Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks

The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Materials Vol. 3; no. 11; pp. 431 - 440
Main Authors Bennett, Thomas D., Horike, Satoshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks. There is increasing interest in the liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. In this Review, we discuss the background and terminology of this emerging field, categorize example structures and provide an outlook for the future direction of the field.
AbstractList The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks.
The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks. There is increasing interest in the liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. In this Review, we discuss the background and terminology of this emerging field, categorize example structures and provide an outlook for the future direction of the field.
Author Horike, Satoshi
Bennett, Thomas D.
Author_xml – sequence: 1
  givenname: Thomas D.
  orcidid: 0000-0003-3717-3119
  surname: Bennett
  fullname: Bennett, Thomas D.
  email: tdb35@cam.ac.uk
  organization: Department of Materials Science and Metallurgy, University of Cambridge
– sequence: 2
  givenname: Satoshi
  surname: Horike
  fullname: Horike, Satoshi
  email: horike@icems.kyoto-u.ac.jp
  organization: Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, and AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
BookMark eNp9kMtKAzEUhoNUsNY-gLuAW0dz7WSWUrxBwU33MZNJaupMMk2mSHe-g2_okzh1BEXQRThZ_N-5fMdg5IM3AJxidIERFZeJYZ6LDOH-Ic4yegDGBHGRCUbz0Y__EZimtEYI4YKyQpAxeFy4zdZV53BVq5Sg8hVUTYjtU9gmmELtKpg61ZkEg4U6hFg5rzoXPGxDvWtMHJjGdKp-f30LcaW809BG1ZiXEJ_TCTi0qk5m-lUnYHlzvZzfZYuH2_v51SLTVJAuszlVuLTKYlaqivFKYFFaMiMMaVEog4wpNSGsQCVh3JYWV5yXvMBcaWwYnYCzoW0bw2ZrUifXYRt9P1ESIvisKPIZ7lP5kNIxpBSNldp1n-d0UblaYiT3QuUgVPZC5V6opD2Jf5FtdI2Ku38ZMjCpz_qVid87_Q19AHsPjK8
CitedBy_id crossref_primary_10_1039_D2SC03223F
crossref_primary_10_1016_j_ccr_2023_215304
crossref_primary_10_1039_D3DD00236E
crossref_primary_10_1016_j_ccr_2022_214735
crossref_primary_10_1039_D1DT00096A
crossref_primary_10_1021_acssuschemeng_9b01022
crossref_primary_10_1039_D0CC02937H
crossref_primary_10_1021_acs_chemmater_3c00392
crossref_primary_10_1021_acsami_4c19719
crossref_primary_10_1002_adfm_202307226
crossref_primary_10_1021_acs_jpcc_4c02651
crossref_primary_10_1021_acs_chemrev_0c00148
crossref_primary_10_1016_j_ccr_2022_214728
crossref_primary_10_1002_apxr_202400007
crossref_primary_10_1039_C9CC01468C
crossref_primary_10_26599_NR_2025_94907229
crossref_primary_10_1021_acs_chemrev_1c00237
crossref_primary_10_1039_D3DT04164F
crossref_primary_10_1002_adsc_202300309
crossref_primary_10_1002_ange_201914587
crossref_primary_10_1007_s12274_022_5114_8
crossref_primary_10_1039_D3CS01105D
crossref_primary_10_1002_anie_202117261
crossref_primary_10_1016_j_poly_2023_116456
crossref_primary_10_1021_acs_chemmater_4c00355
crossref_primary_10_1039_D3CP05136F
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1021_acsomega_2c05732
crossref_primary_10_1039_C8SC04044C
crossref_primary_10_1039_D1TA01906F
crossref_primary_10_1002_advs_201903003
crossref_primary_10_1021_acs_inorgchem_4c04181
crossref_primary_10_1016_j_micromeso_2020_110600
crossref_primary_10_1002_ange_202302406
crossref_primary_10_1038_s41557_024_01616_8
crossref_primary_10_1039_C9CP01463B
crossref_primary_10_1002_aic_17576
crossref_primary_10_1039_D0CE00902D
crossref_primary_10_1039_D1DT03158A
crossref_primary_10_3390_membranes14050099
crossref_primary_10_1002_anie_202305942
crossref_primary_10_1016_j_poly_2021_115139
crossref_primary_10_1021_acs_chemmater_3c02552
crossref_primary_10_1002_ange_202307552
crossref_primary_10_1016_j_ccr_2023_215403
crossref_primary_10_1021_jacs_5c00962
crossref_primary_10_1039_D2CC05314D
crossref_primary_10_1039_D4QM00971A
crossref_primary_10_1021_jacs_3c10145
crossref_primary_10_1021_acs_chemmater_1c01838
crossref_primary_10_1021_jacs_9b07563
crossref_primary_10_1016_j_cej_2025_159416
crossref_primary_10_1002_anie_202300003
crossref_primary_10_1039_D0CC03691A
crossref_primary_10_1039_D2DT00142J
crossref_primary_10_1039_D4TA05026F
crossref_primary_10_1016_j_molstruc_2024_137687
crossref_primary_10_1021_acsami_0c03462
crossref_primary_10_1016_j_bios_2024_117002
crossref_primary_10_1016_j_ijplas_2021_103106
crossref_primary_10_1021_acs_inorgchem_2c02580
crossref_primary_10_1039_D1TA08449F
crossref_primary_10_1038_s41570_023_00474_1
crossref_primary_10_1021_acsami_1c07366
crossref_primary_10_1063_1_5120093
crossref_primary_10_1007_s11433_024_2489_6
crossref_primary_10_1016_j_jhazmat_2021_125639
crossref_primary_10_1007_s12274_022_4664_0
crossref_primary_10_1021_jacs_4c01539
crossref_primary_10_1039_D4SC07058E
crossref_primary_10_1016_j_cej_2024_152295
crossref_primary_10_1016_j_electacta_2019_06_084
crossref_primary_10_1016_j_pnsc_2024_12_006
crossref_primary_10_1021_acsami_3c15359
crossref_primary_10_1039_D3SC04332K
crossref_primary_10_1021_acsomega_0c00687
crossref_primary_10_1039_D3CC04518H
crossref_primary_10_1002_ange_202300003
crossref_primary_10_1002_ange_202218902
crossref_primary_10_1039_D1SC07080K
crossref_primary_10_1111_jace_16308
crossref_primary_10_1002_ange_201911384
crossref_primary_10_1002_ange_202210857
crossref_primary_10_1021_acsaem_4c02297
crossref_primary_10_1021_jacs_3c01455
crossref_primary_10_1016_j_cej_2023_142873
crossref_primary_10_1021_acsomega_5c00466
crossref_primary_10_1016_j_fbio_2024_105037
crossref_primary_10_1021_acs_jpclett_8b03348
crossref_primary_10_1039_D0CC01499K
crossref_primary_10_1021_jacs_8b11548
crossref_primary_10_1016_j_jtice_2022_104524
crossref_primary_10_1039_C8TA07234E
crossref_primary_10_1039_D2SC00828A
crossref_primary_10_1016_j_advmem_2022_100036
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1021_jacs_0c08777
crossref_primary_10_1021_acsnano_3c11725
crossref_primary_10_1039_D4CC03833A
crossref_primary_10_1039_C9DT03559A
crossref_primary_10_1007_s11244_020_01364_2
crossref_primary_10_1038_s41467_020_18419_3
crossref_primary_10_1002_anie_202302406
crossref_primary_10_1016_j_cej_2024_154347
crossref_primary_10_1016_j_jallcom_2021_159218
crossref_primary_10_1039_D1SC02883A
crossref_primary_10_1038_s41467_022_32332_x
crossref_primary_10_1039_D2GC04682B
crossref_primary_10_1038_s41467_022_35372_5
crossref_primary_10_1039_D1MA00048A
crossref_primary_10_1063_5_0031941
crossref_primary_10_1021_acs_chemmater_2c00494
crossref_primary_10_1038_s41467_024_45326_8
crossref_primary_10_1039_D3QM00460K
crossref_primary_10_1038_s43246_024_00485_5
crossref_primary_10_1039_D3CC02492J
crossref_primary_10_1002_bkcs_12268
crossref_primary_10_1002_cnma_202200078
crossref_primary_10_1016_j_envres_2024_118261
crossref_primary_10_1038_s41557_020_0419_2
crossref_primary_10_1016_j_jhazmat_2024_133886
crossref_primary_10_1021_acs_chemrev_1c00826
crossref_primary_10_1021_jacs_0c11718
crossref_primary_10_1039_D1SC00392E
crossref_primary_10_1039_D2CS00315E
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1021_acs_accounts_4c00290
crossref_primary_10_1002_adfm_202104162
crossref_primary_10_1002_ange_202117261
crossref_primary_10_1021_acs_nanolett_2c03207
crossref_primary_10_1002_adfm_202408829
crossref_primary_10_1039_D0TA09168E
crossref_primary_10_1039_D1TA06238G
crossref_primary_10_1039_D3CS00939D
crossref_primary_10_1021_jacs_3c05279
crossref_primary_10_1021_acs_chemmater_2c00240
crossref_primary_10_1021_acs_inorgchem_2c02147
crossref_primary_10_1002_adfm_201908292
crossref_primary_10_1002_smll_202307034
crossref_primary_10_1246_bcsj_20230152
crossref_primary_10_1002_ange_201915807
crossref_primary_10_1021_acs_chemmater_2c03510
crossref_primary_10_1039_D2QI00473A
crossref_primary_10_1021_acs_inorgchem_1c01839
crossref_primary_10_1002_anie_202218094
crossref_primary_10_1021_acs_inorgchem_2c01978
crossref_primary_10_1002_anie_202014791
crossref_primary_10_1002_anie_202202742
crossref_primary_10_1002_aelm_202100871
crossref_primary_10_1016_j_crgsc_2021_100070
crossref_primary_10_1021_acs_chemrev_0c00722
crossref_primary_10_1002_adfm_201904016
crossref_primary_10_1016_j_apcatb_2024_124023
crossref_primary_10_1039_D0SC01737J
crossref_primary_10_1039_D2NR03791B
crossref_primary_10_3390_molecules25030633
crossref_primary_10_1038_s41598_020_60198_w
crossref_primary_10_1039_C9CC02172H
crossref_primary_10_1039_C9CC02673H
crossref_primary_10_1002_adfm_202205013
crossref_primary_10_1002_adma_202415483
crossref_primary_10_1038_s41467_021_24188_4
crossref_primary_10_1021_acs_jpcc_0c10106
crossref_primary_10_1021_acs_nanolett_9b04732
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1002_anie_201915807
crossref_primary_10_1039_D1MA00414J
crossref_primary_10_1002_aenm_202405593
crossref_primary_10_1002_ange_202014791
crossref_primary_10_1021_acsami_3c05121
crossref_primary_10_1038_s41467_024_49772_2
crossref_primary_10_3390_s24165258
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1016_j_ccr_2023_215297
crossref_primary_10_1039_D2CC01375D
crossref_primary_10_1038_s41467_023_38081_9
crossref_primary_10_1021_acs_inorgchem_1c01616
crossref_primary_10_1021_jacs_4c12697
crossref_primary_10_1039_D3QM00879G
crossref_primary_10_1038_s41563_022_01346_7
crossref_primary_10_1039_C8TA08016J
crossref_primary_10_1002_anie_202112880
crossref_primary_10_1039_C8PY01497C
crossref_primary_10_1021_acsomega_9b01559
crossref_primary_10_3390_molecules27123830
crossref_primary_10_1002_adhm_202400652
crossref_primary_10_1002_anie_202110585
crossref_primary_10_1021_acsami_1c12403
crossref_primary_10_1038_s41467_020_19598_9
crossref_primary_10_1002_smll_202310702
crossref_primary_10_1021_jacs_3c01933
crossref_primary_10_1039_D0TC00844C
crossref_primary_10_1038_s42004_023_00891_9
crossref_primary_10_1515_pac_2021_0706
crossref_primary_10_1039_D0CC00664E
crossref_primary_10_1016_j_jece_2023_109963
crossref_primary_10_1021_jacs_8b11357
crossref_primary_10_1039_D3CP02970K
crossref_primary_10_1038_s41467_024_48703_5
crossref_primary_10_1039_D4SC01433B
crossref_primary_10_1038_s44160_023_00425_0
crossref_primary_10_1002_adem_202301059
crossref_primary_10_1016_j_seppur_2023_125435
crossref_primary_10_1039_D0FD00011F
crossref_primary_10_1016_j_jphotochem_2021_113204
crossref_primary_10_1002_anie_202218902
crossref_primary_10_1021_jacs_3c07595
crossref_primary_10_1038_s41563_020_00827_x
crossref_primary_10_1016_j_xinn_2024_100577
crossref_primary_10_1021_jacs_2c10449
crossref_primary_10_1039_D2TA03216C
crossref_primary_10_1016_j_electacta_2022_141057
crossref_primary_10_1039_C9CC08904G
crossref_primary_10_1016_j_jnoncrysol_2022_121936
crossref_primary_10_5940_jcrsj_66_235
crossref_primary_10_1016_j_dyepig_2022_110602
crossref_primary_10_1002_ange_202202742
crossref_primary_10_1002_anie_202107185
crossref_primary_10_1016_j_enchem_2021_100067
crossref_primary_10_1016_j_memsci_2022_120611
crossref_primary_10_1002_smll_202408466
crossref_primary_10_1038_s41467_019_12754_w
crossref_primary_10_1039_D1DT02587B
crossref_primary_10_1002_ange_202218094
crossref_primary_10_1039_D1DT00079A
crossref_primary_10_1002_anie_202102047
crossref_primary_10_1021_acs_inorgchem_9b00274
crossref_primary_10_1039_D1RA02938J
crossref_primary_10_1021_acs_inorgchem_4c04223
crossref_primary_10_1016_j_jssc_2023_124450
crossref_primary_10_1016_j_foodhyd_2022_108138
crossref_primary_10_1016_j_apsusc_2020_147030
crossref_primary_10_1021_acsaem_9b01743
crossref_primary_10_1021_jacs_9b05558
crossref_primary_10_1039_D4QI02228A
crossref_primary_10_1039_D3SM01658G
crossref_primary_10_3389_fbioe_2020_00714
crossref_primary_10_1016_j_jece_2021_106907
crossref_primary_10_1021_acsmaterialslett_2c00357
crossref_primary_10_1039_C9CE01861A
crossref_primary_10_3390_molecules29133168
crossref_primary_10_1016_j_ccr_2020_213388
crossref_primary_10_1039_D0GC00546K
crossref_primary_10_1021_acsami_4c11928
crossref_primary_10_1021_jacs_1c08368
crossref_primary_10_1002_adfm_202417189
crossref_primary_10_1021_acs_chemmater_2c00325
crossref_primary_10_1021_acs_chemmater_2c01536
crossref_primary_10_1039_D4QI02422B
crossref_primary_10_1038_s41467_024_51845_1
crossref_primary_10_1021_jacs_2c02918
crossref_primary_10_1021_acs_jpcc_2c01091
crossref_primary_10_1039_D4CS00432A
crossref_primary_10_1002_advs_202413942
crossref_primary_10_1002_chem_202404318
crossref_primary_10_1039_D3CC02265J
crossref_primary_10_1002_anie_201911384
crossref_primary_10_1039_D4RA05563B
crossref_primary_10_1038_s43246_024_00691_1
crossref_primary_10_1021_acsami_1c09130
crossref_primary_10_1039_D0CS00786B
crossref_primary_10_1149_1945_7111_ad2d8d
crossref_primary_10_1021_jacs_2c04532
crossref_primary_10_1039_D2NJ05455H
crossref_primary_10_1016_j_micromeso_2024_113387
crossref_primary_10_1016_j_prostr_2023_12_011
crossref_primary_10_1039_D3CC00834G
crossref_primary_10_1021_acs_inorgchem_1c01492
crossref_primary_10_1021_acs_jpcc_2c06305
crossref_primary_10_1039_D0FD00003E
crossref_primary_10_1039_D0CE00408A
crossref_primary_10_1039_D0DT04190D
crossref_primary_10_1039_D2RA00744D
crossref_primary_10_1039_D2DT00616B
crossref_primary_10_1021_acs_chemmater_2c01528
crossref_primary_10_1021_acs_inorgchem_1c01813
crossref_primary_10_1039_D0SC02258F
crossref_primary_10_1063_5_0069962
crossref_primary_10_1016_j_pmatsci_2024_101311
crossref_primary_10_1021_acsanm_2c03477
crossref_primary_10_1063_5_0166260
crossref_primary_10_1088_1742_6596_2194_1_012041
crossref_primary_10_1002_anie_202210857
crossref_primary_10_1038_s41428_022_00657_5
crossref_primary_10_1039_D1TA01043C
crossref_primary_10_1039_D4CC02925A
crossref_primary_10_1016_j_isci_2022_104351
crossref_primary_10_1039_D2EE01010K
crossref_primary_10_1016_j_progpolymsci_2022_101504
crossref_primary_10_1039_D2DT02142K
crossref_primary_10_1002_slct_202101471
crossref_primary_10_1002_adfm_202104300
crossref_primary_10_1021_acs_inorgchem_3c01688
crossref_primary_10_1038_s44160_023_00412_5
crossref_primary_10_1021_acs_inorgchem_2c04068
crossref_primary_10_1063_5_0143404
crossref_primary_10_1016_j_molstruc_2024_139889
crossref_primary_10_1021_jacs_9b11639
crossref_primary_10_1039_D1BM01239H
crossref_primary_10_1039_D2CC00486K
crossref_primary_10_1039_D4SC00905C
crossref_primary_10_4019_bjscc_81_74
crossref_primary_10_1246_bcsj_20200362
crossref_primary_10_1038_s41578_019_0140_1
crossref_primary_10_1021_acs_jpclett_0c00627
crossref_primary_10_1002_ange_202305942
crossref_primary_10_1038_s41467_024_46311_x
crossref_primary_10_1002_anie_202307552
crossref_primary_10_1016_j_jeurceramsoc_2022_01_058
crossref_primary_10_1021_acs_inorgchem_4c01886
crossref_primary_10_1007_s40820_024_01465_7
crossref_primary_10_1016_j_ccr_2022_214646
crossref_primary_10_1038_s41467_020_15518_z
crossref_primary_10_1021_jacs_3c12296
crossref_primary_10_2139_ssrn_4143138
crossref_primary_10_1021_acs_inorgchem_1c03976
crossref_primary_10_1021_acs_chemmater_1c03820
crossref_primary_10_1016_j_jpowsour_2025_236249
crossref_primary_10_1038_s41578_024_00760_4
crossref_primary_10_1002_anie_202411150
crossref_primary_10_1002_anie_201914587
crossref_primary_10_1002_ejic_202100819
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1016_j_scriptamat_2023_115782
crossref_primary_10_1039_D1DT01116B
crossref_primary_10_1063_5_0144718
crossref_primary_10_1039_D2CC03179E
crossref_primary_10_1039_D0DT04329J
crossref_primary_10_1039_D0NR01673J
crossref_primary_10_1039_D1CC03541J
crossref_primary_10_1002_anie_202014033
crossref_primary_10_3390_mi15020282
crossref_primary_10_3390_molecules25153449
crossref_primary_10_1002_ange_202107185
crossref_primary_10_1039_D1QI00112D
crossref_primary_10_1002_admt_202200343
crossref_primary_10_1016_j_bioactmat_2020_08_036
crossref_primary_10_1002_ange_202102047
crossref_primary_10_1002_chem_201900979
crossref_primary_10_1002_ange_202110585
crossref_primary_10_1002_ange_202112880
crossref_primary_10_1021_jacs_9b08458
crossref_primary_10_1002_adma_202109029
crossref_primary_10_1080_10406638_2023_2169721
crossref_primary_10_1021_acs_chemmater_0c02950
crossref_primary_10_1021_acs_jpcc_8b07407
crossref_primary_10_1002_ejic_202000974
crossref_primary_10_1016_j_cej_2023_147215
crossref_primary_10_1039_D3DT00876B
crossref_primary_10_1002_ange_202411150
crossref_primary_10_1016_j_scib_2020_05_003
crossref_primary_10_1021_acs_inorgchem_0c00806
crossref_primary_10_1021_jacs_0c09499
crossref_primary_10_1039_D0SC04008H
crossref_primary_10_1021_acsomega_2c06329
crossref_primary_10_1371_journal_pone_0234774
crossref_primary_10_1002_ange_202014033
crossref_primary_10_1039_D4TB01754D
crossref_primary_10_1021_jacs_3c13156
crossref_primary_10_1039_C9CE00213H
crossref_primary_10_1016_j_jhazmat_2024_135204
crossref_primary_10_1002_adfm_202501683
crossref_primary_10_1063_5_0109885
crossref_primary_10_1002_chem_201900069
crossref_primary_10_1021_acs_jpcc_1c03897
crossref_primary_10_1021_acsanm_0c01953
Cites_doi 10.1021/cm1022882
10.1021/cr4006473
10.1021/ar300291s
10.1039/b912997a
10.1039/C4CS00437J
10.1002/anie.201204806
10.1016/S1387-1811(03)00329-9
10.1021/acs.accounts.7b00404
10.1039/B916295J
10.1039/C7CS00162B
10.1039/c3sc00033h
10.1002/anie.201700962
10.1016/j.jallcom.2017.10.129
10.1002/anie.201007303
10.1021/ar5000314
10.1038/natrevmats.2016.78
10.1246/bcsj.71.1739
10.1039/C7RA11764G
10.1039/b910175f
10.1038/nmat4998
10.1039/C6CC09310H
10.1002/anie.201600123
10.1021/acs.chemmater.7b00441
10.1039/C7DT02511D
10.1021/ja8057953
10.1039/C5CP06798G
10.1039/C5CC04626B
10.1039/C4CC04370G
10.1038/nmat4113
10.1021/ja2085096
10.1002/chem.201302777
10.1038/nenergy.2016.34
10.1002/anie.200703934
10.1039/C6SC05602D
10.1039/C4CS00395K
10.1021/jacs.6b12956
10.1039/c2ee22989g
10.1039/c0cs00137f
10.1126/science.267.5206.1924
10.1039/C6CC02807A
10.1038/natrevmats.2015.18
10.1039/C7CS00033B
10.1002/chem.201300106
10.1002/anie.201005547
10.1073/pnas.0602439103
10.1039/C8CC02399A
10.1016/j.jorganchem.2005.03.007
10.1007/s00396-011-2461-5
10.1039/b600349d
10.1038/35065704
10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K
10.1063/1.4941544
10.1088/0953-8984/20/6/064233
10.1126/science.1230444
10.1002/anie.201206410
10.1007/s11090-011-9290-7
10.1002/cssc.201000114
10.1021/acs.jpclett.5b01135
10.1021/jz400880p
10.1021/jacs.6b06959
10.1039/C7SC03786D
10.1016/j.micromeso.2012.11.003
10.1039/C5TC00119F
10.1002/cplu.201300063
10.1021/acs.chemmater.5b00046
10.1039/c3ta13140h
10.1038/nchem.2691
10.1038/nchem.1505
10.1351/PAC-REC-12-11-20
10.1038/nchem.2515
10.1021/ja206082s
10.1002/anie.200806063
10.1038/nchem.254
10.1021/ja00160a038
10.1039/C5DT04330A
10.1002/er.3255
10.1039/C7EE01872J
10.1038/nmat4238
10.1016/0022-3093(85)90353-9
10.1021/la900022s
10.1002/anie.200601878
10.1021/jacs.6b07078
10.3390/cryst5010154
10.1016/j.jct.2017.10.002
10.1039/c2sc20261a
10.1002/anie.201506219
10.1039/C4CS00101J
10.2174/1386207311107010028
10.1073/pnas.96.7.3471
10.1021/acs.chemmater.6b03934
10.1126/science.aam8743
10.1021/ja511019u
10.1038/nature15732
10.1038/nature16072
10.1021/cg501737j
10.1021/jacs.5b13220
10.1002/anie.201411540
10.1021/ja908415z
10.1002/chem.201300216
10.1021/acs.jpcc.6b01208
10.1038/nchem.2661
10.1021/jp953538d
10.1038/ncomms7662
10.1038/nmat4825
10.1039/C4CS00093E
10.1021/acs.jpcc.6b06337
10.1021/acs.inorgchem.5b00145
10.1016/j.powtec.2013.09.013
10.1073/pnas.1706330114
10.1039/b900201d
10.1002/chem.200700090
10.1039/C5CC05237H
ContentType Journal Article
Copyright Springer Nature Limited 2018
Copyright Nature Publishing Group Nov 2018
Copyright_xml – notice: Springer Nature Limited 2018
– notice: Copyright Nature Publishing Group Nov 2018
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1038/s41578-018-0054-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Materials Science Database (NC LIVE)
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-8437
EndPage 440
ExternalDocumentID 10_1038_s41578_018_0054_3
GroupedDBID 0R~
88I
8FE
8FG
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BGLVJ
BKKNO
CCPQU
D1I
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
KB.
M2P
NNMJJ
O9-
ODYON
PDBOC
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c382t-f73a1bfaf14bad45d818bf26240c89ae0eebc22490b245fbf1d55b5915ac1e43
IEDL.DBID BENPR
ISSN 2058-8437
IngestDate Wed Jul 16 16:32:16 EDT 2025
Tue Jul 01 03:55:38 EDT 2025
Thu Apr 24 22:54:04 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-f73a1bfaf14bad45d818bf26240c89ae0eebc22490b245fbf1d55b5915ac1e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ORCID 0000-0003-3717-3119
PQID 2285699761
PQPubID 2069615
PageCount 10
ParticipantIDs proquest_journals_2285699761
crossref_citationtrail_10_1038_s41578_018_0054_3
crossref_primary_10_1038_s41578_018_0054_3
springer_journals_10_1038_s41578_018_0054_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature reviews. Materials
PublicationTitleAbbrev Nat Rev Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Andrzejewski, Casati, Katrusiak (CR53) 2017; 46
Spielberg, Edengeiser, Mallick, Havenith, Mudring (CR57) 2014; 20
Yoon (CR8) 2017; 16
Bennett, Saines, Keen, Tan, Cheetham (CR102) 2013; 19
Sumida (CR26) 2017; 29
Chughtai, Ahmad, Younus, Laypkov, Verpoort (CR18) 2015; 44
Rodenas (CR7) 2015; 14
Pachfule, Shinde, Majumder, Xu (CR50) 2016; 8
Ren, Langmi, North, Mathe (CR24) 2015; 39
Bennett (CR69) 2011; 50
Hirai (CR59) 2015; 54
Qiu, Xue, Zhu (CR114) 2014; 43
Sherman (CR101) 1999; 96
Moghadam (CR45) 2017; 29
Lewis (CR68) 2009; 11
Lavenn (CR107) 2015; 3
Ortiz, Boutin, Fuchs, Coudert (CR87) 2013; 4
Quah (CR34) 2015; 6
Zhao, Lee, Becknell, Yaghi, Angell (CR97) 2016; 138
Enke, Janowski, Schwieger (CR98) 2003; 60
Yang, Li, Tang (CR51) 2018; 733
Farrusseng, Aguado, Pinel (CR17) 2009; 48
Xiao (CR90) 2009; 1
Ramaswamy, Wong, Shimizu (CR30) 2014; 43
Sholl, Lively (CR38) 2015; 6
Andersson, Hansson, Öhrstrom, Idström, Nydén (CR49) 2011; 289
Giri (CR111) 2015; 527
Umeyama (CR64) 2015; 51
Angell (CR55) 1995; 267
Lohe, Rose, Kaskel (CR43) 2009; 0
Schoedel, Ji, Yaghi (CR4) 2016; 1
Su (CR61) 2015; 15
(CR6) 2016; 8
Kitagawa, Kondo (CR88) 1998; 71
Nagarkar (CR104) 2017; 56
Morishige (CR95) 2009; 25
Medishetty, Zaręba, Mayer, Samoć, Fischer (CR33) 2017; 46
Horcajada (CR16) 2006; 45
O’Reilly, Giri, James (CR112) 2007; 13
Zhou, Liu (CR52) 2011; 31
Adhikari (CR72) 2016; 120
Mason (CR5) 2015; 527
Ohara (CR109) 2018; 54
Umeyama, Horike, Inukai, Itakura, Kitagawa (CR62) 2015; 137
Seoane (CR115) 2015; 44
Bueken (CR44) 2017; 8
Su (CR86) 2017; 139
Bennett (CR66) 2016; 138
Minami (CR103) 1985; 73
Guillerm (CR82) 2012; 51
Xiu (CR108) 2017; 53
CR63
Orellana-Tavra (CR93) 2015; 51
Mondloch (CR11) 2015; 14
MacFarlane (CR110) 2009; 11
Ma, Zhou (CR3) 2010; 46
Morris, Wheatley (CR2) 2008; 47
Horike, Umeyama, Kitagawa (CR31) 2013; 46
Horike (CR105) 2014; 50
James, Lin (CR56) 2016; 120
Kertik (CR100) 2017; 10
Xin, Chen, Wang, Chen, Zhang (CR92) 2013; 169
Cavka (CR79) 2008; 130
Bobbitt (CR12) 2017
Rozes, Sanchez (CR96) 2011; 40
Martin, Haranczyk (CR20) 2013; 4
Lin, Vasam (CR48) 2005; 690
Bennett (CR65) 2015; 6
Mannstadt (CR113) 2008; 20
Uemura (CR89) 2002; 8
Hoskins, Robson (CR1) 1990; 112
Park (CR67) 2006; 103
Depuydt (CR60) 2013; 78
Funasako, Mori, Mochida (CR106) 2016; 52
Batten (CR116) 2013; 85
Chen (CR78) 2016; 55
Lau (CR46) 2011; 14
Allan (CR91) 2012; 3
Rogge (CR19) 2017; 46
Bazer-Bachi, Assié, Lecocq, Harbuzaru, Falk (CR25) 2014; 255
Su, Miao, Zhang, Miller, Suslick (CR83) 2017; 8
Katsenis (CR74) 2015; 6
Jeong (CR99) 2017; 114
Denny, Moreton, Benz, Cohen (CR10) 2016; 1
Gaillac (CR71) 2017; 16
Chapman, Halder, Chupas (CR85) 2009; 131
Yoon, Suh, Natarajan, Kim (CR29) 2013; 52
Bennett, Cheetham (CR47) 2014; 47
McKeown, Budd (CR94) 2006; 35
Morozana, Jaouen (CR35) 2012; 5
Bennett, Cheetham, Fuchs, Coudert (CR42) 2017; 9
Valekar (CR27) 2017; 7
Ediger, Angell, Nagel (CR117) 1996; 100
DeCoste, Peterson (CR13) 2014; 114
Furukawa, Cordova, O’Keeffe, Yaghi (CR14) 2013; 341
Howarth (CR21) 2016; 1
Bennett (CR81) 2016; 18
Moriya, Kato, Sakamoto, Yogo (CR58) 2013; 19
Friscic (CR76) 2013; 5
Valenzano (CR80) 2011; 23
Chapman, Sava, Halder, Chupas, Nenoff (CR84) 2011; 133
Debenedetti, Stillinger (CR54) 2001; 410
Fang, Bueken, De Vos, Fischer (CR37) 2015; 54
Öhrstrom (CR70) 2015; 5
Keskin, van Heest, Sholl (CR9) 2010; 3
Chen (CR28) 2016; 138
Sun, Campbell, Dinca (CR32) 2016; 55
Kim (CR15) 2017; 356
Calvin (CR75) 2018; 116
Rogge, Waroquier, Van Speybroeck (CR22) 2018; 51
Thornton, Babarao, Jain, Trousselet, Coudert (CR23) 2016; 45
Yadav, Swain, Bhat, Elizabeth (CR41) 2016; 119
Beldon (CR73) 2010; 49
Schneemann (CR39) 2014; 43
Coudert (CR40) 2015; 27
Ricco, Malfatti, Takahashi, Hill, Falcaro (CR36) 2013; 1
Bennett (CR77) 2011; 133
KW Chapman (54_CR84) 2011; 133
JD Sherman (54_CR101) 1999; 96
JH Cavka (54_CR79) 2008; 130
DW Lewis (54_CR68) 2009; 11
N O’Reilly (54_CR112) 2007; 13
Z Su (54_CR86) 2017; 139
R Yadav (54_CR41) 2016; 119
J Ren (54_CR24) 2015; 39
TD Bennett (54_CR65) 2015; 6
SR Batten (54_CR116) 2013; 85
M Andrzejewski (54_CR53) 2017; 46
JJ Calvin (54_CR75) 2018; 116
AW Thornton (54_CR23) 2016; 45
MR Lohe (54_CR43) 2009; 0
KS Park (54_CR67) 2006; 103
R Ramaswamy (54_CR30) 2014; 43
S Horike (54_CR31) 2013; 46
R Ricco (54_CR36) 2013; 1
V Guillerm (54_CR82) 2012; 51
DS Sholl (54_CR38) 2015; 6
PZ Moghadam (54_CR45) 2017; 29
FX Coudert (54_CR40) 2015; 27
RE Morris (54_CR2) 2008; 47
No authors listed. (54_CR6) 2016; 8
W Mannstadt (54_CR113) 2008; 20
S Kitagawa (54_CR88) 1998; 71
A Kertik (54_CR100) 2017; 10
D Lau (54_CR46) 2011; 14
JB DeCoste (54_CR13) 2014; 114
P Pachfule (54_CR50) 2016; 8
S Ma (54_CR3) 2010; 46
T Rodenas (54_CR7) 2015; 14
AU Ortiz (54_CR87) 2013; 4
JW Yoon (54_CR8) 2017; 16
S Qiu (54_CR114) 2014; 43
AD Katsenis (54_CR74) 2015; 6
B Xiao (54_CR90) 2009; 1
ET Spielberg (54_CR57) 2014; 20
D Umeyama (54_CR62) 2015; 137
T Friscic (54_CR76) 2013; 5
D Bazer-Bachi (54_CR25) 2014; 255
P Adhikari (54_CR72) 2016; 120
A Schoedel (54_CR4) 2016; 1
S Horike (54_CR105) 2014; 50
JW Xiu (54_CR108) 2017; 53
WQ Chen (54_CR78) 2016; 55
T Minami (54_CR103) 1985; 73
D Farrusseng (54_CR17) 2009; 48
IJB Lin (54_CR48) 2005; 690
HS Quah (54_CR34) 2015; 6
M Andersson (54_CR49) 2011; 289
MS Denny (54_CR10) 2016; 1
P Horcajada (54_CR16) 2006; 45
L Rozes (54_CR96) 2011; 40
NS Bobbitt (54_CR12) 2017
TD Bennett (54_CR81) 2016; 18
SS Nagarkar (54_CR104) 2017; 56
A Schneemann (54_CR39) 2014; 43
R Gaillac (54_CR71) 2017; 16
D Enke (54_CR98) 2003; 60
ZF Xin (54_CR92) 2013; 169
KW Chapman (54_CR85) 2009; 131
NB McKeown (54_CR94) 2006; 35
B Bueken (54_CR44) 2017; 8
TD Bennett (54_CR77) 2011; 133
Y Zhao (54_CR97) 2016; 138
AH Valekar (54_CR27) 2017; 7
PJ Beldon (54_CR73) 2010; 49
WS Jeong (54_CR99) 2017; 114
R Medishetty (54_CR33) 2017; 46
JB James (54_CR56) 2016; 120
RL Martin (54_CR20) 2013; 4
Y Funasako (54_CR106) 2016; 52
ZL Fang (54_CR37) 2015; 54
C Orellana-Tavra (54_CR93) 2015; 51
SMJ Rogge (54_CR19) 2017; 46
TD Bennett (54_CR47) 2014; 47
CA Angell (54_CR55) 1995; 267
D Depuydt (54_CR60) 2013; 78
AH Chughtai (54_CR18) 2015; 44
D Umeyama (54_CR64) 2015; 51
TD Bennett (54_CR66) 2016; 138
K Morishige (54_CR95) 2009; 25
PK Allan (54_CR91) 2012; 3
L Öhrstrom (54_CR70) 2015; 5
F Yang (54_CR51) 2018; 733
N Giri (54_CR111) 2015; 527
B Seoane (54_CR115) 2015; 44
YJ Su (54_CR61) 2015; 15
Y Ohara (54_CR109) 2018; 54
Z Su (54_CR83) 2017; 8
H Kim (54_CR15) 2017; 356
K Sumida (54_CR26) 2017; 29
54_CR63
Y Hirai (54_CR59) 2015; 54
JE Mondloch (54_CR11) 2015; 14
C Lavenn (54_CR107) 2015; 3
PG Debenedetti (54_CR54) 2001; 410
TD Bennett (54_CR69) 2011; 50
TD Bennett (54_CR102) 2013; 19
M Yoon (54_CR29) 2013; 52
SMJ Rogge (54_CR22) 2018; 51
TD Bennett (54_CR42) 2017; 9
S Keskin (54_CR9) 2010; 3
L Sun (54_CR32) 2016; 55
JA Mason (54_CR5) 2015; 527
Y Zhou (54_CR52) 2011; 31
AJ Howarth (54_CR21) 2016; 1
MD Ediger (54_CR117) 1996; 100
M Moriya (54_CR58) 2013; 19
Y Chen (54_CR28) 2016; 138
K Uemura (54_CR89) 2002; 8
BF Hoskins (54_CR1) 1990; 112
DR MacFarlane (54_CR110) 2009; 11
A Morozana (54_CR35) 2012; 5
L Valenzano (54_CR80) 2011; 23
H Furukawa (54_CR14) 2013; 341
References_xml – volume: 40
  start-page: 1006
  year: 2011
  end-page: 1030
  ident: CR96
  article-title: Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2559
  year: 2012
  end-page: 2564
  ident: CR91
  article-title: Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework
  publication-title: Chem. Sci.
– volume: 51
  start-page: 9267
  year: 2012
  end-page: 9271
  ident: CR82
  article-title: A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 14795
  year: 2017
  end-page: 14803
  ident: CR53
  article-title: Reversible pressure pre-amorphization of a piezochromic metal–organic framework
  publication-title: Dalton Trans.
– volume: 3
  start-page: 4115
  year: 2015
  end-page: 4125
  ident: CR107
  article-title: A luminescent double helical gold(i)-thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization
  publication-title: J. Mater. Chem. C
– volume: 120
  start-page: 15362
  year: 2016
  end-page: 15368
  ident: CR72
  article-title: Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF)
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 9640
  year: 2010
  end-page: 9643
  ident: CR73
  article-title: Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 15018
  year: 2016
  ident: CR21
  article-title: Chemical, thermal and mechanical stabilities of metal–organic frameworks
  publication-title: Nat. Rev. Mater.
– volume: 78
  start-page: 578
  year: 2013
  end-page: 588
  ident: CR60
  article-title: Silver-containing ionic liquids with alkylamine ligands
  publication-title: ChemPlusChem
– volume: 114
  start-page: 7923
  year: 2017
  end-page: 7928
  ident: CR99
  article-title: Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 15
  start-page: 1735
  year: 2015
  end-page: 1739
  ident: CR61
  article-title: Copper(i) 2-isopropylimidazolate: supramolecular isomerism, isomerization, and luminescent properties
  publication-title: Cryst. Growth Des.
– volume: 5
  start-page: 9269
  year: 2012
  end-page: 9290
  ident: CR35
  article-title: Metal organic frameworks for electrochemical applications
  publication-title: Energy Environ. Sci.
– volume: 356
  start-page: 430
  year: 2017
  end-page: 434
  ident: CR15
  article-title: Water harvesting from air with metal-organic frameworks powered by natural sunlight
  publication-title: Science
– volume: 8
  start-page: 3939
  year: 2017
  end-page: 3948
  ident: CR44
  article-title: Gel-based morphological design of zirconium metal–organic frameworks
  publication-title: Chem. Sci.
– volume: 100
  start-page: 13200
  year: 1996
  end-page: 13212
  ident: CR117
  article-title: Supercooled liquids and glasses
  publication-title: J. Phys. Chem.
– volume: 3
  start-page: 879
  year: 2010
  end-page: 891
  ident: CR9
  article-title: Can metal–organic framework materials play a useful role in large-scale carbon dioxide separations
  publication-title: ChemSusChem
– volume: 112
  start-page: 1546
  year: 1990
  end-page: 1554
  ident: CR1
  article-title: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN) and Cd(CN) structures and the synthesis and structure of the diamond-related frameworks [N(CH ) ][Cu Zn (CN) ] and Cu [4,4ʹ,4ʹʹ,4ʹʹʹ-tetracyanotetraphenylmethane]BF ∙ C H NO
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1861
  year: 2013
  end-page: 1865
  ident: CR87
  article-title: Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 66
  year: 2013
  end-page: 73
  ident: CR76
  article-title: Real-time and in situ monitoring of mechanochemical milling reactions
  publication-title: Nat. Chem
– volume: 46
  start-page: 2376
  year: 2013
  end-page: 2384
  ident: CR31
  article-title: Ion conductivity and transport by porous coordination polymers and metal–organic frameworks
  publication-title: Acc. Chem. Res.
– volume: 85
  start-page: 1715
  year: 2013
  end-page: 1724
  ident: CR116
  article-title: Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)
  publication-title: Pure Appl. Chem.
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  ident: CR67
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 44
  start-page: 6804
  year: 2015
  end-page: 6849
  ident: CR18
  article-title: Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 7234
  year: 2015
  end-page: 7254
  ident: CR37
  article-title: Defect-engineered metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 064103
  year: 2016
  ident: CR41
  article-title: Order-disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH ) NH Co(HCOO)
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 6859
  year: 2018
  end-page: 6862
  ident: CR109
  article-title: Formation of coordination polymer glass by mechanical milling: dependence on metal ions and molecular doping for H conductivity
  publication-title: Chem. Commun.
– volume: 55
  start-page: 3566
  year: 2016
  end-page: 3579
  ident: CR32
  article-title: Electrically conductive porous metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 169
  start-page: 218
  year: 2013
  end-page: 221
  ident: CR92
  article-title: Nanopolyhedrons and mesoporous supra-structures of zeolitic imidazolate framework with high adsorption performance
  publication-title: Microporous Mesoporous Mater.
– volume: 51
  start-page: 138
  year: 2018
  end-page: 148
  ident: CR22
  article-title: Reliably modeling the mechanical stability of rigid and flexible metal−organic frameworks
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 10810
  year: 2016
  end-page: 10813
  ident: CR28
  article-title: Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams
  publication-title: J. Am. Chem. Soc.
– volume: 733
  start-page: 8
  year: 2018
  end-page: 14
  ident: CR51
  article-title: Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 11
  year: 2017
  end-page: 16
  ident: CR42
  article-title: Interplay between defects, disorder and flexibility in metal–organic frameworks
  publication-title: Nat. Chem.
– volume: 31
  start-page: 499
  year: 2011
  end-page: 506
  ident: CR52
  article-title: Amorphization of metal-organic framework MOF-5 by electrical discharge
  publication-title: Plasma Chem. Plasma Process.
– volume: 51
  start-page: 12728
  year: 2015
  end-page: 12731
  ident: CR64
  article-title: Glass formation via structural fragmentation of a 2D coordination network
  publication-title: Chem. Commun.
– volume: 690
  start-page: 3498
  year: 2005
  end-page: 3512
  ident: CR48
  article-title: Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety
  publication-title: J. Organomet. Chem.
– volume: 14
  start-page: 512
  year: 2015
  end-page: 516
  ident: CR11
  article-title: Destruction of chemical warfare agents using metal–organic frameworks
  publication-title: Nat. Mater.
– volume: 114
  start-page: 5695
  year: 2014
  end-page: 5727
  ident: CR13
  article-title: Metal–organic frameworks for air purification of toxic chemicals
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 3134
  year: 2017
  end-page: 3184
  ident: CR19
  article-title: Metal–organic and covalent organic frameworks as single-site catalysts
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 18583
  year: 2011
  end-page: 18585
  ident: CR84
  article-title: Trapping guests within a nanoporous metal–organic framework through pressure-induced amorphization
  publication-title: J. Am. Chem. Soc.
– volume: 341
  start-page: 974
  year: 2013
  end-page: 986
  ident: CR14
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
– volume: 5
  start-page: 154
  year: 2015
  end-page: 162
  ident: CR70
  article-title: Let’s talk about MOFs — topology and terminology of metal–organic frameworks and why we need them
  publication-title: Crystals
– ident: CR63
– volume: 96
  start-page: 3471
  year: 1999
  end-page: 3478
  ident: CR101
  article-title: Synthetic zeolites and other microporous oxide molecular sieves
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 46
  start-page: 4976
  year: 2017
  end-page: 5004
  ident: CR33
  article-title: Nonlinear optical properties, upconversion and lasing in metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 7502
  year: 2009
  end-page: 7513
  ident: CR17
  article-title: Metal-organic frameworks: opportunities for catalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 289
  start-page: 1361
  year: 2011
  end-page: 1372
  ident: CR49
  article-title: Vinylimidazole copolymers: coordination chemistry , solubility , and cross-linking as function of Cu and Zn complexation
  publication-title: Colloid Polym. Sci.
– volume: 7
  start-page: 55767
  year: 2017
  end-page: 55777
  ident: CR27
  article-title: Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder
  publication-title: RSC Adv.
– volume: 1
  start-page: 16078
  year: 2016
  ident: CR10
  article-title: Metal-organic frameworks for membrane-based separations
  publication-title: Nat. Rev. Mater.
– volume: 133
  start-page: 14546
  year: 2011
  end-page: 14549
  ident: CR77
  article-title: Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 675
  year: 2006
  end-page: 683
  ident: CR94
  article-title: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 13878
  year: 2015
  end-page: 13881
  ident: CR93
  article-title: Amorphous metal–organic frameworks for drug delivery
  publication-title: Chem. Commun.
– volume: 56
  start-page: 4976
  year: 2017
  end-page: 4981
  ident: CR104
  article-title: Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 2688
  year: 2013
  end-page: 2700
  ident: CR29
  article-title: Proton conduction in metal–organic frameworks and related modularly built porous solids
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 864
  year: 2015
  end-page: 870
  ident: CR62
  article-title: Reversible solid-to-liquid phase transition of coordination polymer crystals
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 14015
  year: 2016
  end-page: 14026
  ident: CR56
  article-title: Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments
  publication-title: J. Phys. Chem. C
– volume: 45
  start-page: 5974
  year: 2006
  end-page: 5978
  ident: CR16
  article-title: Metal-organic frameworks as efficient materials for drug delivery
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 3484
  year: 2016
  end-page: 3492
  ident: CR66
  article-title: Melt-quenched glasses of metal–organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 5338
  year: 2014
  end-page: 5345
  ident: CR57
  article-title: (1-Butyl-4-methyl-pyridinium)[Cu(SCN) ]: a coordination polymer and ionic liquid
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 3586
  year: 2002
  end-page: 3600
  ident: CR89
  article-title: Novel flexible frameworks of porous cobalt(iii) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 4962
  year: 2009
  end-page: 4967
  ident: CR110
  article-title: On the concept of ionicity in ionic liquids
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 8004
  year: 2017
  end-page: 8011
  ident: CR83
  article-title: Bond breakage under pressure in a metal organic framework
  publication-title: Chem. Sci.
– start-page: 3357
  year: 2017
  end-page: 3385
  ident: CR12
  article-title: Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 6221
  year: 2009
  end-page: 6226
  ident: CR95
  article-title: Hysteresis critical point of nitrogen in porous glass: occurrence of sample spanning transition in capillary condensation
  publication-title: Langmuir
– volume: 60
  start-page: 19
  year: 2003
  end-page: 30
  ident: CR98
  article-title: Porous glasses in the 21st century — a short review
  publication-title: Microporous Mesoporous Mater.
– volume: 139
  start-page: 4619
  year: 2017
  end-page: 4622
  ident: CR86
  article-title: Shock wave chemistry in a metal–organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 10241
  year: 2014
  end-page: 10243
  ident: CR105
  article-title: Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction
  publication-title: Chem. Commun.
– volume: 410
  start-page: 259
  year: 2001
  end-page: 267
  ident: CR54
  article-title: Supercooled liquids and the glass transition
  publication-title: Nature
– volume: 19
  start-page: 13554
  year: 2013
  end-page: 13560
  ident: CR58
  article-title: Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 10818
  year: 2016
  end-page: 10821
  ident: CR97
  article-title: Nanoporous transparent MOF glasses with accessible internal surface
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 289
  year: 2009
  end-page: 294
  ident: CR90
  article-title: Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework
  publication-title: Nat. Chem.
– volume: 6
  year: 2015
  ident: CR65
  article-title: Hybrid glasses from strong and fragile metal–organic framework liquids
  publication-title: Nat. Commun.
– volume: 20
  start-page: 064233
  year: 2008
  ident: CR113
  article-title: Computational materials science aided design of glass ceramics and crystal properties
  publication-title: J. Phys. Condens. Mater.
– volume: 46
  start-page: 44
  year: 2010
  end-page: 53
  ident: CR3
  article-title: Gas storage in porous metal–organic frameworks for clean energy applications
  publication-title: Chem. Commun.
– volume: 39
  start-page: 607
  year: 2015
  end-page: 620
  ident: CR24
  article-title: Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage
  publication-title: Int. J. Energy Res.
– volume: 43
  start-page: 5913
  year: 2014
  end-page: 5932
  ident: CR30
  article-title: MOFs as proton conductors — challenges and opportunities
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 5195
  year: 2016
  end-page: 5200
  ident: CR78
  article-title: Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility
  publication-title: Angew. Chem. Int. Ed.
– volume: 527
  start-page: 216
  year: 2015
  end-page: 220
  ident: CR111
  article-title: Liquids with permanent porosity
  publication-title: Nature
– volume: 116
  start-page: 341
  year: 2018
  end-page: 351
  ident: CR75
  article-title: Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)
  publication-title: J. Chem. Thermodyn.
– volume: 13
  start-page: 3020
  year: 2007
  end-page: 3025
  ident: CR112
  article-title: Porous liquids
  publication-title: Chem. Eur. J.
– volume: 16
  start-page: 1149
  year: 2017
  end-page: 1154
  ident: CR71
  article-title: Liquid metal–organic frameworks
  publication-title: Nat. Mater.
– volume: 1
  start-page: 16034
  year: 2016
  ident: CR4
  article-title: The role of metal–organic frameworks in a carbon-neutral energy cycle
  publication-title: Nat. Energy
– volume: 73
  start-page: 273
  year: 1985
  end-page: 284
  ident: CR103
  article-title: Fast ion conducting glasses
  publication-title: J. Non-Cryst. Solids
– volume: 14
  start-page: 48
  year: 2015
  end-page: 55
  ident: CR7
  article-title: Metal–organic framework nanosheets in polymer composite materials for gas separation
  publication-title: Nat. Mater.
– volume: 267
  start-page: 1924
  year: 1995
  end-page: 1935
  ident: CR55
  article-title: Formation of glasses from liquids and biopolymers
  publication-title: Science
– volume: 43
  start-page: 6062
  year: 2014
  end-page: 6096
  ident: CR39
  article-title: Flexible metal–organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2272
  year: 2009
  end-page: 2276
  ident: CR68
  article-title: Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues
  publication-title: CrystEngComm
– volume: 71
  start-page: 1739
  year: 1998
  end-page: 1753
  ident: CR88
  article-title: Functional micropore chemistry of crystalline metal complex-assembled compounds
  publication-title: Bull. Chem. Soc. Jpn
– volume: 0
  start-page: 6056
  year: 2009
  end-page: 6058
  ident: CR43
  article-title: Metal–organic framework (MOF) aerogels with high micro- and macroporosity
  publication-title: Chem. Commun.
– volume: 23
  start-page: 1700
  year: 2011
  end-page: 1718
  ident: CR80
  article-title: Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory
  publication-title: Chem. Mater.
– volume: 527
  start-page: 357
  year: 2015
  end-page: 361
  ident: CR5
  article-title: Methane storage in flexible metal–organic frameworks with intrinsic thermal management
  publication-title: Nature
– volume: 1
  start-page: 13033
  year: 2013
  end-page: 13045
  ident: CR36
  article-title: Applications of magnetic metal–organic framework composites
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 2192
  year: 2016
  end-page: 2201
  ident: CR81
  article-title: Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 28
  year: 2011
  end-page: 35
  ident: CR46
  article-title: PLUXter: rapid discovery of metal-organic framework structures using PCA and HCA of high throughput synchrotron powder diffraction data
  publication-title: Comb. Chem. High Throughput Screening
– volume: 54
  start-page: 4364
  year: 2015
  end-page: 4370
  ident: CR59
  article-title: Luminescent coordination glass: remarkable morphological strategy for assembled Eu(iii) complexes
  publication-title: Inorg. Chem.
– volume: 27
  start-page: 1905
  year: 2015
  end-page: 1916
  ident: CR40
  article-title: Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends
  publication-title: Chem. Mater.
– volume: 44
  start-page: 2421
  year: 2015
  end-page: 2454
  ident: CR115
  article-title: Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO capture?
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 17546
  year: 2009
  end-page: 17547
  ident: CR85
  article-title: Pressure-induced amorphization and porosity modification in a metal–organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 718
  year: 2016
  end-page: 724
  ident: CR50
  article-title: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework
  publication-title: Nat. Chem.
– volume: 45
  start-page: 4352
  year: 2016
  end-page: 4359
  ident: CR23
  article-title: Defects in metal-organic frameworks: a compromise between adsorption and stability?
  publication-title: Dalton Trans.
– volume: 53
  start-page: 2479
  year: 2017
  end-page: 2482
  ident: CR108
  article-title: Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations
  publication-title: Chem. Commun.
– volume: 43
  start-page: 6116
  year: 2014
  end-page: 6140
  ident: CR114
  article-title: Metal–organic framework membranes: from synthesis to separation application
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1781
  year: 2013
  end-page: 1785
  ident: CR20
  article-title: Exploring frontiers of high surface area metal–organic frameworks
  publication-title: Chem. Sci.
– volume: 6
  start-page: 3437
  year: 2015
  end-page: 3444
  ident: CR38
  article-title: Defects in metal–organic frameworks: challenge or opportunity?
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 6277
  year: 2016
  end-page: 6279
  ident: CR106
  article-title: Reversible transformation between ionic liquids and coordination polymers by application of light and heat
  publication-title: Chem. Commun.
– volume: 50
  start-page: 3067
  year: 2011
  end-page: 3071
  ident: CR69
  article-title: Thermal amorphization of zeolitic imidazolate frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 7049
  year: 2013
  end-page: 7055
  ident: CR102
  article-title: Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine
  publication-title: Chem. Eur. J.
– volume: 16
  start-page: 526
  year: 2017
  end-page: 531
  ident: CR8
  article-title: Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites
  publication-title: Nat. Mater.
– volume: 8
  start-page: 987
  year: 2016
  end-page: 987
  ident: CR6
  article-title: Frameworks for commercial success
  publication-title: Nat. Chem.
– volume: 47
  start-page: 1555
  year: 2014
  end-page: 1562
  ident: CR47
  article-title: Amorphous metal–organic frameworks
  publication-title: Acc. Chem. Res.
– volume: 130
  start-page: 13850
  year: 2008
  end-page: 13851
  ident: CR79
  article-title: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 4966
  year: 2008
  end-page: 4981
  ident: CR2
  article-title: Gas storage in nanoporous materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  year: 2015
  ident: CR34
  article-title: Multiphoton harvesting metal–organic frameworks
  publication-title: Nat. Commun.
– volume: 6
  year: 2015
  ident: CR74
  article-title: In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2342
  year: 2017
  end-page: 2351
  ident: CR100
  article-title: Highly selective gas separation membrane using in situ amorphised metal-organic frameworks
  publication-title: Energy Environ. Sci
– volume: 29
  start-page: 2618
  year: 2017
  end-page: 2625
  ident: CR45
  article-title: Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future
  publication-title: Chem. Mater.
– volume: 255
  start-page: 52
  year: 2014
  end-page: 59
  ident: CR25
  article-title: Towards industrial use of metal-organic framework: impact of shaping on the MOF properties
  publication-title: Powder Technol.
– volume: 29
  start-page: 2626
  year: 2017
  end-page: 2645
  ident: CR26
  article-title: Sol–Gel processing of metal–organic frameworks
  publication-title: Chem. Mater.
– volume: 23
  start-page: 1700
  year: 2011
  ident: 54_CR80
  publication-title: Chem. Mater.
  doi: 10.1021/cm1022882
– volume: 114
  start-page: 5695
  year: 2014
  ident: 54_CR13
  publication-title: Chem. Soc. Rev.
  doi: 10.1021/cr4006473
– volume: 46
  start-page: 2376
  year: 2013
  ident: 54_CR31
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300291s
– volume: 11
  start-page: 2272
  year: 2009
  ident: 54_CR68
  publication-title: CrystEngComm
  doi: 10.1039/b912997a
– volume: 44
  start-page: 2421
  year: 2015
  ident: 54_CR115
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00437J
– volume: 51
  start-page: 9267
  year: 2012
  ident: 54_CR82
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204806
– volume: 60
  start-page: 19
  year: 2003
  ident: 54_CR98
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(03)00329-9
– volume: 51
  start-page: 138
  year: 2018
  ident: 54_CR22
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00404
– volume: 46
  start-page: 44
  year: 2010
  ident: 54_CR3
  publication-title: Chem. Commun.
  doi: 10.1039/B916295J
– volume: 46
  start-page: 4976
  year: 2017
  ident: 54_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00162B
– volume: 4
  start-page: 1781
  year: 2013
  ident: 54_CR20
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc00033h
– volume: 56
  start-page: 4976
  year: 2017
  ident: 54_CR104
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700962
– volume: 733
  start-page: 8
  year: 2018
  ident: 54_CR51
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.10.129
– volume: 50
  start-page: 3067
  year: 2011
  ident: 54_CR69
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201007303
– volume: 47
  start-page: 1555
  year: 2014
  ident: 54_CR47
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000314
– ident: 54_CR63
– volume: 1
  start-page: 16078
  year: 2016
  ident: 54_CR10
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.78
– volume: 71
  start-page: 1739
  year: 1998
  ident: 54_CR88
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.71.1739
– volume: 7
  start-page: 55767
  year: 2017
  ident: 54_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C7RA11764G
– volume: 0
  start-page: 6056
  year: 2009
  ident: 54_CR43
  publication-title: Chem. Commun.
  doi: 10.1039/b910175f
– volume: 16
  start-page: 1149
  year: 2017
  ident: 54_CR71
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4998
– volume: 53
  start-page: 2479
  year: 2017
  ident: 54_CR108
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09310H
– volume: 55
  start-page: 5195
  year: 2016
  ident: 54_CR78
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600123
– volume: 29
  start-page: 2618
  year: 2017
  ident: 54_CR45
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00441
– volume: 46
  start-page: 14795
  year: 2017
  ident: 54_CR53
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02511D
– volume: 130
  start-page: 13850
  year: 2008
  ident: 54_CR79
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057953
– volume: 18
  start-page: 2192
  year: 2016
  ident: 54_CR81
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06798G
– volume: 51
  start-page: 12728
  year: 2015
  ident: 54_CR64
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04626B
– volume: 50
  start-page: 10241
  year: 2014
  ident: 54_CR105
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04370G
– volume: 14
  start-page: 48
  year: 2015
  ident: 54_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4113
– volume: 133
  start-page: 18583
  year: 2011
  ident: 54_CR84
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2085096
– volume: 20
  start-page: 5338
  year: 2014
  ident: 54_CR57
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201302777
– volume: 1
  start-page: 16034
  year: 2016
  ident: 54_CR4
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.34
– volume: 47
  start-page: 4966
  year: 2008
  ident: 54_CR2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200703934
– volume: 8
  start-page: 3939
  year: 2017
  ident: 54_CR44
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05602D
– volume: 44
  start-page: 6804
  year: 2015
  ident: 54_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00395K
– volume: 139
  start-page: 4619
  year: 2017
  ident: 54_CR86
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12956
– volume: 5
  start-page: 9269
  year: 2012
  ident: 54_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22989g
– volume: 40
  start-page: 1006
  year: 2011
  ident: 54_CR96
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00137f
– volume: 267
  start-page: 1924
  year: 1995
  ident: 54_CR55
  publication-title: Science
  doi: 10.1126/science.267.5206.1924
– volume: 52
  start-page: 6277
  year: 2016
  ident: 54_CR106
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02807A
– volume: 1
  start-page: 15018
  year: 2016
  ident: 54_CR21
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.18
– volume: 46
  start-page: 3134
  year: 2017
  ident: 54_CR19
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 19
  start-page: 13554
  year: 2013
  ident: 54_CR58
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201300106
– volume: 49
  start-page: 9640
  year: 2010
  ident: 54_CR73
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005547
– volume: 43
  start-page: 6116
  year: 2014
  ident: 54_CR114
  publication-title: Chem. Commun.
– volume: 103
  start-page: 10186
  year: 2006
  ident: 54_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602439103
– volume: 54
  start-page: 6859
  year: 2018
  ident: 54_CR109
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02399A
– volume: 690
  start-page: 3498
  year: 2005
  ident: 54_CR48
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2005.03.007
– volume: 289
  start-page: 1361
  year: 2011
  ident: 54_CR49
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-011-2461-5
– volume: 35
  start-page: 675
  year: 2006
  ident: 54_CR94
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b600349d
– volume: 6
  year: 2015
  ident: 54_CR65
  publication-title: Nat. Commun.
– volume: 410
  start-page: 259
  year: 2001
  ident: 54_CR54
  publication-title: Nature
  doi: 10.1038/35065704
– volume: 8
  start-page: 3586
  year: 2002
  ident: 54_CR89
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K
– volume: 119
  start-page: 064103
  year: 2016
  ident: 54_CR41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4941544
– volume: 20
  start-page: 064233
  year: 2008
  ident: 54_CR113
  publication-title: J. Phys. Condens. Mater.
  doi: 10.1088/0953-8984/20/6/064233
– volume: 341
  start-page: 974
  year: 2013
  ident: 54_CR14
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 52
  start-page: 2688
  year: 2013
  ident: 54_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206410
– volume: 31
  start-page: 499
  year: 2011
  ident: 54_CR52
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-011-9290-7
– volume: 3
  start-page: 879
  year: 2010
  ident: 54_CR9
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000114
– volume: 6
  start-page: 3437
  year: 2015
  ident: 54_CR38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01135
– volume: 4
  start-page: 1861
  year: 2013
  ident: 54_CR87
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400880p
– volume: 138
  start-page: 10810
  year: 2016
  ident: 54_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06959
– volume: 8
  start-page: 8004
  year: 2017
  ident: 54_CR83
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03786D
– volume: 169
  start-page: 218
  year: 2013
  ident: 54_CR92
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.11.003
– volume: 3
  start-page: 4115
  year: 2015
  ident: 54_CR107
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00119F
– volume: 78
  start-page: 578
  year: 2013
  ident: 54_CR60
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201300063
– volume: 27
  start-page: 1905
  year: 2015
  ident: 54_CR40
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00046
– volume: 1
  start-page: 13033
  year: 2013
  ident: 54_CR36
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13140h
– volume: 9
  start-page: 11
  year: 2017
  ident: 54_CR42
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2691
– volume: 5
  start-page: 66
  year: 2013
  ident: 54_CR76
  publication-title: Nat. Chem
  doi: 10.1038/nchem.1505
– volume: 85
  start-page: 1715
  year: 2013
  ident: 54_CR116
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-REC-12-11-20
– volume: 8
  start-page: 718
  year: 2016
  ident: 54_CR50
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2515
– volume: 133
  start-page: 14546
  year: 2011
  ident: 54_CR77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206082s
– volume: 48
  start-page: 7502
  year: 2009
  ident: 54_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200806063
– volume: 1
  start-page: 289
  year: 2009
  ident: 54_CR90
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.254
– volume: 112
  start-page: 1546
  year: 1990
  ident: 54_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00160a038
– volume: 45
  start-page: 4352
  year: 2016
  ident: 54_CR23
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04330A
– volume: 39
  start-page: 607
  year: 2015
  ident: 54_CR24
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3255
– volume: 10
  start-page: 2342
  year: 2017
  ident: 54_CR100
  publication-title: Energy Environ. Sci
  doi: 10.1039/C7EE01872J
– volume: 14
  start-page: 512
  year: 2015
  ident: 54_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4238
– volume: 73
  start-page: 273
  year: 1985
  ident: 54_CR103
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(85)90353-9
– volume: 25
  start-page: 6221
  year: 2009
  ident: 54_CR95
  publication-title: Langmuir
  doi: 10.1021/la900022s
– volume: 45
  start-page: 5974
  year: 2006
  ident: 54_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200601878
– volume: 138
  start-page: 10818
  year: 2016
  ident: 54_CR97
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07078
– volume: 5
  start-page: 154
  year: 2015
  ident: 54_CR70
  publication-title: Crystals
  doi: 10.3390/cryst5010154
– volume: 116
  start-page: 341
  year: 2018
  ident: 54_CR75
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2017.10.002
– volume: 3
  start-page: 2559
  year: 2012
  ident: 54_CR91
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20261a
– volume: 55
  start-page: 3566
  year: 2016
  ident: 54_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 43
  start-page: 6062
  year: 2014
  ident: 54_CR39
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00101J
– volume: 14
  start-page: 28
  year: 2011
  ident: 54_CR46
  publication-title: Comb. Chem. High Throughput Screening
  doi: 10.2174/1386207311107010028
– volume: 96
  start-page: 3471
  year: 1999
  ident: 54_CR101
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.7.3471
– volume: 29
  start-page: 2626
  year: 2017
  ident: 54_CR26
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03934
– volume: 356
  start-page: 430
  year: 2017
  ident: 54_CR15
  publication-title: Science
  doi: 10.1126/science.aam8743
– volume: 137
  start-page: 864
  year: 2015
  ident: 54_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511019u
– volume: 527
  start-page: 357
  year: 2015
  ident: 54_CR5
  publication-title: Nature
  doi: 10.1038/nature15732
– volume: 527
  start-page: 216
  year: 2015
  ident: 54_CR111
  publication-title: Nature
  doi: 10.1038/nature16072
– volume: 15
  start-page: 1735
  year: 2015
  ident: 54_CR61
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501737j
– volume: 138
  start-page: 3484
  year: 2016
  ident: 54_CR66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13220
– volume: 54
  start-page: 7234
  year: 2015
  ident: 54_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411540
– volume: 131
  start-page: 17546
  year: 2009
  ident: 54_CR85
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908415z
– volume: 19
  start-page: 7049
  year: 2013
  ident: 54_CR102
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201300216
– start-page: 3357
  volume-title: Chem. Soc. Rev.
  year: 2017
  ident: 54_CR12
– volume: 120
  start-page: 14015
  year: 2016
  ident: 54_CR56
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01208
– volume: 8
  start-page: 987
  year: 2016
  ident: 54_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2661
– volume: 100
  start-page: 13200
  year: 1996
  ident: 54_CR117
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953538d
– volume: 6
  year: 2015
  ident: 54_CR74
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7662
– volume: 16
  start-page: 526
  year: 2017
  ident: 54_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4825
– volume: 43
  start-page: 5913
  year: 2014
  ident: 54_CR30
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 120
  start-page: 15362
  year: 2016
  ident: 54_CR72
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b06337
– volume: 54
  start-page: 4364
  year: 2015
  ident: 54_CR59
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00145
– volume: 255
  start-page: 52
  year: 2014
  ident: 54_CR25
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.09.013
– volume: 114
  start-page: 7923
  year: 2017
  ident: 54_CR99
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706330114
– volume: 11
  start-page: 4962
  year: 2009
  ident: 54_CR110
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b900201d
– volume: 6
  year: 2015
  ident: 54_CR34
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3020
  year: 2007
  ident: 54_CR112
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200700090
– volume: 51
  start-page: 13878
  year: 2015
  ident: 54_CR93
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05237H
SSID ssj0001934982
Score 2.560313
SecondaryResourceType review_article
Snippet The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms 639/301/923/218
639/638/298/921
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Coordination polymers
Crystal structure
Crystallinity
Ligands
Materials Science
Metal-organic frameworks
Nanotechnology
Optical and Electronic Materials
Polymers
Review Article
Structural design
Title Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks
URI https://link.springer.com/article/10.1038/s41578-018-0054-3
https://www.proquest.com/docview/2285699761
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T9xAEB6Fo4EigiSISwjaIhWJhb0Pe7dCScSBUEBRRCQ6s0_pJDgf-CjS5T_kH-aXZHZtcwEJClf2bjEznm_eA_DB5rEvRbiMK-rRQZF5plPROGUVq7zjOi2bOD0rj3_ykwtx0Qfc2r6sctCJSVG7xsYY-T6lUpQKwbM4mN9kcWtUzK72KzRWYBVVsJQjWP1yePb9xzLKohhXkg7pTCb3W0SsOFS2wAfNlYw9BKSllfkoMZrwZrIBL3tDkXzuOLsJL_zsFaz_Nz7wNVx-m97cTd0nkkxgomeO6OsGCYfePEGZmjqS-oVa0gRiG3Qzp13sj8ybq18xYJ3OXHs0wP_-_tMteLIkDPVa7Rs4nxyefz3O-o0JmWWSLrJQMV2YoEPBjXZcOIRjE2iJsG2l0j733lgEbZUbykUwoXBCGKEKoW3hOduC0ayZ-W0gzobKCmWNVoJTSxWltvIlOiM-lJbnY8gHqtW2nyYel1pc1SmrzWTdEbpGQteR0DUbw979kXk3SuO5j3cGVtT9X9XWSxkYw8eBPcvXT1729vnL3sEajfKQOgx3YLS4vfPv0dRYmF1YkZOj3V6q_gH_LdQF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27btRAFL0KoQAKxFNZCDAFNIAVex62p4gQApYN2aRapHTDPKWVkvUG7wql4x_4jvxUviR3xmsWkEiXwpU9U9x7POfOfQK8tHmsSxEu45J6vKDUeaZT0jhlFau84zoNmzg4LEdf-ZcjcbQB530tTEyr7M_EdFC7xkYf-Q6ltSglkmfxbn6axalRMbraj9DoYLHvz37gla3d3fuI-n1F6fDT5MMoW00VyCyr6SILFdOFCToU3GjHhUPKMoGWSG22ltrn3huLxCZzQ7kIJhROCCNkIbQtPGe47Q24yRkSeSxMH35eu3Qk47KmfeyU1Tst0mPsYFvgg7ZRxv5mv7VJ-08UNpHb8B7cXVml5H0Ho_uw4WcP4M4fvQofwrfx9HQ5dW9JsreJnjmiTxrUUrNsCQJ46kgqTmpJE4htUEDTztFI5s3xWfSOpzUnHq39i5-_umlSloQ-Oax9BJPrEORj2Jw1M78FxNlQWSGt0VJwaqmk1Fa-xJuPD6Xl-QDyXmrKrlqXxwkaxyqF0FmtOkErFLSKglZsAK9_L5l3fTuu-ni7V4Va_cKtWgNuAG969axf_3ezJ1dv9gJujSYHYzXeO9x_CrdpxEYqbdyGzcX3pX-GNs7CPE_IIqCuGcmXmeEPXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid%2C+glass+and+amorphous+solid+states+of+coordination+polymers+and+metal%E2%80%93organic+frameworks&rft.jtitle=Nature+reviews.+Materials&rft.au=Bennett%2C+Thomas+D.&rft.au=Horike%2C+Satoshi&rft.date=2018-11-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-8437&rft.volume=3&rft.issue=11&rft.spage=431&rft.epage=440&rft_id=info:doi/10.1038%2Fs41578-018-0054-3&rft.externalDocID=10_1038_s41578_018_0054_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon