Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA
To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction...
Saved in:
Published in | Buildings (Basel) Vol. 11; no. 8; p. 324 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response. |
---|---|
AbstractList | To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response. |
Author | Farooq, Furqan Aslam, Fahid Chaiyasarn, Krisada Ahmad, Ayaz Ahmad, Waqas Suparp, Suniti |
Author_xml | – sequence: 1 givenname: Ayaz orcidid: 0000-0002-0312-2965 surname: Ahmad fullname: Ahmad, Ayaz – sequence: 2 givenname: Krisada orcidid: 0000-0003-0222-8773 surname: Chaiyasarn fullname: Chaiyasarn, Krisada – sequence: 3 givenname: Furqan orcidid: 0000-0002-4671-1655 surname: Farooq fullname: Farooq, Furqan – sequence: 4 givenname: Waqas orcidid: 0000-0002-1668-7607 surname: Ahmad fullname: Ahmad, Waqas – sequence: 5 givenname: Suniti orcidid: 0000-0002-2826-066X surname: Suparp fullname: Suparp, Suniti – sequence: 6 givenname: Fahid orcidid: 0000-0003-2863-3283 surname: Aslam fullname: Aslam, Fahid |
BookMark | eNp1UU1vEzEQXaEiUUp_ADdLXNpDwOu11-tjtAqhUhUiPs7WeOwNDhs7eJ0CP4D_jdOAVBUxlxmN3nsz8-Z5dRZicFX1sqavm0bRN-bgR-vDZqpr2tGG8SfVOaNSzERD1dmD-ll1OU1bWqITjAl-Xv3q426f3DT5O0c-5uTCJn8h6-Ssx-xjIHceyNIFRxY_TrjSW6e4SbDblZHkarlYXxMIlsxT9oNHDyNZuUO6T_l7TF_J1Xy1uiZDTKSPAZPL7lhk8OGo8KGfv6ieDjBO7vJPvqg-v1186t_Nbt8vb_r57QybjuXZYLkBlExgY6hCriiAMc61Dg0D0Q3SouFGgZMohuKEki1SJUA1rUJhm4vq5qRrI2z1PvkdpJ86gtf3jZg2GsoVODoNsrVMAReDtRyZKeNQNsx2qkNEhkXr1Ulrn-K3g5uy3sZDCmV9zUTLZfFX8oKSJxSmOE3JDRp9hqOzOYEfdU318YX6nxcWZv2I-Xff_3N-A00tpVc |
CitedBy_id | crossref_primary_10_1007_s41939_023_00356_5 crossref_primary_10_1016_j_cscm_2024_e03189 crossref_primary_10_1038_s41598_024_54513_y crossref_primary_10_1038_s41598_024_69271_0 crossref_primary_10_1038_s41598_024_69434_z crossref_primary_10_3390_polym14183906 crossref_primary_10_1002_suco_202200779 crossref_primary_10_1016_j_mtcomm_2022_103964 crossref_primary_10_3390_ma15020647 crossref_primary_10_1016_j_jobe_2024_110417 crossref_primary_10_1016_j_mtcomm_2023_105901 crossref_primary_10_3390_polym16131774 crossref_primary_10_1007_s41939_024_00668_0 crossref_primary_10_1016_j_csite_2023_103109 crossref_primary_10_1016_j_conbuildmat_2023_133299 crossref_primary_10_3390_ma15217800 crossref_primary_10_3390_polym14122509 crossref_primary_10_1016_j_jobe_2021_103679 crossref_primary_10_1080_23080477_2024_2418007 crossref_primary_10_1016_j_istruc_2023_05_140 crossref_primary_10_1016_j_dibe_2022_100113 crossref_primary_10_3390_app15031018 crossref_primary_10_1016_j_rineng_2024_102973 crossref_primary_10_3390_ma15155194 crossref_primary_10_3390_ma15124209 crossref_primary_10_1016_j_conbuildmat_2023_131014 crossref_primary_10_1016_j_rineng_2024_103305 crossref_primary_10_1016_j_conbuildmat_2023_131536 crossref_primary_10_3390_buildings12030302 crossref_primary_10_1016_j_jmrt_2023_02_024 crossref_primary_10_1515_rams_2023_0162 crossref_primary_10_3390_buildings12050690 crossref_primary_10_1007_s41939_024_00672_4 crossref_primary_10_1016_j_istruc_2024_106397 crossref_primary_10_1063_5_0235664 crossref_primary_10_1371_journal_pone_0280761 crossref_primary_10_3390_ma15217412 crossref_primary_10_1166_sam_2022_4342 crossref_primary_10_3390_cryst12050569 crossref_primary_10_1016_j_rineng_2023_101390 crossref_primary_10_3389_fmats_2022_1098304 crossref_primary_10_1515_rams_2024_0038 crossref_primary_10_1016_j_cscm_2023_e02153 crossref_primary_10_3390_buildings13123014 crossref_primary_10_1371_journal_pone_0284761 crossref_primary_10_3390_polym14102128 crossref_primary_10_1515_rams_2024_0035 crossref_primary_10_1007_s41939_023_00248_8 crossref_primary_10_1007_s41024_023_00337_8 crossref_primary_10_1016_j_mtcomm_2023_107428 crossref_primary_10_3390_ma15207344 crossref_primary_10_3390_ma14206172 crossref_primary_10_1007_s12205_024_0854_5 crossref_primary_10_1016_j_conbuildmat_2022_127933 crossref_primary_10_1016_j_cscm_2025_e04405 crossref_primary_10_1016_j_jobe_2024_109516 crossref_primary_10_3390_app132111991 crossref_primary_10_1007_s41939_025_00796_1 crossref_primary_10_1016_j_cscm_2021_e00840 crossref_primary_10_3390_app122110864 crossref_primary_10_3390_ma15124311 crossref_primary_10_3390_ma17051192 crossref_primary_10_3390_buildings12091313 crossref_primary_10_3390_buildings12122160 crossref_primary_10_3390_buildings14123998 crossref_primary_10_3390_app13158889 crossref_primary_10_3390_ma17143540 crossref_primary_10_1016_j_cscm_2023_e02836 crossref_primary_10_1007_s42107_023_00662_w crossref_primary_10_1016_j_conbuildmat_2024_137482 crossref_primary_10_1016_j_mtcomm_2024_110434 crossref_primary_10_1016_j_cscm_2023_e02278 crossref_primary_10_1515_rams_2025_0092 crossref_primary_10_1016_j_jobe_2023_106518 crossref_primary_10_1038_s41598_023_47330_2 crossref_primary_10_1007_s41939_023_00312_3 crossref_primary_10_1002_suco_202400231 crossref_primary_10_1016_j_cscm_2023_e02172 crossref_primary_10_1515_rams_2024_0014 crossref_primary_10_3233_JIFS_221342 crossref_primary_10_3390_polym14061074 crossref_primary_10_1016_j_jobe_2024_109184 crossref_primary_10_1002_suco_202100732 crossref_primary_10_1016_j_istruc_2023_02_080 crossref_primary_10_3390_polym13193389 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_1016_j_cscm_2022_e01759 crossref_primary_10_3390_w15061016 crossref_primary_10_1016_j_jmrt_2023_04_223 crossref_primary_10_1016_j_jcomc_2024_100466 crossref_primary_10_1016_j_jmrt_2023_07_034 crossref_primary_10_1007_s42947_023_00321_y crossref_primary_10_3390_gels8050271 crossref_primary_10_3390_ma14195762 crossref_primary_10_3390_ma15103430 crossref_primary_10_3390_app12010361 crossref_primary_10_1016_j_cscm_2023_e02063 crossref_primary_10_3390_ma15134512 crossref_primary_10_1016_j_jmrt_2023_02_180 crossref_primary_10_3390_ma15082823 crossref_primary_10_1038_s41598_023_42270_3 crossref_primary_10_1186_s44147_023_00332_3 crossref_primary_10_1007_s42452_023_05447_z crossref_primary_10_1016_j_jer_2025_01_004 crossref_primary_10_1016_j_conbuildmat_2023_133485 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1016_j_cscm_2022_e01620 crossref_primary_10_1016_j_jcomc_2025_100579 crossref_primary_10_3390_ma14164518 crossref_primary_10_1016_j_cscm_2024_e03124 crossref_primary_10_1016_j_istruc_2023_01_019 crossref_primary_10_1016_j_sciaf_2023_e01954 crossref_primary_10_1063_5_0230832 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1016_j_conbuildmat_2024_135530 crossref_primary_10_3390_buildings15050806 crossref_primary_10_3390_ma15124194 crossref_primary_10_1038_s41598_023_47196_4 crossref_primary_10_1007_s00521_024_10736_8 crossref_primary_10_1016_j_mtcomm_2023_107066 crossref_primary_10_1016_j_jobe_2023_107932 crossref_primary_10_1016_j_jmrt_2023_04_209 crossref_primary_10_1016_j_cscm_2022_e01536 crossref_primary_10_3390_buildings12081280 crossref_primary_10_1038_s41598_024_68064_9 crossref_primary_10_1007_s41939_025_00740_3 crossref_primary_10_3390_ma14227034 crossref_primary_10_1515_rams_2024_0006 crossref_primary_10_1016_j_asej_2021_11_002 crossref_primary_10_1016_j_conbuildmat_2023_131278 crossref_primary_10_3390_buildings12020132 crossref_primary_10_1002_eng2_12676 crossref_primary_10_32604_fdmp_2023_029545 crossref_primary_10_3390_ma17143584 crossref_primary_10_3390_ma15072400 crossref_primary_10_1016_j_cscm_2022_e01805 crossref_primary_10_1016_j_mtcomm_2024_108600 crossref_primary_10_1186_s44147_023_00266_w crossref_primary_10_1016_j_jmrt_2023_07_222 crossref_primary_10_1016_j_rineng_2024_103135 crossref_primary_10_1016_j_cscm_2022_e01243 crossref_primary_10_1016_j_cscm_2023_e02357 crossref_primary_10_3390_ma15124108 crossref_primary_10_1016_j_cscm_2024_e03744 |
Cites_doi | 10.1016/j.conbuildmat.2018.09.204 10.1016/j.conbuildmat.2008.03.006 10.3390/ma14040794 10.1016/j.resconrec.2008.09.006 10.3390/ma14092297 10.1016/j.conbuildmat.2008.07.023 10.1016/j.jclepro.2012.07.020 10.1016/j.conbuildmat.2018.10.159 10.1016/j.cemconres.2004.06.017 10.1016/j.buildenv.2005.07.033 10.1016/j.resourpol.2012.07.001 10.1007/s11053-017-9352-5 10.1016/j.conbuildmat.2006.05.040 10.1016/j.conbuildmat.2008.06.007 10.1016/j.cemconcomp.2020.103621 10.1007/s40999-017-0167-x 10.1007/978-94-007-4908-5 10.1007/s13369-020-04769-z 10.1016/j.conbuildmat.2020.118581 10.1016/j.cemconres.2007.02.002 10.1061/(ASCE)1084-0680(2008)13:2(98) 10.1016/j.conbuildmat.2020.121456 10.1007/s10098-016-1289-6 10.1016/j.conbuildmat.2016.08.111 10.1016/j.jclepro.2016.04.145 10.1016/S0008-8846(02)00938-9 10.3390/su3010155 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.3390/buildings11080324 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - Not for CDI Discovery url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c 10_3390_buildings11080324 |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c382t-fd4bac725c3b09c490aabbee6ecb2a58f7dcb4b9ae7c5f803976c095a9369c5d3 |
IEDL.DBID | DOA |
ISSN | 2075-5309 |
IngestDate | Wed Aug 27 01:19:51 EDT 2025 Fri Jul 25 12:09:00 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 03:05:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-fd4bac725c3b09c490aabbee6ecb2a58f7dcb4b9ae7c5f803976c095a9369c5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1668-7607 0000-0002-4671-1655 0000-0002-2826-066X 0000-0002-0312-2965 0000-0003-0222-8773 0000-0003-2863-3283 |
OpenAccessLink | https://doaj.org/article/a76d29a45fdd4c2b9c4c732d898ccc2c |
PQID | 2564722574 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c proquest_journals_2564722574 crossref_citationtrail_10_3390_buildings11080324 crossref_primary_10_3390_buildings11080324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Marie (ref_11) 2012; 37 Naik (ref_4) 2008; 13 Tabsh (ref_20) 2009; 23 ref_14 ref_13 Buck (ref_15) 1977; 74 ref_12 ref_34 Rahal (ref_23) 2007; 42 ref_31 Li (ref_21) 2008; 53 Nguyen (ref_33) 2020; 247 Chen (ref_26) 2003; 33 Xiao (ref_24) 2005; 8 Xiao (ref_22) 2006; 9 Lehmann (ref_6) 2011; 3 Safiuddin (ref_9) 2010; 5 (ref_29) 2017; 15 Cao (ref_19) 2018; 191 Padmini (ref_28) 2009; 23 Khan (ref_18) 2018; 192 Hawreen (ref_5) 2020; 111 Khan (ref_16) 2016; 125 Khatib (ref_25) 2005; 35 Massari (ref_7) 2013; 38 ref_2 Arshad (ref_17) 2020; 45 Tam (ref_27) 2007; 21 Cachim (ref_1) 2009; 23 Northey (ref_8) 2018; 27 Maghool (ref_10) 2017; 19 Etxeberria (ref_30) 2007; 37 Su (ref_32) 2021; 270 Urbaniec (ref_3) 2016; 136 |
References_xml | – volume: 191 start-page: 242 year: 2018 ident: ref_19 article-title: Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.204 – volume: 23 start-page: 829 year: 2009 ident: ref_28 article-title: Influence of parent concrete on the properties of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.03.006 – ident: ref_31 doi: 10.3390/ma14040794 – volume: 53 start-page: 36 year: 2008 ident: ref_21 article-title: Recycling and reuse of waste concrete in China. Part I. Material behaviour of recycled aggregate concrete publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2008.09.006 – ident: ref_34 doi: 10.3390/ma14092297 – volume: 23 start-page: 1292 year: 2009 ident: ref_1 article-title: Mechanical properties of brick aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.07.023 – volume: 37 start-page: 243 year: 2012 ident: ref_11 article-title: Closed-loop recycling of recycled concrete aggregates publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.07.020 – volume: 192 start-page: 742 year: 2018 ident: ref_18 article-title: Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.159 – volume: 35 start-page: 763 year: 2005 ident: ref_25 article-title: Properties of concrete incorporating fine recycled aggregate publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2004.06.017 – volume: 42 start-page: 407 year: 2007 ident: ref_23 article-title: Mechanical properties of concrete with recycled coarse aggregate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2005.07.033 – volume: 74 start-page: 212 year: 1977 ident: ref_15 article-title: Recycled concrete as a source of aggregate publication-title: J. Am. Concr. Inst. – volume: 8 start-page: 197 year: 2005 ident: ref_24 article-title: Study on relationships between strength indexes of recycled concrete publication-title: Jianzhu Cailiao Xuebao/J. Build. Mater. – volume: 38 start-page: 36 year: 2013 ident: ref_7 article-title: Rare earth elements as critical raw materials: Focus on international markets and future strategies publication-title: Resour. Policy doi: 10.1016/j.resourpol.2012.07.001 – volume: 27 start-page: 241 year: 2018 ident: ref_8 article-title: Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9352-5 – volume: 9 start-page: 154 year: 2006 ident: ref_22 article-title: Investigation on the tensile behavior of recycled aggregate concrete. Jianzhu Cailiao Xuebao publication-title: J. Build. Mater. – volume: 21 start-page: 1928 year: 2007 ident: ref_27 article-title: Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2006.05.040 – volume: 23 start-page: 1163 year: 2009 ident: ref_20 article-title: Influence of recycled concrete aggregates on strength properties of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.06.007 – volume: 111 start-page: 103621 year: 2020 ident: ref_5 article-title: Effect of the source concrete with ASR degradation on the mechanical and physical properties of coarse recycled aggregate publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103621 – volume: 15 start-page: 549 year: 2017 ident: ref_29 article-title: An Investigation on Mechanical and Physical Properties of Recycled Coarse Aggregate (RCA) Concrete with GGBFS publication-title: Int. J. Civ. Eng. doi: 10.1007/s40999-017-0167-x – ident: ref_14 doi: 10.1007/978-94-007-4908-5 – volume: 45 start-page: 8577 year: 2020 ident: ref_17 article-title: Efficiency of Supplementary Cementitious Materials and Natural Fiber on Mechanical Performance of Concrete publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04769-z – volume: 247 start-page: 118581 year: 2020 ident: ref_33 article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118581 – ident: ref_2 – volume: 37 start-page: 735 year: 2007 ident: ref_30 article-title: Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2007.02.002 – volume: 13 start-page: 98 year: 2008 ident: ref_4 article-title: Sustainability of Concrete Construction publication-title: Pract. Period. Struct. Des. Constr. doi: 10.1061/(ASCE)1084-0680(2008)13:2(98) – ident: ref_12 – volume: 5 start-page: 1952 year: 2010 ident: ref_9 article-title: Utilization of solid wastes in construction materials publication-title: Int. J. Phys. Sci. – ident: ref_13 – volume: 270 start-page: 121456 year: 2021 ident: ref_32 article-title: Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121456 – volume: 19 start-page: 949 year: 2017 ident: ref_10 article-title: Environmental impacts of utilizing waste steel slag aggregates as recycled road construction materials publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-016-1289-6 – volume: 125 start-page: 800 year: 2016 ident: ref_16 article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.08.111 – volume: 136 start-page: 119 year: 2016 ident: ref_3 article-title: Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.145 – volume: 33 start-page: 125 year: 2003 ident: ref_26 article-title: Use of building rubbles as recycled aggregates publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00938-9 – volume: 3 start-page: 155 year: 2011 ident: ref_6 article-title: Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption publication-title: Sustainability doi: 10.3390/su3010155 |
SSID | ssj0000852254 |
Score | 2.536269 |
Snippet | To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 324 |
SubjectTerms | Accuracy Aggregates Algorithms artificial neural network Artificial neural networks cement Civil engineering Compressive strength Computers Concrete Construction industry Data points Environmental risk Error analysis Gene expression gene expression programming Genetic algorithms Learning algorithms Learning theory Machine learning Mechanical properties Mortars (material) Natural resources Neural networks Performance evaluation Porous materials Project engineering Raw materials recycled coarse aggregate Root-mean-square errors Sensitivity analysis Software Sustainable development |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXt5tIeStO0dNs06JBDUjDx6sOyT2WzbBICWZbQQG5GGslpoPWmu27oH-j_7oys3TYEcrKxJBtrpNGT5vGGsf2mGNkKjZspCSFT2uSZLaTPvAfE906DjTrdF7Pi7EqdX-vrdOC2SrTKtU-MjtovgM7Ij3BpJl1DbdSXu58ZZY2i6GpKofGcbaELLssB2zqezuaXm1MWBBTYRvXhTIn7-yOXsk2viP-eS6EeLEhRt_-RW45rzclr9iqBRD7urbrNnoX2DXv5n3TgDvtDEzlyWO8Dp9Bye9N94_MlxV2or_n9reWkKc2nvxPXtcXiSMb6gW_gB6fT-SG3rY-f6XUkOEl1xEvkhvOD8Wx2yBHW8smiRXjZBbrp-qQS_HIyfsuuTqZfJ2dZSqmQgSxFlzVeOQtGaJAur0BVubXOhVAEcMLqsjEenHKVDQZ0g_2DaAUQhVnK-wfay3ds0C7a8J7xEYiA6MiZkVVo49KNIMjGVEUpQyODGrJ83a81JL1xSnvxvcZ9B5mifmSKIfu8aXLXi208VfmYjLWpSDrZ8cFieVOnaVdbU3hRWaUb7xUIh78MRgpfViUACBiy3bWp6zR5V_W_ofbh6eKP7IUgikvkA-6yQbf8FT4hRuncXhqIfwFfdeqO priority: 102 providerName: ProQuest |
Title | Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA |
URI | https://www.proquest.com/docview/2564722574 https://doaj.org/article/a76d29a45fdd4c2b9c4c732d898ccc2c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXo9kIPCFqqLl1WPnCAShFZf8TJcVntgiqxWiGQuEX22ClFNFQQEH-g_5sZJ6BFSHDpKVHixNbM2H4jP71hbKfKRrZA5yZKQkiUNmliM-kT7wHxvdNgo0738Tw7OlM_z_X5Uqkv4oS18sCt4fatybworNKV9wqEK0CBkcLnRQ4AAmj1xT1vKZm6bNlXGKiqPcaUmNfvu67K9C3x3lMp1IuNKOr1v1qO4x4zW2drHTjk43ZQG2wl1J_ZpyXJwC_sH03gyF29D5yOlOtfzQVf3NB5C9mY3_-2nLSk-fSh47jW-DqSsP7gH_ju4XSxx23tYzetfgQniY54iZxwvjuez_c4wlk-ua4RVjaBbpq2mAQ_mYw32dlsejo5SrpSCgnIXDRJ5ZWzYIQG6VI0YZFa61wIWQAnrM4r48EpV9hgQFdoH0QpgOjLUr0_0F5-Zb36ug7fGB-BCIiKnBlZhb7N3QiCrEyR5TJUMqg-S5_sWkKnM07lLq5KzDfIFeUrV_TZj-dP_rYiG281PiBnPTckfez4AKOm7KKmfC9q-mzw5Oqym7S3JaI_ks7URm39jz6-s1VBBJjIFhywXnNzF7YRwTRuyD7ks8Mh-3gwnS9OhjF0HwHSDfVs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPABpBYpataPPA4ILctut7RdVaiVekvtsVOQ2mzZDQV-AH-H38iMkyygSr31lCjjvDzjmbFn_A1jr8qkb3JkbqQk-EjpNI5MIl3kHKB_bzWYgNO9N00mh-rjkT5aYb-7vTCUVtnpxKCo3QxojXwTTTPhGupUvTv_GlHVKIqudiU0GrHY8T-_45Rt8Xb7A_L3tRDj0cFwErVVBSKQmaij0ilrIBUapI1zUHlsjLXeJx6sMDorUwdW2dz4FHSZxWSwAR0RQ6XvQDuJz73BbiqJBNqZPt5arumg-4JfqJrgKdLjTdvWtl5Qtn0shfrP_IUqAZeMQLBs43vsbuuS8kEjQ_fZiq8esDv_ABU-ZL9IbYSM2QvPKZBdndSf-f6cojzEWX7xxXBCsOajH21mbYXkkPp1hk_g61uj_Q1uKhde06BWcAIGCYeQic7XB9PpBkcnmg9nFTqztaeTuilhwT8NB4_Y4bV09WO2Ws0q_4TxPgiPvphN-0ahRGW2D16WaZ5k0pfSqx6Lu34toEU3pyIbpwXOcogVxSVW9Nib5S3nDbTHVY3fE7OWDQmVO1yYzU-KdpAXJk2cyI3SpXMKhMVfhlQKl-UZAAjosbWO1UWrKhbFX8F-ejX5Jbs1OdjbLXa3pzvP2G1ByTUhE3GNrdbzb_45eke1fRFEkrPj6x4DfwCrpSiV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyKhQI-gNQiRZv1T5wcENpud2kpRKuKSr2l9tgpSG227IYCD8BL8XR4nGQBVeqtp0Sx4ySesWfs-fINIS_LZKgzL9xIcHCRkCqOdMJtZC14_95I0IGn-2Oe7B6K90fyaI387v6FQVhlNyeGidrOAffIB940I6-hVGJQtrCI2c707fnXCDNIYaS1S6fRqMi--_ndL9-Wb_Z2vKxfMTadfBrvRm2GgQh4yuqotMJoUEwCN3EGIou1Nsa5xIFhWqalsmCEybRTIMs0RuMN3inRmAYPpOW-3RtkXeGqqEfWtyf57GC1w-OdGf--ogmlcp7FA9Nmul4i9j7mTPxnDEPOgEsmIdi56V1yp3VQ6ajRqHtkzVX3ye1_aAsfkF84iQT87IWjGNauTurPdLbAmA_KmV580RT5rOnkR4uzrXxxAIKd-Rbo5rvJbIvqyobHNBwWFGlCwiHg0unmKM-3qHep6Xheede2dnhSNwkt6MF49JAcXktnPyK9al65x4QOgTnvmRk11MLrV2qG4HipsiTlruRO9Enc9WsBLdc5ptw4LfyaB0VRXBJFn7xe3XLeEH1cVXkbhbWqiBzd4cJ8cVK0Q77QKrEs00KW1gpgxn8yKM5smqUAwKBPNjpRF-3EsSz-qvmTq4tfkJte_4sPe_n-U3KLIdImwBI3SK9efHPPvKtUm-etTlJyfN3D4A_uOy4n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Strength+Prediction+via+Gene+Expression+Programming+%28GEP%29+and+Artificial+Neural+Network+%28ANN%29+for+Concrete+Containing+RCA&rft.jtitle=Buildings+%28Basel%29&rft.au=Ayaz+Ahmad&rft.au=Krisada+Chaiyasarn&rft.au=Furqan+Farooq&rft.au=Waqas+Ahmad&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=11&rft.issue=8&rft.spage=324&rft_id=info:doi/10.3390%2Fbuildings11080324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a76d29a45fdd4c2b9c4c732d898ccc2c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |