Multi-robot path planning in online dynamic obstacle environments based on parallel cooperative strategy optimization algorithm
The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel co...
Saved in:
Published in | Discover Computing Vol. 28; no. 1; pp. 132 - 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2948-2992 1386-4564 2948-2992 1573-7659 |
DOI | 10.1007/s10791-025-09664-5 |
Cover
Abstract | The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments.
Graphical abstract |
---|---|
AbstractList | The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments.
Graphical abstract Abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments. Graphical abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic, unstructured environments where unpredictable obstacles and varying conditions present significant challenges. This paper introduces the parallel cooperative strategy reptile search algorithm (PC-RSA) for multi-robot path planning in such dynamic settings. Path planning is crucial for mobile robots, especially in multi-robot systems, requiring solutions that adapt quickly to changes while ensuring efficiency and robustness. Traditional algorithms often struggle with dynamic obstacles and maintaining diversity during search processes. To address these issues, PC-RSA incorporates a parallel cooperative strategy, improving information utilization and balancing exploration with exploitation. The algorithm’s performance was tested using 10-dimensional and 20-dimensional benchmark functions from the CEC2022 test suite and compared with other state-of-the-art algorithms, such as GA, PSO, and RSA. PC-RSA outperformed these methods, ranking first in the Friedman ranking. It was then applied to multi-robot path planning in environments with both static and dynamic obstacles. Simulation results showed notable improvements over the standard RSA, with enhancements of 90.96%, 52.53%, 55.73%, and 62.71% in average path deviation error, average untraveled goal distance, total fitness value, and average execution time, respectively. These findings suggest that PC-RSA could be a promising approach for multi-robot path planning in dynamic environments. |
ArticleNumber | 132 |
Author | Hu, Kun Wu, Xiaojing Wang, Chia-Hung |
Author_xml | – sequence: 1 givenname: Chia-Hung surname: Wang fullname: Wang, Chia-Hung email: 61201506@fjut.edu.cn organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology – sequence: 2 givenname: Kun surname: Hu fullname: Hu, Kun organization: College of Computer Science and Mathematics, Fujian University of Technology – sequence: 3 givenname: Xiaojing surname: Wu fullname: Wu, Xiaojing organization: College of Electronics, Electrical Engineering and Physics, Fujian University of Technology |
BookMark | eNp9kctu1jAQha2qSC2lL8DKEutQX5N4iSoulVp1A2trnExSV4kdbP-Vfja8OqapgBWrGY2-c8ae85qchhiQkLecveeMdVeZs87whgndMNO2qtEn5FwY1TfCGHH6T39GLnP2jmnZSdEydk5-3h2W4psUXSx0g_JAtwVC8GGmPtAYFh-QjscAqx9odLnAsCDF8ORTDCuGkqmDjGNFqzzBsuBChxg3TFD8E9JcaoPzkcat-NX_qNOKwjLH5MvD-oa8mmDJePlSL8i3Tx-_Xn9pbu8_31x_uG0G2YvSTK0ZFfbQC6mZEq4fkSvetbw1g2q7zrSolROaGcekGZwTnKPUCEwoZ6ZRXpCb3XeM8Gi35FdIRxvB2-dBTLOFVHz9nGUwCQ31RIhC4Tj1vTJKwdgD553WU_V6t3ttKX4_YC72MR5SqM-3UtSzilYKUymxU0OKOSec_mzlzP7Oze652Zqbfc7N6iqSuyhXOMyY_lr_R_ULdxae5w |
Cites_doi | 10.1016/j.jmsy.2021.06.008 10.1007/s10462-023-10620-2 10.1007/s11227-022-04959-6 10.1177/0278364911406761 10.1038/scientificamerican0792-66 10.1007/s42341-022-00401-z 10.1016/j.advengsoft.2016.01.008 10.1007/s12541-013-0209-5 10.1016/j.ifacol.2021.10.001 10.1109/ICNN.1995.488968 10.1016/j.compag.2023.107701 10.1016/j.knosys.2024.111459 10.1109/TSSC.1968.300136 10.1016/j.apm.2024.03.010 10.3390/math11081800 10.1016/j.eswa.2021.116158 10.1016/j.apm.2022.08.009 10.1016/j.eswa.2021.114660 10.1016/j.eswa.2024.123762 10.1109/CEC55065.2022.9870220 10.1016/j.artint.2003.12.001 10.1016/j.engappai.2023.107532 10.4070/kcj.2019.0269 10.1007/s42452-020-3093-5 10.1177/1729881420918461 10.1080/21642583.2019.1708830 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1007/s10791-025-09664-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering Library & Information Science |
EISSN | 2948-2992 1573-7659 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_0af25a537ee24edf884944ad8a11755f 10_1007_s10791_025_09664_5 |
GrantInformation_xml | – fundername: Fujian Provincial Department of Science and Technology grantid: 2021J011070; 2021J011070 funderid: https://doi.org/10.13039/501100005270 |
GroupedDBID | AAJSJ AASML AAYZH ABDBE AEFQL ALMA_UNASSIGNED_HOLDINGS C6C JZLTJ SOJ AAYXX CITATION EBLON .4I .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29I 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7SC 7WY 8FD 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAIAL AAJKR AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ADHHG ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBS EIOEI ELW ESBYG F5P FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HMJXF HQYDN HRMNR HVGLF I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~Z J-C J0Z JBSCW JCJTX JQ2 KDC KOV L7M LAK LLZTM L~C L~D M0C MA- NB0 NPVJJ NQJWS O93 O9J OAM P2P P9O PF0 PT5 QOS R89 R9I RNS RPX S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SNE SNPRN SNX SOHCF SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR GROUPED_DOAJ |
ID | FETCH-LOGICAL-c382t-f69d4e8a8235042b8de14176169c467796e54b2509b039cbb211e35ea024b9fd3 |
IEDL.DBID | C6C |
ISSN | 2948-2992 1386-4564 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Thu Jul 03 05:41:58 EDT 2025 Wed Sep 10 05:57:05 EDT 2025 Wed Jul 02 02:44:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Parallel cooperative strategy Static obstacle Dynamic obstacle Optimization Multi-robot path planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-f69d4e8a8235042b8de14176169c467796e54b2509b039cbb211e35ea024b9fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s10791-025-09664-5 |
PQID | 3226026329 |
PQPubID | 26106 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0af25a537ee24edf884944ad8a11755f proquest_journals_3226026329 crossref_primary_10_1007_s10791_025_09664_5 springer_journals_10_1007_s10791_025_09664_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Discover Computing |
PublicationTitleAbbrev | Discov Computing |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | L Abualigah (9664_CR15) 2022; 191 R Sowmya (9664_CR27) 2024; 128 JH Holland (9664_CR21) 1992; 267 Á Madridano (9664_CR7) 2021; 173 D-S Kim (9664_CR4) 2022; 23 J Xue (9664_CR24) 2020; 8 9664_CR14 9664_CR19 J Wang (9664_CR26) 2024; 57 H Peng (9664_CR5) 2022; 112 D Paez (9664_CR6) 2021; 54 S Karaman (9664_CR11) 2011; 30 S Koenig (9664_CR9) 2004; 155 S Mirjalili (9664_CR23) 2016; 95 N Toufan (9664_CR20) 2020; 2 MN Ab Wahab (9664_CR18) 2024; 249 J Xue (9664_CR25) 2023; 79 J Cui (9664_CR17) 2024; 288 9664_CR22 PE Hart (9664_CR13) 1968; 4 C-H Wang (9664_CR16) 2023; 11 FJ Perez-Grau (9664_CR1) 2021; 60 B Dugarjav (9664_CR10) 2013; 14 JW Song (9664_CR12) 2020; 50 J Song (9664_CR8) 2020; 17 C Zhang (9664_CR3) 2024; 130 Q Yang (9664_CR2) 2023; 206 |
References_xml | – volume: 60 start-page: 312 year: 2021 ident: 9664_CR1 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.06.008 – ident: 9664_CR14 – volume: 57 start-page: 1 issue: 4 year: 2024 ident: 9664_CR26 publication-title: Artif Intell Rev. doi: 10.1007/s10462-023-10620-2 – volume: 79 start-page: 7305 issue: 7 year: 2023 ident: 9664_CR25 publication-title: J Supercomput doi: 10.1007/s11227-022-04959-6 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 9664_CR11 publication-title: Int J Robot Res doi: 10.1177/0278364911406761 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 9664_CR21 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 23 start-page: 355 issue: 4 year: 2022 ident: 9664_CR4 publication-title: Trans Electr Electron Mater doi: 10.1007/s42341-022-00401-z – volume: 95 start-page: 51 year: 2016 ident: 9664_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 14 start-page: 1551 year: 2013 ident: 9664_CR10 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0209-5 – volume: 54 start-page: 1 issue: 4 year: 2021 ident: 9664_CR6 publication-title: IFAC-Papers OnLine doi: 10.1016/j.ifacol.2021.10.001 – ident: 9664_CR22 doi: 10.1109/ICNN.1995.488968 – volume: 206 year: 2023 ident: 9664_CR2 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2023.107701 – volume: 288 year: 2024 ident: 9664_CR17 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2024.111459 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 9664_CR13 publication-title: IEEE Trans Syst Sci Cybernet doi: 10.1109/TSSC.1968.300136 – volume: 130 start-page: 438 year: 2024 ident: 9664_CR3 publication-title: Appl Math Model doi: 10.1016/j.apm.2024.03.010 – volume: 11 start-page: 1800 issue: 8 year: 2023 ident: 9664_CR16 publication-title: Mathematics doi: 10.3390/math11081800 – volume: 191 year: 2022 ident: 9664_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116158 – volume: 112 start-page: 224 year: 2022 ident: 9664_CR5 publication-title: Appl Math Model doi: 10.1016/j.apm.2022.08.009 – volume: 173 year: 2021 ident: 9664_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114660 – volume: 249 year: 2024 ident: 9664_CR18 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2024.123762 – ident: 9664_CR19 doi: 10.1109/CEC55065.2022.9870220 – volume: 155 start-page: 93 issue: 1–2 year: 2004 ident: 9664_CR9 publication-title: Artif Intell doi: 10.1016/j.artint.2003.12.001 – volume: 128 year: 2024 ident: 9664_CR27 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107532 – volume: 50 start-page: 1 issue: 1 year: 2020 ident: 9664_CR12 publication-title: Korean Circul J doi: 10.4070/kcj.2019.0269 – volume: 2 start-page: 1324 issue: 8 year: 2020 ident: 9664_CR20 publication-title: SN Appl Sci doi: 10.1007/s42452-020-3093-5 – volume: 17 start-page: 172988142091846 issue: 2 year: 2020 ident: 9664_CR8 publication-title: Int J Adv Rob Syst doi: 10.1177/1729881420918461 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 9664_CR24 publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2019.1708830 |
SSID | ssib053732600 ssj0006449 |
Score | 2.3893433 |
Snippet | The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in dynamic,... Abstract The obstacle avoidance path planning for robots has become a critical research focus, especially in the context of addressing complex tasks in... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 132 |
SubjectTerms | Automation Computer Science Data Mining and Knowledge Discovery Data Structures and Information Theory Dynamic obstacle Efficiency Energy consumption Information Storage and Retrieval Multi-robot path planning Multiple robots Natural Language Processing (NLP) Obstacle avoidance Optimization Optimization algorithms Parallel cooperative strategy Path planning Pattern Recognition Ranking Robot dynamics Robotics Robots Search algorithms Static obstacle Strategy Task complexity Unmanned aerial vehicles Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQkAc2sEj8FXsERFUhwQRSN8tOHKhUmqoNAxN_nbskhRYJsbAmF8m6s-_exXfvCDnT3JaAag0LPrVMahmZUZC1Ig9MEZFQ3OMP_fsHPXySdyM1Whn1hTVhLT1wq7jLxJdceSWyGLmMRWmMtFL6wngkmVQlet_EJivJFOwkEBfIvN51yXS9chkW-XDFALVrydRaJGoI-9dQ5o-L0SbeDHbIdgcU6VW7wF2yEad75KPpl2XzKlQ1xWHCdNYNHaLjKW1ZL2jRDpmnVQDkB9_S1WY2imGrAFGKpN-TSZzQvKpmsSUAp4uWrPadVuBKXrseTeonz9V8XL-87pOnwe3jzZB1IxRYLgyvWaltIaPxhgsFxzOYIqYyzXSqbQ4uMrM6KhkABtmQCJuHAPlgFCp6CN3BloU4IJvTahoPCU3zRJUyegQwUmSplxqiny5TvEeWkvfI-VKdbtYyZbhvTmRUvgPlu0b5TvXINWr8SxJZrpsHYHvX2d79Zfse6S_t5bqjt3DgoXCsluC2Ry6WNvx-_fuSjv5jScdkizd7DAt6-2Sznr_FE4AtdThtdugnerfoXA priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-robot path planning in online dynamic obstacle environments based on parallel cooperative strategy optimization algorithm |
URI | https://link.springer.com/article/10.1007/s10791-025-09664-5 https://www.proquest.com/docview/3226026329 https://doaj.org/article/0af25a537ee24edf884944ad8a11755f |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXLj0Qam6lK586I1a2vgV-7iLWKGV4EKRuFl24gDSslkt4dBT_zozjlMeooeeIiVOFOWb8XzOeL4h5IfmtgFWa1jwhWVSy8iMglUr6sDUEQXFPf7QPzvXp5dycaWuskwO1sK8yt9jiVuJe3O4YkC2tWTqHdlRhdApMauPB9tRohSotZ7rYt6-9UXsSRL9L3jlq1RoijDzj-R9poZ02mP5iWzF1R75MLRdoNkLP5M_qWiWbdrQdhQ7CtN17jxEb1e0l76gdd9pnrYB6B88jj6vaKMYu2oYSlH5e7mMS1q17Tr2KuD0vles_U1bmE_ucqEm9cvrdnPb3dztk8v5ya_jU5b7KLBKGN6xRttaRuMNFwp8NJg6FrIodaFtBfNkaXVUMgAXsmEibBUCLAqjUNFD_A62qcUXsr1qV_EroUU1UY2MHlmMFGXhpYYQqJsCk8lS8hE5Gr6wW_dyGe5JGBnxcICHS3g4NSIzBOHvSJS6TifAAlz2HDfxDVce8I2Ry1g3xkgrpa-NR5VR1YzI4QChy_5372Cawt5agtsR-TnA-nT536908H_Dv5FdngwM9-8eku1u8xC_A0vpwpjsTKeLiwUe57PZ-TiZ6zit-R8BG8ri3Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVaeqCX0g8qttDWh95aSxt77NhHWBVtW-AEEjfLThxAWjarJT1w4q93JnFKQe2h18SOorwZz3PG84axT0a6BlmtFTEUToCBJKzGXSvpwNSJBMUD_dA_PjHzM_h-rs-zTA7VwjzK31OJW0lnc6QWSLYNCP2UPYPClWTBMzMbbUerUpHWeq6L-fvUB7Gnl-h_wCsfpUL7CHP4kr3I1JDvD1i-Yk_S8jXbGtsu8OyFb9hdXzQr1m1sO04dhfkqdx7iV0s-SF_weug0z9uI9A8fx_-saOMUu2ocykn5e7FIC1617SoNKuD8ZlCsveUtrifXuVCTh8VFu77qLq-32dnh19PZXOQ-CqJSVnaiMa6GZIOVSqOPRlunAorSFMZVuE6WziQNEbmQi1PlqhhxU5iUTgHjd3RNrd6yjWW7TDuMF9VUN5ACsRhQZRHAYAg0TUHJZAA5YZ_HL-xXg1yGvxdGJjw84uF7PLyesAMC4fdIkrruL6AF-Ow5fhoaqQPim5KEVDfWggMItQ2kMqqbCdsbIfTZ_248LlPUW0tJN2FfRljvb__7ld793_CPbHN-enzkj76d_Nhlz2VvbHSWd49tdOuf6T0yli5-6E31F3mn4dY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSIgLLV9ioYAP3MDqxh479rGUrspXxYFKvVl2bLeVtvFqGw6c-Ot48kG3CA5cEyeK8jyel4zfG0JeK25SYbWaeVcZBgoi07J8taIPTIhoKO7wh_6XY3V0Ah9P5emGir_f7T6VJAdNA7o0td3eKqS9DeFbjTt2uGSFgitg8ja5A5j6sFyrDqYZJUUt0IF9VMv8_dIbGak37r_BNv8okPZ5Z7FD7o-Eke4PCD8gt2L7kGxPzRjoGJuPyM9eSsvW2eeOYp9huhr7EdGLlg6GGDQM_edp9oUUltvRTZ0bxYwWylCKfuDLZVzSJudVHLzB6dXgY_uD5rLKXI7yTeqWZ3l90Z1fPiYni8NvB0ds7K7AGqF5x5IyAaJ2mgtZItfrECuoalUp05TVszYqSvCFIRk_F6bxvnwqRiGjK1ndmxTEE7LV5jY-JbRq5jJBdMhtQNSVA1USo0oVlpgB-Iy8md6wXQ0mGvbaLhnxsAUP2-Nh5Yy8QxB-j0QD7P5AXp_ZMZ7s3CUuXcE3Rg4xJK3BALigHXqPyjQjuxOEdozKK1sWL-y4JbiZkbcTrNen__1Iz_5v-Cty9-v7hf384fjTc3KP93MNN_jukq1u_T2-KDSm8y_7mfoLw3TqFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-robot+path+planning+in+online+dynamic+obstacle+environments+based+on+parallel+cooperative+strategy+optimization+algorithm&rft.jtitle=Discover+Computing&rft.au=Wang%2C+Chia-Hung&rft.au=Hu%2C+Kun&rft.au=Wu%2C+Xiaojing&rft.date=2025-07-01&rft.pub=Springer+Netherlands&rft.eissn=2948-2992&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10791-025-09664-5&rft.externalDocID=10_1007_s10791_025_09664_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon |