Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks
The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified...
Saved in:
Published in | Nature reviews. Materials Vol. 3; no. 11; pp. 431 - 440 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks.
There is increasing interest in the liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. In this Review, we discuss the background and terminology of this emerging field, categorize example structures and provide an outlook for the future direction of the field. |
---|---|
AbstractList | The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks. The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks. There is increasing interest in the liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. In this Review, we discuss the background and terminology of this emerging field, categorize example structures and provide an outlook for the future direction of the field. |
Author | Horike, Satoshi Bennett, Thomas D. |
Author_xml | – sequence: 1 givenname: Thomas D. orcidid: 0000-0003-3717-3119 surname: Bennett fullname: Bennett, Thomas D. email: tdb35@cam.ac.uk organization: Department of Materials Science and Metallurgy, University of Cambridge – sequence: 2 givenname: Satoshi surname: Horike fullname: Horike, Satoshi email: horike@icems.kyoto-u.ac.jp organization: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, and AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University |
BookMark | eNp9kMtKAzEUhoNUsNY-gLuAW0dz7WSWUrxBwU33MZNJaupMMk2mSHe-g2_okzh1BEXQRThZ_N-5fMdg5IM3AJxidIERFZeJYZ6LDOH-Ic4yegDGBHGRCUbz0Y__EZimtEYI4YKyQpAxeFy4zdZV53BVq5Sg8hVUTYjtU9gmmELtKpg61ZkEg4U6hFg5rzoXPGxDvWtMHJjGdKp-f30LcaW809BG1ZiXEJ_TCTi0qk5m-lUnYHlzvZzfZYuH2_v51SLTVJAuszlVuLTKYlaqivFKYFFaMiMMaVEog4wpNSGsQCVh3JYWV5yXvMBcaWwYnYCzoW0bw2ZrUifXYRt9P1ESIvisKPIZ7lP5kNIxpBSNldp1n-d0UblaYiT3QuUgVPZC5V6opD2Jf5FtdI2Ku38ZMjCpz_qVid87_Q19AHsPjK8 |
CitedBy_id | crossref_primary_10_1039_D2SC03223F crossref_primary_10_1016_j_ccr_2023_215304 crossref_primary_10_1039_D3DD00236E crossref_primary_10_1016_j_ccr_2022_214735 crossref_primary_10_1039_D1DT00096A crossref_primary_10_1021_acssuschemeng_9b01022 crossref_primary_10_1039_D0CC02937H crossref_primary_10_1021_acs_chemmater_3c00392 crossref_primary_10_1021_acsami_4c19719 crossref_primary_10_1002_adfm_202307226 crossref_primary_10_1021_acs_jpcc_4c02651 crossref_primary_10_1021_acs_chemrev_0c00148 crossref_primary_10_1016_j_ccr_2022_214728 crossref_primary_10_1002_apxr_202400007 crossref_primary_10_1039_C9CC01468C crossref_primary_10_26599_NR_2025_94907229 crossref_primary_10_1021_acs_chemrev_1c00237 crossref_primary_10_1039_D3DT04164F crossref_primary_10_1002_adsc_202300309 crossref_primary_10_1002_ange_201914587 crossref_primary_10_1007_s12274_022_5114_8 crossref_primary_10_1039_D3CS01105D crossref_primary_10_1002_anie_202117261 crossref_primary_10_1016_j_poly_2023_116456 crossref_primary_10_1021_acs_chemmater_4c00355 crossref_primary_10_1039_D3CP05136F crossref_primary_10_1002_adma_202412005 crossref_primary_10_1021_acsomega_2c05732 crossref_primary_10_1039_C8SC04044C crossref_primary_10_1039_D1TA01906F crossref_primary_10_1002_advs_201903003 crossref_primary_10_1021_acs_inorgchem_4c04181 crossref_primary_10_1016_j_micromeso_2020_110600 crossref_primary_10_1002_ange_202302406 crossref_primary_10_1038_s41557_024_01616_8 crossref_primary_10_1039_C9CP01463B crossref_primary_10_1002_aic_17576 crossref_primary_10_1039_D0CE00902D crossref_primary_10_1039_D1DT03158A crossref_primary_10_3390_membranes14050099 crossref_primary_10_1002_anie_202305942 crossref_primary_10_1016_j_poly_2021_115139 crossref_primary_10_1021_acs_chemmater_3c02552 crossref_primary_10_1002_ange_202307552 crossref_primary_10_1016_j_ccr_2023_215403 crossref_primary_10_1021_jacs_5c00962 crossref_primary_10_1039_D2CC05314D crossref_primary_10_1039_D4QM00971A crossref_primary_10_1021_jacs_3c10145 crossref_primary_10_1021_acs_chemmater_1c01838 crossref_primary_10_1021_jacs_9b07563 crossref_primary_10_1016_j_cej_2025_159416 crossref_primary_10_1002_anie_202300003 crossref_primary_10_1039_D0CC03691A crossref_primary_10_1039_D2DT00142J crossref_primary_10_1039_D4TA05026F crossref_primary_10_1016_j_molstruc_2024_137687 crossref_primary_10_1021_acsami_0c03462 crossref_primary_10_1016_j_bios_2024_117002 crossref_primary_10_1016_j_ijplas_2021_103106 crossref_primary_10_1021_acs_inorgchem_2c02580 crossref_primary_10_1039_D1TA08449F crossref_primary_10_1038_s41570_023_00474_1 crossref_primary_10_1021_acsami_1c07366 crossref_primary_10_1063_1_5120093 crossref_primary_10_1007_s11433_024_2489_6 crossref_primary_10_1016_j_jhazmat_2021_125639 crossref_primary_10_1007_s12274_022_4664_0 crossref_primary_10_1021_jacs_4c01539 crossref_primary_10_1039_D4SC07058E crossref_primary_10_1016_j_cej_2024_152295 crossref_primary_10_1016_j_electacta_2019_06_084 crossref_primary_10_1016_j_pnsc_2024_12_006 crossref_primary_10_1021_acsami_3c15359 crossref_primary_10_1039_D3SC04332K crossref_primary_10_1021_acsomega_0c00687 crossref_primary_10_1039_D3CC04518H crossref_primary_10_1002_ange_202300003 crossref_primary_10_1002_ange_202218902 crossref_primary_10_1039_D1SC07080K crossref_primary_10_1111_jace_16308 crossref_primary_10_1002_ange_201911384 crossref_primary_10_1002_ange_202210857 crossref_primary_10_1021_acsaem_4c02297 crossref_primary_10_1021_jacs_3c01455 crossref_primary_10_1016_j_cej_2023_142873 crossref_primary_10_1021_acsomega_5c00466 crossref_primary_10_1016_j_fbio_2024_105037 crossref_primary_10_1021_acs_jpclett_8b03348 crossref_primary_10_1039_D0CC01499K crossref_primary_10_1021_jacs_8b11548 crossref_primary_10_1016_j_jtice_2022_104524 crossref_primary_10_1039_C8TA07234E crossref_primary_10_1039_D2SC00828A crossref_primary_10_1016_j_advmem_2022_100036 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1021_jacs_0c08777 crossref_primary_10_1021_acsnano_3c11725 crossref_primary_10_1039_D4CC03833A crossref_primary_10_1039_C9DT03559A crossref_primary_10_1007_s11244_020_01364_2 crossref_primary_10_1038_s41467_020_18419_3 crossref_primary_10_1002_anie_202302406 crossref_primary_10_1016_j_cej_2024_154347 crossref_primary_10_1016_j_jallcom_2021_159218 crossref_primary_10_1039_D1SC02883A crossref_primary_10_1038_s41467_022_32332_x crossref_primary_10_1039_D2GC04682B crossref_primary_10_1038_s41467_022_35372_5 crossref_primary_10_1039_D1MA00048A crossref_primary_10_1063_5_0031941 crossref_primary_10_1021_acs_chemmater_2c00494 crossref_primary_10_1038_s41467_024_45326_8 crossref_primary_10_1039_D3QM00460K crossref_primary_10_1038_s43246_024_00485_5 crossref_primary_10_1039_D3CC02492J crossref_primary_10_1002_bkcs_12268 crossref_primary_10_1002_cnma_202200078 crossref_primary_10_1016_j_envres_2024_118261 crossref_primary_10_1038_s41557_020_0419_2 crossref_primary_10_1016_j_jhazmat_2024_133886 crossref_primary_10_1021_acs_chemrev_1c00826 crossref_primary_10_1021_jacs_0c11718 crossref_primary_10_1039_D1SC00392E crossref_primary_10_1039_D2CS00315E crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1021_acs_accounts_4c00290 crossref_primary_10_1002_adfm_202104162 crossref_primary_10_1002_ange_202117261 crossref_primary_10_1021_acs_nanolett_2c03207 crossref_primary_10_1002_adfm_202408829 crossref_primary_10_1039_D0TA09168E crossref_primary_10_1039_D1TA06238G crossref_primary_10_1039_D3CS00939D crossref_primary_10_1021_jacs_3c05279 crossref_primary_10_1021_acs_chemmater_2c00240 crossref_primary_10_1021_acs_inorgchem_2c02147 crossref_primary_10_1002_adfm_201908292 crossref_primary_10_1002_smll_202307034 crossref_primary_10_1246_bcsj_20230152 crossref_primary_10_1002_ange_201915807 crossref_primary_10_1021_acs_chemmater_2c03510 crossref_primary_10_1039_D2QI00473A crossref_primary_10_1021_acs_inorgchem_1c01839 crossref_primary_10_1002_anie_202218094 crossref_primary_10_1021_acs_inorgchem_2c01978 crossref_primary_10_1002_anie_202014791 crossref_primary_10_1002_anie_202202742 crossref_primary_10_1002_aelm_202100871 crossref_primary_10_1016_j_crgsc_2021_100070 crossref_primary_10_1021_acs_chemrev_0c00722 crossref_primary_10_1002_adfm_201904016 crossref_primary_10_1016_j_apcatb_2024_124023 crossref_primary_10_1039_D0SC01737J crossref_primary_10_1039_D2NR03791B crossref_primary_10_3390_molecules25030633 crossref_primary_10_1038_s41598_020_60198_w crossref_primary_10_1039_C9CC02172H crossref_primary_10_1039_C9CC02673H crossref_primary_10_1002_adfm_202205013 crossref_primary_10_1002_adma_202415483 crossref_primary_10_1038_s41467_021_24188_4 crossref_primary_10_1021_acs_jpcc_0c10106 crossref_primary_10_1021_acs_nanolett_9b04732 crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1002_anie_201915807 crossref_primary_10_1039_D1MA00414J crossref_primary_10_1002_aenm_202405593 crossref_primary_10_1002_ange_202014791 crossref_primary_10_1021_acsami_3c05121 crossref_primary_10_1038_s41467_024_49772_2 crossref_primary_10_3390_s24165258 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1016_j_ccr_2023_215297 crossref_primary_10_1039_D2CC01375D crossref_primary_10_1038_s41467_023_38081_9 crossref_primary_10_1021_acs_inorgchem_1c01616 crossref_primary_10_1021_jacs_4c12697 crossref_primary_10_1039_D3QM00879G crossref_primary_10_1038_s41563_022_01346_7 crossref_primary_10_1039_C8TA08016J crossref_primary_10_1002_anie_202112880 crossref_primary_10_1039_C8PY01497C crossref_primary_10_1021_acsomega_9b01559 crossref_primary_10_3390_molecules27123830 crossref_primary_10_1002_adhm_202400652 crossref_primary_10_1002_anie_202110585 crossref_primary_10_1021_acsami_1c12403 crossref_primary_10_1038_s41467_020_19598_9 crossref_primary_10_1002_smll_202310702 crossref_primary_10_1021_jacs_3c01933 crossref_primary_10_1039_D0TC00844C crossref_primary_10_1038_s42004_023_00891_9 crossref_primary_10_1515_pac_2021_0706 crossref_primary_10_1039_D0CC00664E crossref_primary_10_1016_j_jece_2023_109963 crossref_primary_10_1021_jacs_8b11357 crossref_primary_10_1039_D3CP02970K crossref_primary_10_1038_s41467_024_48703_5 crossref_primary_10_1039_D4SC01433B crossref_primary_10_1038_s44160_023_00425_0 crossref_primary_10_1002_adem_202301059 crossref_primary_10_1016_j_seppur_2023_125435 crossref_primary_10_1039_D0FD00011F crossref_primary_10_1016_j_jphotochem_2021_113204 crossref_primary_10_1002_anie_202218902 crossref_primary_10_1021_jacs_3c07595 crossref_primary_10_1038_s41563_020_00827_x crossref_primary_10_1016_j_xinn_2024_100577 crossref_primary_10_1021_jacs_2c10449 crossref_primary_10_1039_D2TA03216C crossref_primary_10_1016_j_electacta_2022_141057 crossref_primary_10_1039_C9CC08904G crossref_primary_10_1016_j_jnoncrysol_2022_121936 crossref_primary_10_5940_jcrsj_66_235 crossref_primary_10_1016_j_dyepig_2022_110602 crossref_primary_10_1002_ange_202202742 crossref_primary_10_1002_anie_202107185 crossref_primary_10_1016_j_enchem_2021_100067 crossref_primary_10_1016_j_memsci_2022_120611 crossref_primary_10_1002_smll_202408466 crossref_primary_10_1038_s41467_019_12754_w crossref_primary_10_1039_D1DT02587B crossref_primary_10_1002_ange_202218094 crossref_primary_10_1039_D1DT00079A crossref_primary_10_1002_anie_202102047 crossref_primary_10_1021_acs_inorgchem_9b00274 crossref_primary_10_1039_D1RA02938J crossref_primary_10_1021_acs_inorgchem_4c04223 crossref_primary_10_1016_j_jssc_2023_124450 crossref_primary_10_1016_j_foodhyd_2022_108138 crossref_primary_10_1016_j_apsusc_2020_147030 crossref_primary_10_1021_acsaem_9b01743 crossref_primary_10_1021_jacs_9b05558 crossref_primary_10_1039_D4QI02228A crossref_primary_10_1039_D3SM01658G crossref_primary_10_3389_fbioe_2020_00714 crossref_primary_10_1016_j_jece_2021_106907 crossref_primary_10_1021_acsmaterialslett_2c00357 crossref_primary_10_1039_C9CE01861A crossref_primary_10_3390_molecules29133168 crossref_primary_10_1016_j_ccr_2020_213388 crossref_primary_10_1039_D0GC00546K crossref_primary_10_1021_acsami_4c11928 crossref_primary_10_1021_jacs_1c08368 crossref_primary_10_1002_adfm_202417189 crossref_primary_10_1021_acs_chemmater_2c00325 crossref_primary_10_1021_acs_chemmater_2c01536 crossref_primary_10_1039_D4QI02422B crossref_primary_10_1038_s41467_024_51845_1 crossref_primary_10_1021_jacs_2c02918 crossref_primary_10_1021_acs_jpcc_2c01091 crossref_primary_10_1039_D4CS00432A crossref_primary_10_1002_advs_202413942 crossref_primary_10_1002_chem_202404318 crossref_primary_10_1039_D3CC02265J crossref_primary_10_1002_anie_201911384 crossref_primary_10_1039_D4RA05563B crossref_primary_10_1038_s43246_024_00691_1 crossref_primary_10_1021_acsami_1c09130 crossref_primary_10_1039_D0CS00786B crossref_primary_10_1149_1945_7111_ad2d8d crossref_primary_10_1021_jacs_2c04532 crossref_primary_10_1039_D2NJ05455H crossref_primary_10_1016_j_micromeso_2024_113387 crossref_primary_10_1016_j_prostr_2023_12_011 crossref_primary_10_1039_D3CC00834G crossref_primary_10_1021_acs_inorgchem_1c01492 crossref_primary_10_1021_acs_jpcc_2c06305 crossref_primary_10_1039_D0FD00003E crossref_primary_10_1039_D0CE00408A crossref_primary_10_1039_D0DT04190D crossref_primary_10_1039_D2RA00744D crossref_primary_10_1039_D2DT00616B crossref_primary_10_1021_acs_chemmater_2c01528 crossref_primary_10_1021_acs_inorgchem_1c01813 crossref_primary_10_1039_D0SC02258F crossref_primary_10_1063_5_0069962 crossref_primary_10_1016_j_pmatsci_2024_101311 crossref_primary_10_1021_acsanm_2c03477 crossref_primary_10_1063_5_0166260 crossref_primary_10_1088_1742_6596_2194_1_012041 crossref_primary_10_1002_anie_202210857 crossref_primary_10_1038_s41428_022_00657_5 crossref_primary_10_1039_D1TA01043C crossref_primary_10_1039_D4CC02925A crossref_primary_10_1016_j_isci_2022_104351 crossref_primary_10_1039_D2EE01010K crossref_primary_10_1016_j_progpolymsci_2022_101504 crossref_primary_10_1039_D2DT02142K crossref_primary_10_1002_slct_202101471 crossref_primary_10_1002_adfm_202104300 crossref_primary_10_1021_acs_inorgchem_3c01688 crossref_primary_10_1038_s44160_023_00412_5 crossref_primary_10_1021_acs_inorgchem_2c04068 crossref_primary_10_1063_5_0143404 crossref_primary_10_1016_j_molstruc_2024_139889 crossref_primary_10_1021_jacs_9b11639 crossref_primary_10_1039_D1BM01239H crossref_primary_10_1039_D2CC00486K crossref_primary_10_1039_D4SC00905C crossref_primary_10_4019_bjscc_81_74 crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_1038_s41578_019_0140_1 crossref_primary_10_1021_acs_jpclett_0c00627 crossref_primary_10_1002_ange_202305942 crossref_primary_10_1038_s41467_024_46311_x crossref_primary_10_1002_anie_202307552 crossref_primary_10_1016_j_jeurceramsoc_2022_01_058 crossref_primary_10_1021_acs_inorgchem_4c01886 crossref_primary_10_1007_s40820_024_01465_7 crossref_primary_10_1016_j_ccr_2022_214646 crossref_primary_10_1038_s41467_020_15518_z crossref_primary_10_1021_jacs_3c12296 crossref_primary_10_2139_ssrn_4143138 crossref_primary_10_1021_acs_inorgchem_1c03976 crossref_primary_10_1021_acs_chemmater_1c03820 crossref_primary_10_1016_j_jpowsour_2025_236249 crossref_primary_10_1038_s41578_024_00760_4 crossref_primary_10_1002_anie_202411150 crossref_primary_10_1002_anie_201914587 crossref_primary_10_1002_ejic_202100819 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1016_j_scriptamat_2023_115782 crossref_primary_10_1039_D1DT01116B crossref_primary_10_1063_5_0144718 crossref_primary_10_1039_D2CC03179E crossref_primary_10_1039_D0DT04329J crossref_primary_10_1039_D0NR01673J crossref_primary_10_1039_D1CC03541J crossref_primary_10_1002_anie_202014033 crossref_primary_10_3390_mi15020282 crossref_primary_10_3390_molecules25153449 crossref_primary_10_1002_ange_202107185 crossref_primary_10_1039_D1QI00112D crossref_primary_10_1002_admt_202200343 crossref_primary_10_1016_j_bioactmat_2020_08_036 crossref_primary_10_1002_ange_202102047 crossref_primary_10_1002_chem_201900979 crossref_primary_10_1002_ange_202110585 crossref_primary_10_1002_ange_202112880 crossref_primary_10_1021_jacs_9b08458 crossref_primary_10_1002_adma_202109029 crossref_primary_10_1080_10406638_2023_2169721 crossref_primary_10_1021_acs_chemmater_0c02950 crossref_primary_10_1021_acs_jpcc_8b07407 crossref_primary_10_1002_ejic_202000974 crossref_primary_10_1016_j_cej_2023_147215 crossref_primary_10_1039_D3DT00876B crossref_primary_10_1002_ange_202411150 crossref_primary_10_1016_j_scib_2020_05_003 crossref_primary_10_1021_acs_inorgchem_0c00806 crossref_primary_10_1021_jacs_0c09499 crossref_primary_10_1039_D0SC04008H crossref_primary_10_1021_acsomega_2c06329 crossref_primary_10_1371_journal_pone_0234774 crossref_primary_10_1002_ange_202014033 crossref_primary_10_1039_D4TB01754D crossref_primary_10_1021_jacs_3c13156 crossref_primary_10_1039_C9CE00213H crossref_primary_10_1016_j_jhazmat_2024_135204 crossref_primary_10_1002_adfm_202501683 crossref_primary_10_1063_5_0109885 crossref_primary_10_1002_chem_201900069 crossref_primary_10_1021_acs_jpcc_1c03897 crossref_primary_10_1021_acsanm_0c01953 |
Cites_doi | 10.1021/cm1022882 10.1021/cr4006473 10.1021/ar300291s 10.1039/b912997a 10.1039/C4CS00437J 10.1002/anie.201204806 10.1016/S1387-1811(03)00329-9 10.1021/acs.accounts.7b00404 10.1039/B916295J 10.1039/C7CS00162B 10.1039/c3sc00033h 10.1002/anie.201700962 10.1016/j.jallcom.2017.10.129 10.1002/anie.201007303 10.1021/ar5000314 10.1038/natrevmats.2016.78 10.1246/bcsj.71.1739 10.1039/C7RA11764G 10.1039/b910175f 10.1038/nmat4998 10.1039/C6CC09310H 10.1002/anie.201600123 10.1021/acs.chemmater.7b00441 10.1039/C7DT02511D 10.1021/ja8057953 10.1039/C5CP06798G 10.1039/C5CC04626B 10.1039/C4CC04370G 10.1038/nmat4113 10.1021/ja2085096 10.1002/chem.201302777 10.1038/nenergy.2016.34 10.1002/anie.200703934 10.1039/C6SC05602D 10.1039/C4CS00395K 10.1021/jacs.6b12956 10.1039/c2ee22989g 10.1039/c0cs00137f 10.1126/science.267.5206.1924 10.1039/C6CC02807A 10.1038/natrevmats.2015.18 10.1039/C7CS00033B 10.1002/chem.201300106 10.1002/anie.201005547 10.1073/pnas.0602439103 10.1039/C8CC02399A 10.1016/j.jorganchem.2005.03.007 10.1007/s00396-011-2461-5 10.1039/b600349d 10.1038/35065704 10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K 10.1063/1.4941544 10.1088/0953-8984/20/6/064233 10.1126/science.1230444 10.1002/anie.201206410 10.1007/s11090-011-9290-7 10.1002/cssc.201000114 10.1021/acs.jpclett.5b01135 10.1021/jz400880p 10.1021/jacs.6b06959 10.1039/C7SC03786D 10.1016/j.micromeso.2012.11.003 10.1039/C5TC00119F 10.1002/cplu.201300063 10.1021/acs.chemmater.5b00046 10.1039/c3ta13140h 10.1038/nchem.2691 10.1038/nchem.1505 10.1351/PAC-REC-12-11-20 10.1038/nchem.2515 10.1021/ja206082s 10.1002/anie.200806063 10.1038/nchem.254 10.1021/ja00160a038 10.1039/C5DT04330A 10.1002/er.3255 10.1039/C7EE01872J 10.1038/nmat4238 10.1016/0022-3093(85)90353-9 10.1021/la900022s 10.1002/anie.200601878 10.1021/jacs.6b07078 10.3390/cryst5010154 10.1016/j.jct.2017.10.002 10.1039/c2sc20261a 10.1002/anie.201506219 10.1039/C4CS00101J 10.2174/1386207311107010028 10.1073/pnas.96.7.3471 10.1021/acs.chemmater.6b03934 10.1126/science.aam8743 10.1021/ja511019u 10.1038/nature15732 10.1038/nature16072 10.1021/cg501737j 10.1021/jacs.5b13220 10.1002/anie.201411540 10.1021/ja908415z 10.1002/chem.201300216 10.1021/acs.jpcc.6b01208 10.1038/nchem.2661 10.1021/jp953538d 10.1038/ncomms7662 10.1038/nmat4825 10.1039/C4CS00093E 10.1021/acs.jpcc.6b06337 10.1021/acs.inorgchem.5b00145 10.1016/j.powtec.2013.09.013 10.1073/pnas.1706330114 10.1039/b900201d 10.1002/chem.200700090 10.1039/C5CC05237H |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2018 Copyright Nature Publishing Group Nov 2018 |
Copyright_xml | – notice: Springer Nature Limited 2018 – notice: Copyright Nature Publishing Group Nov 2018 |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1038/s41578-018-0054-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Materials Science Database (NC LIVE) Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2058-8437 |
EndPage | 440 |
ExternalDocumentID | 10_1038_s41578_018_0054_3 |
GroupedDBID | 0R~ 88I 8FE 8FG AAEEF AARCD AAWYQ AAYZH AAZLF ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFBBN AFKRA AFSHS AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU D1I DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ KB. M2P NNMJJ O9- ODYON PDBOC RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c382t-f73a1bfaf14bad45d818bf26240c89ae0eebc22490b245fbf1d55b5915ac1e43 |
IEDL.DBID | BENPR |
ISSN | 2058-8437 |
IngestDate | Wed Jul 16 16:32:16 EDT 2025 Tue Jul 01 03:55:38 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-f73a1bfaf14bad45d818bf26240c89ae0eebc22490b245fbf1d55b5915ac1e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 |
ORCID | 0000-0003-3717-3119 |
PQID | 2285699761 |
PQPubID | 2069615 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2285699761 crossref_citationtrail_10_1038_s41578_018_0054_3 crossref_primary_10_1038_s41578_018_0054_3 springer_journals_10_1038_s41578_018_0054_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature reviews. Materials |
PublicationTitleAbbrev | Nat Rev Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Andrzejewski, Casati, Katrusiak (CR53) 2017; 46 Spielberg, Edengeiser, Mallick, Havenith, Mudring (CR57) 2014; 20 Yoon (CR8) 2017; 16 Bennett, Saines, Keen, Tan, Cheetham (CR102) 2013; 19 Sumida (CR26) 2017; 29 Chughtai, Ahmad, Younus, Laypkov, Verpoort (CR18) 2015; 44 Rodenas (CR7) 2015; 14 Pachfule, Shinde, Majumder, Xu (CR50) 2016; 8 Ren, Langmi, North, Mathe (CR24) 2015; 39 Bennett (CR69) 2011; 50 Hirai (CR59) 2015; 54 Qiu, Xue, Zhu (CR114) 2014; 43 Sherman (CR101) 1999; 96 Moghadam (CR45) 2017; 29 Lewis (CR68) 2009; 11 Lavenn (CR107) 2015; 3 Ortiz, Boutin, Fuchs, Coudert (CR87) 2013; 4 Quah (CR34) 2015; 6 Zhao, Lee, Becknell, Yaghi, Angell (CR97) 2016; 138 Enke, Janowski, Schwieger (CR98) 2003; 60 Yang, Li, Tang (CR51) 2018; 733 Farrusseng, Aguado, Pinel (CR17) 2009; 48 Xiao (CR90) 2009; 1 Ramaswamy, Wong, Shimizu (CR30) 2014; 43 Sholl, Lively (CR38) 2015; 6 Andersson, Hansson, Öhrstrom, Idström, Nydén (CR49) 2011; 289 Giri (CR111) 2015; 527 Umeyama (CR64) 2015; 51 Angell (CR55) 1995; 267 Lohe, Rose, Kaskel (CR43) 2009; 0 Schoedel, Ji, Yaghi (CR4) 2016; 1 Su (CR61) 2015; 15 (CR6) 2016; 8 Kitagawa, Kondo (CR88) 1998; 71 Nagarkar (CR104) 2017; 56 Morishige (CR95) 2009; 25 Medishetty, Zaręba, Mayer, Samoć, Fischer (CR33) 2017; 46 Horcajada (CR16) 2006; 45 O’Reilly, Giri, James (CR112) 2007; 13 Zhou, Liu (CR52) 2011; 31 Adhikari (CR72) 2016; 120 Mason (CR5) 2015; 527 Ohara (CR109) 2018; 54 Umeyama, Horike, Inukai, Itakura, Kitagawa (CR62) 2015; 137 Seoane (CR115) 2015; 44 Bueken (CR44) 2017; 8 Su (CR86) 2017; 139 Bennett (CR66) 2016; 138 Minami (CR103) 1985; 73 Guillerm (CR82) 2012; 51 Xiu (CR108) 2017; 53 CR63 Orellana-Tavra (CR93) 2015; 51 Mondloch (CR11) 2015; 14 MacFarlane (CR110) 2009; 11 Ma, Zhou (CR3) 2010; 46 Morris, Wheatley (CR2) 2008; 47 Horike, Umeyama, Kitagawa (CR31) 2013; 46 Horike (CR105) 2014; 50 James, Lin (CR56) 2016; 120 Kertik (CR100) 2017; 10 Xin, Chen, Wang, Chen, Zhang (CR92) 2013; 169 Cavka (CR79) 2008; 130 Bobbitt (CR12) 2017 Rozes, Sanchez (CR96) 2011; 40 Martin, Haranczyk (CR20) 2013; 4 Lin, Vasam (CR48) 2005; 690 Bennett (CR65) 2015; 6 Mannstadt (CR113) 2008; 20 Uemura (CR89) 2002; 8 Hoskins, Robson (CR1) 1990; 112 Park (CR67) 2006; 103 Depuydt (CR60) 2013; 78 Funasako, Mori, Mochida (CR106) 2016; 52 Batten (CR116) 2013; 85 Chen (CR78) 2016; 55 Lau (CR46) 2011; 14 Allan (CR91) 2012; 3 Rogge (CR19) 2017; 46 Bazer-Bachi, Assié, Lecocq, Harbuzaru, Falk (CR25) 2014; 255 Su, Miao, Zhang, Miller, Suslick (CR83) 2017; 8 Katsenis (CR74) 2015; 6 Jeong (CR99) 2017; 114 Denny, Moreton, Benz, Cohen (CR10) 2016; 1 Gaillac (CR71) 2017; 16 Chapman, Halder, Chupas (CR85) 2009; 131 Yoon, Suh, Natarajan, Kim (CR29) 2013; 52 Bennett, Cheetham (CR47) 2014; 47 McKeown, Budd (CR94) 2006; 35 Morozana, Jaouen (CR35) 2012; 5 Bennett, Cheetham, Fuchs, Coudert (CR42) 2017; 9 Valekar (CR27) 2017; 7 Ediger, Angell, Nagel (CR117) 1996; 100 DeCoste, Peterson (CR13) 2014; 114 Furukawa, Cordova, O’Keeffe, Yaghi (CR14) 2013; 341 Howarth (CR21) 2016; 1 Bennett (CR81) 2016; 18 Moriya, Kato, Sakamoto, Yogo (CR58) 2013; 19 Friscic (CR76) 2013; 5 Valenzano (CR80) 2011; 23 Chapman, Sava, Halder, Chupas, Nenoff (CR84) 2011; 133 Debenedetti, Stillinger (CR54) 2001; 410 Fang, Bueken, De Vos, Fischer (CR37) 2015; 54 Öhrstrom (CR70) 2015; 5 Keskin, van Heest, Sholl (CR9) 2010; 3 Chen (CR28) 2016; 138 Sun, Campbell, Dinca (CR32) 2016; 55 Kim (CR15) 2017; 356 Calvin (CR75) 2018; 116 Rogge, Waroquier, Van Speybroeck (CR22) 2018; 51 Thornton, Babarao, Jain, Trousselet, Coudert (CR23) 2016; 45 Yadav, Swain, Bhat, Elizabeth (CR41) 2016; 119 Beldon (CR73) 2010; 49 Schneemann (CR39) 2014; 43 Coudert (CR40) 2015; 27 Ricco, Malfatti, Takahashi, Hill, Falcaro (CR36) 2013; 1 Bennett (CR77) 2011; 133 KW Chapman (54_CR84) 2011; 133 JD Sherman (54_CR101) 1999; 96 JH Cavka (54_CR79) 2008; 130 DW Lewis (54_CR68) 2009; 11 N O’Reilly (54_CR112) 2007; 13 Z Su (54_CR86) 2017; 139 R Yadav (54_CR41) 2016; 119 J Ren (54_CR24) 2015; 39 TD Bennett (54_CR65) 2015; 6 SR Batten (54_CR116) 2013; 85 M Andrzejewski (54_CR53) 2017; 46 JJ Calvin (54_CR75) 2018; 116 AW Thornton (54_CR23) 2016; 45 MR Lohe (54_CR43) 2009; 0 KS Park (54_CR67) 2006; 103 R Ramaswamy (54_CR30) 2014; 43 S Horike (54_CR31) 2013; 46 R Ricco (54_CR36) 2013; 1 V Guillerm (54_CR82) 2012; 51 DS Sholl (54_CR38) 2015; 6 PZ Moghadam (54_CR45) 2017; 29 FX Coudert (54_CR40) 2015; 27 RE Morris (54_CR2) 2008; 47 No authors listed. (54_CR6) 2016; 8 W Mannstadt (54_CR113) 2008; 20 S Kitagawa (54_CR88) 1998; 71 A Kertik (54_CR100) 2017; 10 D Lau (54_CR46) 2011; 14 JB DeCoste (54_CR13) 2014; 114 P Pachfule (54_CR50) 2016; 8 S Ma (54_CR3) 2010; 46 T Rodenas (54_CR7) 2015; 14 AU Ortiz (54_CR87) 2013; 4 JW Yoon (54_CR8) 2017; 16 S Qiu (54_CR114) 2014; 43 AD Katsenis (54_CR74) 2015; 6 B Xiao (54_CR90) 2009; 1 ET Spielberg (54_CR57) 2014; 20 D Umeyama (54_CR62) 2015; 137 T Friscic (54_CR76) 2013; 5 D Bazer-Bachi (54_CR25) 2014; 255 P Adhikari (54_CR72) 2016; 120 A Schoedel (54_CR4) 2016; 1 S Horike (54_CR105) 2014; 50 JW Xiu (54_CR108) 2017; 53 WQ Chen (54_CR78) 2016; 55 T Minami (54_CR103) 1985; 73 D Farrusseng (54_CR17) 2009; 48 IJB Lin (54_CR48) 2005; 690 HS Quah (54_CR34) 2015; 6 M Andersson (54_CR49) 2011; 289 MS Denny (54_CR10) 2016; 1 P Horcajada (54_CR16) 2006; 45 L Rozes (54_CR96) 2011; 40 NS Bobbitt (54_CR12) 2017 TD Bennett (54_CR81) 2016; 18 SS Nagarkar (54_CR104) 2017; 56 A Schneemann (54_CR39) 2014; 43 R Gaillac (54_CR71) 2017; 16 D Enke (54_CR98) 2003; 60 ZF Xin (54_CR92) 2013; 169 KW Chapman (54_CR85) 2009; 131 NB McKeown (54_CR94) 2006; 35 B Bueken (54_CR44) 2017; 8 TD Bennett (54_CR77) 2011; 133 Y Zhao (54_CR97) 2016; 138 AH Valekar (54_CR27) 2017; 7 PJ Beldon (54_CR73) 2010; 49 WS Jeong (54_CR99) 2017; 114 R Medishetty (54_CR33) 2017; 46 JB James (54_CR56) 2016; 120 RL Martin (54_CR20) 2013; 4 Y Funasako (54_CR106) 2016; 52 ZL Fang (54_CR37) 2015; 54 C Orellana-Tavra (54_CR93) 2015; 51 SMJ Rogge (54_CR19) 2017; 46 TD Bennett (54_CR47) 2014; 47 CA Angell (54_CR55) 1995; 267 D Depuydt (54_CR60) 2013; 78 AH Chughtai (54_CR18) 2015; 44 D Umeyama (54_CR64) 2015; 51 TD Bennett (54_CR66) 2016; 138 K Morishige (54_CR95) 2009; 25 PK Allan (54_CR91) 2012; 3 L Öhrstrom (54_CR70) 2015; 5 F Yang (54_CR51) 2018; 733 N Giri (54_CR111) 2015; 527 B Seoane (54_CR115) 2015; 44 YJ Su (54_CR61) 2015; 15 Y Ohara (54_CR109) 2018; 54 Z Su (54_CR83) 2017; 8 H Kim (54_CR15) 2017; 356 K Sumida (54_CR26) 2017; 29 54_CR63 Y Hirai (54_CR59) 2015; 54 JE Mondloch (54_CR11) 2015; 14 C Lavenn (54_CR107) 2015; 3 PG Debenedetti (54_CR54) 2001; 410 TD Bennett (54_CR69) 2011; 50 TD Bennett (54_CR102) 2013; 19 M Yoon (54_CR29) 2013; 52 SMJ Rogge (54_CR22) 2018; 51 TD Bennett (54_CR42) 2017; 9 S Keskin (54_CR9) 2010; 3 L Sun (54_CR32) 2016; 55 JA Mason (54_CR5) 2015; 527 Y Zhou (54_CR52) 2011; 31 AJ Howarth (54_CR21) 2016; 1 MD Ediger (54_CR117) 1996; 100 M Moriya (54_CR58) 2013; 19 Y Chen (54_CR28) 2016; 138 K Uemura (54_CR89) 2002; 8 BF Hoskins (54_CR1) 1990; 112 DR MacFarlane (54_CR110) 2009; 11 A Morozana (54_CR35) 2012; 5 L Valenzano (54_CR80) 2011; 23 H Furukawa (54_CR14) 2013; 341 |
References_xml | – volume: 40 start-page: 1006 year: 2011 end-page: 1030 ident: CR96 article-title: Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials publication-title: Chem. Soc. Rev. – volume: 3 start-page: 2559 year: 2012 end-page: 2564 ident: CR91 article-title: Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework publication-title: Chem. Sci. – volume: 51 start-page: 9267 year: 2012 end-page: 9271 ident: CR82 article-title: A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 14795 year: 2017 end-page: 14803 ident: CR53 article-title: Reversible pressure pre-amorphization of a piezochromic metal–organic framework publication-title: Dalton Trans. – volume: 3 start-page: 4115 year: 2015 end-page: 4125 ident: CR107 article-title: A luminescent double helical gold(i)-thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization publication-title: J. Mater. Chem. C – volume: 120 start-page: 15362 year: 2016 end-page: 15368 ident: CR72 article-title: Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF) publication-title: J. Phys. Chem. C – volume: 49 start-page: 9640 year: 2010 end-page: 9643 ident: CR73 article-title: Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 15018 year: 2016 ident: CR21 article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks publication-title: Nat. Rev. Mater. – volume: 78 start-page: 578 year: 2013 end-page: 588 ident: CR60 article-title: Silver-containing ionic liquids with alkylamine ligands publication-title: ChemPlusChem – volume: 114 start-page: 7923 year: 2017 end-page: 7928 ident: CR99 article-title: Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map publication-title: Proc. Natl Acad. Sci. USA – volume: 15 start-page: 1735 year: 2015 end-page: 1739 ident: CR61 article-title: Copper(i) 2-isopropylimidazolate: supramolecular isomerism, isomerization, and luminescent properties publication-title: Cryst. Growth Des. – volume: 5 start-page: 9269 year: 2012 end-page: 9290 ident: CR35 article-title: Metal organic frameworks for electrochemical applications publication-title: Energy Environ. Sci. – volume: 356 start-page: 430 year: 2017 end-page: 434 ident: CR15 article-title: Water harvesting from air with metal-organic frameworks powered by natural sunlight publication-title: Science – volume: 8 start-page: 3939 year: 2017 end-page: 3948 ident: CR44 article-title: Gel-based morphological design of zirconium metal–organic frameworks publication-title: Chem. Sci. – volume: 100 start-page: 13200 year: 1996 end-page: 13212 ident: CR117 article-title: Supercooled liquids and glasses publication-title: J. Phys. Chem. – volume: 3 start-page: 879 year: 2010 end-page: 891 ident: CR9 article-title: Can metal–organic framework materials play a useful role in large-scale carbon dioxide separations publication-title: ChemSusChem – volume: 112 start-page: 1546 year: 1990 end-page: 1554 ident: CR1 article-title: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN) and Cd(CN) structures and the synthesis and structure of the diamond-related frameworks [N(CH ) ][Cu Zn (CN) ] and Cu [4,4ʹ,4ʹʹ,4ʹʹʹ-tetracyanotetraphenylmethane]BF ∙ C H NO publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1861 year: 2013 end-page: 1865 ident: CR87 article-title: Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 66 year: 2013 end-page: 73 ident: CR76 article-title: Real-time and in situ monitoring of mechanochemical milling reactions publication-title: Nat. Chem – volume: 46 start-page: 2376 year: 2013 end-page: 2384 ident: CR31 article-title: Ion conductivity and transport by porous coordination polymers and metal–organic frameworks publication-title: Acc. Chem. Res. – volume: 85 start-page: 1715 year: 2013 end-page: 1724 ident: CR116 article-title: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) publication-title: Pure Appl. Chem. – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: CR67 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: Proc. Natl Acad. Sci. USA – volume: 44 start-page: 6804 year: 2015 end-page: 6849 ident: CR18 article-title: Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations publication-title: Chem. Soc. Rev. – volume: 54 start-page: 7234 year: 2015 end-page: 7254 ident: CR37 article-title: Defect-engineered metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 064103 year: 2016 ident: CR41 article-title: Order-disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH ) NH Co(HCOO) publication-title: J. Appl. Phys. – volume: 54 start-page: 6859 year: 2018 end-page: 6862 ident: CR109 article-title: Formation of coordination polymer glass by mechanical milling: dependence on metal ions and molecular doping for H conductivity publication-title: Chem. Commun. – volume: 55 start-page: 3566 year: 2016 end-page: 3579 ident: CR32 article-title: Electrically conductive porous metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 169 start-page: 218 year: 2013 end-page: 221 ident: CR92 article-title: Nanopolyhedrons and mesoporous supra-structures of zeolitic imidazolate framework with high adsorption performance publication-title: Microporous Mesoporous Mater. – volume: 51 start-page: 138 year: 2018 end-page: 148 ident: CR22 article-title: Reliably modeling the mechanical stability of rigid and flexible metal−organic frameworks publication-title: Acc. Chem. Res. – volume: 138 start-page: 10810 year: 2016 end-page: 10813 ident: CR28 article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams publication-title: J. Am. Chem. Soc. – volume: 733 start-page: 8 year: 2018 end-page: 14 ident: CR51 article-title: Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application publication-title: J. Alloys Compd. – volume: 9 start-page: 11 year: 2017 end-page: 16 ident: CR42 article-title: Interplay between defects, disorder and flexibility in metal–organic frameworks publication-title: Nat. Chem. – volume: 31 start-page: 499 year: 2011 end-page: 506 ident: CR52 article-title: Amorphization of metal-organic framework MOF-5 by electrical discharge publication-title: Plasma Chem. Plasma Process. – volume: 51 start-page: 12728 year: 2015 end-page: 12731 ident: CR64 article-title: Glass formation via structural fragmentation of a 2D coordination network publication-title: Chem. Commun. – volume: 690 start-page: 3498 year: 2005 end-page: 3512 ident: CR48 article-title: Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety publication-title: J. Organomet. Chem. – volume: 14 start-page: 512 year: 2015 end-page: 516 ident: CR11 article-title: Destruction of chemical warfare agents using metal–organic frameworks publication-title: Nat. Mater. – volume: 114 start-page: 5695 year: 2014 end-page: 5727 ident: CR13 article-title: Metal–organic frameworks for air purification of toxic chemicals publication-title: Chem. Soc. Rev. – volume: 46 start-page: 3134 year: 2017 end-page: 3184 ident: CR19 article-title: Metal–organic and covalent organic frameworks as single-site catalysts publication-title: Chem. Soc. Rev. – volume: 133 start-page: 18583 year: 2011 end-page: 18585 ident: CR84 article-title: Trapping guests within a nanoporous metal–organic framework through pressure-induced amorphization publication-title: J. Am. Chem. Soc. – volume: 341 start-page: 974 year: 2013 end-page: 986 ident: CR14 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science – volume: 5 start-page: 154 year: 2015 end-page: 162 ident: CR70 article-title: Let’s talk about MOFs — topology and terminology of metal–organic frameworks and why we need them publication-title: Crystals – ident: CR63 – volume: 96 start-page: 3471 year: 1999 end-page: 3478 ident: CR101 article-title: Synthetic zeolites and other microporous oxide molecular sieves publication-title: Proc. Natl Acad. Sci. USA – volume: 46 start-page: 4976 year: 2017 end-page: 5004 ident: CR33 article-title: Nonlinear optical properties, upconversion and lasing in metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 48 start-page: 7502 year: 2009 end-page: 7513 ident: CR17 article-title: Metal-organic frameworks: opportunities for catalysis publication-title: Angew. Chem. Int. Ed. – volume: 289 start-page: 1361 year: 2011 end-page: 1372 ident: CR49 article-title: Vinylimidazole copolymers: coordination chemistry , solubility , and cross-linking as function of Cu and Zn complexation publication-title: Colloid Polym. Sci. – volume: 7 start-page: 55767 year: 2017 end-page: 55777 ident: CR27 article-title: Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder publication-title: RSC Adv. – volume: 1 start-page: 16078 year: 2016 ident: CR10 article-title: Metal-organic frameworks for membrane-based separations publication-title: Nat. Rev. Mater. – volume: 133 start-page: 14546 year: 2011 end-page: 14549 ident: CR77 article-title: Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 675 year: 2006 end-page: 683 ident: CR94 article-title: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage publication-title: Chem. Soc. Rev. – volume: 51 start-page: 13878 year: 2015 end-page: 13881 ident: CR93 article-title: Amorphous metal–organic frameworks for drug delivery publication-title: Chem. Commun. – volume: 56 start-page: 4976 year: 2017 end-page: 4981 ident: CR104 article-title: Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 2688 year: 2013 end-page: 2700 ident: CR29 article-title: Proton conduction in metal–organic frameworks and related modularly built porous solids publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 864 year: 2015 end-page: 870 ident: CR62 article-title: Reversible solid-to-liquid phase transition of coordination polymer crystals publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 14015 year: 2016 end-page: 14026 ident: CR56 article-title: Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments publication-title: J. Phys. Chem. C – volume: 45 start-page: 5974 year: 2006 end-page: 5978 ident: CR16 article-title: Metal-organic frameworks as efficient materials for drug delivery publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 3484 year: 2016 end-page: 3492 ident: CR66 article-title: Melt-quenched glasses of metal–organic frameworks publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 5338 year: 2014 end-page: 5345 ident: CR57 article-title: (1-Butyl-4-methyl-pyridinium)[Cu(SCN) ]: a coordination polymer and ionic liquid publication-title: Chem. Eur. J. – volume: 8 start-page: 3586 year: 2002 end-page: 3600 ident: CR89 article-title: Novel flexible frameworks of porous cobalt(iii) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups publication-title: Chem. Eur. J. – volume: 11 start-page: 4962 year: 2009 end-page: 4967 ident: CR110 article-title: On the concept of ionicity in ionic liquids publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 8004 year: 2017 end-page: 8011 ident: CR83 article-title: Bond breakage under pressure in a metal organic framework publication-title: Chem. Sci. – start-page: 3357 year: 2017 end-page: 3385 ident: CR12 article-title: Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents publication-title: Chem. Soc. Rev. – volume: 25 start-page: 6221 year: 2009 end-page: 6226 ident: CR95 article-title: Hysteresis critical point of nitrogen in porous glass: occurrence of sample spanning transition in capillary condensation publication-title: Langmuir – volume: 60 start-page: 19 year: 2003 end-page: 30 ident: CR98 article-title: Porous glasses in the 21st century — a short review publication-title: Microporous Mesoporous Mater. – volume: 139 start-page: 4619 year: 2017 end-page: 4622 ident: CR86 article-title: Shock wave chemistry in a metal–organic framework publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 10241 year: 2014 end-page: 10243 ident: CR105 article-title: Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction publication-title: Chem. Commun. – volume: 410 start-page: 259 year: 2001 end-page: 267 ident: CR54 article-title: Supercooled liquids and the glass transition publication-title: Nature – volume: 19 start-page: 13554 year: 2013 end-page: 13560 ident: CR58 article-title: Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction publication-title: Chem. Eur. J. – volume: 138 start-page: 10818 year: 2016 end-page: 10821 ident: CR97 article-title: Nanoporous transparent MOF glasses with accessible internal surface publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 289 year: 2009 end-page: 294 ident: CR90 article-title: Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework publication-title: Nat. Chem. – volume: 6 year: 2015 ident: CR65 article-title: Hybrid glasses from strong and fragile metal–organic framework liquids publication-title: Nat. Commun. – volume: 20 start-page: 064233 year: 2008 ident: CR113 article-title: Computational materials science aided design of glass ceramics and crystal properties publication-title: J. Phys. Condens. Mater. – volume: 46 start-page: 44 year: 2010 end-page: 53 ident: CR3 article-title: Gas storage in porous metal–organic frameworks for clean energy applications publication-title: Chem. Commun. – volume: 39 start-page: 607 year: 2015 end-page: 620 ident: CR24 article-title: Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage publication-title: Int. J. Energy Res. – volume: 43 start-page: 5913 year: 2014 end-page: 5932 ident: CR30 article-title: MOFs as proton conductors — challenges and opportunities publication-title: Chem. Soc. Rev. – volume: 55 start-page: 5195 year: 2016 end-page: 5200 ident: CR78 article-title: Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility publication-title: Angew. Chem. Int. Ed. – volume: 527 start-page: 216 year: 2015 end-page: 220 ident: CR111 article-title: Liquids with permanent porosity publication-title: Nature – volume: 116 start-page: 341 year: 2018 end-page: 351 ident: CR75 article-title: Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm) publication-title: J. Chem. Thermodyn. – volume: 13 start-page: 3020 year: 2007 end-page: 3025 ident: CR112 article-title: Porous liquids publication-title: Chem. Eur. J. – volume: 16 start-page: 1149 year: 2017 end-page: 1154 ident: CR71 article-title: Liquid metal–organic frameworks publication-title: Nat. Mater. – volume: 1 start-page: 16034 year: 2016 ident: CR4 article-title: The role of metal–organic frameworks in a carbon-neutral energy cycle publication-title: Nat. Energy – volume: 73 start-page: 273 year: 1985 end-page: 284 ident: CR103 article-title: Fast ion conducting glasses publication-title: J. Non-Cryst. Solids – volume: 14 start-page: 48 year: 2015 end-page: 55 ident: CR7 article-title: Metal–organic framework nanosheets in polymer composite materials for gas separation publication-title: Nat. Mater. – volume: 267 start-page: 1924 year: 1995 end-page: 1935 ident: CR55 article-title: Formation of glasses from liquids and biopolymers publication-title: Science – volume: 43 start-page: 6062 year: 2014 end-page: 6096 ident: CR39 article-title: Flexible metal–organic frameworks publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2272 year: 2009 end-page: 2276 ident: CR68 article-title: Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues publication-title: CrystEngComm – volume: 71 start-page: 1739 year: 1998 end-page: 1753 ident: CR88 article-title: Functional micropore chemistry of crystalline metal complex-assembled compounds publication-title: Bull. Chem. Soc. Jpn – volume: 0 start-page: 6056 year: 2009 end-page: 6058 ident: CR43 article-title: Metal–organic framework (MOF) aerogels with high micro- and macroporosity publication-title: Chem. Commun. – volume: 23 start-page: 1700 year: 2011 end-page: 1718 ident: CR80 article-title: Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory publication-title: Chem. Mater. – volume: 527 start-page: 357 year: 2015 end-page: 361 ident: CR5 article-title: Methane storage in flexible metal–organic frameworks with intrinsic thermal management publication-title: Nature – volume: 1 start-page: 13033 year: 2013 end-page: 13045 ident: CR36 article-title: Applications of magnetic metal–organic framework composites publication-title: J. Mater. Chem. A – volume: 18 start-page: 2192 year: 2016 end-page: 2201 ident: CR81 article-title: Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 28 year: 2011 end-page: 35 ident: CR46 article-title: PLUXter: rapid discovery of metal-organic framework structures using PCA and HCA of high throughput synchrotron powder diffraction data publication-title: Comb. Chem. High Throughput Screening – volume: 54 start-page: 4364 year: 2015 end-page: 4370 ident: CR59 article-title: Luminescent coordination glass: remarkable morphological strategy for assembled Eu(iii) complexes publication-title: Inorg. Chem. – volume: 27 start-page: 1905 year: 2015 end-page: 1916 ident: CR40 article-title: Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends publication-title: Chem. Mater. – volume: 44 start-page: 2421 year: 2015 end-page: 2454 ident: CR115 article-title: Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO capture? publication-title: Chem. Soc. Rev. – volume: 131 start-page: 17546 year: 2009 end-page: 17547 ident: CR85 article-title: Pressure-induced amorphization and porosity modification in a metal–organic framework publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 718 year: 2016 end-page: 724 ident: CR50 article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework publication-title: Nat. Chem. – volume: 45 start-page: 4352 year: 2016 end-page: 4359 ident: CR23 article-title: Defects in metal-organic frameworks: a compromise between adsorption and stability? publication-title: Dalton Trans. – volume: 53 start-page: 2479 year: 2017 end-page: 2482 ident: CR108 article-title: Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations publication-title: Chem. Commun. – volume: 43 start-page: 6116 year: 2014 end-page: 6140 ident: CR114 article-title: Metal–organic framework membranes: from synthesis to separation application publication-title: Chem. Commun. – volume: 4 start-page: 1781 year: 2013 end-page: 1785 ident: CR20 article-title: Exploring frontiers of high surface area metal–organic frameworks publication-title: Chem. Sci. – volume: 6 start-page: 3437 year: 2015 end-page: 3444 ident: CR38 article-title: Defects in metal–organic frameworks: challenge or opportunity? publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 6277 year: 2016 end-page: 6279 ident: CR106 article-title: Reversible transformation between ionic liquids and coordination polymers by application of light and heat publication-title: Chem. Commun. – volume: 50 start-page: 3067 year: 2011 end-page: 3071 ident: CR69 article-title: Thermal amorphization of zeolitic imidazolate frameworks publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 7049 year: 2013 end-page: 7055 ident: CR102 article-title: Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine publication-title: Chem. Eur. J. – volume: 16 start-page: 526 year: 2017 end-page: 531 ident: CR8 article-title: Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites publication-title: Nat. Mater. – volume: 8 start-page: 987 year: 2016 end-page: 987 ident: CR6 article-title: Frameworks for commercial success publication-title: Nat. Chem. – volume: 47 start-page: 1555 year: 2014 end-page: 1562 ident: CR47 article-title: Amorphous metal–organic frameworks publication-title: Acc. Chem. Res. – volume: 130 start-page: 13850 year: 2008 end-page: 13851 ident: CR79 article-title: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 4966 year: 2008 end-page: 4981 ident: CR2 article-title: Gas storage in nanoporous materials publication-title: Angew. Chem. Int. Ed. – volume: 6 year: 2015 ident: CR34 article-title: Multiphoton harvesting metal–organic frameworks publication-title: Nat. Commun. – volume: 6 year: 2015 ident: CR74 article-title: In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework publication-title: Nat. Commun. – volume: 10 start-page: 2342 year: 2017 end-page: 2351 ident: CR100 article-title: Highly selective gas separation membrane using in situ amorphised metal-organic frameworks publication-title: Energy Environ. Sci – volume: 29 start-page: 2618 year: 2017 end-page: 2625 ident: CR45 article-title: Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future publication-title: Chem. Mater. – volume: 255 start-page: 52 year: 2014 end-page: 59 ident: CR25 article-title: Towards industrial use of metal-organic framework: impact of shaping on the MOF properties publication-title: Powder Technol. – volume: 29 start-page: 2626 year: 2017 end-page: 2645 ident: CR26 article-title: Sol–Gel processing of metal–organic frameworks publication-title: Chem. Mater. – volume: 23 start-page: 1700 year: 2011 ident: 54_CR80 publication-title: Chem. Mater. doi: 10.1021/cm1022882 – volume: 114 start-page: 5695 year: 2014 ident: 54_CR13 publication-title: Chem. Soc. Rev. doi: 10.1021/cr4006473 – volume: 46 start-page: 2376 year: 2013 ident: 54_CR31 publication-title: Acc. Chem. Res. doi: 10.1021/ar300291s – volume: 11 start-page: 2272 year: 2009 ident: 54_CR68 publication-title: CrystEngComm doi: 10.1039/b912997a – volume: 44 start-page: 2421 year: 2015 ident: 54_CR115 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00437J – volume: 51 start-page: 9267 year: 2012 ident: 54_CR82 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204806 – volume: 60 start-page: 19 year: 2003 ident: 54_CR98 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(03)00329-9 – volume: 51 start-page: 138 year: 2018 ident: 54_CR22 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00404 – volume: 46 start-page: 44 year: 2010 ident: 54_CR3 publication-title: Chem. Commun. doi: 10.1039/B916295J – volume: 46 start-page: 4976 year: 2017 ident: 54_CR33 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00162B – volume: 4 start-page: 1781 year: 2013 ident: 54_CR20 publication-title: Chem. Sci. doi: 10.1039/c3sc00033h – volume: 56 start-page: 4976 year: 2017 ident: 54_CR104 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700962 – volume: 733 start-page: 8 year: 2018 ident: 54_CR51 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.129 – volume: 50 start-page: 3067 year: 2011 ident: 54_CR69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201007303 – volume: 47 start-page: 1555 year: 2014 ident: 54_CR47 publication-title: Acc. Chem. Res. doi: 10.1021/ar5000314 – ident: 54_CR63 – volume: 1 start-page: 16078 year: 2016 ident: 54_CR10 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.78 – volume: 71 start-page: 1739 year: 1998 ident: 54_CR88 publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.71.1739 – volume: 7 start-page: 55767 year: 2017 ident: 54_CR27 publication-title: RSC Adv. doi: 10.1039/C7RA11764G – volume: 0 start-page: 6056 year: 2009 ident: 54_CR43 publication-title: Chem. Commun. doi: 10.1039/b910175f – volume: 16 start-page: 1149 year: 2017 ident: 54_CR71 publication-title: Nat. Mater. doi: 10.1038/nmat4998 – volume: 53 start-page: 2479 year: 2017 ident: 54_CR108 publication-title: Chem. Commun. doi: 10.1039/C6CC09310H – volume: 55 start-page: 5195 year: 2016 ident: 54_CR78 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201600123 – volume: 29 start-page: 2618 year: 2017 ident: 54_CR45 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00441 – volume: 46 start-page: 14795 year: 2017 ident: 54_CR53 publication-title: Dalton Trans. doi: 10.1039/C7DT02511D – volume: 130 start-page: 13850 year: 2008 ident: 54_CR79 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057953 – volume: 18 start-page: 2192 year: 2016 ident: 54_CR81 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06798G – volume: 51 start-page: 12728 year: 2015 ident: 54_CR64 publication-title: Chem. Commun. doi: 10.1039/C5CC04626B – volume: 50 start-page: 10241 year: 2014 ident: 54_CR105 publication-title: Chem. Commun. doi: 10.1039/C4CC04370G – volume: 14 start-page: 48 year: 2015 ident: 54_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4113 – volume: 133 start-page: 18583 year: 2011 ident: 54_CR84 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2085096 – volume: 20 start-page: 5338 year: 2014 ident: 54_CR57 publication-title: Chem. Eur. J. doi: 10.1002/chem.201302777 – volume: 1 start-page: 16034 year: 2016 ident: 54_CR4 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.34 – volume: 47 start-page: 4966 year: 2008 ident: 54_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200703934 – volume: 8 start-page: 3939 year: 2017 ident: 54_CR44 publication-title: Chem. Sci. doi: 10.1039/C6SC05602D – volume: 44 start-page: 6804 year: 2015 ident: 54_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00395K – volume: 139 start-page: 4619 year: 2017 ident: 54_CR86 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12956 – volume: 5 start-page: 9269 year: 2012 ident: 54_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22989g – volume: 40 start-page: 1006 year: 2011 ident: 54_CR96 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00137f – volume: 267 start-page: 1924 year: 1995 ident: 54_CR55 publication-title: Science doi: 10.1126/science.267.5206.1924 – volume: 52 start-page: 6277 year: 2016 ident: 54_CR106 publication-title: Chem. Commun. doi: 10.1039/C6CC02807A – volume: 1 start-page: 15018 year: 2016 ident: 54_CR21 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.18 – volume: 46 start-page: 3134 year: 2017 ident: 54_CR19 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 19 start-page: 13554 year: 2013 ident: 54_CR58 publication-title: Chem. Eur. J. doi: 10.1002/chem.201300106 – volume: 49 start-page: 9640 year: 2010 ident: 54_CR73 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005547 – volume: 43 start-page: 6116 year: 2014 ident: 54_CR114 publication-title: Chem. Commun. – volume: 103 start-page: 10186 year: 2006 ident: 54_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602439103 – volume: 54 start-page: 6859 year: 2018 ident: 54_CR109 publication-title: Chem. Commun. doi: 10.1039/C8CC02399A – volume: 690 start-page: 3498 year: 2005 ident: 54_CR48 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2005.03.007 – volume: 289 start-page: 1361 year: 2011 ident: 54_CR49 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-011-2461-5 – volume: 35 start-page: 675 year: 2006 ident: 54_CR94 publication-title: Chem. Soc. Rev. doi: 10.1039/b600349d – volume: 6 year: 2015 ident: 54_CR65 publication-title: Nat. Commun. – volume: 410 start-page: 259 year: 2001 ident: 54_CR54 publication-title: Nature doi: 10.1038/35065704 – volume: 8 start-page: 3586 year: 2002 ident: 54_CR89 publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K – volume: 119 start-page: 064103 year: 2016 ident: 54_CR41 publication-title: J. Appl. Phys. doi: 10.1063/1.4941544 – volume: 20 start-page: 064233 year: 2008 ident: 54_CR113 publication-title: J. Phys. Condens. Mater. doi: 10.1088/0953-8984/20/6/064233 – volume: 341 start-page: 974 year: 2013 ident: 54_CR14 publication-title: Science doi: 10.1126/science.1230444 – volume: 52 start-page: 2688 year: 2013 ident: 54_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206410 – volume: 31 start-page: 499 year: 2011 ident: 54_CR52 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-011-9290-7 – volume: 3 start-page: 879 year: 2010 ident: 54_CR9 publication-title: ChemSusChem doi: 10.1002/cssc.201000114 – volume: 6 start-page: 3437 year: 2015 ident: 54_CR38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01135 – volume: 4 start-page: 1861 year: 2013 ident: 54_CR87 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400880p – volume: 138 start-page: 10810 year: 2016 ident: 54_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06959 – volume: 8 start-page: 8004 year: 2017 ident: 54_CR83 publication-title: Chem. Sci. doi: 10.1039/C7SC03786D – volume: 169 start-page: 218 year: 2013 ident: 54_CR92 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.11.003 – volume: 3 start-page: 4115 year: 2015 ident: 54_CR107 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00119F – volume: 78 start-page: 578 year: 2013 ident: 54_CR60 publication-title: ChemPlusChem doi: 10.1002/cplu.201300063 – volume: 27 start-page: 1905 year: 2015 ident: 54_CR40 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00046 – volume: 1 start-page: 13033 year: 2013 ident: 54_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13140h – volume: 9 start-page: 11 year: 2017 ident: 54_CR42 publication-title: Nat. Chem. doi: 10.1038/nchem.2691 – volume: 5 start-page: 66 year: 2013 ident: 54_CR76 publication-title: Nat. Chem doi: 10.1038/nchem.1505 – volume: 85 start-page: 1715 year: 2013 ident: 54_CR116 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-REC-12-11-20 – volume: 8 start-page: 718 year: 2016 ident: 54_CR50 publication-title: Nat. Chem. doi: 10.1038/nchem.2515 – volume: 133 start-page: 14546 year: 2011 ident: 54_CR77 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206082s – volume: 48 start-page: 7502 year: 2009 ident: 54_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200806063 – volume: 1 start-page: 289 year: 2009 ident: 54_CR90 publication-title: Nat. Chem. doi: 10.1038/nchem.254 – volume: 112 start-page: 1546 year: 1990 ident: 54_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00160a038 – volume: 45 start-page: 4352 year: 2016 ident: 54_CR23 publication-title: Dalton Trans. doi: 10.1039/C5DT04330A – volume: 39 start-page: 607 year: 2015 ident: 54_CR24 publication-title: Int. J. Energy Res. doi: 10.1002/er.3255 – volume: 10 start-page: 2342 year: 2017 ident: 54_CR100 publication-title: Energy Environ. Sci doi: 10.1039/C7EE01872J – volume: 14 start-page: 512 year: 2015 ident: 54_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat4238 – volume: 73 start-page: 273 year: 1985 ident: 54_CR103 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(85)90353-9 – volume: 25 start-page: 6221 year: 2009 ident: 54_CR95 publication-title: Langmuir doi: 10.1021/la900022s – volume: 45 start-page: 5974 year: 2006 ident: 54_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601878 – volume: 138 start-page: 10818 year: 2016 ident: 54_CR97 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07078 – volume: 5 start-page: 154 year: 2015 ident: 54_CR70 publication-title: Crystals doi: 10.3390/cryst5010154 – volume: 116 start-page: 341 year: 2018 ident: 54_CR75 publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2017.10.002 – volume: 3 start-page: 2559 year: 2012 ident: 54_CR91 publication-title: Chem. Sci. doi: 10.1039/c2sc20261a – volume: 55 start-page: 3566 year: 2016 ident: 54_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506219 – volume: 43 start-page: 6062 year: 2014 ident: 54_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00101J – volume: 14 start-page: 28 year: 2011 ident: 54_CR46 publication-title: Comb. Chem. High Throughput Screening doi: 10.2174/1386207311107010028 – volume: 96 start-page: 3471 year: 1999 ident: 54_CR101 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.7.3471 – volume: 29 start-page: 2626 year: 2017 ident: 54_CR26 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03934 – volume: 356 start-page: 430 year: 2017 ident: 54_CR15 publication-title: Science doi: 10.1126/science.aam8743 – volume: 137 start-page: 864 year: 2015 ident: 54_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511019u – volume: 527 start-page: 357 year: 2015 ident: 54_CR5 publication-title: Nature doi: 10.1038/nature15732 – volume: 527 start-page: 216 year: 2015 ident: 54_CR111 publication-title: Nature doi: 10.1038/nature16072 – volume: 15 start-page: 1735 year: 2015 ident: 54_CR61 publication-title: Cryst. Growth Des. doi: 10.1021/cg501737j – volume: 138 start-page: 3484 year: 2016 ident: 54_CR66 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13220 – volume: 54 start-page: 7234 year: 2015 ident: 54_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411540 – volume: 131 start-page: 17546 year: 2009 ident: 54_CR85 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908415z – volume: 19 start-page: 7049 year: 2013 ident: 54_CR102 publication-title: Chem. Eur. J. doi: 10.1002/chem.201300216 – start-page: 3357 volume-title: Chem. Soc. Rev. year: 2017 ident: 54_CR12 – volume: 120 start-page: 14015 year: 2016 ident: 54_CR56 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01208 – volume: 8 start-page: 987 year: 2016 ident: 54_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.2661 – volume: 100 start-page: 13200 year: 1996 ident: 54_CR117 publication-title: J. Phys. Chem. doi: 10.1021/jp953538d – volume: 6 year: 2015 ident: 54_CR74 publication-title: Nat. Commun. doi: 10.1038/ncomms7662 – volume: 16 start-page: 526 year: 2017 ident: 54_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat4825 – volume: 43 start-page: 5913 year: 2014 ident: 54_CR30 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 120 start-page: 15362 year: 2016 ident: 54_CR72 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b06337 – volume: 54 start-page: 4364 year: 2015 ident: 54_CR59 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00145 – volume: 255 start-page: 52 year: 2014 ident: 54_CR25 publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.09.013 – volume: 114 start-page: 7923 year: 2017 ident: 54_CR99 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1706330114 – volume: 11 start-page: 4962 year: 2009 ident: 54_CR110 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b900201d – volume: 6 year: 2015 ident: 54_CR34 publication-title: Nat. Commun. – volume: 13 start-page: 3020 year: 2007 ident: 54_CR112 publication-title: Chem. Eur. J. doi: 10.1002/chem.200700090 – volume: 51 start-page: 13878 year: 2015 ident: 54_CR93 publication-title: Chem. Commun. doi: 10.1039/C5CC05237H |
SSID | ssj0001934982 |
Score | 2.560313 |
SecondaryResourceType | review_article |
Snippet | The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 431 |
SubjectTerms | 639/301/923/218 639/638/298/921 Biomaterials Chemistry and Materials Science Condensed Matter Physics Coordination polymers Crystal structure Crystallinity Ligands Materials Science Metal-organic frameworks Nanotechnology Optical and Electronic Materials Polymers Review Article Structural design |
Title | Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks |
URI | https://link.springer.com/article/10.1038/s41578-018-0054-3 https://www.proquest.com/docview/2285699761 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T9xAEB6Fo4EigiSISwjaIhWJhb0Pe7dCScSBUEBRRCQ6s0_pJDgf-CjS5T_kH-aXZHZtcwEJClf2bjEznm_eA_DB5rEvRbiMK-rRQZF5plPROGUVq7zjOi2bOD0rj3_ykwtx0Qfc2r6sctCJSVG7xsYY-T6lUpQKwbM4mN9kcWtUzK72KzRWYBVVsJQjWP1yePb9xzLKohhXkg7pTCb3W0SsOFS2wAfNlYw9BKSllfkoMZrwZrIBL3tDkXzuOLsJL_zsFaz_Nz7wNVx-m97cTd0nkkxgomeO6OsGCYfePEGZmjqS-oVa0gRiG3Qzp13sj8ybq18xYJ3OXHs0wP_-_tMteLIkDPVa7Rs4nxyefz3O-o0JmWWSLrJQMV2YoEPBjXZcOIRjE2iJsG2l0j733lgEbZUbykUwoXBCGKEKoW3hOduC0ayZ-W0gzobKCmWNVoJTSxWltvIlOiM-lJbnY8gHqtW2nyYel1pc1SmrzWTdEbpGQteR0DUbw979kXk3SuO5j3cGVtT9X9XWSxkYw8eBPcvXT1729vnL3sEajfKQOgx3YLS4vfPv0dRYmF1YkZOj3V6q_gH_LdQF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27btRAFL0KoQAKxFNZCDAFNIAVex62p4gQApYN2aRapHTDPKWVkvUG7wql4x_4jvxUviR3xmsWkEiXwpU9U9x7POfOfQK8tHmsSxEu45J6vKDUeaZT0jhlFau84zoNmzg4LEdf-ZcjcbQB530tTEyr7M_EdFC7xkYf-Q6ltSglkmfxbn6axalRMbraj9DoYLHvz37gla3d3fuI-n1F6fDT5MMoW00VyCyr6SILFdOFCToU3GjHhUPKMoGWSG22ltrn3huLxCZzQ7kIJhROCCNkIbQtPGe47Q24yRkSeSxMH35eu3Qk47KmfeyU1Tst0mPsYFvgg7ZRxv5mv7VJ-08UNpHb8B7cXVml5H0Ho_uw4WcP4M4fvQofwrfx9HQ5dW9JsreJnjmiTxrUUrNsCQJ46kgqTmpJE4htUEDTztFI5s3xWfSOpzUnHq39i5-_umlSloQ-Oax9BJPrEORj2Jw1M78FxNlQWSGt0VJwaqmk1Fa-xJuPD6Xl-QDyXmrKrlqXxwkaxyqF0FmtOkErFLSKglZsAK9_L5l3fTuu-ni7V4Va_cKtWgNuAG969axf_3ezJ1dv9gJujSYHYzXeO9x_CrdpxEYqbdyGzcX3pX-GNs7CPE_IIqCuGcmXmeEPXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid%2C+glass+and+amorphous+solid+states+of+coordination+polymers+and+metal%E2%80%93organic+frameworks&rft.jtitle=Nature+reviews.+Materials&rft.au=Bennett%2C+Thomas+D.&rft.au=Horike%2C+Satoshi&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-8437&rft.volume=3&rft.issue=11&rft.spage=431&rft.epage=440&rft_id=info:doi/10.1038%2Fs41578-018-0054-3&rft.externalDocID=10_1038_s41578_018_0054_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon |