Multi-robot path planning in online dynamic obstacle environments based on parallel cooperative strategy optimization algorithm

The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel co...

Full description

Saved in:
Bibliographic Details
Published inDiscover Computing Vol. 28; no. 1; pp. 132 - 24
Main Authors Wang, Chia-Hung, Hu, Kun, Wu, Xiaojing
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2948-2992
1386-4564
2948-2992
1573-7659
DOI10.1007/s10791-025-09664-5

Cover

Abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments. Graphical abstract
AbstractList The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments. Graphical abstract
Abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments. Graphical abstract
The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments.
ArticleNumber 132
Author Hu, Kun
Wu, Xiaojing
Wang, Chia-Hung
Author_xml – sequence: 1
  givenname: Chia-Hung
  surname: Wang
  fullname: Wang, Chia-Hung
  email: 61201506@fjut.edu.cn
  organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology
– sequence: 2
  givenname: Kun
  surname: Hu
  fullname: Hu, Kun
  organization: College of Computer Science and Mathematics, Fujian University of Technology
– sequence: 3
  givenname: Xiaojing
  surname: Wu
  fullname: Wu, Xiaojing
  organization: College of Electronics, Electrical Engineering and Physics, Fujian University of Technology
BookMark eNp9kctu1jAQha2qSC2lL8DKEutQX5N4iSoulVp1A2trnExSV4kdbP-Vfja8OqapgBWrGY2-c8ae85qchhiQkLecveeMdVeZs87whgndMNO2qtEn5FwY1TfCGHH6T39GLnP2jmnZSdEydk5-3h2W4psUXSx0g_JAtwVC8GGmPtAYFh-QjscAqx9odLnAsCDF8ORTDCuGkqmDjGNFqzzBsuBChxg3TFD8E9JcaoPzkcat-NX_qNOKwjLH5MvD-oa8mmDJePlSL8i3Tx-_Xn9pbu8_31x_uG0G2YvSTK0ZFfbQC6mZEq4fkSvetbw1g2q7zrSolROaGcekGZwTnKPUCEwoZ6ZRXpCb3XeM8Gi35FdIRxvB2-dBTLOFVHz9nGUwCQ31RIhC4Tj1vTJKwdgD553WU_V6t3ttKX4_YC72MR5SqM-3UtSzilYKUymxU0OKOSec_mzlzP7Oze652Zqbfc7N6iqSuyhXOMyY_lr_R_ULdxae5w
Cites_doi 10.1016/j.jmsy.2021.06.008
10.1007/s10462-023-10620-2
10.1007/s11227-022-04959-6
10.1177/0278364911406761
10.1038/scientificamerican0792-66
10.1007/s42341-022-00401-z
10.1016/j.advengsoft.2016.01.008
10.1007/s12541-013-0209-5
10.1016/j.ifacol.2021.10.001
10.1109/ICNN.1995.488968
10.1016/j.compag.2023.107701
10.1016/j.knosys.2024.111459
10.1109/TSSC.1968.300136
10.1016/j.apm.2024.03.010
10.3390/math11081800
10.1016/j.eswa.2021.116158
10.1016/j.apm.2022.08.009
10.1016/j.eswa.2021.114660
10.1016/j.eswa.2024.123762
10.1109/CEC55065.2022.9870220
10.1016/j.artint.2003.12.001
10.1016/j.engappai.2023.107532
10.4070/kcj.2019.0269
10.1007/s42452-020-3093-5
10.1177/1729881420918461
10.1080/21642583.2019.1708830
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1007/s10791-025-09664-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Library & Information Science
EISSN 2948-2992
1573-7659
EndPage 24
ExternalDocumentID oai_doaj_org_article_0af25a537ee24edf884944ad8a11755f
10_1007_s10791_025_09664_5
GrantInformation_xml – fundername: Fujian Provincial Department of Science and Technology
  grantid: 2021J011070; 2021J011070
  funderid: https://doi.org/10.13039/501100005270
GroupedDBID AAJSJ
AASML
AAYZH
ABDBE
AEFQL
ALMA_UNASSIGNED_HOLDINGS
C6C
JZLTJ
SOJ
AAYXX
CITATION
EBLON
.4I
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29I
2J2
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7SC
7WY
8FD
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ADHHG
ADHIR
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBS
EIOEI
ELW
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
KDC
KOV
L7M
LAK
LLZTM
L~C
L~D
M0C
MA-
NB0
NPVJJ
NQJWS
O93
O9J
OAM
P2P
P9O
PF0
PT5
QOS
R89
R9I
RNS
RPX
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
GROUPED_DOAJ
ID FETCH-LOGICAL-c382t-f69d4e8a8235042b8de14176169c467796e54b2509b039cbb211e35ea024b9fd3
IEDL.DBID C6C
ISSN 2948-2992
1386-4564
IngestDate Wed Aug 27 01:28:27 EDT 2025
Thu Jul 03 05:41:58 EDT 2025
Wed Sep 10 05:57:05 EDT 2025
Wed Jul 02 02:44:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parallel cooperative strategy
Static obstacle
Dynamic obstacle
Optimization
Multi-robot path planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-f69d4e8a8235042b8de14176169c467796e54b2509b039cbb211e35ea024b9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s10791-025-09664-5
PQID 3226026329
PQPubID 26106
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_0af25a537ee24edf884944ad8a11755f
proquest_journals_3226026329
crossref_primary_10_1007_s10791_025_09664_5
springer_journals_10_1007_s10791_025_09664_5
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Discover Computing
PublicationTitleAbbrev Discov Computing
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References L Abualigah (9664_CR15) 2022; 191
R Sowmya (9664_CR27) 2024; 128
JH Holland (9664_CR21) 1992; 267
Á Madridano (9664_CR7) 2021; 173
D-S Kim (9664_CR4) 2022; 23
J Xue (9664_CR24) 2020; 8
9664_CR14
9664_CR19
J Wang (9664_CR26) 2024; 57
H Peng (9664_CR5) 2022; 112
D Paez (9664_CR6) 2021; 54
S Karaman (9664_CR11) 2011; 30
S Koenig (9664_CR9) 2004; 155
S Mirjalili (9664_CR23) 2016; 95
N Toufan (9664_CR20) 2020; 2
MN Ab Wahab (9664_CR18) 2024; 249
J Xue (9664_CR25) 2023; 79
J Cui (9664_CR17) 2024; 288
9664_CR22
PE Hart (9664_CR13) 1968; 4
C-H Wang (9664_CR16) 2023; 11
FJ Perez-Grau (9664_CR1) 2021; 60
B Dugarjav (9664_CR10) 2013; 14
JW Song (9664_CR12) 2020; 50
J Song (9664_CR8) 2020; 17
C Zhang (9664_CR3) 2024; 130
Q Yang (9664_CR2) 2023; 206
References_xml – volume: 60
  start-page: 312
  year: 2021
  ident: 9664_CR1
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.06.008
– ident: 9664_CR14
– volume: 57
  start-page: 1
  issue: 4
  year: 2024
  ident: 9664_CR26
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-023-10620-2
– volume: 79
  start-page: 7305
  issue: 7
  year: 2023
  ident: 9664_CR25
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04959-6
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 9664_CR11
  publication-title: Int J Robot Res
  doi: 10.1177/0278364911406761
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 9664_CR21
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 23
  start-page: 355
  issue: 4
  year: 2022
  ident: 9664_CR4
  publication-title: Trans Electr Electron Mater
  doi: 10.1007/s42341-022-00401-z
– volume: 95
  start-page: 51
  year: 2016
  ident: 9664_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 14
  start-page: 1551
  year: 2013
  ident: 9664_CR10
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0209-5
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  ident: 9664_CR6
  publication-title: IFAC-Papers OnLine
  doi: 10.1016/j.ifacol.2021.10.001
– ident: 9664_CR22
  doi: 10.1109/ICNN.1995.488968
– volume: 206
  year: 2023
  ident: 9664_CR2
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.107701
– volume: 288
  year: 2024
  ident: 9664_CR17
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.111459
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 9664_CR13
  publication-title: IEEE Trans Syst Sci Cybernet
  doi: 10.1109/TSSC.1968.300136
– volume: 130
  start-page: 438
  year: 2024
  ident: 9664_CR3
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2024.03.010
– volume: 11
  start-page: 1800
  issue: 8
  year: 2023
  ident: 9664_CR16
  publication-title: Mathematics
  doi: 10.3390/math11081800
– volume: 191
  year: 2022
  ident: 9664_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– volume: 112
  start-page: 224
  year: 2022
  ident: 9664_CR5
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2022.08.009
– volume: 173
  year: 2021
  ident: 9664_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114660
– volume: 249
  year: 2024
  ident: 9664_CR18
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2024.123762
– ident: 9664_CR19
  doi: 10.1109/CEC55065.2022.9870220
– volume: 155
  start-page: 93
  issue: 1–2
  year: 2004
  ident: 9664_CR9
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2003.12.001
– volume: 128
  year: 2024
  ident: 9664_CR27
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107532
– volume: 50
  start-page: 1
  issue: 1
  year: 2020
  ident: 9664_CR12
  publication-title: Korean Circul J
  doi: 10.4070/kcj.2019.0269
– volume: 2
  start-page: 1324
  issue: 8
  year: 2020
  ident: 9664_CR20
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-3093-5
– volume: 17
  start-page: 172988142091846
  issue: 2
  year: 2020
  ident: 9664_CR8
  publication-title: Int J Adv Rob Syst
  doi: 10.1177/1729881420918461
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 9664_CR24
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
SSID ssib053732600
ssj0006449
Score 2.3893433
Snippet The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic,...
Abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 132
SubjectTerms Automation
Computer Science
Data Mining and Knowledge Discovery
Data Structures and Information Theory
Dynamic obstacle
Efficiency
Energy consumption
Information Storage and Retrieval
Multi-robot path planning
Multiple robots
Natural Language Processing (NLP)
Obstacle avoidance
Optimization
Optimization algorithms
Parallel cooperative strategy
Path planning
Pattern Recognition
Ranking
Robot dynamics
Robotics
Robots
Search algorithms
Static obstacle
Strategy
Task complexity
Unmanned aerial vehicles
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQkAc2sEj8FXsERFUhwQRSN8tOHKhUmqoNAxN_nbskhRYJsbAmF8m6s-_exXfvCDnT3JaAag0LPrVMahmZUZC1Ig9MEZFQ3OMP_fsHPXySdyM1Whn1hTVhLT1wq7jLxJdceSWyGLmMRWmMtFL6wngkmVQlet_EJivJFOwkEBfIvN51yXS9chkW-XDFALVrydRaJGoI-9dQ5o-L0SbeDHbIdgcU6VW7wF2yEad75KPpl2XzKlQ1xWHCdNYNHaLjKW1ZL2jRDpmnVQDkB9_S1WY2imGrAFGKpN-TSZzQvKpmsSUAp4uWrPadVuBKXrseTeonz9V8XL-87pOnwe3jzZB1IxRYLgyvWaltIaPxhgsFxzOYIqYyzXSqbQ4uMrM6KhkABtmQCJuHAPlgFCp6CN3BloU4IJvTahoPCU3zRJUyegQwUmSplxqiny5TvEeWkvfI-VKdbtYyZbhvTmRUvgPlu0b5TvXINWr8SxJZrpsHYHvX2d79Zfse6S_t5bqjt3DgoXCsluC2Ry6WNvx-_fuSjv5jScdkizd7DAt6-2Sznr_FE4AtdThtdugnerfoXA
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-robot path planning in online dynamic obstacle environments based on parallel cooperative strategy optimization algorithm
URI https://link.springer.com/article/10.1007/s10791-025-09664-5
https://www.proquest.com/docview/3226026329
https://doaj.org/article/0af25a537ee24edf884944ad8a11755f
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXLj0Qam6lK586I1a2vgV-7iLWKGV4EKRuFl24gDSslkt4dBT_zozjlMeooeeIiVOFOWb8XzOeL4h5IfmtgFWa1jwhWVSy8iMglUr6sDUEQXFPf7QPzvXp5dycaWuskwO1sK8yt9jiVuJe3O4YkC2tWTqHdlRhdApMauPB9tRohSotZ7rYt6-9UXsSRL9L3jlq1RoijDzj-R9poZ02mP5iWzF1R75MLRdoNkLP5M_qWiWbdrQdhQ7CtN17jxEb1e0l76gdd9pnrYB6B88jj6vaKMYu2oYSlH5e7mMS1q17Tr2KuD0vles_U1bmE_ucqEm9cvrdnPb3dztk8v5ya_jU5b7KLBKGN6xRttaRuMNFwp8NJg6FrIodaFtBfNkaXVUMgAXsmEibBUCLAqjUNFD_A62qcUXsr1qV_EroUU1UY2MHlmMFGXhpYYQqJsCk8lS8hE5Gr6wW_dyGe5JGBnxcICHS3g4NSIzBOHvSJS6TifAAlz2HDfxDVce8I2Ry1g3xkgrpa-NR5VR1YzI4QChy_5372Cawt5agtsR-TnA-nT536908H_Dv5FdngwM9-8eku1u8xC_A0vpwpjsTKeLiwUe57PZ-TiZ6zit-R8BG8ri3Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVaeqCX0g8qttDWh95aSxt77NhHWBVtW-AEEjfLThxAWjarJT1w4q93JnFKQe2h18SOorwZz3PG84axT0a6BlmtFTEUToCBJKzGXSvpwNSJBMUD_dA_PjHzM_h-rs-zTA7VwjzK31OJW0lnc6QWSLYNCP2UPYPClWTBMzMbbUerUpHWeq6L-fvUB7Gnl-h_wCsfpUL7CHP4kr3I1JDvD1i-Yk_S8jXbGtsu8OyFb9hdXzQr1m1sO04dhfkqdx7iV0s-SF_weug0z9uI9A8fx_-saOMUu2ocykn5e7FIC1617SoNKuD8ZlCsveUtrifXuVCTh8VFu77qLq-32dnh19PZXOQ-CqJSVnaiMa6GZIOVSqOPRlunAorSFMZVuE6WziQNEbmQi1PlqhhxU5iUTgHjd3RNrd6yjWW7TDuMF9VUN5ACsRhQZRHAYAg0TUHJZAA5YZ_HL-xXg1yGvxdGJjw84uF7PLyesAMC4fdIkrruL6AF-Ow5fhoaqQPim5KEVDfWggMItQ2kMqqbCdsbIfTZ_248LlPUW0tJN2FfRljvb__7ld793_CPbHN-enzkj76d_Nhlz2VvbHSWd49tdOuf6T0yli5-6E31F3mn4dY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgLLV9ioYAP3MDqxh479rGUrspXxYFKvVl2bLeVtvFqGw6c-Ot48kG3CA5cEyeK8jyel4zfG0JeK25SYbWaeVcZBgoi07J8taIPTIhoKO7wh_6XY3V0Ah9P5emGir_f7T6VJAdNA7o0td3eKqS9DeFbjTt2uGSFgitg8ja5A5j6sFyrDqYZJUUt0IF9VMv8_dIbGak37r_BNv8okPZ5Z7FD7o-Eke4PCD8gt2L7kGxPzRjoGJuPyM9eSsvW2eeOYp9huhr7EdGLlg6GGDQM_edp9oUUltvRTZ0bxYwWylCKfuDLZVzSJudVHLzB6dXgY_uD5rLKXI7yTeqWZ3l90Z1fPiYni8NvB0ds7K7AGqF5x5IyAaJ2mgtZItfrECuoalUp05TVszYqSvCFIRk_F6bxvnwqRiGjK1ndmxTEE7LV5jY-JbRq5jJBdMhtQNSVA1USo0oVlpgB-Iy8md6wXQ0mGvbaLhnxsAUP2-Nh5Yy8QxB-j0QD7P5AXp_ZMZ7s3CUuXcE3Rg4xJK3BALigHXqPyjQjuxOEdozKK1sWL-y4JbiZkbcTrNen__1Iz_5v-Cty9-v7hf384fjTc3KP93MNN_jukq1u_T2-KDSm8y_7mfoLw3TqFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-robot+path+planning+in+online+dynamic+obstacle+environments+based+on+parallel+cooperative+strategy+optimization+algorithm&rft.jtitle=Discover+Computing&rft.au=Wang%2C+Chia-Hung&rft.au=Hu%2C+Kun&rft.au=Wu%2C+Xiaojing&rft.date=2025-07-01&rft.pub=Springer+Netherlands&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10791-025-09664-5&rft.externalDocID=10_1007_s10791_025_09664_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon