A mesh-free approach for fracture modelling of gravity dams under earthquake

Fracture is a major cause of failure for concrete gravity dams. This can result in the large-scale loss of human lives and enormous economic consequences. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes, providing useful input to fracture-resist...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 179; no. 1-2; pp. 9 - 33
Main Authors Das, R., Cleary, P. W.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0376-9429
1573-2673
DOI10.1007/s10704-012-9766-3

Cover

Loading…
Abstract Fracture is a major cause of failure for concrete gravity dams. This can result in the large-scale loss of human lives and enormous economic consequences. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes, providing useful input to fracture-resistant designs. In this paper, the use of a mesh-free particle method called smoothed particle hydrodynamics (SPH) for modelling of gravity dam failure subject to fluctuating dynamic earthquake loads is explored. The structural response of the Koyna dam is analysed with the base of the dam being subjected to high-intensity periodic ground excitations. The SPH prediction of the crack initiation location and propagation pattern is found to be consistent with existing FEM predictions and experimental results from physical models. The transient stress field and the resulting damage evolution in the dam structure were monitored. The amplitude and frequency of the ground excitation is shown to have considerable influence on the fracture pattern and the associated energy dissipation. The fluctuations in the kinetic energy of the dam wall and its fragments are found to vary with different frequencies and amplitudes as the structure undergoes progressive fracture. The dynamic responses and the fracture patterns predicted establish the strong potential of SPH for fracture modelling of dams and similar large structures.
AbstractList Fracture is a major cause of failure for concrete gravity dams. This can result in the large-scale loss of human lives and enormous economic consequences. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes, providing useful input to fracture-resistant designs. In this paper, the use of a mesh-free particle method called smoothed particle hydrodynamics (SPH) for modelling of gravity dam failure subject to fluctuating dynamic earthquake loads is explored. The structural response of the Koyna dam is analysed with the base of the dam being subjected to high-intensity periodic ground excitations. The SPH prediction of the crack initiation location and propagation pattern is found to be consistent with existing FEM predictions and experimental results from physical models. The transient stress field and the resulting damage evolution in the dam structure were monitored. The amplitude and frequency of the ground excitation is shown to have considerable influence on the fracture pattern and the associated energy dissipation. The fluctuations in the kinetic energy of the dam wall and its fragments are found to vary with different frequencies and amplitudes as the structure undergoes progressive fracture. The dynamic responses and the fracture patterns predicted establish the strong potential of SPH for fracture modelling of dams and similar large structures.
Author Das, R.
Cleary, P. W.
Author_xml – sequence: 1
  givenname: R.
  surname: Das
  fullname: Das, R.
  email: r.das@auckland.ac.nz
  organization: Department of Mechanical Engineering, University of Auckland
– sequence: 2
  givenname: P. W.
  surname: Cleary
  fullname: Cleary, P. W.
  organization: CSIRO Mathematics, Informatics and Statistics
BookMark eNqFkU1LAzEURYMo2Ko_wF3AjZtoMvmaLEvxCwpudB3S5E072pnUZEbw3xupIBTU1duck9z37hQd9rEHhM4ZvWKU6uvMqKaCUFYRo5Ui_ABNmNScVErzQzShXCtiRGWO0TTnF0qp0bWYoMUMd5DXpEkA2G23KTq_xk1MuEnOD2MC3MUAm03br3Bs8Cq593b4wMF1GY99gITBpWH9NrpXOEVHjdtkOPueJ-j59uZpfk8Wj3cP89mCeF5XA2mC46KWIgRKQ7NUy0oaCMZzKbR3bmkMD1oIzUHIICUUXgH1xtQqLI3z_ARd7t4tcd9GyIPt2uxLSNdDHLNlSmsjGJPqf7ScpK4157KgF3voSxxTXxaxVUmoNKNGFIrtKJ9izgkau01t59KHZdR-VWF3VdhShf2qwvLi6D3Ht4Mb2tgPybWbP81qZ-byS7-C9JPpd-kTWYae7A
CitedBy_id crossref_primary_10_1007_s10596_014_9437_8
crossref_primary_10_1111_jtxs_12062
crossref_primary_10_1007_s10915_014_9948_4
crossref_primary_10_1016_j_engfailanal_2015_02_020
crossref_primary_10_1051_e3sconf_202131801007
crossref_primary_10_1016_j_istruc_2024_107831
crossref_primary_10_1155_2017_1863714
crossref_primary_10_1016_j_enganabound_2022_07_008
crossref_primary_10_1108_EC_10_2023_0749
crossref_primary_10_1007_s11069_013_1028_9
crossref_primary_10_3389_fbioe_2022_766748
crossref_primary_10_12989_cac_2015_16_6_933
crossref_primary_10_1051_e3sconf_202454201014
crossref_primary_10_1142_S0219876219500816
crossref_primary_10_1080_15732479_2022_2141270
crossref_primary_10_1007_s10999_014_9279_5
crossref_primary_10_12989_gae_2016_11_1_001
crossref_primary_10_21595_jve_2019_20202
crossref_primary_10_1016_j_fbp_2021_02_006
crossref_primary_10_1016_j_enganabound_2024_03_032
crossref_primary_10_1007_s40571_017_0176_1
crossref_primary_10_1016_j_jocs_2016_03_006
crossref_primary_10_1016_j_ijrmms_2018_11_016
crossref_primary_10_2478_jaes_2018_0012
crossref_primary_10_1016_j_soildyn_2019_105735
crossref_primary_10_1016_j_ijdrr_2018_07_024
crossref_primary_10_1016_j_engstruct_2013_05_037
crossref_primary_10_1080_13632469_2015_1021407
crossref_primary_10_1016_j_soildyn_2019_105995
crossref_primary_10_1007_s00217_013_2077_8
crossref_primary_10_1016_j_engstruct_2015_04_023
crossref_primary_10_1016_j_matcom_2022_01_002
crossref_primary_10_1007_s40571_015_0073_4
Cites_doi 10.1002/eqe.4290240203
10.1016/0148-9062(80)91361-3
10.1007/s11431-009-0058-8
10.1016/j.tafmec.2009.12.004
10.1142/S146587630400240X
10.1088/0034-4885/68/8/R01
10.1007/s10704-010-9513-6
10.1016/j.cma.2007.03.023
10.1007/s000240050089
10.1504/PCFD.2007.013000
10.1016/S0013-7944(99)00104-6
10.1002/eqe.4290240103
10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
10.1016/0148-9062(74)91760-4
10.1146/annurev.aa.30.090192.002551
10.1016/j.jvolgeores.2004.03.005
10.1002/(SICI)1096-9845(199601)25:1<15::AID-EQE533>3.0.CO;2-O
10.1002/eqe.4290100107
10.1002/eqe.4290221106
10.1016/j.soildyn.2003.07.004
10.2113/11.1.61
10.1007/978-94-011-3360-9
10.1016/S0093-6413(99)00064-6
10.1016/0013-7944(90)90233-7
10.1016/0013-7944(90)90230-E
10.2118/8215-PA
10.1016/j.engfracmech.2010.03.029
10.1016/j.compstruc.2005.02.003
10.1002/eqe.4290240905
10.1016/j.soildyn.2005.05.003
10.1016/S0045-7825(01)00254-7
10.1016/j.jmatprotec.2006.03.237
10.1016/S0307-904X(01)00054-3
10.1098/rsta.2004.1428
10.1029/92JE01632
10.1109/JOE.1978.1145407
10.1061/(ASCE)0733-9410(1983)109:2(244)
10.1016/j.engstruct.2004.05.019
10.1080/19479832.2010.491801
10.1111/j.1539-6924.1993.tb01069.x
10.1061/40802(189)200
10.1086/339320
10.1002/nag.955
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2012
International Journal of Fracture is a copyright of Springer, (2012). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2012
– notice: International Journal of Fracture is a copyright of Springer, (2012). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SM
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10704-012-9766-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Earthquake Engineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
Earthquake Engineering Abstracts
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Earthquake Engineering Abstracts
Earthquake Engineering Abstracts
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2673
EndPage 33
ExternalDocumentID 10_1007_s10704_012_9766_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PKN
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7SM
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c382t-fda34854dd00dfb6b259ed9c3547caab993d74473e45d55efda6e0c9986db9ac3
IEDL.DBID U2A
ISSN 0376-9429
IngestDate Mon Jul 21 11:48:28 EDT 2025
Mon Jul 21 11:42:10 EDT 2025
Fri Jul 25 10:59:25 EDT 2025
Tue Jul 01 00:44:03 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Fri Feb 21 02:34:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Dam
Smoothed particle hydrodynamics
Earthquake
Fracture
Mesh-free method
Damage
Failure
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-fda34854dd00dfb6b259ed9c3547caab993d74473e45d55efda6e0c9986db9ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2259671094
PQPubID 23500
PageCount 25
ParticipantIDs proquest_miscellaneous_1677941156
proquest_miscellaneous_1429887335
proquest_journals_2259671094
crossref_primary_10_1007_s10704_012_9766_3
crossref_citationtrail_10_1007_s10704_012_9766_3
springer_journals_10_1007_s10704_012_9766_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130100
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 1
  year: 2013
  text: 20130100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of fracture
PublicationTitleAbbrev Int J Fract
PublicationYear 2013
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References GradyDEKippMESmithCSExplosive fracture studies on oil shaleSoc Petrol Eng J19805349356
CalayirYKaratonMSeismic fracture analysis of concrete gravity dams including dam–reservoir interactionComput Struct2005831595160610.1016/j.compstruc.2005.02.003
MonaghanJJSmoothed particle hydrodynamicsAnn Rev Astron Astrophys19923054357410.1146/annurev.aa.30.090192.002551
KhanIHFailure of an earth dam—a case-studyJ Geotech Eng Asce1983109224425910.1061/(ASCE)0733-9410(1983)109:2(244)
LiuZSSwaddiwudhipongSKohCGHigh velocity impact dynamic response of structures using SPH methodInt J Comput Eng Sci20045231532610.1142/S146587630400240X
GrayJPMonaghanJJSwiftRPSPH elastic dynamicsComput Methods Appl Mech Eng200119049–506641666210.1016/S0045-7825(01)00254-7
TalwaniPOn the nature of reservoir-induced seismicityPure Appl Geophys1997150347349210.1007/s000240050089
ClearyPWPrakashMHaJStokesNScottCSmooth particle hydrodynamics: status and future potentialProg Comput Fluid Dyn200772–4709010.1504/PCFD.2007.013000
XuYYuanHApplications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methodsEng Fract Mech201178354455810.1016/j.engfracmech.2010.03.029
ShockeyDACurranDRSeamanLRosenbergJTPetersenCFFragmentation of rock under dynamic loadsInt J Rock Mech Min Sci19741130331710.1016/0148-9062(74)91760-4
PekauOABattaVSeismic cracking behavior of concrete gravity damsDam Eng19945529
GrayJPMonaghanJJNumerical modelling of stress fields and fracture around magma chambersJ Volcanol Geotherm Res200413525928310.1016/j.jvolgeores.2004.03.0051:CAS:528:DC%2BD2cXltVWjtr8%3D
MeloshHJRyanEVAsphaugEDynamic fragmentation in impacts: hydrocode simulation of laboratory impactsJ Geophys Res199297147351475910.1029/92JE01632
AyariMLSaoumaVEFracture mechanics based seismic analysis of concrete gravity dams using discrete cracksEng Fract Mech1990351–358759810.1016/0013-7944(90)90233-7
CalayirYKaratonMA continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systemsSoil Dyn Earthq Eng2005251185786910.1016/j.soildyn.2005.05.003
Libersky LD, Petschek AG (1990) Smooth particle hydrodynamics with strength of materials. In: Trease HE, Crowley WP (eds) Advances in the Free-Lagrange Method. Springer, Berlin
RenQDongYYuTNumerical modeling of concrete hydraulic fracturing with extended finite element methodSci China Ser E Technol Sci200952355956510.1007/s11431-009-0058-8
Hori T, Mohri Y, Kohgo Y (2006) Model test and deformation analysis for failure of a loose sandy embankment dam by seepage. In: Carefree, AZ, USA. 2359-2370. American Society of Civil Engineers, Reston, 20191-4400, USA
ClearyPHaJAlguineVNguyenTFlow modelling in casting processesAppl Math Model200226217119010.1016/S0307-904X(01)00054-3
PekauOAYuzhuCFailure analysis of fractured dams during earthquakes by DEMEng Struct200426101483150210.1016/j.engstruct.2004.05.019
BhattacharjeeSSLegerPSeismic cracking and energy dissipation in concrete gravity damsEarthq Eng Struct Dyn19932211991100710.1002/eqe.4290221106
BattaVPekauOAApplication of boundary element analysis for multiple seismic cracking in concrete gravity damsEarthq Eng Struct Dyn1996251153010.1002/(SICI)1096-9845(199601)25:1<15::AID-EQE533>3.0.CO;2-O
MonaghanJJSmoothed particle hydrodynamicsRep Prog Phys2005681703175910.1088/0034-4885/68/8/R01
Baustadter K, Widmann R (1985) The behavior of the Kolnbrein arch dam. In: Proceedings of the 15th ICOLD, pp 633–651
ClearyPWPrakashMdiscrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciencesPhil Trans R Soc Math Phys Eng Sci200436218222003203010.1098/rsta.2004.1428
MarttDFShakoorAGreeneBHAustin Dam, Pennsylvania: the sliding failure of a concrete gravity damEnviron Eng Geosci2005111617210.2113/11.1.61
AmirrezeGMohsenGLarge-scale testing on specific fracture energy determination of dam concreteInt J Fract20061411–2247254
UngerJFEckardtSKönkeCModelling of cohesive crack growth in concrete structures with the extended finite element methodComput Methods Appl Mech Eng200719641–444087410010.1016/j.cma.2007.03.023
ChopraAKGuptaSHydrodynamic and foundation interaction effects in frequency response functions for concrete gravity damsEarthq Eng Struct Dyn19821018910610.1002/eqe.4290100107
Das R, Cleary PW (2008b) Modelling brittle fracture and fragmentation of a column during projectile impact using a mesh-free method. In: 6th International conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim
Wingate CA, Fisher HN (1993) Strength modeling in SPHC. Los Alamos National Laboratory, Report no. LA-UR-93-3942
LeeJFenvesGLA plastic-damage concrete model for earthquake analysis of damsEarthq Eng Struct Dyn199827993795610.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
Barker DB, Fourney WL, Dally JW (1978) The influence of stress waves on explosive induced fragmentation-borehole crack network. In: 19th US symposium on rock mechanics, Lake Tahoe
Fujiwara A (1989) Experiments and scaling laws for catastrophic collisions, pp 240–265
FangXJinFWangJSeismic fracture simulation of the Koyna gravity dam using an extended finite element methodJ Tsinghua Univ (Sci Technol)2008481220652069
GuanglunWPekauOAChuhanZShaominWSeismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanicsEng Fract Mech2000651678710.1016/S0013-7944(99)00104-6
GhoshBMadabhushiSPGA numerical investigation into effects of single and multiple frequency earthquake motionsSoil Dyn Earthq Eng200323869170410.1016/j.soildyn.2003.07.004
PekauOAFengLMZhengCHSeismic fracture of Koyna dam—case-studyEarthq Eng Struct Dyn1995241153310.1002/eqe.4290240103
KhoeiARBaraniORMofidMModeling of dynamic cohesive fracture propagation in porous saturated mediaInt J Numer Anal Methods Geomech201135101160118410.1002/nag.955
MarthaLFLlorcaJIngraffeaARElicesMNumerical simulation of crack initiation and propagation in an arch damDam Eng199123193211
ImaedaYInutsukaS-IShear flows in smoothed particle hydrodynamicsAstrophys J2002569150151810.1086/339320
Aliabadi MH, Rooke DP (1991) Numerical fracture mechanics. Computational Mechanics Publications and Kluwer Academic Publishers
AndersonTLFracture mechanics: fundamentals and applications1991Boca RatonCRC Press
BaraniORKhoeiARMofidMModeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fractureInt J Fract20111671153110.1007/s10704-010-9513-6
ClearyPWPrakashMRothaugeKCombining digital terrain and surface textures with large-scale particle-based computational models to predict dam collapse and landslide eventsInt J Image Data Fusion20101433735710.1080/19479832.2010.491801
ClearyPWPrakashMHaJNovel applications of smoothed particle hydrodynamics (SPH) in metal formingJ Mater Process Technol20061771–3414810.1016/j.jmatprotec.2006.03.2371:CAS:528:DC%2BD28XntV2jtbk%3D
DeKayMLMcClellandGHPredicting loss of life in cases of dam failure and flash floodRisk Anal199313219320510.1111/j.1539-6924.1993.tb01069.x
OzakiMHayashiSEarthquake resistant design of offshore building structuresIEEE J Ocean Eng19783415216210.1109/JOE.1978.1145407
GradyDEKippMEContinuum modelling of explosive fracture in oil shaleInt J Rock Mech Min Sci Geomech Abstr198017314715710.1016/0148-9062(80)91361-3
DasRClearyPWEffect of rock shapes on brittle fracture using Smoothed Particle HydrodynamicsTheor Appl Fract Mech201053476010.1016/j.tafmec.2009.12.004
GhribFTinawiRApplication of damage mechanics for seismic analysis of concrete gravity damsEarthq Eng Struct Dyn199524215717310.1002/eqe.4290240203
Das R, Cleary PW (2008a) Modelling 3D fracture and fragmentation in a thin plate under high velocity projectile impact using SPH. In: 3rd SPHERIC workshop, Lausanne
IngraffeaARCase studies of simulation of fracture in concrete damsEng Fract Mech1990351–355356410.1016/0013-7944(90)90230-E
LeeOSKimDYCrack-arrest phenomenon of an aluminum alloyMech Res Commun199926557558110.1016/S0093-6413(99)00064-6
CerveraMOliverJFariaRSeismic evaluation of concrete dams via continuum damage modelsEarthq Eng Struct Dyn19952491225124510.1002/eqe.4290240905
OR Barani (9766_CR5) 2011; 167
9766_CR20
V Batta (9766_CR7) 1996; 25
HJ Melosh (9766_CR43) 1992; 97
JJ Monaghan (9766_CR45) 2005; 68
DF Martt (9766_CR42) 2005; 11
Y Calayir (9766_CR11) 2005; 25
AK Chopra (9766_CR13) 1982; 10
9766_CR24
OA Pekau (9766_CR48) 2004; 26
9766_CR6
R Das (9766_CR21) 2010; 53
9766_CR54
9766_CR1
AR Ingraffea (9766_CR34) 1990; 35
9766_CR8
PW Cleary (9766_CR16) 2006; 177
PW Cleary (9766_CR18) 2010; 1
JP Gray (9766_CR30) 2001; 190
J Lee (9766_CR38) 1998; 27
M Cervera (9766_CR12) 1995; 24
PW Cleary (9766_CR14) 2004; 362
9766_CR19
F Ghrib (9766_CR26) 1995; 24
Y Imaeda (9766_CR33) 2002; 569
AR Khoei (9766_CR36) 2011; 35
M Ozaki (9766_CR46) 1978; 3
PW Cleary (9766_CR17) 2007; 7
Q Ren (9766_CR50) 2009; 52
JP Gray (9766_CR28) 2004; 135
OA Pekau (9766_CR47) 1994; 5
W Guanglun (9766_CR31) 2000; 65
P Cleary (9766_CR15) 2002; 26
X Fang (9766_CR23) 2008; 48
G Amirreze (9766_CR2) 2006; 141
DE Grady (9766_CR27) 1980; 17
JJ Monaghan (9766_CR44) 1992; 30
ZS Liu (9766_CR40) 2004; 5
Y Calayir (9766_CR10) 2005; 83
LF Martha (9766_CR41) 1991; 2
JF Unger (9766_CR53) 2007; 196
DE Grady (9766_CR29) 1980; 5
9766_CR32
SS Bhattacharjee (9766_CR9) 1993; 22
OA Pekau (9766_CR49) 1995; 24
IH Khan (9766_CR35) 1983; 109
B Ghosh (9766_CR25) 2003; 23
DA Shockey (9766_CR51) 1974; 11
ML DeKay (9766_CR22) 1993; 13
TL Anderson (9766_CR3) 1991
OS Lee (9766_CR37) 1999; 26
9766_CR39
Y Xu (9766_CR55) 2011; 78
ML Ayari (9766_CR4) 1990; 35
P Talwani (9766_CR52) 1997; 150
References_xml – reference: CalayirYKaratonMSeismic fracture analysis of concrete gravity dams including dam–reservoir interactionComput Struct2005831595160610.1016/j.compstruc.2005.02.003
– reference: BattaVPekauOAApplication of boundary element analysis for multiple seismic cracking in concrete gravity damsEarthq Eng Struct Dyn1996251153010.1002/(SICI)1096-9845(199601)25:1<15::AID-EQE533>3.0.CO;2-O
– reference: LeeJFenvesGLA plastic-damage concrete model for earthquake analysis of damsEarthq Eng Struct Dyn199827993795610.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
– reference: GhribFTinawiRApplication of damage mechanics for seismic analysis of concrete gravity damsEarthq Eng Struct Dyn199524215717310.1002/eqe.4290240203
– reference: ClearyPHaJAlguineVNguyenTFlow modelling in casting processesAppl Math Model200226217119010.1016/S0307-904X(01)00054-3
– reference: Hori T, Mohri Y, Kohgo Y (2006) Model test and deformation analysis for failure of a loose sandy embankment dam by seepage. In: Carefree, AZ, USA. 2359-2370. American Society of Civil Engineers, Reston, 20191-4400, USA
– reference: UngerJFEckardtSKönkeCModelling of cohesive crack growth in concrete structures with the extended finite element methodComput Methods Appl Mech Eng200719641–444087410010.1016/j.cma.2007.03.023
– reference: PekauOAYuzhuCFailure analysis of fractured dams during earthquakes by DEMEng Struct200426101483150210.1016/j.engstruct.2004.05.019
– reference: CalayirYKaratonMA continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systemsSoil Dyn Earthq Eng2005251185786910.1016/j.soildyn.2005.05.003
– reference: XuYYuanHApplications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methodsEng Fract Mech201178354455810.1016/j.engfracmech.2010.03.029
– reference: FangXJinFWangJSeismic fracture simulation of the Koyna gravity dam using an extended finite element methodJ Tsinghua Univ (Sci Technol)2008481220652069
– reference: Fujiwara A (1989) Experiments and scaling laws for catastrophic collisions, pp 240–265
– reference: MeloshHJRyanEVAsphaugEDynamic fragmentation in impacts: hydrocode simulation of laboratory impactsJ Geophys Res199297147351475910.1029/92JE01632
– reference: LiuZSSwaddiwudhipongSKohCGHigh velocity impact dynamic response of structures using SPH methodInt J Comput Eng Sci20045231532610.1142/S146587630400240X
– reference: Baustadter K, Widmann R (1985) The behavior of the Kolnbrein arch dam. In: Proceedings of the 15th ICOLD, pp 633–651
– reference: ClearyPWPrakashMRothaugeKCombining digital terrain and surface textures with large-scale particle-based computational models to predict dam collapse and landslide eventsInt J Image Data Fusion20101433735710.1080/19479832.2010.491801
– reference: MarthaLFLlorcaJIngraffeaARElicesMNumerical simulation of crack initiation and propagation in an arch damDam Eng199123193211
– reference: GradyDEKippMESmithCSExplosive fracture studies on oil shaleSoc Petrol Eng J19805349356
– reference: ClearyPWPrakashMHaJNovel applications of smoothed particle hydrodynamics (SPH) in metal formingJ Mater Process Technol20061771–3414810.1016/j.jmatprotec.2006.03.2371:CAS:528:DC%2BD28XntV2jtbk%3D
– reference: ChopraAKGuptaSHydrodynamic and foundation interaction effects in frequency response functions for concrete gravity damsEarthq Eng Struct Dyn19821018910610.1002/eqe.4290100107
– reference: Aliabadi MH, Rooke DP (1991) Numerical fracture mechanics. Computational Mechanics Publications and Kluwer Academic Publishers
– reference: MarttDFShakoorAGreeneBHAustin Dam, Pennsylvania: the sliding failure of a concrete gravity damEnviron Eng Geosci2005111617210.2113/11.1.61
– reference: GrayJPMonaghanJJNumerical modelling of stress fields and fracture around magma chambersJ Volcanol Geotherm Res200413525928310.1016/j.jvolgeores.2004.03.0051:CAS:528:DC%2BD2cXltVWjtr8%3D
– reference: GuanglunWPekauOAChuhanZShaominWSeismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanicsEng Fract Mech2000651678710.1016/S0013-7944(99)00104-6
– reference: ImaedaYInutsukaS-IShear flows in smoothed particle hydrodynamicsAstrophys J2002569150151810.1086/339320
– reference: LeeOSKimDYCrack-arrest phenomenon of an aluminum alloyMech Res Commun199926557558110.1016/S0093-6413(99)00064-6
– reference: KhoeiARBaraniORMofidMModeling of dynamic cohesive fracture propagation in porous saturated mediaInt J Numer Anal Methods Geomech201135101160118410.1002/nag.955
– reference: Barker DB, Fourney WL, Dally JW (1978) The influence of stress waves on explosive induced fragmentation-borehole crack network. In: 19th US symposium on rock mechanics, Lake Tahoe
– reference: Libersky LD, Petschek AG (1990) Smooth particle hydrodynamics with strength of materials. In: Trease HE, Crowley WP (eds) Advances in the Free-Lagrange Method. Springer, Berlin
– reference: IngraffeaARCase studies of simulation of fracture in concrete damsEng Fract Mech1990351–355356410.1016/0013-7944(90)90230-E
– reference: Das R, Cleary PW (2008a) Modelling 3D fracture and fragmentation in a thin plate under high velocity projectile impact using SPH. In: 3rd SPHERIC workshop, Lausanne
– reference: PekauOABattaVSeismic cracking behavior of concrete gravity damsDam Eng19945529
– reference: DasRClearyPWEffect of rock shapes on brittle fracture using Smoothed Particle HydrodynamicsTheor Appl Fract Mech201053476010.1016/j.tafmec.2009.12.004
– reference: BhattacharjeeSSLegerPSeismic cracking and energy dissipation in concrete gravity damsEarthq Eng Struct Dyn19932211991100710.1002/eqe.4290221106
– reference: MonaghanJJSmoothed particle hydrodynamicsRep Prog Phys2005681703175910.1088/0034-4885/68/8/R01
– reference: BaraniORKhoeiARMofidMModeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fractureInt J Fract20111671153110.1007/s10704-010-9513-6
– reference: GhoshBMadabhushiSPGA numerical investigation into effects of single and multiple frequency earthquake motionsSoil Dyn Earthq Eng200323869170410.1016/j.soildyn.2003.07.004
– reference: AmirrezeGMohsenGLarge-scale testing on specific fracture energy determination of dam concreteInt J Fract20061411–2247254
– reference: KhanIHFailure of an earth dam—a case-studyJ Geotech Eng Asce1983109224425910.1061/(ASCE)0733-9410(1983)109:2(244)
– reference: TalwaniPOn the nature of reservoir-induced seismicityPure Appl Geophys1997150347349210.1007/s000240050089
– reference: AndersonTLFracture mechanics: fundamentals and applications1991Boca RatonCRC Press
– reference: GrayJPMonaghanJJSwiftRPSPH elastic dynamicsComput Methods Appl Mech Eng200119049–506641666210.1016/S0045-7825(01)00254-7
– reference: GradyDEKippMEContinuum modelling of explosive fracture in oil shaleInt J Rock Mech Min Sci Geomech Abstr198017314715710.1016/0148-9062(80)91361-3
– reference: MonaghanJJSmoothed particle hydrodynamicsAnn Rev Astron Astrophys19923054357410.1146/annurev.aa.30.090192.002551
– reference: RenQDongYYuTNumerical modeling of concrete hydraulic fracturing with extended finite element methodSci China Ser E Technol Sci200952355956510.1007/s11431-009-0058-8
– reference: OzakiMHayashiSEarthquake resistant design of offshore building structuresIEEE J Ocean Eng19783415216210.1109/JOE.1978.1145407
– reference: Wingate CA, Fisher HN (1993) Strength modeling in SPHC. Los Alamos National Laboratory, Report no. LA-UR-93-3942
– reference: Das R, Cleary PW (2008b) Modelling brittle fracture and fragmentation of a column during projectile impact using a mesh-free method. In: 6th International conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim
– reference: AyariMLSaoumaVEFracture mechanics based seismic analysis of concrete gravity dams using discrete cracksEng Fract Mech1990351–358759810.1016/0013-7944(90)90233-7
– reference: CerveraMOliverJFariaRSeismic evaluation of concrete dams via continuum damage modelsEarthq Eng Struct Dyn19952491225124510.1002/eqe.4290240905
– reference: ShockeyDACurranDRSeamanLRosenbergJTPetersenCFFragmentation of rock under dynamic loadsInt J Rock Mech Min Sci19741130331710.1016/0148-9062(74)91760-4
– reference: ClearyPWPrakashMdiscrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciencesPhil Trans R Soc Math Phys Eng Sci200436218222003203010.1098/rsta.2004.1428
– reference: PekauOAFengLMZhengCHSeismic fracture of Koyna dam—case-studyEarthq Eng Struct Dyn1995241153310.1002/eqe.4290240103
– reference: ClearyPWPrakashMHaJStokesNScottCSmooth particle hydrodynamics: status and future potentialProg Comput Fluid Dyn200772–4709010.1504/PCFD.2007.013000
– reference: DeKayMLMcClellandGHPredicting loss of life in cases of dam failure and flash floodRisk Anal199313219320510.1111/j.1539-6924.1993.tb01069.x
– volume: 24
  start-page: 157
  issue: 2
  year: 1995
  ident: 9766_CR26
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290240203
– volume: 17
  start-page: 147
  issue: 3
  year: 1980
  ident: 9766_CR27
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(80)91361-3
– volume: 52
  start-page: 559
  issue: 3
  year: 2009
  ident: 9766_CR50
  publication-title: Sci China Ser E Technol Sci
  doi: 10.1007/s11431-009-0058-8
– volume: 53
  start-page: 47
  year: 2010
  ident: 9766_CR21
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2009.12.004
– volume: 5
  start-page: 315
  issue: 2
  year: 2004
  ident: 9766_CR40
  publication-title: Int J Comput Eng Sci
  doi: 10.1142/S146587630400240X
– ident: 9766_CR39
– volume: 68
  start-page: 1703
  year: 2005
  ident: 9766_CR45
  publication-title: Rep Prog Phys
  doi: 10.1088/0034-4885/68/8/R01
– volume: 48
  start-page: 2065
  issue: 12
  year: 2008
  ident: 9766_CR23
  publication-title: J Tsinghua Univ (Sci Technol)
– volume: 167
  start-page: 15
  issue: 1
  year: 2011
  ident: 9766_CR5
  publication-title: Int J Fract
  doi: 10.1007/s10704-010-9513-6
– volume: 196
  start-page: 4087
  issue: 41–44
  year: 2007
  ident: 9766_CR53
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.03.023
– volume: 150
  start-page: 473
  issue: 3
  year: 1997
  ident: 9766_CR52
  publication-title: Pure Appl Geophys
  doi: 10.1007/s000240050089
– volume: 7
  start-page: 70
  issue: 2–4
  year: 2007
  ident: 9766_CR17
  publication-title: Prog Comput Fluid Dyn
  doi: 10.1504/PCFD.2007.013000
– ident: 9766_CR8
– volume: 65
  start-page: 67
  issue: 1
  year: 2000
  ident: 9766_CR31
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(99)00104-6
– volume: 141
  start-page: 247
  issue: 1–2
  year: 2006
  ident: 9766_CR2
  publication-title: Int J Fract
– volume: 24
  start-page: 15
  issue: 1
  year: 1995
  ident: 9766_CR49
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290240103
– volume: 27
  start-page: 937
  issue: 9
  year: 1998
  ident: 9766_CR38
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
– volume: 11
  start-page: 303
  year: 1974
  ident: 9766_CR51
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/0148-9062(74)91760-4
– volume: 30
  start-page: 543
  year: 1992
  ident: 9766_CR44
  publication-title: Ann Rev Astron Astrophys
  doi: 10.1146/annurev.aa.30.090192.002551
– volume: 135
  start-page: 259
  year: 2004
  ident: 9766_CR28
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2004.03.005
– volume: 25
  start-page: 15
  issue: 1
  year: 1996
  ident: 9766_CR7
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/(SICI)1096-9845(199601)25:1<15::AID-EQE533>3.0.CO;2-O
– ident: 9766_CR24
– volume: 10
  start-page: 89
  issue: 1
  year: 1982
  ident: 9766_CR13
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290100107
– volume-title: Fracture mechanics: fundamentals and applications
  year: 1991
  ident: 9766_CR3
– volume: 22
  start-page: 991
  issue: 11
  year: 1993
  ident: 9766_CR9
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290221106
– ident: 9766_CR20
– volume: 23
  start-page: 691
  issue: 8
  year: 2003
  ident: 9766_CR25
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2003.07.004
– volume: 11
  start-page: 61
  issue: 1
  year: 2005
  ident: 9766_CR42
  publication-title: Environ Eng Geosci
  doi: 10.2113/11.1.61
– ident: 9766_CR1
  doi: 10.1007/978-94-011-3360-9
– volume: 26
  start-page: 575
  issue: 5
  year: 1999
  ident: 9766_CR37
  publication-title: Mech Res Commun
  doi: 10.1016/S0093-6413(99)00064-6
– volume: 35
  start-page: 587
  issue: 1–3
  year: 1990
  ident: 9766_CR4
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(90)90233-7
– volume: 35
  start-page: 553
  issue: 1–3
  year: 1990
  ident: 9766_CR34
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(90)90230-E
– volume: 5
  start-page: 349
  year: 1980
  ident: 9766_CR29
  publication-title: Soc Petrol Eng J
  doi: 10.2118/8215-PA
– volume: 2
  start-page: 193
  issue: 3
  year: 1991
  ident: 9766_CR41
  publication-title: Dam Eng
– volume: 78
  start-page: 544
  issue: 3
  year: 2011
  ident: 9766_CR55
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2010.03.029
– volume: 83
  start-page: 1595
  year: 2005
  ident: 9766_CR10
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.02.003
– volume: 24
  start-page: 1225
  issue: 9
  year: 1995
  ident: 9766_CR12
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290240905
– ident: 9766_CR54
– volume: 25
  start-page: 857
  issue: 11
  year: 2005
  ident: 9766_CR11
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2005.05.003
– volume: 190
  start-page: 6641
  issue: 49–50
  year: 2001
  ident: 9766_CR30
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00254-7
– volume: 177
  start-page: 41
  issue: 1–3
  year: 2006
  ident: 9766_CR16
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.03.237
– ident: 9766_CR6
– volume: 26
  start-page: 171
  issue: 2
  year: 2002
  ident: 9766_CR15
  publication-title: Appl Math Model
  doi: 10.1016/S0307-904X(01)00054-3
– volume: 5
  start-page: 5
  year: 1994
  ident: 9766_CR47
  publication-title: Dam Eng
– ident: 9766_CR19
– volume: 362
  start-page: 2003
  issue: 1822
  year: 2004
  ident: 9766_CR14
  publication-title: Phil Trans R Soc Math Phys Eng Sci
  doi: 10.1098/rsta.2004.1428
– volume: 97
  start-page: 14735
  year: 1992
  ident: 9766_CR43
  publication-title: J Geophys Res
  doi: 10.1029/92JE01632
– volume: 3
  start-page: 152
  issue: 4
  year: 1978
  ident: 9766_CR46
  publication-title: IEEE J Ocean Eng
  doi: 10.1109/JOE.1978.1145407
– volume: 109
  start-page: 244
  issue: 2
  year: 1983
  ident: 9766_CR35
  publication-title: J Geotech Eng Asce
  doi: 10.1061/(ASCE)0733-9410(1983)109:2(244)
– volume: 26
  start-page: 1483
  issue: 10
  year: 2004
  ident: 9766_CR48
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.05.019
– volume: 1
  start-page: 337
  issue: 4
  year: 2010
  ident: 9766_CR18
  publication-title: Int J Image Data Fusion
  doi: 10.1080/19479832.2010.491801
– volume: 13
  start-page: 193
  issue: 2
  year: 1993
  ident: 9766_CR22
  publication-title: Risk Anal
  doi: 10.1111/j.1539-6924.1993.tb01069.x
– ident: 9766_CR32
  doi: 10.1061/40802(189)200
– volume: 569
  start-page: 501
  issue: 1
  year: 2002
  ident: 9766_CR33
  publication-title: Astrophys J
  doi: 10.1086/339320
– volume: 35
  start-page: 1160
  issue: 10
  year: 2011
  ident: 9766_CR36
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.955
SSID ssj0009784
Score 2.192787
Snippet Fracture is a major cause of failure for concrete gravity dams. This can result in the large-scale loss of human lives and enormous economic consequences....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Amplitudes
Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Computational fluid dynamics
Concrete dams
Crack initiation
Crack propagation
Dam failure
Dams (gravity)
Earthquake damage
Earthquake loads
Earthquakes
Economic models
Energy dissipation
Excitation
Failure
Finite element method
Fluid flow
Fracture mechanics
Gravity
Gravity dams
Kinetic energy
Materials Science
Mathematical models
Mechanical Engineering
Meshless methods
Modelling
Numerical prediction
Original Paper
Seismic engineering
Seismic phenomena
Smooth particle hydrodynamics
Stress distribution
Variations
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1ygqelMWYfSUnqdJSRIuIhd7CvkJB-0z7_51Nk0YFe86GhNnZmW93dr4PoWtIIZFR1BLKZUogQ1Oiw0ASHTFrwGNsnMu3vfZEt8-eB3xQHLhlxbXKMibmgdpOjD8jvwO_i4W_OMgepjPiVaN8dbWQ0NhGdQjBEWy-6o_t3tt7RbsroxWBlBQkhtBb1jVXzXMyv4EREkjJgtDfmamCm38qpHni6eyjvQIx4tZqig_Qlhsfot0fPIJH6KWFRy4bknTuHC5ZwjHAUZz6Jqjl3OFc8ca3nuNJir3mEKBvbNUow76LbI7B4RfD2VJ9umPU77Q_nrqkkEkghkbhgqRWURZxZm0Q2FQLDZZyNjaUM2mU0oBArGRMUse45dzBeOECA_ssYXWsDD1BtfFk7E4R5qEINbtnoafFUzLUsdPKWEjiqQKgKBsoKE2UmIJD3EtZfCUV-7G3agJWTbxVE9pAN-tXpisCjU2Dm6Xdk2ItZUk18w10tX4Mq8CXNtTYTZYZbGDA5yJJKd8wRkgIPoCARQPdlnNafebfnzrb_FPnaCfMJTL8sUwT1RbzpbsAoLLQl4U3fgNJr-OP
  priority: 102
  providerName: ProQuest
Title A mesh-free approach for fracture modelling of gravity dams under earthquake
URI https://link.springer.com/article/10.1007/s10704-012-9766-3
https://www.proquest.com/docview/2259671094
https://www.proquest.com/docview/1429887335
https://www.proquest.com/docview/1677941156
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VcqEHVAqIAI22Uk-glcw-7WNoE1ALCEEjwcnal4VESUqc_H9mHTsJFUTqyQePH5odz3zj2fkG4BuGkNQZ7imXuqAYoTm1LNHUpsI7tBifVePbLq_U-UD8vJN3dR932ex2b0qSladeanbT1Y4JRjGEKsrXoCVj6o5GPGDdBdOuTmecUVrRDL1tU8p86xavg9ECYf5TFK1iTf8TbNYgkXRnq7oFH8LwM3xcog7chosueQrlAy3GIZCGGJwgAiVF7HuajgOphtzEbnMyKkgcM4SAm3jzVJLYODYmaOOTh-epeQw7MOj3fn8_p_VkBOp4yia08IaLVArvk8QXVllMYoLPHJdCO2Msgg6vhdA8COmlDCivQuIwtVLeZsbxXVgfjoZhD4hkillxIlhkwjOa2SxY4zzG7cIgNtRtSBoV5a6mDY_TK_7kC8LjqNUctZpHrea8DUfzS_7OODNWCR82es_rz6fM0clkKu4SFW34Oj-Nhh-rGWYYRtMScxY0s1RzLlfIKI3-BkGvasNxs6aLx7z7Uvv_JX0AG6wakhF_zBzC-mQ8DV8QqkxsB9bS_lkHWt0flxe38Xh2_6uHx9Pe1fVNpzLcF-8f5FY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOqC2tWF51pXIpshr8TA4VQqXLUhZOIHFL_YqQgF3Y7Arxp_iNHScbQpG6N85xHGs8j88Zz3wAXzGEpM5wT7nUBcUIzalliaY2Fd6hxvisom87OVW9c_H7Ql7MwWNTCxOvVTY-sXLUfujiP_LvqHeZihcHxd7tHY2sUTG72lBo1GpxHB7u8chW_jg6wP3dZqz76-xnj05ZBajjKRvTwhsuUim8TxJfWGVx4uAzx6XQzhiLAdtrITQPQnopA45XIXF4LFHeZsZxnPcNLAjOs2hRafewbfKr07pdlVY0Q0ffZFHrUj1d3fdgFAGAovzfONiC2xf52CrMdd_B8hSfkv1aod7DXBh8gKVnXQtXoL9PbkJ5SYtRCKTpSU4Q_JIillxNRoFU_Dqx0J0MCxIZjhDrE29uShJr1kYE5Ti-vJuYq_ARzl9FfJ9gfjAchFUgkilmxa5gsQmf0cxmwRrnETIUBmGp7kDSiCh3047lkTjjOm97LUep5ijVPEo15x349vTKbd2uY9bgjUbu-dRyy7zVsw58eXqMNhcTKWYQhpMSj0uo4anmXM4YozS6OsTbqgM7zZ62n_nvotZmL-ozLPbOTvp5_-j0eB3esoqcI_4Q2oD58WgSNhEije1WpZcE_ry2IfwFzrQg9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkBA9VFBaNTTAIvVUtMLs0z5GLRFv9dBI3Kx9WZEoDo2d_8-sYycUARJnjx-anZ351jPzDcB3DCGpM9xTLnVBMUJzalmiqU2Fd2gxPmvGt13fqLORuLiVt-2c06qrdu9SkvOehsjSVNbHD744ftL4ppvqCUYxnCrKV2EdvfFJNOsRGyxZd3U654_Simboebu05kuP-D8wLdHmswRpE3eGW_CxBYxkMF_hbVgJ5Sf48IRGcAeuBuQ-VGNaTEMgHUk4QTRKitgDNZsG0gy8iZ3nZFKQOHIIwTfx5r4isYlsStDe6_G_mbkLn2E0PP3z84y2UxKo4ymraeENF6kU3ieJL6yyeKAJPnNcCu2MsQhAvBZC8yCklzKgvAqJw2OW8jYzjn-BtXJShq9AJFPMihPBIiue0cxmwRrnMYYXBnGi7kHSqSh3LYV4nGTxN1-SH0et5qjVPGo15z34sbjlYc6f8ZZwv9N73m6lKkeHk6lYMSp6cLi4jJsgZjZMGSazCs8vaHKp5ly-IaM0-h4EwKoHR92aLl_z6kftvkv6ADZ-_xrmV-c3l99gkzWzM-L_mj6s1dNZ2EMEU9v9xkofAUtt5d0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mesh-free+approach+for+fracture+modelling+of+gravity+dams+under+earthquake&rft.jtitle=International+journal+of+fracture&rft.au=Das%2C+R.&rft.au=Cleary%2C+P.+W.&rft.date=2013-01-01&rft.pub=Springer+Netherlands&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=179&rft.issue=1-2&rft.spage=9&rft.epage=33&rft_id=info:doi/10.1007%2Fs10704-012-9766-3&rft.externalDocID=10_1007_s10704_012_9766_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon