Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA

To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 11; no. 8; p. 324
Main Authors Ahmad, Ayaz, Chaiyasarn, Krisada, Farooq, Furqan, Ahmad, Waqas, Suparp, Suniti, Aslam, Fahid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response.
AbstractList To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response.
Author Farooq, Furqan
Aslam, Fahid
Chaiyasarn, Krisada
Ahmad, Ayaz
Ahmad, Waqas
Suparp, Suniti
Author_xml – sequence: 1
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 2
  givenname: Krisada
  orcidid: 0000-0003-0222-8773
  surname: Chaiyasarn
  fullname: Chaiyasarn, Krisada
– sequence: 3
  givenname: Furqan
  orcidid: 0000-0002-4671-1655
  surname: Farooq
  fullname: Farooq, Furqan
– sequence: 4
  givenname: Waqas
  orcidid: 0000-0002-1668-7607
  surname: Ahmad
  fullname: Ahmad, Waqas
– sequence: 5
  givenname: Suniti
  orcidid: 0000-0002-2826-066X
  surname: Suparp
  fullname: Suparp, Suniti
– sequence: 6
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
BookMark eNp1UU1vEzEQXaEiUUp_ADdLXNpDwOu11-tjtAqhUhUiPs7WeOwNDhs7eJ0CP4D_jdOAVBUxlxmN3nsz8-Z5dRZicFX1sqavm0bRN-bgR-vDZqpr2tGG8SfVOaNSzERD1dmD-ll1OU1bWqITjAl-Xv3q426f3DT5O0c-5uTCJn8h6-Ssx-xjIHceyNIFRxY_TrjSW6e4SbDblZHkarlYXxMIlsxT9oNHDyNZuUO6T_l7TF_J1Xy1uiZDTKSPAZPL7lhk8OGo8KGfv6ieDjBO7vJPvqg-v1186t_Nbt8vb_r57QybjuXZYLkBlExgY6hCriiAMc61Dg0D0Q3SouFGgZMohuKEki1SJUA1rUJhm4vq5qRrI2z1PvkdpJ86gtf3jZg2GsoVODoNsrVMAReDtRyZKeNQNsx2qkNEhkXr1Ulrn-K3g5uy3sZDCmV9zUTLZfFX8oKSJxSmOE3JDRp9hqOzOYEfdU318YX6nxcWZv2I-Xff_3N-A00tpVc
CitedBy_id crossref_primary_10_1007_s41939_023_00356_5
crossref_primary_10_1016_j_cscm_2024_e03189
crossref_primary_10_1038_s41598_024_54513_y
crossref_primary_10_1038_s41598_024_69271_0
crossref_primary_10_1038_s41598_024_69434_z
crossref_primary_10_3390_polym14183906
crossref_primary_10_1002_suco_202200779
crossref_primary_10_1016_j_mtcomm_2022_103964
crossref_primary_10_3390_ma15020647
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1016_j_mtcomm_2023_105901
crossref_primary_10_3390_polym16131774
crossref_primary_10_1007_s41939_024_00668_0
crossref_primary_10_1016_j_csite_2023_103109
crossref_primary_10_1016_j_conbuildmat_2023_133299
crossref_primary_10_3390_ma15217800
crossref_primary_10_3390_polym14122509
crossref_primary_10_1016_j_jobe_2021_103679
crossref_primary_10_1080_23080477_2024_2418007
crossref_primary_10_1016_j_istruc_2023_05_140
crossref_primary_10_1016_j_dibe_2022_100113
crossref_primary_10_3390_app15031018
crossref_primary_10_1016_j_rineng_2024_102973
crossref_primary_10_3390_ma15155194
crossref_primary_10_3390_ma15124209
crossref_primary_10_1016_j_conbuildmat_2023_131014
crossref_primary_10_1016_j_rineng_2024_103305
crossref_primary_10_1016_j_conbuildmat_2023_131536
crossref_primary_10_3390_buildings12030302
crossref_primary_10_1016_j_jmrt_2023_02_024
crossref_primary_10_1515_rams_2023_0162
crossref_primary_10_3390_buildings12050690
crossref_primary_10_1007_s41939_024_00672_4
crossref_primary_10_1016_j_istruc_2024_106397
crossref_primary_10_1063_5_0235664
crossref_primary_10_1371_journal_pone_0280761
crossref_primary_10_3390_ma15217412
crossref_primary_10_1166_sam_2022_4342
crossref_primary_10_3390_cryst12050569
crossref_primary_10_1016_j_rineng_2023_101390
crossref_primary_10_3389_fmats_2022_1098304
crossref_primary_10_1515_rams_2024_0038
crossref_primary_10_1016_j_cscm_2023_e02153
crossref_primary_10_3390_buildings13123014
crossref_primary_10_1371_journal_pone_0284761
crossref_primary_10_3390_polym14102128
crossref_primary_10_1515_rams_2024_0035
crossref_primary_10_1007_s41939_023_00248_8
crossref_primary_10_1007_s41024_023_00337_8
crossref_primary_10_1016_j_mtcomm_2023_107428
crossref_primary_10_3390_ma15207344
crossref_primary_10_3390_ma14206172
crossref_primary_10_1007_s12205_024_0854_5
crossref_primary_10_1016_j_conbuildmat_2022_127933
crossref_primary_10_1016_j_cscm_2025_e04405
crossref_primary_10_1016_j_jobe_2024_109516
crossref_primary_10_3390_app132111991
crossref_primary_10_1007_s41939_025_00796_1
crossref_primary_10_1016_j_cscm_2021_e00840
crossref_primary_10_3390_app122110864
crossref_primary_10_3390_ma15124311
crossref_primary_10_3390_ma17051192
crossref_primary_10_3390_buildings12091313
crossref_primary_10_3390_buildings12122160
crossref_primary_10_3390_buildings14123998
crossref_primary_10_3390_app13158889
crossref_primary_10_3390_ma17143540
crossref_primary_10_1016_j_cscm_2023_e02836
crossref_primary_10_1007_s42107_023_00662_w
crossref_primary_10_1016_j_conbuildmat_2024_137482
crossref_primary_10_1016_j_mtcomm_2024_110434
crossref_primary_10_1016_j_cscm_2023_e02278
crossref_primary_10_1515_rams_2025_0092
crossref_primary_10_1016_j_jobe_2023_106518
crossref_primary_10_1038_s41598_023_47330_2
crossref_primary_10_1007_s41939_023_00312_3
crossref_primary_10_1002_suco_202400231
crossref_primary_10_1016_j_cscm_2023_e02172
crossref_primary_10_1515_rams_2024_0014
crossref_primary_10_3233_JIFS_221342
crossref_primary_10_3390_polym14061074
crossref_primary_10_1016_j_jobe_2024_109184
crossref_primary_10_1002_suco_202100732
crossref_primary_10_1016_j_istruc_2023_02_080
crossref_primary_10_3390_polym13193389
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1016_j_cscm_2022_e01759
crossref_primary_10_3390_w15061016
crossref_primary_10_1016_j_jmrt_2023_04_223
crossref_primary_10_1016_j_jcomc_2024_100466
crossref_primary_10_1016_j_jmrt_2023_07_034
crossref_primary_10_1007_s42947_023_00321_y
crossref_primary_10_3390_gels8050271
crossref_primary_10_3390_ma14195762
crossref_primary_10_3390_ma15103430
crossref_primary_10_3390_app12010361
crossref_primary_10_1016_j_cscm_2023_e02063
crossref_primary_10_3390_ma15134512
crossref_primary_10_1016_j_jmrt_2023_02_180
crossref_primary_10_3390_ma15082823
crossref_primary_10_1038_s41598_023_42270_3
crossref_primary_10_1186_s44147_023_00332_3
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_1016_j_jer_2025_01_004
crossref_primary_10_1016_j_conbuildmat_2023_133485
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1016_j_cscm_2022_e01620
crossref_primary_10_1016_j_jcomc_2025_100579
crossref_primary_10_3390_ma14164518
crossref_primary_10_1016_j_cscm_2024_e03124
crossref_primary_10_1016_j_istruc_2023_01_019
crossref_primary_10_1016_j_sciaf_2023_e01954
crossref_primary_10_1063_5_0230832
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1016_j_conbuildmat_2024_135530
crossref_primary_10_3390_buildings15050806
crossref_primary_10_3390_ma15124194
crossref_primary_10_1038_s41598_023_47196_4
crossref_primary_10_1007_s00521_024_10736_8
crossref_primary_10_1016_j_mtcomm_2023_107066
crossref_primary_10_1016_j_jobe_2023_107932
crossref_primary_10_1016_j_jmrt_2023_04_209
crossref_primary_10_1016_j_cscm_2022_e01536
crossref_primary_10_3390_buildings12081280
crossref_primary_10_1038_s41598_024_68064_9
crossref_primary_10_1007_s41939_025_00740_3
crossref_primary_10_3390_ma14227034
crossref_primary_10_1515_rams_2024_0006
crossref_primary_10_1016_j_asej_2021_11_002
crossref_primary_10_1016_j_conbuildmat_2023_131278
crossref_primary_10_3390_buildings12020132
crossref_primary_10_1002_eng2_12676
crossref_primary_10_32604_fdmp_2023_029545
crossref_primary_10_3390_ma17143584
crossref_primary_10_3390_ma15072400
crossref_primary_10_1016_j_cscm_2022_e01805
crossref_primary_10_1016_j_mtcomm_2024_108600
crossref_primary_10_1186_s44147_023_00266_w
crossref_primary_10_1016_j_jmrt_2023_07_222
crossref_primary_10_1016_j_rineng_2024_103135
crossref_primary_10_1016_j_cscm_2022_e01243
crossref_primary_10_1016_j_cscm_2023_e02357
crossref_primary_10_3390_ma15124108
crossref_primary_10_1016_j_cscm_2024_e03744
Cites_doi 10.1016/j.conbuildmat.2018.09.204
10.1016/j.conbuildmat.2008.03.006
10.3390/ma14040794
10.1016/j.resconrec.2008.09.006
10.3390/ma14092297
10.1016/j.conbuildmat.2008.07.023
10.1016/j.jclepro.2012.07.020
10.1016/j.conbuildmat.2018.10.159
10.1016/j.cemconres.2004.06.017
10.1016/j.buildenv.2005.07.033
10.1016/j.resourpol.2012.07.001
10.1007/s11053-017-9352-5
10.1016/j.conbuildmat.2006.05.040
10.1016/j.conbuildmat.2008.06.007
10.1016/j.cemconcomp.2020.103621
10.1007/s40999-017-0167-x
10.1007/978-94-007-4908-5
10.1007/s13369-020-04769-z
10.1016/j.conbuildmat.2020.118581
10.1016/j.cemconres.2007.02.002
10.1061/(ASCE)1084-0680(2008)13:2(98)
10.1016/j.conbuildmat.2020.121456
10.1007/s10098-016-1289-6
10.1016/j.conbuildmat.2016.08.111
10.1016/j.jclepro.2016.04.145
10.1016/S0008-8846(02)00938-9
10.3390/su3010155
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings11080324
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - Not for CDI Discovery
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c
10_3390_buildings11080324
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c382t-fd4bac725c3b09c490aabbee6ecb2a58f7dcb4b9ae7c5f803976c095a9369c5d3
IEDL.DBID DOA
ISSN 2075-5309
IngestDate Wed Aug 27 01:19:51 EDT 2025
Fri Jul 25 12:09:00 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 03:05:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-fd4bac725c3b09c490aabbee6ecb2a58f7dcb4b9ae7c5f803976c095a9369c5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1668-7607
0000-0002-4671-1655
0000-0002-2826-066X
0000-0002-0312-2965
0000-0003-0222-8773
0000-0003-2863-3283
OpenAccessLink https://doaj.org/article/a76d29a45fdd4c2b9c4c732d898ccc2c
PQID 2564722574
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c
proquest_journals_2564722574
crossref_citationtrail_10_3390_buildings11080324
crossref_primary_10_3390_buildings11080324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Marie (ref_11) 2012; 37
Naik (ref_4) 2008; 13
Tabsh (ref_20) 2009; 23
ref_14
ref_13
Buck (ref_15) 1977; 74
ref_12
ref_34
Rahal (ref_23) 2007; 42
ref_31
Li (ref_21) 2008; 53
Nguyen (ref_33) 2020; 247
Chen (ref_26) 2003; 33
Xiao (ref_24) 2005; 8
Xiao (ref_22) 2006; 9
Lehmann (ref_6) 2011; 3
Safiuddin (ref_9) 2010; 5
(ref_29) 2017; 15
Cao (ref_19) 2018; 191
Padmini (ref_28) 2009; 23
Khan (ref_18) 2018; 192
Hawreen (ref_5) 2020; 111
Khan (ref_16) 2016; 125
Khatib (ref_25) 2005; 35
Massari (ref_7) 2013; 38
ref_2
Arshad (ref_17) 2020; 45
Tam (ref_27) 2007; 21
Cachim (ref_1) 2009; 23
Northey (ref_8) 2018; 27
Maghool (ref_10) 2017; 19
Etxeberria (ref_30) 2007; 37
Su (ref_32) 2021; 270
Urbaniec (ref_3) 2016; 136
References_xml – volume: 191
  start-page: 242
  year: 2018
  ident: ref_19
  article-title: Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.204
– volume: 23
  start-page: 829
  year: 2009
  ident: ref_28
  article-title: Influence of parent concrete on the properties of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.03.006
– ident: ref_31
  doi: 10.3390/ma14040794
– volume: 53
  start-page: 36
  year: 2008
  ident: ref_21
  article-title: Recycling and reuse of waste concrete in China. Part I. Material behaviour of recycled aggregate concrete
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2008.09.006
– ident: ref_34
  doi: 10.3390/ma14092297
– volume: 23
  start-page: 1292
  year: 2009
  ident: ref_1
  article-title: Mechanical properties of brick aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.07.023
– volume: 37
  start-page: 243
  year: 2012
  ident: ref_11
  article-title: Closed-loop recycling of recycled concrete aggregates
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.07.020
– volume: 192
  start-page: 742
  year: 2018
  ident: ref_18
  article-title: Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.159
– volume: 35
  start-page: 763
  year: 2005
  ident: ref_25
  article-title: Properties of concrete incorporating fine recycled aggregate
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2004.06.017
– volume: 42
  start-page: 407
  year: 2007
  ident: ref_23
  article-title: Mechanical properties of concrete with recycled coarse aggregate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2005.07.033
– volume: 74
  start-page: 212
  year: 1977
  ident: ref_15
  article-title: Recycled concrete as a source of aggregate
  publication-title: J. Am. Concr. Inst.
– volume: 8
  start-page: 197
  year: 2005
  ident: ref_24
  article-title: Study on relationships between strength indexes of recycled concrete
  publication-title: Jianzhu Cailiao Xuebao/J. Build. Mater.
– volume: 38
  start-page: 36
  year: 2013
  ident: ref_7
  article-title: Rare earth elements as critical raw materials: Focus on international markets and future strategies
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2012.07.001
– volume: 27
  start-page: 241
  year: 2018
  ident: ref_8
  article-title: Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9352-5
– volume: 9
  start-page: 154
  year: 2006
  ident: ref_22
  article-title: Investigation on the tensile behavior of recycled aggregate concrete. Jianzhu Cailiao Xuebao
  publication-title: J. Build. Mater.
– volume: 21
  start-page: 1928
  year: 2007
  ident: ref_27
  article-title: Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2006.05.040
– volume: 23
  start-page: 1163
  year: 2009
  ident: ref_20
  article-title: Influence of recycled concrete aggregates on strength properties of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.06.007
– volume: 111
  start-page: 103621
  year: 2020
  ident: ref_5
  article-title: Effect of the source concrete with ASR degradation on the mechanical and physical properties of coarse recycled aggregate
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103621
– volume: 15
  start-page: 549
  year: 2017
  ident: ref_29
  article-title: An Investigation on Mechanical and Physical Properties of Recycled Coarse Aggregate (RCA) Concrete with GGBFS
  publication-title: Int. J. Civ. Eng.
  doi: 10.1007/s40999-017-0167-x
– ident: ref_14
  doi: 10.1007/978-94-007-4908-5
– volume: 45
  start-page: 8577
  year: 2020
  ident: ref_17
  article-title: Efficiency of Supplementary Cementitious Materials and Natural Fiber on Mechanical Performance of Concrete
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04769-z
– volume: 247
  start-page: 118581
  year: 2020
  ident: ref_33
  article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118581
– ident: ref_2
– volume: 37
  start-page: 735
  year: 2007
  ident: ref_30
  article-title: Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2007.02.002
– volume: 13
  start-page: 98
  year: 2008
  ident: ref_4
  article-title: Sustainability of Concrete Construction
  publication-title: Pract. Period. Struct. Des. Constr.
  doi: 10.1061/(ASCE)1084-0680(2008)13:2(98)
– ident: ref_12
– volume: 5
  start-page: 1952
  year: 2010
  ident: ref_9
  article-title: Utilization of solid wastes in construction materials
  publication-title: Int. J. Phys. Sci.
– ident: ref_13
– volume: 270
  start-page: 121456
  year: 2021
  ident: ref_32
  article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121456
– volume: 19
  start-page: 949
  year: 2017
  ident: ref_10
  article-title: Environmental impacts of utilizing waste steel slag aggregates as recycled road construction materials
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-016-1289-6
– volume: 125
  start-page: 800
  year: 2016
  ident: ref_16
  article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.111
– volume: 136
  start-page: 119
  year: 2016
  ident: ref_3
  article-title: Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.145
– volume: 33
  start-page: 125
  year: 2003
  ident: ref_26
  article-title: Use of building rubbles as recycled aggregates
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00938-9
– volume: 3
  start-page: 155
  year: 2011
  ident: ref_6
  article-title: Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption
  publication-title: Sustainability
  doi: 10.3390/su3010155
SSID ssj0000852254
Score 2.536269
Snippet To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 324
SubjectTerms Accuracy
Aggregates
Algorithms
artificial neural network
Artificial neural networks
cement
Civil engineering
Compressive strength
Computers
Concrete
Construction industry
Data points
Environmental risk
Error analysis
Gene expression
gene expression programming
Genetic algorithms
Learning algorithms
Learning theory
Machine learning
Mechanical properties
Mortars (material)
Natural resources
Neural networks
Performance evaluation
Porous materials
Project engineering
Raw materials
recycled coarse aggregate
Root-mean-square errors
Sensitivity analysis
Software
Sustainable development
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt5tIeStO0dNs06JBDUjDx6sOyT2WzbBICWZbQQG5GGslpoPWmu27oH-j_7oys3TYEcrKxJBtrpNGT5vGGsf2mGNkKjZspCSFT2uSZLaTPvAfE906DjTrdF7Pi7EqdX-vrdOC2SrTKtU-MjtovgM7Ij3BpJl1DbdSXu58ZZY2i6GpKofGcbaELLssB2zqezuaXm1MWBBTYRvXhTIn7-yOXsk2viP-eS6EeLEhRt_-RW45rzclr9iqBRD7urbrNnoX2DXv5n3TgDvtDEzlyWO8Dp9Bye9N94_MlxV2or_n9reWkKc2nvxPXtcXiSMb6gW_gB6fT-SG3rY-f6XUkOEl1xEvkhvOD8Wx2yBHW8smiRXjZBbrp-qQS_HIyfsuuTqZfJ2dZSqmQgSxFlzVeOQtGaJAur0BVubXOhVAEcMLqsjEenHKVDQZ0g_2DaAUQhVnK-wfay3ds0C7a8J7xEYiA6MiZkVVo49KNIMjGVEUpQyODGrJ83a81JL1xSnvxvcZ9B5mifmSKIfu8aXLXi208VfmYjLWpSDrZ8cFieVOnaVdbU3hRWaUb7xUIh78MRgpfViUACBiy3bWp6zR5V_W_ofbh6eKP7IUgikvkA-6yQbf8FT4hRuncXhqIfwFfdeqO
  priority: 102
  providerName: ProQuest
Title Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA
URI https://www.proquest.com/docview/2564722574
https://doaj.org/article/a76d29a45fdd4c2b9c4c732d898ccc2c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXo9kIPCFqqLl1WPnCAShFZf8TJcVntgiqxWiGQuEX22ClFNFQQEH-g_5sZJ6BFSHDpKVHixNbM2H4jP71hbKfKRrZA5yZKQkiUNmliM-kT7wHxvdNgo0738Tw7OlM_z_X5Uqkv4oS18sCt4fatybworNKV9wqEK0CBkcLnRQ4AAmj1xT1vKZm6bNlXGKiqPcaUmNfvu67K9C3x3lMp1IuNKOr1v1qO4x4zW2drHTjk43ZQG2wl1J_ZpyXJwC_sH03gyF29D5yOlOtfzQVf3NB5C9mY3_-2nLSk-fSh47jW-DqSsP7gH_ju4XSxx23tYzetfgQniY54iZxwvjuez_c4wlk-ua4RVjaBbpq2mAQ_mYw32dlsejo5SrpSCgnIXDRJ5ZWzYIQG6VI0YZFa61wIWQAnrM4r48EpV9hgQFdoH0QpgOjLUr0_0F5-Zb36ug7fGB-BCIiKnBlZhb7N3QiCrEyR5TJUMqg-S5_sWkKnM07lLq5KzDfIFeUrV_TZj-dP_rYiG281PiBnPTckfez4AKOm7KKmfC9q-mzw5Oqym7S3JaI_ks7URm39jz6-s1VBBJjIFhywXnNzF7YRwTRuyD7ks8Mh-3gwnS9OhjF0HwHSDfVs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPABpBYpataPPA4ILctut7RdVaiVekvtsVOQ2mzZDQV-AH-H38iMkyygSr31lCjjvDzjmbFn_A1jr8qkb3JkbqQk-EjpNI5MIl3kHKB_bzWYgNO9N00mh-rjkT5aYb-7vTCUVtnpxKCo3QxojXwTTTPhGupUvTv_GlHVKIqudiU0GrHY8T-_45Rt8Xb7A_L3tRDj0cFwErVVBSKQmaij0ilrIBUapI1zUHlsjLXeJx6sMDorUwdW2dz4FHSZxWSwAR0RQ6XvQDuJz73BbiqJBNqZPt5arumg-4JfqJrgKdLjTdvWtl5Qtn0shfrP_IUqAZeMQLBs43vsbuuS8kEjQ_fZiq8esDv_ABU-ZL9IbYSM2QvPKZBdndSf-f6cojzEWX7xxXBCsOajH21mbYXkkPp1hk_g61uj_Q1uKhde06BWcAIGCYeQic7XB9PpBkcnmg9nFTqztaeTuilhwT8NB4_Y4bV09WO2Ws0q_4TxPgiPvphN-0ahRGW2D16WaZ5k0pfSqx6Lu34toEU3pyIbpwXOcogVxSVW9Nib5S3nDbTHVY3fE7OWDQmVO1yYzU-KdpAXJk2cyI3SpXMKhMVfhlQKl-UZAAjosbWO1UWrKhbFX8F-ejX5Jbs1OdjbLXa3pzvP2G1ByTUhE3GNrdbzb_45eke1fRFEkrPj6x4DfwCrpSiV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyKhQI-gNQiRZv1T5wcENpud2kpRKuKSr2l9tgpSG227IYCD8BL8XR4nGQBVeqtp0Sx4ySesWfs-fINIS_LZKgzL9xIcHCRkCqOdMJtZC14_95I0IGn-2Oe7B6K90fyaI387v6FQVhlNyeGidrOAffIB940I6-hVGJQtrCI2c707fnXCDNIYaS1S6fRqMi--_ndL9-Wb_Z2vKxfMTadfBrvRm2GgQh4yuqotMJoUEwCN3EGIou1Nsa5xIFhWqalsmCEybRTIMs0RuMN3inRmAYPpOW-3RtkXeGqqEfWtyf57GC1w-OdGf--ogmlcp7FA9Nmul4i9j7mTPxnDEPOgEsmIdi56V1yp3VQ6ajRqHtkzVX3ye1_aAsfkF84iQT87IWjGNauTurPdLbAmA_KmV580RT5rOnkR4uzrXxxAIKd-Rbo5rvJbIvqyobHNBwWFGlCwiHg0unmKM-3qHep6Xheede2dnhSNwkt6MF49JAcXktnPyK9al65x4QOgTnvmRk11MLrV2qG4HipsiTlruRO9Enc9WsBLdc5ptw4LfyaB0VRXBJFn7xe3XLeEH1cVXkbhbWqiBzd4cJ8cVK0Q77QKrEs00KW1gpgxn8yKM5smqUAwKBPNjpRF-3EsSz-qvmTq4tfkJte_4sPe_n-U3KLIdImwBI3SK9efHPPvKtUm-etTlJyfN3D4A_uOy4n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Strength+Prediction+via+Gene+Expression+Programming+%28GEP%29+and+Artificial+Neural+Network+%28ANN%29+for+Concrete+Containing+RCA&rft.jtitle=Buildings+%28Basel%29&rft.au=Ayaz+Ahmad&rft.au=Krisada+Chaiyasarn&rft.au=Furqan+Farooq&rft.au=Waqas+Ahmad&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=11&rft.issue=8&rft.spage=324&rft_id=info:doi/10.3390%2Fbuildings11080324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon