Comparative genomic insights into ecological adaptations and evolutionary dynamics of Trebouxiophyceae algae
The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic hete...
Saved in:
Published in | BMC genomics Vol. 26; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
20.08.2025
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions. |
---|---|
AbstractList | Abstract Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Results Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Conclusions Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions. The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions. Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology. This study presents a comprehensive genomic analysis of six newly sequenced strains of Trebouxiophyceae, expanding upon a foundation of 25 previously reported high-quality genomes to conduct comparative genomics and evolutionary assessments. Results Molecular phylogenetic analyses based on 18 S rDNA and single-copy orthologues confirmed the accurate identification of species. The analyzed strains exhibited variable genome sizes ranging from 2.37 Mb to 106.45 Mb, with GC content varying between 46.19% and 67.20%, and repeat content ranging from 1.67 to 19.73%. Gene family expansion and contraction analyses revealed that the subaerial species Apatococcus exhibited the most extensive expansions, while Picochlorum, along with the ancestors of the parasitic genera (Auxenochlorella, Helicosporidium, and Prototheca) experienced pronounced contractions. Evolutionary analyses using the branch model and branch-site model in PAML indicated that genera with the most marked gene family expansion and contraction also contained orthogroups undergoing positive selection and rapid evolution. Comparative assessments of biosynthetic gene clusters (BGCs), nitrogen transport and assimilation proteins, hexose-proton symporter-like genes (HUP1, HUP2, and HUP3), and C.sub.4-related enzymes across 31 Trebouxiophyceae genomes revealed further patterns of adaptation. Coccomyxa was the only genus containing all the ten types of BGCs, while most other genera exhibited relatively fewer BGCs. The nitrate transporter and the urea active transporter were both absent in the three parasitic genera, and urease, the urease accessory proteins and arginase were nearly universally missing in all the species. All the species possessed the HUP1, HUP2, and HUP3 genes, except that HUP2 was absent in Prototheca and Picochlorum, and the relative abundances of the three genes varied among genera. The NAD-ME, and PCK subtypes of C.sub.4-related genes were widely distributed in all the samples, while the malate dehydrogenase (NADP+) was identified only in the four freshwater strains belonging to Chlorella and Coccomyxa. Conclusions Expanded gene families, along with the rapid evolution and positive selection genes, likely played important roles in environmental adaption across terrestrial and marine habitat. Conversely, genome streamlining due to widespread gene families likely contributed to the parasitic heterotrophic lifestyles. Additionally, the distribution of BGCs, nitrogen transport proteins and HUP-like genes, and the types of C.sub.4-related enzymes perhaps highlighted the potential of Trebouxiophyceae to adapt to complex and varied environmental conditions. Keywords: Trebouxiophyceae, Comprehensive genomic analysis, Phylogeney, Gene family expansion and contraction, Evolutionary analyses, Biosynthetic gene clusters (BGCs), Nitrogen transport and assimilation proteins, Hexose-proton symporter-like genes |
ArticleNumber | 764 |
Audience | Academic |
Author | Zhang, Qi Xiong, Qian Zheng, Luqin Song, Lirong Li, Tianli Zheng, Lingling |
Author_xml | – sequence: 1 givenname: Qian surname: Xiong fullname: Xiong, Qian – sequence: 2 givenname: Luqin surname: Zheng fullname: Zheng, Luqin – sequence: 3 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 4 givenname: Tianli surname: Li fullname: Li, Tianli – sequence: 5 givenname: Lingling surname: Zheng fullname: Zheng, Lingling – sequence: 6 givenname: Lirong surname: Song fullname: Song, Lirong |
BookMark | eNptUk1r3DAQNSWFJmn_QE-CnnpwIlmyLJ9KWPqxECi06VmMpbFXwZaM5V3ifx9tXEINZQQajd57GjTvKrvwwWOWfWT0hjElbyMrlBQ5LcqcsZrzfHmTXTJRsbxgUlz8k7_LrmJ8pJRVqigvs34XhhEmmN0JSYc-DM4Q56PrDnNMyRwImtCHzhnoCVgY54QNPhLwluAp9MfzEaaF2MVDYkcSWvIwYROOTy6Mh8UgIIG-A3yfvW2hj_jh736d_fn29WH3I7__-X2_u7vPDVfFkkPDUUhGW46spZWxFdSlZUpQCWgkKCXQclOKtFiFKQqFsgUshLIGkF9n-1XXBnjU4-SG1J8O4PRLIUydhml2pkdd85aVjanqylBRt1xhncSbEkspsK5N0vqyao3HZkBr0M8T9BvR7Y13B92Fk2YFl5KWdVL4tCp0kB50vg0JZwYXjb5TZSH5eXYJdfMfVAqL6VPTtFuX6hvC5w0hYWZ8mjs4xqj3v39tscWKNVOIccL2tX9G9dlAejWQTgbSLwbSC38GGn-9rQ |
Cites_doi | 10.1007/s00300-007-0299-6 10.1186/s12864-021-08006-1 10.1371/journal.pgen.1004355 10.4319/lo.1999.44.3.0721 10.1007/978-3-642-22746-2_10 10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2 10.1146/annurev.nutr.22.110801.140547 10.1007/s00248-008-9449-9 10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K 10.1111/pre.12062 10.1016/S0378-1097(03)00394-X 10.1016/j.tplants.2010.07.003 10.1111/j.1529-8817.1995.tb02559.x 10.2216/10-79.1 10.1042/EBC20230089 10.1007/s10811-014-0431-2 10.1093/bioinformatics/btp348 10.1093/gbe/evy167 10.2216/i0031-8884-14-3-125.1 10.1111/j.2517-6161.1995.tb02031.x 10.1093/molbev/mst010 10.1093/femsec/fiw122 10.1002/bies.201300037 10.1186/s12864-020-06792-8 10.1016/j.hal.2004.08.012 10.1039/np9931000593 10.1093/botlinnean/boaa050 10.3390/md16010026 10.1093/bioinformatics/btv351 10.1017/CBO9780511790478.003 10.1007/BF00940435 10.1093/bioinformatics/btv033 10.1038/nmeth.1923 10.1007/s00253-012-4534-x 10.1371/journal.pone.0110154 10.1111/1755-0998.13096 10.1093/molbev/msw054 10.1111/jpy.12437 10.1104/pp.107.1.33 10.1017/S0024282921000335 10.1016/j.tips.2006.09.001 10.1007/s13127-014-0199-x 10.1111/jpy.12279 10.1016/j.biortech.2005.04.008 10.1093/bioinformatics/btu033 10.2216/i0031-8884-43-6-641.1 10.3732/ajb.0900323 10.1105/tpc.109.072363 10.1016/j.protis.2017.06.002 10.1111/tpj.13948 10.1371/journal.pone.0034791 10.1093/molbev/msm088 10.1016/j.nutres.2006.12.003 10.1186/s12862-014-0211-2 10.1111/j.1462-2920.2010.02386.x 10.1016/j.rser.2015.12.162 10.1093/bioinformatics/btt403 10.1111/j.1462-2920.2010.02333.x 10.1080/07352689.2011.615705 10.1186/1741-7007-4-12 10.1111/cbdd.12103 10.3389/fbioe.2020.00914 10.4161/psb.4.7.8540 10.1093/nar/gkl200 10.7717/peerj.1319 10.1371/journal.pone.0006978 10.1038/nature10074 10.1093/bioinformatics/btu031 10.1186/s12859-018-2203-5 10.1186/s13059-015-0721-2 10.7717/peerj.3982 10.1038/nmeth.2109 10.1128/AAC.48.11.4171-4176.2004 10.1016/j.mib.2006.01.001 10.1186/s12859-018-2129-y 10.2307/2656659 10.1089/omi.2011.0118 10.1111/jpy.13165 10.1104/pp.100.2.557 10.1093/aob/mcq206 10.1093/gigascience/gix120 10.1186/1471-2164-15-582 10.3732/ajb.91.10.1535 10.1186/gb-2012-13-5-r39 10.3390/jof9050546 10.1111/jpy.13431 10.1111/jpy.12446 10.1002/elsc.201400191 10.1105/tpc.13.7.1477 10.1016/S0021-9258(18)34831-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 BioMed Central Ltd. The Author(s) 2025 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: The Author(s) 2025 2025 |
DBID | AAYXX CITATION ISR 5PM DOA |
DOI | 10.1186/s12864-025-11933-y |
DatabaseName | CrossRef Gale In Context: Science PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_93f15bc797c049f38e94edb5e564e99c PMC12366059 A852631286 10_1186_s12864_025_11933_y |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB 5PM |
ID | FETCH-LOGICAL-c382y-ab3e4610f3e1f07cd7a95d18406aec6a884ed3c54c5417e7e728e6fae248dcae3 |
IEDL.DBID | DOA |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:22:32 EDT 2025 Sat Aug 23 05:22:11 EDT 2025 Wed Aug 27 16:51:10 EDT 2025 Tue Sep 02 03:58:03 EDT 2025 Fri Aug 29 03:31:26 EDT 2025 Wed Aug 27 16:40:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382y-ab3e4610f3e1f07cd7a95d18406aec6a884ed3c54c5417e7e728e6fae248dcae3 |
OpenAccessLink | https://doaj.org/article/93f15bc797c049f38e94edb5e564e99c |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93f15bc797c049f38e94edb5e564e99c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12366059 gale_infotracmisc_A852631286 gale_infotracacademiconefile_A852631286 gale_incontextgauss_ISR_A852631286 crossref_primary_10_1186_s12864_025_11933_y |
PublicationCentury | 2000 |
PublicationDate | 20250820 |
PublicationDateYYYYMMDD | 2025-08-20 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250820 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | BMC genomics |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | T Darienko (11933_CR52) 2015; 51 A Beatriz Juarez (11933_CR14) 2011; 50 N Heimerl (11933_CR67) 2018; 95 D Yan (11933_CR69) 2013; 97 NA Eckardt (11933_CR64) 2001; 13 CL Fan (11933_CR40) 2005; 4 R Ueno (11933_CR24) 2003; 223 11933_CR58 11933_CR59 V Ahmadjian (11933_CR74) 1988; 158 M Amparo Asensi-Fabado (11933_CR44) 2010; 15 11933_CR57 FA Simao (11933_CR88) 2015; 31 11933_CR102 K Katoh (11933_CR90) 2013; 30 E Liebminger (11933_CR49) 2009; 21 I Michalak (11933_CR56) 2015; 15 LA Lewis (11933_CR5) 2004; 91 FK Mendes (11933_CR99) 2020; 36 D Ohagan (11933_CR66) 1993; 10 11933_CR65 B Langmead (11933_CR84) 2012; 9 S Suzuki (11933_CR23) 2018; 8 R Stepanauskas (11933_CR43) 2002; 72 T Proeschold (11933_CR19) 2011; 13 SM Morris (11933_CR70) 2002; 22 V Ahmadjian (11933_CR76) 2022; 2 MG Ferruzzi (11933_CR46) 2007; 27 V Ahmadjian (11933_CR75) 1993 Z Yang (11933_CR98) 2007; 24 F Leliaert (11933_CR4) 2012; 31 VR Flechtner (11933_CR9) 2013; 6 LM Baird (11933_CR51) 2024; 68 S Li (11933_CR1) 2021; 57 M Zahradnikova (11933_CR31) 2017; 168 11933_CR78 Y Benjamini (11933_CR101) 1995; 57 S Perez-Ortega (11933_CR21) 2010; 97 C Hallmann (11933_CR32) 2016; 52 CF Quispe (11933_CR26) 2016; 18 11933_CR81 TJ Wheeler (11933_CR95) 2013; 29 Z-L Zheng (11933_CR68) 2009; 4 B Buedel (11933_CR8) 2009; 57 PA ARCHIBALD (11933_CR15) 1975; 14 T Friedl (11933_CR16) 1989; 164 11933_CR86 11933_CR83 11933_CR89 P Fermani (11933_CR12) 2007; 30 EB D’Alessandro (11933_CR47) 2016; 58 11933_CR93 T Friedl (11933_CR20) 2008 H Omote (11933_CR63) 2006; 27 F Foflonker (11933_CR39) 2016; 16 LM Casano (11933_CR17) 2011; 13 M Stanke (11933_CR85) 2006; 34 T Friedl (11933_CR2) 1995; 31 WB Sanders (11933_CR33) 2016; 52 D Mabhiza (11933_CR62) 2016; 2016 11933_CR13 M Krasovec (11933_CR27) 2018; 10 DRP Tulsiani (11933_CR48) 1982; 257 A Beck (11933_CR25) 2015; 15 K Fucikova (11933_CR10) 2014; 62 P Jones (11933_CR87) 2014; 30 J Champenois (11933_CR53) 2015; 27 FM Commichau (11933_CR72) 2006; 9 11933_CR28 SP Seitzinger (11933_CR42) 1999; 44 R Stadler (11933_CR73) 1995; 107 S Kumar (11933_CR94) 2016; 33 11933_CR29 G Suantika (11933_CR45) 2017; 12 11933_CR22 MN Xu (11933_CR34) 2020; 194 WB Sanders (11933_CR77) 2021; 53 YI Wolf (11933_CR41) 2013; 35 C Gietl (11933_CR50) 1992; 100 C Moritz (11933_CR80) 1996 11933_CR36 AE Allen (11933_CR71) 2011; 473 11933_CR37 XM Shi (11933_CR54) 1999; 43 11933_CR30 11933_CR6 WJ Henley (11933_CR38) 2004; 43 11933_CR7 DELHOYOA (11933_CR18) 2011; 107 11933_CR35 MD Guiry (11933_CR3) 2024; 60 A Maurya (11933_CR60) 2013; 81 A Stamatakis (11933_CR92) 2014; 30 S Mullin (11933_CR61) 2004; 48 D Darriba (11933_CR96) 2012; 9 D Zhang (11933_CR97) 2020; 20 XL Miao (11933_CR55) 2006; 97 D Li (11933_CR82) 2015; 31 S Capella-Gutierrez (11933_CR91) 2009; 25 P Cavacini (11933_CR11) 2001; 14 G Yu (11933_CR100) 2012; 16 DR Taub (11933_CR79) 2000; 87 |
References_xml | – volume: 30 start-page: 1381 issue: 11 year: 2007 ident: 11933_CR12 publication-title: Polar Biol doi: 10.1007/s00300-007-0299-6 – ident: 11933_CR102 doi: 10.1186/s12864-021-08006-1 – ident: 11933_CR30 doi: 10.1371/journal.pgen.1004355 – volume: 44 start-page: 721 issue: 3 year: 1999 ident: 11933_CR42 publication-title: Limnol Oceanogr doi: 10.4319/lo.1999.44.3.0721 – ident: 11933_CR6 doi: 10.1007/978-3-642-22746-2_10 – volume: 72 start-page: 579 issue: 4 year: 2002 ident: 11933_CR43 publication-title: Ecol Monogr doi: 10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2 – volume: 22 start-page: 87 year: 2002 ident: 11933_CR70 publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.22.110801.140547 – volume: 57 start-page: 229 issue: 2 year: 2009 ident: 11933_CR8 publication-title: Microb Ecol doi: 10.1007/s00248-008-9449-9 – volume: 43 start-page: 109 issue: 2 year: 1999 ident: 11933_CR54 publication-title: Nahrung/Food doi: 10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K – volume: 62 start-page: 294 issue: 4 year: 2014 ident: 11933_CR10 publication-title: Phycol Res doi: 10.1111/pre.12062 – volume: 223 start-page: 275 issue: 2 year: 2003 ident: 11933_CR24 publication-title: FEMS Microbiol Lett doi: 10.1016/S0378-1097(03)00394-X – volume: 15 start-page: 582 issue: 10 year: 2010 ident: 11933_CR44 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.07.003 – volume: 31 start-page: 632 issue: 4 year: 1995 ident: 11933_CR2 publication-title: J Phycol doi: 10.1111/j.1529-8817.1995.tb02559.x – volume: 50 start-page: 413 issue: 4 year: 2011 ident: 11933_CR14 publication-title: Phycologia doi: 10.2216/10-79.1 – volume: 68 start-page: 221 issue: 2 year: 2024 ident: 11933_CR51 publication-title: Essays Biochem doi: 10.1042/EBC20230089 – volume: 36 start-page: 5516 issue: 22–23 year: 2020 ident: 11933_CR99 publication-title: Bioinformatics – volume: 27 start-page: 1845 issue: 5 year: 2015 ident: 11933_CR53 publication-title: J Appl Phycol doi: 10.1007/s10811-014-0431-2 – volume: 25 start-page: 1972 issue: 15 year: 2009 ident: 11933_CR91 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp348 – volume: 10 start-page: 2347 issue: 9 year: 2018 ident: 11933_CR27 publication-title: Genome Biol Evol doi: 10.1093/gbe/evy167 – volume: 14 start-page: 125 year: 1975 ident: 11933_CR15 publication-title: Chlorosarcinales) Phycologia doi: 10.2216/i0031-8884-14-3-125.1 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 11933_CR101 publication-title: J Royal Stat Soc Ser B-Statistical Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 30 start-page: 772 issue: 4 year: 2013 ident: 11933_CR90 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – ident: 11933_CR13 doi: 10.1093/femsec/fiw122 – volume: 35 start-page: 829 issue: 9 year: 2013 ident: 11933_CR41 publication-title: Bioessays doi: 10.1002/bies.201300037 – ident: 11933_CR37 doi: 10.1186/s12864-020-06792-8 – volume: 4 start-page: 629 issue: 3 year: 2005 ident: 11933_CR40 publication-title: Harmful Algae doi: 10.1016/j.hal.2004.08.012 – volume: 10 start-page: 593 issue: 6 year: 1993 ident: 11933_CR66 publication-title: Nat Prod Rep doi: 10.1039/np9931000593 – volume: 194 start-page: 460 issue: 4 year: 2020 ident: 11933_CR34 publication-title: Bot J Linn Soc doi: 10.1093/botlinnean/boaa050 – ident: 11933_CR57 doi: 10.3390/md16010026 – volume: 31 start-page: 3210 issue: 19 year: 2015 ident: 11933_CR88 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume-title: Molecular systematics year: 1996 ident: 11933_CR80 – start-page: 9 volume-title: Lichen biology year: 2008 ident: 11933_CR20 doi: 10.1017/CBO9780511790478.003 – volume: 164 start-page: 145 issue: 1–4 year: 1989 ident: 11933_CR16 publication-title: Plant Syst Evol doi: 10.1007/BF00940435 – volume: 2 start-page: 1 year: 2022 ident: 11933_CR76 publication-title: ISS Symbiosis Int – volume: 31 start-page: 1674 issue: 10 year: 2015 ident: 11933_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume-title: The lichen symbiosis year: 1993 ident: 11933_CR75 – volume: 12 start-page: 22 issue: 1 year: 2017 ident: 11933_CR45 publication-title: J Fish Aquat Sci – volume: 16 start-page: 465 year: 2016 ident: 11933_CR39 publication-title: Algal Res-Biomass Biofuels Bioprod – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 11933_CR84 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 97 start-page: 919 issue: 2 year: 2013 ident: 11933_CR69 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4534-x – ident: 11933_CR78 doi: 10.1371/journal.pone.0110154 – volume: 20 start-page: 348 issue: 1 year: 2020 ident: 11933_CR97 publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13096 – volume: 33 start-page: 1870 issue: 7 year: 2016 ident: 11933_CR94 publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 52 start-page: 732 issue: 5 year: 2016 ident: 11933_CR32 publication-title: J Phycol doi: 10.1111/jpy.12437 – volume: 107 start-page: 33 issue: 1 year: 1995 ident: 11933_CR73 publication-title: Plant Physiol doi: 10.1104/pp.107.1.33 – volume: 53 start-page: 347 issue: 5 year: 2021 ident: 11933_CR77 publication-title: Lichenologist doi: 10.1017/S0024282921000335 – volume: 18 start-page: 332 year: 2016 ident: 11933_CR26 publication-title: Algal Research-Biomass Biofuels Bioprod – volume: 27 start-page: 587 issue: 11 year: 2006 ident: 11933_CR63 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2006.09.001 – volume: 15 start-page: 235 issue: 2 year: 2015 ident: 11933_CR25 publication-title: Organisms Diversity & Evolution doi: 10.1007/s13127-014-0199-x – volume: 51 start-page: 394 issue: 2 year: 2015 ident: 11933_CR52 publication-title: J Phycol doi: 10.1111/jpy.12279 – volume: 97 start-page: 841 issue: 6 year: 2006 ident: 11933_CR55 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2005.04.008 – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: 11933_CR92 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 43 start-page: 641 issue: 6 year: 2004 ident: 11933_CR38 publication-title: Phycologia doi: 10.2216/i0031-8884-43-6-641.1 – volume: 97 start-page: 738 issue: 5 year: 2010 ident: 11933_CR21 publication-title: Am J Bot doi: 10.3732/ajb.0900323 – volume: 21 start-page: 3850 issue: 12 year: 2009 ident: 11933_CR49 publication-title: Plant Cell doi: 10.1105/tpc.109.072363 – volume: 168 start-page: 425 issue: 4 year: 2017 ident: 11933_CR31 publication-title: Protist doi: 10.1016/j.protis.2017.06.002 – volume: 95 start-page: 268 issue: 2 year: 2018 ident: 11933_CR67 publication-title: Plant J doi: 10.1111/tpj.13948 – ident: 11933_CR65 doi: 10.1371/journal.pone.0034791 – volume: 24 start-page: 1586 issue: 8 year: 2007 ident: 11933_CR98 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 27 start-page: 1 issue: 1 year: 2007 ident: 11933_CR46 publication-title: Nutr Res doi: 10.1016/j.nutres.2006.12.003 – ident: 11933_CR7 doi: 10.1186/s12862-014-0211-2 – volume: 13 start-page: 806 issue: 3 year: 2011 ident: 11933_CR17 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02386.x – volume: 58 start-page: 832 year: 2016 ident: 11933_CR47 publication-title: Renew Sustainable Energy Reviews doi: 10.1016/j.rser.2015.12.162 – volume: 14 start-page: 45 year: 2001 ident: 11933_CR11 publication-title: Polar Biosci – volume: 29 start-page: 2487 issue: 19 year: 2013 ident: 11933_CR95 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt403 – volume: 13 start-page: 350 issue: 2 year: 2011 ident: 11933_CR19 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02333.x – volume: 31 start-page: 1 issue: 1 year: 2012 ident: 11933_CR4 publication-title: CRC Crit Rev Plant Sci doi: 10.1080/07352689.2011.615705 – ident: 11933_CR22 doi: 10.1186/1741-7007-4-12 – volume: 81 start-page: 484 issue: 4 year: 2013 ident: 11933_CR60 publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.12103 – ident: 11933_CR58 doi: 10.3389/fbioe.2020.00914 – volume: 4 start-page: 584 issue: 7 year: 2009 ident: 11933_CR68 publication-title: Plant Signaling & Behavior doi: 10.4161/psb.4.7.8540 – volume: 34 start-page: W435 year: 2006 ident: 11933_CR85 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl200 – ident: 11933_CR83 doi: 10.7717/peerj.1319 – ident: 11933_CR36 doi: 10.1371/journal.pone.0006978 – volume: 473 start-page: 203 issue: 7346 year: 2011 ident: 11933_CR71 publication-title: Nature doi: 10.1038/nature10074 – volume: 30 start-page: 1236 year: 2014 ident: 11933_CR87 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu031 – ident: 11933_CR86 doi: 10.1186/s12859-018-2203-5 – ident: 11933_CR89 doi: 10.1186/s13059-015-0721-2 – ident: 11933_CR35 doi: 10.7717/peerj.3982 – volume: 9 start-page: 772 issue: 8 year: 2012 ident: 11933_CR96 publication-title: Nat Methods doi: 10.1038/nmeth.2109 – volume: 48 start-page: 4171 issue: 11 year: 2004 ident: 11933_CR61 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.48.11.4171-4176.2004 – volume: 9 start-page: 167 issue: 2 year: 2006 ident: 11933_CR72 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2006.01.001 – volume: 158 start-page: 243 issue: 2–4 year: 1988 ident: 11933_CR74 publication-title: Plant Syst Evol – ident: 11933_CR93 doi: 10.1186/s12859-018-2129-y – volume: 8 issue: 1 year: 2018 ident: 11933_CR23 publication-title: Sci Rep – volume: 87 start-page: 1211 issue: 8 year: 2000 ident: 11933_CR79 publication-title: Am J Bot doi: 10.2307/2656659 – volume: 16 start-page: 284 issue: 5 year: 2012 ident: 11933_CR100 publication-title: Omics-a J Integr Biology doi: 10.1089/omi.2011.0118 – volume: 57 start-page: 1167 issue: 4 year: 2021 ident: 11933_CR1 publication-title: J Phycol doi: 10.1111/jpy.13165 – volume: 100 start-page: 557 issue: 2 year: 1992 ident: 11933_CR50 publication-title: Plant Physiol doi: 10.1104/pp.100.2.557 – volume: 6 start-page: 43 year: 2013 ident: 11933_CR9 publication-title: Monogr West North Am Nat – volume: 107 start-page: 109 year: 2011 ident: 11933_CR18 publication-title: Ann Botany doi: 10.1093/aob/mcq206 – ident: 11933_CR81 doi: 10.1093/gigascience/gix120 – ident: 11933_CR29 doi: 10.1186/1471-2164-15-582 – volume: 91 start-page: 1535 issue: 10 year: 2004 ident: 11933_CR5 publication-title: Am J Bot doi: 10.3732/ajb.91.10.1535 – volume: 2016 start-page: 6304163 year: 2016 ident: 11933_CR62 publication-title: Int J Med Chem – ident: 11933_CR28 doi: 10.1186/gb-2012-13-5-r39 – ident: 11933_CR59 doi: 10.3390/jof9050546 – volume: 60 start-page: 214 issue: 2 year: 2024 ident: 11933_CR3 publication-title: J Phycol doi: 10.1111/jpy.13431 – volume: 52 start-page: 840 issue: 5 year: 2016 ident: 11933_CR33 publication-title: J Phycol doi: 10.1111/jpy.12446 – volume: 15 start-page: 160 issue: 2 year: 2015 ident: 11933_CR56 publication-title: Eng Life Sci doi: 10.1002/elsc.201400191 – volume: 13 start-page: 1477 issue: 7 year: 2001 ident: 11933_CR64 publication-title: Plant Cell doi: 10.1105/tpc.13.7.1477 – volume: 257 start-page: 3660 issue: 7 year: 1982 ident: 11933_CR48 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)34831-2 |
SSID | ssj0017825 |
Score | 2.4646447 |
Snippet | The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology... Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in... Abstract Background The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable... |
SourceID | doaj pubmedcentral gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1 |
SubjectTerms | Algae Amino acids Analysis Anopheles Biosynthetic gene clusters (BGCs) Biotechnology Carrier proteins Comparative analysis Comprehensive genomic analysis Environmental aspects Enzymes Evolution Evolutionary analyses Fresh water Gene family expansion and contraction Genes Genetic aspects Genetic research Genomes Genomics Phylogeney Phylogeny Physiological aspects Trebouxiophyceae Urea |
Title | Comparative genomic insights into ecological adaptations and evolutionary dynamics of Trebouxiophyceae algae |
URI | https://pubmed.ncbi.nlm.nih.gov/PMC12366059 https://doaj.org/article/93f15bc797c049f38e94edb5e564e99c |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIngRf-LTdQkieJCybdKk6fG5uKwP9ODuwt5COp3oA7ddXt8T-9870_at25MXaQ-lGWjyzWSSaZJvhHgXMUuDVkVigY_kKENdKlWQKF0pFfMU6uGH25ev9uwyX12ZqzupvnhP2EgPPAJ3XOqYmQqKsgCazEbtsMyxrgwam2NZAntfGvP2wdS0fkDjntkfkXH2uCMvbPOEU7dmNGPRST8bhga2_lufPN8ceWe0OX0sHk3TRLkcq_dE3MPmqXgwJo7sn4mfJ39JuyXTrF6vQa6bjiPtjh62rUTYuzUZ6nAzrrh3MjS1xF-TvYVNL-sxJX0n2ygvNuR9dr_XLWEPGFDyQQ98Li5PP12cnCVT3oQEtFN9EiqNTKMeNWYxLQjuUJqaQzkbEGxwjhDUYHK6swLpUg5tDKhyV0NA_UIcNG2DL4UsKJ6pTAol5iEHqB0SnGl00aQphCwsxIc9jP5mpMfwQ1jhrB9B9wS6H0D3_UJ8ZKRvJZnaenhBCveTwv2_FL4Qb1lPnskrGt4d8z3sus5_Pv_ml84oq_mzC_F-EootaRHCdNiAWsV8VzPJw5kk9S6YFbuZOczqPi9p1j8Gem7ms6EgsXz1P1r7WjxUbLYp-7NDcbDd7PANTYO21ZG4v1yuzldHg-X_AVqNCjI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomic+insights+into+ecological+adaptations+and+evolutionary+dynamics+of+Trebouxiophyceae+algae&rft.jtitle=BMC+genomics&rft.au=Xiong%2C+Qian&rft.au=Zheng%2C+Luqin&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Tianli&rft.date=2025-08-20&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-025-11933-y&rft.externalDocID=A852631286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |