Comparison of synthetic LGE with optimal inversion time vs. conventional LGE via representation learning: Quantification of Bias in Population Analysis

Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, w...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 196; no. Pt B; p. 110643
Main Authors Deleat-besson, Romain, Viallon, Magalie, Petrusca, Lorena, Croisille, Pierre, Duchateau, Nicolas
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population. We analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann–Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes. Despite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias (p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space. Suboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations. [Display omitted] •Manual TI settings may lead to suboptimal contrast in conventional LGE images.•Synthetic LGE from MOLLI sequence allows optimal TI hence optimal contrast in the images.•Representation learning enables the comparison between conventional and synthetic LGE.•This approach permitted the quantitative evaluation of the bias in the analysis of myocardial infarcts.
AbstractList Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population. We analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann-Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes. Despite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias (p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space. Suboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations.
Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population. We analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann–Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes. Despite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias (p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space. Suboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations. [Display omitted] •Manual TI settings may lead to suboptimal contrast in conventional LGE images.•Synthetic LGE from MOLLI sequence allows optimal TI hence optimal contrast in the images.•Representation learning enables the comparison between conventional and synthetic LGE.•This approach permitted the quantitative evaluation of the bias in the analysis of myocardial infarcts.
Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population.PURPOSELate Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population.We analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann-Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes.METHODSWe analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann-Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes.Despite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias (p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space.RESULTSDespite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias (p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space.Suboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations.CONCLUSIONSuboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations.
AbstractPurpose:Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images rely on signal intensity changes and manual inversion time (TI) settings, leading to suboptimal lesion/remote contrast in many cases. Here, we propose an original approach to evaluate the impact of suboptimal TI on the retrospective analysis of ST-elevation MI (STEMI) patients, using a representation learning methodology tailored to consider infarct- and image-based characteristics across the studied population. Methods:We analyzed 133 pairs of conventional and synthetic LGE short-axis images from the HIBISCUS-STEMI cohort (ClinicalTrials ID: NCT03070496). Optimal TI was identified among co-registered synthetic LGE images, using a mixture of the Mann–Whitney U-test, standard deviation, and saturation of pixel values, while the TI used for conventional LGE image generation was extracted from the DICOM header. Images were realigned to a reference for pixel-wise inter-subject comparisons. Population analysis relied on Attribute-based Regularized Variational Autoencoders which provide a latent representation of the population that is both easier to analyze (lower dimensionality) and ordered by infarct-relevant attributes. Results:Despite visual quality control in the clinic, our study demonstrates that nearly 50% of conventional LGE slices may include a suboptimal TI setting, mostly related to TI settings shorter than the optimal TI determined from synthetic LGE. Additionally, our findings showed that when isolating contrast effects and suboptimal TI settings, contrast had a minimal impact on infarct lesion metrics such as infarct size or transmurality in the latent space. This suggests that other factors than contrast setting are leading (for both cases) to systematic and proportional bias ( p<0.05) and loss of precision (respectively ρ=0.42 and ρ=0.43) in the latent space. Conclusion:Suboptimal TI undermines the analysis of infarct patterns in populations. Representation learning is a powerful method to retro-analyze cohorts, enabling the identification of imperfect settings, a crucial step for accurately characterizing representative patterns of a population. Our strategy can be considered a promising candidate for monitoring longitudinal changes and evaluating therapy outcomes on broader populations.
ArticleNumber 110643
Author Petrusca, Lorena
Viallon, Magalie
Croisille, Pierre
Duchateau, Nicolas
Deleat-besson, Romain
Author_xml – sequence: 1
  givenname: Romain
  orcidid: 0009-0009-4188-8169
  surname: Deleat-besson
  fullname: Deleat-besson, Romain
  email: romain.deleat@creatis.insa-lyon.fr
  organization: Universite Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
– sequence: 2
  givenname: Magalie
  orcidid: 0000-0001-9118-0438
  surname: Viallon
  fullname: Viallon, Magalie
  organization: Universite Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
– sequence: 3
  givenname: Lorena
  orcidid: 0000-0002-7108-7102
  surname: Petrusca
  fullname: Petrusca, Lorena
  organization: Universite Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
– sequence: 4
  givenname: Pierre
  surname: Croisille
  fullname: Croisille, Pierre
  organization: Universite Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
– sequence: 5
  givenname: Nicolas
  orcidid: 0000-0001-8803-2004
  surname: Duchateau
  fullname: Duchateau, Nicolas
  organization: Universite Claude Bernard Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40675093$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05225924$$DView record in HAL
BookMark eNqNkt1u1DAQhS1URLeFV0C-hItdxs7fhgvEdlVapJUAAdeW40xYL1k72EnQPgmvy0QpRUJC6k0cn_nmJJ7jC3bmvEPGuICVAJG_OqyMP3aV9UesVxJkthIC8jR5xBZiXZRLyJL0jC0ABCzTtczO2UWMBwBIIYEn7DyFvMigTBbs15aMdLDRO-4bHk-u32NvDd_dXPOftt9z3_X2qFtu3YghWuJoj3yMK248aa4njepTw2g1D9gFjCTrqcBb1MFZ9-01_zRoYhtr5gJ97crqSL78o--GdlY3ZHWKNj5ljxvdRnx2t16yr--uv2xvl7sPN--3m93SJGvZL5taSEhFUqVV2RSAuZSFzNayQSGqsqjpLZNlXslGYlLpXKZlg1qQpouGHsklezn77nWrukAnDSfltVW3m52aNMikzEqZjoLYFzPbBf9jwNiro40G21Y79ENUiUyEzHPISkKf36FDRRndO_8ZPAHrGTDBxxiwuUcEqCljdVB_M1ZTxmrOmFqv5lakuYwWg4rGojNY24CmV7W3DzF584-Jaa2jbNrveMJ48EOgJKISKkoF6vN0laabJDOAskynYbz9v8HD_uE3I4Tf1Q
Cites_doi 10.2214/AJR.08.1952
10.1016/S0140-6736(86)90837-8
10.1161/STROKEAHA.121.036806
10.1016/j.jacc.2009.06.059
10.1109/TPAMI.2013.50
10.1016/j.jacep.2020.08.036
10.1007/s00330-024-10630-w
10.1002/jmri.22783
10.1148/radiol.2015150162
10.1007/s10334-023-01101-2
10.1016/j.ejrad.2022.110242
10.1007/s00521-020-05270-2
10.1016/j.mri.2024.03.035
10.1016/j.media.2022.102516
10.1002/mrm.20110
10.1186/s12968-023-00925-0
10.1016/j.jacc.2014.06.1194
10.1186/1532-429X-17-S1-O8
10.1161/CIRCULATIONAHA.117.030693
10.1016/j.neucom.2015.08.104
10.1016/0735-1097(93)90407-R
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.compbiomed.2025.110643
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1879-0534
EndPage 110643
ExternalDocumentID oai_HAL_hal_05225924v1
40675093
10_1016_j_compbiomed_2025_110643
S0010482525009941
1_s2_0_S0010482525009941
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c382t-fd120413b4b9f70e62272582fe11b97d82f5296b2f2e3ba6249fea1529a7f29a3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Aug 29 06:29:38 EDT 2025
Fri Jul 18 18:40:10 EDT 2025
Thu Aug 28 04:44:28 EDT 2025
Thu Aug 14 00:12:15 EDT 2025
Sat Aug 30 17:17:08 EDT 2025
Fri Aug 08 06:00:41 EDT 2025
Tue Aug 26 16:44:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Dimensionality reduction
Myocardial infarction
Representation learning
Late gadolinium enhancement
Cardiac magnetic resonance
Language English
License Copyright © 2025. Published by Elsevier Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-fd120413b4b9f70e62272582fe11b97d82f5296b2f2e3ba6249fea1529a7f29a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0009-4188-8169
0000-0001-8803-2004
0000-0002-7108-7102
0000-0001-9118-0438
0000-0003-4019-3460
PMID 40675093
PQID 3231266059
PQPubID 23479
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_05225924v1
proquest_miscellaneous_3231266059
pubmed_primary_40675093
crossref_primary_10_1016_j_compbiomed_2025_110643
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110643
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525009941
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110643
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pati, Alexander (b20) 2021; 33
Passing, Bablok (b25) 1983
Aguila, Chapman, Altmann (b38) 2023; 14220
Wince, Suranyi, Schoepf (b5) 2013; 3
Lawrence, Lin (b27) 1989
Bulluck, Dharmakumar, Arai (b1) 2018; 137
R.W.A., Viallon, Spaltenstein (b21) 2022; 17
Elster (b22) 2023
Antelmi, Ayache, Robert (b37) 2019; 97
de Villedon de Naide, Maes, Villegas-Martinez (b33) 2024; 109
Martí-Juan, Lorenzi, G. (b39) 2024; 268
Eitel, De Waha, Wöhrle (b3) 2014; 64
Maillot, Sridi, Pineau (b32) 2023; 36
Bengio, Courville, Vincent (b14) 2013; 35
Corral Acero, Schuster, Zacur (b15) 2022; 15
Liu, Sanchez, Thermos (b19) 2022; 80
Kolentinis, Carerj, Vidalakis (b30) 2022; 150
Androulakis, Zeppenfeld, Paiman (b8) 2019; 5
Kingma, Welling (b18) 2014
Viallon, Jacquier, Rotaru (b41) 2011; 34
Varga-Szemes, Van der Geest, Spottiswoode (b12) 2015; 17
Bland, Altman (b26) 1986
Xie, Zhang, Mensink (b31) 2024
Wang, Yao, Zhao (b17) 2016; 184
Taylor, Salerno, Dharmakumar (b10) 2016; 9
Deichmann, Haase (b24) 1992; 96
Yoshida, Gould (b4) 1993; 22
Kino, Zuehlsdorff, Sheehan (b7) 2009; 193
Kim, Farzaneh-Far, Kim (b2) 2009; 55
Viallon, Troalen, Spottiswoode (b13) 2016
Duchateau, Viallon, Petrusca (b16) 2023; 10
Hu, Sapkota, Thomasson (b36) 2021; 13
Bochaton, Leboube, Paccalet (b29) 2022; 53
Dodge, Karam (b35) 2016
Muthalaly, Kwong, John (b9) 2019; 12
Balaban, Halliday, Porter (b40) 2021; 7
McBride (b28) 2005; 45
Varga-Szemes, Van der Geest, Spottiswoode (b11) 2016; 278
Messroghli, Radjenovic, Kozerke (b23) 2004; 52
Antiochos, Ge, Van Der Geest (b34) 2022; 15
Jenista, Wendell, Azevedo (b6) 2023; 25
Antelmi (10.1016/j.compbiomed.2025.110643_b37) 2019; 97
Antiochos (10.1016/j.compbiomed.2025.110643_b34) 2022; 15
Kino (10.1016/j.compbiomed.2025.110643_b7) 2009; 193
Passing (10.1016/j.compbiomed.2025.110643_b25) 1983
Kim (10.1016/j.compbiomed.2025.110643_b2) 2009; 55
Bengio (10.1016/j.compbiomed.2025.110643_b14) 2013; 35
McBride (10.1016/j.compbiomed.2025.110643_b28) 2005; 45
Pati (10.1016/j.compbiomed.2025.110643_b20) 2021; 33
Bochaton (10.1016/j.compbiomed.2025.110643_b29) 2022; 53
Viallon (10.1016/j.compbiomed.2025.110643_b41) 2011; 34
Wince (10.1016/j.compbiomed.2025.110643_b5) 2013; 3
Yoshida (10.1016/j.compbiomed.2025.110643_b4) 1993; 22
Deichmann (10.1016/j.compbiomed.2025.110643_b24) 1992; 96
Varga-Szemes (10.1016/j.compbiomed.2025.110643_b11) 2016; 278
Maillot (10.1016/j.compbiomed.2025.110643_b32) 2023; 36
Muthalaly (10.1016/j.compbiomed.2025.110643_b9) 2019; 12
R.W.A. (10.1016/j.compbiomed.2025.110643_b21) 2022; 17
Bland (10.1016/j.compbiomed.2025.110643_b26) 1986
Eitel (10.1016/j.compbiomed.2025.110643_b3) 2014; 64
Corral Acero (10.1016/j.compbiomed.2025.110643_b15) 2022; 15
Liu (10.1016/j.compbiomed.2025.110643_b19) 2022; 80
Lawrence (10.1016/j.compbiomed.2025.110643_b27) 1989
Bulluck (10.1016/j.compbiomed.2025.110643_b1) 2018; 137
Elster (10.1016/j.compbiomed.2025.110643_b22) 2023
de Villedon de Naide (10.1016/j.compbiomed.2025.110643_b33) 2024; 109
Viallon (10.1016/j.compbiomed.2025.110643_b13) 2016
Hu (10.1016/j.compbiomed.2025.110643_b36) 2021; 13
Taylor (10.1016/j.compbiomed.2025.110643_b10) 2016; 9
Varga-Szemes (10.1016/j.compbiomed.2025.110643_b12) 2015; 17
Aguila (10.1016/j.compbiomed.2025.110643_b38) 2023; 14220
Androulakis (10.1016/j.compbiomed.2025.110643_b8) 2019; 5
Duchateau (10.1016/j.compbiomed.2025.110643_b16) 2023; 10
Kolentinis (10.1016/j.compbiomed.2025.110643_b30) 2022; 150
Dodge (10.1016/j.compbiomed.2025.110643_b35) 2016
Jenista (10.1016/j.compbiomed.2025.110643_b6) 2023; 25
Wang (10.1016/j.compbiomed.2025.110643_b17) 2016; 184
Martí-Juan (10.1016/j.compbiomed.2025.110643_b39) 2024; 268
Kingma (10.1016/j.compbiomed.2025.110643_b18) 2014
Messroghli (10.1016/j.compbiomed.2025.110643_b23) 2004; 52
Balaban (10.1016/j.compbiomed.2025.110643_b40) 2021; 7
Xie (10.1016/j.compbiomed.2025.110643_b31) 2024
References_xml – volume: 15
  start-page: 783
  year: 2022
  end-page: 792
  ident: b34
  article-title: Entropy as a measure of myocardial tissue heterogeneity in patients with ventricular arrhythmias
  publication-title: JACC: Cardiovasc. Imaging
– start-page: 1
  year: 2016
  end-page: 6
  ident: b35
  article-title: Understanding how image quality affects deep neural networks
  publication-title: Proc. IEEE QoMEX
– volume: 55
  start-page: 1
  year: 2009
  end-page: 16
  ident: b2
  article-title: Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications
  publication-title: J. Am. Coll. Cardiol.
– volume: 97
  start-page: 302
  year: 2019
  end-page: 311
  ident: b37
  article-title: Sparse multi-channel variational autoencoder for the joint analysis of heterogeneous data
  publication-title: Proc. ICML
– volume: 278
  start-page: 374
  year: 2016
  end-page: 382
  ident: b11
  article-title: Myocardial late gadolinium enhancement: Accuracy of T1 mapping–based synthetic inversion-recovery imaging
  publication-title: Radiol.
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: b17
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– volume: 12
  start-page: 1177
  year: 2019
  end-page: 1184
  ident: b9
  article-title: Left ventricular entropy is a novel predictor of arrhythmic events in patients with dilated cardiomyopathy receiving defibrillators for primary prevention
  publication-title: JACC: Cardiovasc. Imaging
– year: 2014
  ident: b18
  article-title: Auto-encoding variational Bayes
  publication-title: Proc. ICLR
– volume: 96
  start-page: 608
  year: 1992
  end-page: 612
  ident: b24
  article-title: Quantification of T1 values by SNAPSHOT-FLASH NMR imaging
  publication-title: J Magn Reson.
– volume: 109
  start-page: 256
  year: 2024
  end-page: 263
  ident: b33
  article-title: Fully automated contrast selection of joint bright- and black-blood late gadolinium enhancement imaging for robust myocardial scar assessment
  publication-title: Magn. Reson. Imaging
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b14
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 80
  year: 2022
  ident: b19
  article-title: Learning disentangled representations in the imaging domain
  publication-title: Med Image Anal
– volume: 53
  start-page: 2249
  year: 2022
  end-page: 2259
  ident: b29
  article-title: Impact of age on systemic inflammatory profile of patients with ST-segment–elevation myocardial infarction and acute ischemic stroke
  publication-title: Stroke
– volume: 3
  year: 2013
  ident: b5
  article-title: Contemporary cardiovascular imaging methods for the assessment of at-risk myocardium
  publication-title: J Am Hear. Assoc
– volume: 45
  year: 2005
  ident: b28
  article-title: A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient
  publication-title: NIWA Client Rep.: HAM2005– 062
– start-page: 255
  year: 1989
  end-page: 268
  ident: b27
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– year: 2016
  ident: b13
  article-title: MOLLI T1 mapping sequence: the best approach for delayed enhancement (DE) CMR?
– volume: 17
  year: 2022
  ident: b21
  article-title: CMRSegTools: An open-source software enabling reproducible research in segmentation of acute myocardial infarct in CMR images
  publication-title: PLoS One
– volume: 193
  start-page: 381
  year: 2009
  end-page: 388
  ident: b7
  article-title: Three-dimensional phase-sensitive inversion-recovery turbo FLASH sequence for the evaluation of left ventricular myocardial scar
  publication-title: AJR Am. J. Roentgenol.
– volume: 13
  start-page: 21
  year: 2021
  end-page: 40
  ident: b36
  article-title: Influence of image quality and light consistency on the performance of convolutional neural networks for weed mapping
  publication-title: Remote. Sens.
– start-page: 307
  year: 1986
  end-page: 310
  ident: b26
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 150
  year: 2022
  ident: b30
  article-title: Determination of scar area using native and post-contrast T1 mapping: Agreement with late gadolinium enhancement
  publication-title: Eur. J. Radiol.
– volume: 22
  start-page: 984
  year: 1993
  end-page: 997
  ident: b4
  article-title: Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization
  publication-title: J. Am. Coll. Cardiol.
– volume: 34
  start-page: 1374
  year: 2011
  end-page: 1387
  ident: b41
  article-title: Head-to-head comparison of eight late gadolinium-enhanced cardiac MR (LGE CMR) sequences at 1.5 tesla: From bench to bedside
  publication-title: J. Magn. Reson. Imaging
– volume: 17
  start-page: 1
  year: 2015
  end-page: 2
  ident: b12
  article-title: Quantification of myocardial late gadolinium enhancement using synthetic inversion recovery imaging
  publication-title: J Cardiovasc. Magn Reson.
– volume: 15
  start-page: 1563
  year: 2022
  end-page: 1574
  ident: b15
  article-title: Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis
  publication-title: JACC: Cardiovasc. Imaging
– volume: 268
  year: 2024
  ident: b39
  article-title: MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer’s disease progression modelling
  publication-title: Neuroimage
– volume: 25
  start-page: 18
  year: 2023
  ident: b6
  article-title: Revisiting how we perform late gadolinium enhancement CMR: insights gleaned over 25 years of clinical practice
  publication-title: J Cardiovasc. Magn Reson.
– volume: 33
  start-page: 4429
  year: 2021
  end-page: 4444
  ident: b20
  article-title: Attribute-based regularization of latent spaces for variational auto-encoders
  publication-title: Neural Comput. Appl
– volume: 14220
  start-page: 425
  year: 2023
  end-page: 434
  ident: b38
  article-title: Multi-modal variational autoencoders for normative modelling across multiple imaging modalities
  publication-title: Proc. MICCAI
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  ident: b23
  article-title: Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart
  publication-title: Magn Reson. Med
– start-page: 709
  year: 1983
  end-page: 720
  ident: b25
  article-title: A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, part i
  publication-title: J Clin Chem Clin Biochem.
– volume: 10
  year: 2023
  ident: b16
  article-title: Pixel-wise statistical analysis of myocardial injury in STEMI patients with delayed enhancement MRI
  publication-title: Front.: Cardiovasc. Med
– year: 2023
  ident: b22
  article-title: MRI questions
– volume: 64
  start-page: 1217
  year: 2014
  end-page: 1226
  ident: b3
  article-title: Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 5
  start-page: 480
  year: 2019
  end-page: 489
  ident: b8
  article-title: Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients
  publication-title: JACC: Clin Electrophysiol
– year: 2024
  ident: b31
  article-title: Automated inversion time selection for late gadolinium–enhanced cardiac magnetic resonance imaging
  publication-title: Eur Radiol
– volume: 36
  start-page: 877
  year: 2023
  end-page: 885
  ident: b32
  article-title: Automated inversion time selection for black-blood late gadolinium enhancement cardiac imaging in clinical practice
  publication-title: MAGMA
– volume: 137
  start-page: 1949
  year: 2018
  end-page: 1964
  ident: b1
  article-title: Cardiovascular magnetic resonance in acute ST-segment-elevation myocardial infarction: Recent advances, controversies, and future directions
  publication-title: Circul.
– volume: 9
  start-page: 67
  year: 2016
  end-page: 81
  ident: b10
  article-title: T1 mapping: basic techniques and clinical applications
  publication-title: JACC: Cardiovasc. Imaging
– volume: 7
  start-page: 238
  year: 2021
  end-page: 249
  ident: b40
  article-title: Late-gadolinium enhancement interface area and electrophysiological simulations predict arrhythmic events in patients with nonischemic dilated cardiomyopathy
  publication-title: JACC Clin Electrophysiol
– volume: 193
  start-page: 381
  year: 2009
  ident: 10.1016/j.compbiomed.2025.110643_b7
  article-title: Three-dimensional phase-sensitive inversion-recovery turbo FLASH sequence for the evaluation of left ventricular myocardial scar
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.08.1952
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110643_b35
  article-title: Understanding how image quality affects deep neural networks
  publication-title: Proc. IEEE QoMEX
– start-page: 307
  year: 1986
  ident: 10.1016/j.compbiomed.2025.110643_b26
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 53
  start-page: 2249
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b29
  article-title: Impact of age on systemic inflammatory profile of patients with ST-segment–elevation myocardial infarction and acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.121.036806
– start-page: 255
  year: 1989
  ident: 10.1016/j.compbiomed.2025.110643_b27
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 13
  start-page: 21
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110643_b36
  article-title: Influence of image quality and light consistency on the performance of convolutional neural networks for weed mapping
  publication-title: Remote. Sens.
– volume: 55
  start-page: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2025.110643_b2
  article-title: Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2009.06.059
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110643_b14
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 9
  start-page: 67
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110643_b10
  article-title: T1 mapping: basic techniques and clinical applications
  publication-title: JACC: Cardiovasc. Imaging
– volume: 7
  start-page: 238
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110643_b40
  article-title: Late-gadolinium enhancement interface area and electrophysiological simulations predict arrhythmic events in patients with nonischemic dilated cardiomyopathy
  publication-title: JACC Clin Electrophysiol
  doi: 10.1016/j.jacep.2020.08.036
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110643_b31
  article-title: Automated inversion time selection for late gadolinium–enhanced cardiac magnetic resonance imaging
  publication-title: Eur Radiol
  doi: 10.1007/s00330-024-10630-w
– volume: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110643_b5
  article-title: Contemporary cardiovascular imaging methods for the assessment of at-risk myocardium
  publication-title: J Am Hear. Assoc
– volume: 34
  start-page: 1374
  year: 2011
  ident: 10.1016/j.compbiomed.2025.110643_b41
  article-title: Head-to-head comparison of eight late gadolinium-enhanced cardiac MR (LGE CMR) sequences at 1.5 tesla: From bench to bedside
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22783
– volume: 278
  start-page: 374
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110643_b11
  article-title: Myocardial late gadolinium enhancement: Accuracy of T1 mapping–based synthetic inversion-recovery imaging
  publication-title: Radiol.
  doi: 10.1148/radiol.2015150162
– volume: 15
  start-page: 783
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b34
  article-title: Entropy as a measure of myocardial tissue heterogeneity in patients with ventricular arrhythmias
  publication-title: JACC: Cardiovasc. Imaging
– year: 2014
  ident: 10.1016/j.compbiomed.2025.110643_b18
  article-title: Auto-encoding variational Bayes
  publication-title: Proc. ICLR
– year: 2023
  ident: 10.1016/j.compbiomed.2025.110643_b22
– volume: 36
  start-page: 877
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110643_b32
  article-title: Automated inversion time selection for black-blood late gadolinium enhancement cardiac imaging in clinical practice
  publication-title: MAGMA
  doi: 10.1007/s10334-023-01101-2
– volume: 17
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b21
  article-title: CMRSegTools: An open-source software enabling reproducible research in segmentation of acute myocardial infarct in CMR images
  publication-title: PLoS One
– start-page: 709
  year: 1983
  ident: 10.1016/j.compbiomed.2025.110643_b25
  article-title: A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, part i
  publication-title: J Clin Chem Clin Biochem.
– volume: 10
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110643_b16
  article-title: Pixel-wise statistical analysis of myocardial injury in STEMI patients with delayed enhancement MRI
  publication-title: Front.: Cardiovasc. Med
– volume: 150
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b30
  article-title: Determination of scar area using native and post-contrast T1 mapping: Agreement with late gadolinium enhancement
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2022.110242
– year: 2016
  ident: 10.1016/j.compbiomed.2025.110643_b13
– volume: 5
  start-page: 480
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110643_b8
  article-title: Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients
  publication-title: JACC: Clin Electrophysiol
– volume: 33
  start-page: 4429
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110643_b20
  article-title: Attribute-based regularization of latent spaces for variational auto-encoders
  publication-title: Neural Comput. Appl
  doi: 10.1007/s00521-020-05270-2
– volume: 45
  year: 2005
  ident: 10.1016/j.compbiomed.2025.110643_b28
  article-title: A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient
  publication-title: NIWA Client Rep.: HAM2005– 062
– volume: 109
  start-page: 256
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110643_b33
  article-title: Fully automated contrast selection of joint bright- and black-blood late gadolinium enhancement imaging for robust myocardial scar assessment
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2024.03.035
– volume: 12
  start-page: 1177
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110643_b9
  article-title: Left ventricular entropy is a novel predictor of arrhythmic events in patients with dilated cardiomyopathy receiving defibrillators for primary prevention
  publication-title: JACC: Cardiovasc. Imaging
– volume: 15
  start-page: 1563
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b15
  article-title: Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis
  publication-title: JACC: Cardiovasc. Imaging
– volume: 268
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110643_b39
  article-title: MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer’s disease progression modelling
  publication-title: Neuroimage
– volume: 80
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110643_b19
  article-title: Learning disentangled representations in the imaging domain
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102516
– volume: 52
  start-page: 141
  year: 2004
  ident: 10.1016/j.compbiomed.2025.110643_b23
  article-title: Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart
  publication-title: Magn Reson. Med
  doi: 10.1002/mrm.20110
– volume: 25
  start-page: 18
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110643_b6
  article-title: Revisiting how we perform late gadolinium enhancement CMR: insights gleaned over 25 years of clinical practice
  publication-title: J Cardiovasc. Magn Reson.
  doi: 10.1186/s12968-023-00925-0
– volume: 64
  start-page: 1217
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110643_b3
  article-title: Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.06.1194
– volume: 17
  start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110643_b12
  article-title: Quantification of myocardial late gadolinium enhancement using synthetic inversion recovery imaging
  publication-title: J Cardiovasc. Magn Reson.
  doi: 10.1186/1532-429X-17-S1-O8
– volume: 97
  start-page: 302
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110643_b37
  article-title: Sparse multi-channel variational autoencoder for the joint analysis of heterogeneous data
  publication-title: Proc. ICML
– volume: 137
  start-page: 1949
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110643_b1
  article-title: Cardiovascular magnetic resonance in acute ST-segment-elevation myocardial infarction: Recent advances, controversies, and future directions
  publication-title: Circul.
  doi: 10.1161/CIRCULATIONAHA.117.030693
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110643_b17
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 22
  start-page: 984
  year: 1993
  ident: 10.1016/j.compbiomed.2025.110643_b4
  article-title: Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(93)90407-R
– volume: 96
  start-page: 608
  year: 1992
  ident: 10.1016/j.compbiomed.2025.110643_b24
  article-title: Quantification of T1 values by SNAPSHOT-FLASH NMR imaging
  publication-title: J Magn Reson.
– volume: 14220
  start-page: 425
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110643_b38
  article-title: Multi-modal variational autoencoders for normative modelling across multiple imaging modalities
  publication-title: Proc. MICCAI
SSID ssj0004030
Score 2.418318
Snippet Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size. However, these images...
AbstractPurpose:Late Gadolinium Enhancement (LGE) images are crucial elements of CMR protocols for evaluating myocardial infarct (MI) severity and size....
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 110643
SubjectTerms Aged
Cardiac magnetic resonance
Computer Science
Contrast Media
Dimensionality reduction
Female
Gadolinium
Humans
Image Processing, Computer-Assisted - methods
Internal Medicine
Late gadolinium enhancement
Machine Learning
Magnetic Resonance Imaging - methods
Male
Medical Imaging
Middle Aged
Myocardial infarction
Myocardial Infarction - diagnostic imaging
Other
Representation learning
Retrospective Studies
ST Elevation Myocardial Infarction - diagnostic imaging
Title Comparison of synthetic LGE with optimal inversion time vs. conventional LGE via representation learning: Quantification of Bias in Population Analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525009941
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525009941
https://dx.doi.org/10.1016/j.compbiomed.2025.110643
https://www.ncbi.nlm.nih.gov/pubmed/40675093
https://www.proquest.com/docview/3231266059
https://hal.science/hal-05225924
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuiDcLpTKIa9rEdh6G03bVskBbgUSl3iw7tmkqka3I7kpc-Bv8Xcaxk4KgUiUuq91sbCfxeOab-JsZgFcIoY2pTZnklS3RQaldoozSSZUpzYxWmvcp84-Oi_kJf3-an27AbIiF8bTKqPuDTu-1dTyyG5_m7kXT-BhfdCXQwUEjjjCnD17nvPRSvvPjkubBUxbCUFDf-LMjmydwvDxtO4S5o6dIc8-JLzi7ykTdOPNcyauAaG-QDu7CnYgkyTRc7D3YsO19uHUU98ofwM_ZWGKQLBzpvreI9fBccvh2n_jXr2SB6uIrdtG06_DWjPhK82Td7ZDfyeh9g3WjSJ8AcwhWakksOPHlNfm0UoFzFP7A0fYa1WG_5ONYH4wM6U8ewsnB_ufZPIllGJKaVXSZOJPRFG2d5lq4MrUFpSXNK-pslmlRGvzmN281ddQyrQp06JxViAuEKh1-sEew2S5a-wRIjiC5yNBF4sbwmqaiokqJ2glB61RVbALZ8OTlRci2IQca2rm8nC3pZ0uG2ZqAGKZIDtGkqP8kmoRrtC3_1dZ2cSF3MpMdlan8S9gm8GZs-Ye8XnPclyhL4y36FN_z6aH0x1IExDk6xWsc4sUgahLXvN_IUa1drDrJEJQjsEJkPIHHQQbHvrh3AVPBnv7XBT6D2_5XINNtweby28o-R_S11Nv98tqGm9N3H-bHvwCPmDBU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgJeEJ-jbIBBvIYlzqfZU6k2MtZWIG3S3iw7tiFIpBNpK_GX7N_lHDsZCCZN4iWKkp6dxue738W_OwO8QQitVKXyIC10jgFKZQKhhAyKSMhYSSGTrmT-fJGVZ8nH8_R8C6Z9LoylVXrb72x6Z639lX3_Nvcv6trm-GIogQEOOnGEOTZ5fdtWp0pHsD05PikXV-mRYewyUdDkWAFP6HE0L8vcdpnuGCzS1NLisyS-zkvd-mrpktdh0c4nHd2Hex5Mkol73gewpZuHcHvul8sfweV02GWQLA1pfzYI9_C3ZPbhkNgvsGSJFuM7NlE3G_fhjNjN5smmfUt-56N3AptakK4GZp-v1BC_58SXd-TzWjjakbuBvb2vRYvtkk_DFmGkr4DyGM6ODk-nZeB3YgiquKCrwKiIhujuZCKZyUOdUZrTtKBGR5FkucIzu34rqaE6liLDmM5ogdCAidzgIX4Co2bZ6KdAUsTJWYRRUqJUUtGQFVQIVhnGaBWKIh5D1L95fuEKbvCeifaNX40Wt6PF3WiNgfVDxPuEUjSBHL3CDWTzf8nq1s_llke8pTzkf-nbGA4GyT9U9ob9vkZdGv6irfJdTmbcXgsRE6cYF2-wi1e9qnGc9nYtRzR6uW55jLgcsRWC4zHsOB0c2kpsFBiy-Nl_PeBLuFOezmd8drw42YW79o7j1u3BaPVjrZ8jGFvJF36y_QLghTMF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+synthetic+LGE+with+optimal+inversion+time+vs.+conventional+LGE+via+representation+learning%3A+Quantification+of+Bias+in+Population+Analysis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Deleat-Besson%2C+Romain&rft.au=Viallon%2C+Magalie&rft.au=Petrusca%2C+Lorena&rft.au=Croisille%2C+Pierre&rft.date=2025-09-01&rft.eissn=1879-0534&rft.volume=196&rft.issue=Pt+B&rft.spage=110643&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110643&rft_id=info%3Apmid%2F40675093&rft.externalDocID=40675093
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif