  year: 1993
  ident: 11933_CR75
– volume: 12
  start-page: 22
  issue: 1
  year: 2017
  ident: 11933_CR45
  publication-title: J Fish Aquat Sci
– volume: 16
  start-page: 465
  year: 2016
  ident: 11933_CR39
  publication-title: Algal Res-Biomass Biofuels Bioprod
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 11933_CR84
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 97
  start-page: 919
  issue: 2
  year: 2013
  ident: 11933_CR69
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4534-x
– ident: 11933_CR78
  doi: 10.1371/journal.pone.0110154
– volume: 20
  start-page: 348
  issue: 1
  year: 2020
  ident: 11933_CR97
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13096
– volume: 33
  start-page: 1870
  issue: 7
  year: 2016
  ident: 11933_CR94
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw054
– volume: 52
  start-page: 732
  issue: 5
  year: 2016
  ident: 11933_CR32
  publication-title: J Phycol
  doi: 10.1111/jpy.12437
– volume: 107
  start-page: 33
  issue: 1
  year: 1995
  ident: 11933_CR73
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.1.33
– volume: 53
  start-page: 347
  issue: 5
  year: 2021
  ident: 11933_CR77
  publication-title: Lichenologist
  doi: 10.1017/S0024282921000335
– volume: 18
  start-page: 332
  year: 2016
  ident: 11933_CR26
  publication-title: Algal Research-Biomass Biofuels Bioprod
– volume: 27
  start-page: 587
  issue: 11
  year: 2006
  ident: 11933_CR63
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2006.09.001
– volume: 15
  start-page: 235
  issue: 2
  year: 2015
  ident: 11933_CR25
  publication-title: Organisms Diversity & Evolution
  doi: 10.1007/s13127-014-0199-x
– volume: 51
  start-page: 394
  issue: 2
  year: 2015
  ident: 11933_CR52
  publication-title: J Phycol
  doi: 10.1111/jpy.12279
– volume: 97
  start-page: 841
  issue: 6
  year: 2006
  ident: 11933_CR55
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2005.04.008
– volume: 30
  start-page: 1312
  issue: 9
  year: 2014
  ident: 11933_CR92
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 43
  start-page: 641
  issue: 6
  year: 2004
  ident: 11933_CR38
  publication-title: Phycologia
  doi: 10.2216/i0031-8884-43-6-641.1
– volume: 97
  start-page: 738
  issue: 5
  year: 2010
  ident: 11933_CR21
  publication-title: Am J Bot
  doi: 10.3732/ajb.0900323
– volume: 21
  start-page: 3850
  issue: 12
  year: 2009
  ident: 11933_CR49
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072363
– volume: 168
  start-page: 425
  issue: 4
  year: 2017
  ident: 11933_CR31
  publication-title: Protist
  doi: 10.1016/j.protis.2017.06.002
– volume: 95
  start-page: 268
  issue: 2
  year: 2018
  ident: 11933_CR67
  publication-title: Plant J
  doi: 10.1111/tpj.13948
– ident: 11933_CR65
  doi: 10.1371/journal.pone.0034791
– volume: 24
  start-page: 1586
  issue: 8
  year: 2007
  ident: 11933_CR98
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 27
  start-page: 1
  issue: 1
  year: 2007
  ident: 11933_CR46
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2006.12.003
– ident: 11933_CR7
  doi: 10.1186/s12862-014-0211-2
– volume: 13
  start-page: 806
  issue: 3
  year: 2011
  ident: 11933_CR17
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02386.x
– volume: 58
  start-page: 832
  year: 2016
  ident: 11933_CR47
  publication-title: Renew Sustainable Energy Reviews
  doi: 10.1016/j.rser.2015.12.162
– volume: 14
  start-page: 45
  year: 2001
  ident: 11933_CR11
  publication-title: Polar Biosci
– volume: 29
  start-page: 2487
  issue: 19
  year: 2013
  ident: 11933_CR95
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt403
– volume: 13
  start-page: 350
  issue: 2
  year: 2011
  ident: 11933_CR19
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02333.x
– volume: 31
  start-page: 1
  issue: 1
  year: 2012
  ident: 11933_CR4
  publication-title: CRC Crit Rev Plant Sci
  doi: 10.1080/07352689.2011.615705
– ident: 11933_CR22
  doi: 10.1186/1741-7007-4-12
– volume: 81
  start-page: 484
  issue: 4
  year: 2013
  ident: 11933_CR60
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12103
– ident: 11933_CR58
  doi: 10.3389/fbioe.2020.00914
– volume: 4
  start-page: 584
  issue: 7
  year: 2009
  ident: 11933_CR68
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.4.7.8540
– volume: 34
  start-page: W435
  year: 2006
  ident: 11933_CR85
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl200
– ident: 11933_CR83
  doi: 10.7717/peerj.1319
– ident: 11933_CR36
  doi: 10.1371/journal.pone.0006978
– volume: 473
  start-page: 203
  issue: 7346
  year: 2011
  ident: 11933_CR71
  publication-title: Nature
  doi: 10.1038/nature10074
– volume: 30
  start-page: 1236
  year: 2014
  ident: 11933_CR87
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu031
– ident: 11933_CR86
  doi: 10.1186/s12859-018-2203-5
– ident: 11933_CR89
  doi: 10.1186/s13059-015-0721-2
– ident: 11933_CR35
  doi: 10.7717/peerj.3982
– volume: 9
  start-page: 772
  issue: 8
  year: 2012
  ident: 11933_CR96
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2109
– volume: 48
  start-page: 4171
  issue: 11
  year: 2004
  ident: 11933_CR61
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.48.11.4171-4176.2004
– volume: 9
  start-page: 167
  issue: 2
  year: 2006
  ident: 11933_CR72
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2006.01.001
– volume: 158
  start-page: 243
  issue: 2–4
  year: 1988
  ident: 11933_CR74
  publication-title: Plant Syst Evol
– ident: 11933_CR93
  doi: 10.1186/s12859-018-2129-y
– volume: 8
  issue: 1
  year: 2018
  ident: 11933_CR23
  publication-title: Sci Rep
– volume: 87
  start-page: 1211
  issue: 8
  year: 2000
  ident: 11933_CR79
  publication-title: Am J Bot
  doi: 10.2307/2656659
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 11933_CR100
  publication-title: Omics-a J Integr Biology
  doi: 10.1089/omi.2011.0118
– volume: 57
  start-page: 1167
  issue: 4
  year: 2021
  ident: 11933_CR1
  publication-title: J Phycol
  doi: 10.1111/jpy.13165
– volume: 100
  start-page: 557
  issue: 2
  year: 1992
  ident: 11933_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.100.2.557
– volume: 6
  start-page: 43
  year: 2013
  ident: 11933_CR9
  publication-title: Monogr West North Am Nat
– volume: 107
  start-page: 109
  year: 2011
  ident: 11933_CR18
  publication-title: Ann Botany
  doi: 10.1093/aob/mcq206
– ident: 11933_CR81
  doi: 10.1093/gigascience/gix120
– ident: 11933_CR29
  doi: 10.1186/1471-2164-15-582
– volume: 91
  start-page: 1535
  issue: 10
  year: 2004
  ident: 11933_CR5
  publication-title: Am J Bot
  doi: 10.3732/ajb.91.10.1535
– volume: 2016
  start-page: 6304163
  year: 2016
  ident: 11933_CR62
  publication-title: Int J Med Chem
– ident: 11933_CR28
  doi: 10.1186/gb-2012-13-5-r39
– ident: 11933_CR59
  doi: 10.3390/jof9050546
– volume: 60
  start-page: 214
  issue: 2
  year: 2024
  ident: 11933_CR3
  publication-title: J Phycol
  doi: 10.1111/jpy.13431
– volume: 52
  start-page: 840
  issue: 5
  year: 2016
  ident: 11933_CR33
  publication-title: J Phycol
  doi: 10.1111/jpy.12446
– volume: 15
  start-page: 160
  issue: 2
  year: 2015
  ident: 11933_CR56
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.201400191
– volume: 13
  start-page: 1477
  issue: 7
  year: 2001
  ident: 11933_CR64
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.7.1477
– volume: 257
  start-page: 3660
  issue: 7
  year: 1982
  ident: 11933_CR48
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)34831-2
SSID ssj0017825
Score 2.4646447
Snippet The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology...
Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in...
Abstract Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable...
SourceID doaj
pubmedcentral
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms Algae
Amino acids
Analysis
Anopheles
Biosynthetic gene clusters (BGCs)
Biotechnology
Carrier proteins
Comparative analysis
Comprehensive genomic analysis
Environmental aspects
Enzymes
Evolution
Evolutionary analyses
Fresh water
Gene family expansion and contraction
Genes
Genetic aspects
Genetic research
Genomes
Genomics
Phylogeney
Phylogeny
Physiological aspects
Trebouxiophyceae
Urea
Title Comparative genomic insights into ecological adaptations and evolutionary dynamics of Trebouxiophyceae algae
URI https://pubmed.ncbi.nlm.nih.gov/PMC12366059
https://doaj.org/article/93f15bc797c049f38e94edb5e564e99c
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIngRf-LTdQkieJCybdKk6fG5uKwP9ODuwt5COp3oA7ddXt8T-9870_at25MXaQ-lGWjyzWSSaZJvhHgXMUuDVkVigY_kKENdKlWQKF0pFfMU6uGH25ev9uwyX12ZqzupvnhP2EgPPAJ3XOqYmQqKsgCazEbtsMyxrgwam2NZAntfGvP2wdS0fkDjntkfkXH2uCMvbPOEU7dmNGPRST8bhga2_lufPN8ceWe0OX0sHk3TRLkcq_dE3MPmqXgwJo7sn4mfJ39JuyXTrF6vQa6bjiPtjh62rUTYuzUZ6nAzrrh3MjS1xF-TvYVNL-sxJX0n2ygvNuR9dr_XLWEPGFDyQQ98Li5PP12cnCVT3oQEtFN9EiqNTKMeNWYxLQjuUJqaQzkbEGxwjhDUYHK6swLpUg5tDKhyV0NA_UIcNG2DL4UsKJ6pTAol5iEHqB0SnGl00aQphCwsxIc9jP5mpMfwQ1jhrB9B9wS6H0D3_UJ8ZKRvJZnaenhBCveTwv2_FL4Qb1lPnskrGt4d8z3sus5_Pv_ml84oq_mzC_F-EootaRHCdNiAWsV8VzPJw5kk9S6YFbuZOczqPi9p1j8Gem7ms6EgsXz1P1r7WjxUbLYp-7NDcbDd7PANTYO21ZG4v1yuzldHg-X_AVqNCjI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomic+insights+into+ecological+adaptations+and+evolutionary+dynamics+of+Trebouxiophyceae+algae&rft.jtitle=BMC+genomics&rft.au=Xiong%2C+Qian&rft.au=Zheng%2C+Luqin&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Tianli&rft.date=2025-08-20&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-025-11933-y&rft.externalDocID=A852631286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon