Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey

Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, po...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 78; no. 11; pp. 15169 - 15211
Main Authors Jelodar, Hamed, Wang, Yongli, Yuan, Chi, Feng, Xia, Jiang, Xiahui, Li, Yanchao, Zhao, Liang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modelling; Latent Dirichlet Allocation (LDA) is one of the most popular in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper will be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated highly scholarly articles (between 2003 to 2016) related to topic modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. In addition, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA.
AbstractList Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modelling; Latent Dirichlet Allocation (LDA) is one of the most popular in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper will be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated highly scholarly articles (between 2003 to 2016) related to topic modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. In addition, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA.
Author Li, Yanchao
Jelodar, Hamed
Yuan, Chi
Zhao, Liang
Wang, Yongli
Feng, Xia
Jiang, Xiahui
Author_xml – sequence: 1
  givenname: Hamed
  surname: Jelodar
  fullname: Jelodar, Hamed
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
– sequence: 2
  givenname: Yongli
  surname: Wang
  fullname: Wang, Yongli
  email: YongliWang@njust.edu.cn
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology, China Electronics Technology Cyber Security Co., Ltd
– sequence: 3
  givenname: Chi
  surname: Yuan
  fullname: Yuan, Chi
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
– sequence: 4
  givenname: Xia
  surname: Feng
  fullname: Feng, Xia
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
– sequence: 5
  givenname: Xiahui
  surname: Jiang
  fullname: Jiang, Xiahui
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
– sequence: 6
  givenname: Yanchao
  surname: Li
  fullname: Li, Yanchao
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
– sequence: 7
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology
BookMark eNp9kEtLAzEUhYNUsK3-AHcDbhSMJplHMu5K6wsG3NR1SDM3NWU6GZNU6L936giCoKt7LpzvPs4EjVrXAkLnlNxQQvhtoJRkDBMqcCHKDGdHaExznmLOGR31OhUE85zQEzQJYUMILXKWjdGyUhHamCyst_qtgZiopnFaReva5LJazK4S1dZJdJ3VydbV0Nh2fTeocJ2ormvs4D50Sdj5D9ifomOjmgBn33WKXh_ul_MnXL08Ps9nFdapYBGbFECLVQG8JoYYQ4VmUJpamzotDZgypypThWJaKV4aDpSoMmUgFOFZVqzSKboY5nbeve8gRLlxO9_2KyXrH065IKLoXXRwae9C8GBk5-1W-b2kRB7Ck0N4sg9PHsKTWc_wX4y28evN6JVt_iXZQIZ-S7sG_3PT39AnKIWFxg
CitedBy_id crossref_primary_10_1590_1678_6971_eramd240062
crossref_primary_10_3390_jtaer19010029
crossref_primary_10_1108_JEDT_03_2023_0094
crossref_primary_10_1177_09697330241263991
crossref_primary_10_1016_j_cities_2025_105717
crossref_primary_10_1016_j_eswa_2023_119873
crossref_primary_10_1111_poms_13732
crossref_primary_10_1080_08839514_2024_2403904
crossref_primary_10_1016_j_jdmm_2024_100862
crossref_primary_10_2196_40913
crossref_primary_10_3389_fnut_2022_765794
crossref_primary_10_1080_10919392_2024_2435115
crossref_primary_10_1016_j_ijdrr_2023_104105
crossref_primary_10_1016_j_yebeh_2024_109842
crossref_primary_10_1080_09654313_2022_2158722
crossref_primary_10_3390_en16062556
crossref_primary_10_1007_s12564_021_09677_x
crossref_primary_10_1016_j_esd_2022_10_007
crossref_primary_10_1177_03611981221112096
crossref_primary_10_1017_S1755773924000079
crossref_primary_10_3390_drones8110688
crossref_primary_10_1002_cpe_5834
crossref_primary_10_1080_1369118X_2020_1864005
crossref_primary_10_1109_ACCESS_2020_3001072
crossref_primary_10_1057_s41599_024_03725_8
crossref_primary_10_1016_j_wpi_2023_102238
crossref_primary_10_5812_semj_123803
crossref_primary_10_1016_j_aei_2023_101929
crossref_primary_10_1108_MD_01_2023_0080
crossref_primary_10_3390_socsci13020078
crossref_primary_10_3390_info13050208
crossref_primary_10_1016_j_trip_2022_100672
crossref_primary_10_1007_s10489_020_01798_x
crossref_primary_10_14778_3397230_3397242
crossref_primary_10_1007_s10489_022_03938_x
crossref_primary_10_34172_apb_2024_029
crossref_primary_10_1080_08912963_2024_2330075
crossref_primary_10_1016_j_erss_2023_103028
crossref_primary_10_1177_00323217241311660
crossref_primary_10_1109_TCSS_2019_2926144
crossref_primary_10_1016_j_ijinfomgt_2023_102723
crossref_primary_10_1016_j_knosys_2022_109873
crossref_primary_10_1016_j_jclepro_2024_144451
crossref_primary_10_1080_23311975_2024_2364837
crossref_primary_10_1097_BCO_0000000000001249
crossref_primary_10_1371_journal_pone_0283896
crossref_primary_10_3390_informatics9040087
crossref_primary_10_1016_j_wpi_2023_102212
crossref_primary_10_36548_jucct_2022_3_008
crossref_primary_10_1007_s11042_024_20294_9
crossref_primary_10_3390_urbansci8040222
crossref_primary_10_3390_app142110054
crossref_primary_10_1016_j_cities_2025_105753
crossref_primary_10_1016_j_knosys_2021_108014
crossref_primary_10_1177_08912424221126918
crossref_primary_10_1145_3623269
crossref_primary_10_1016_j_rtbm_2024_101202
crossref_primary_10_3390_su16156378
crossref_primary_10_2196_55199
crossref_primary_10_2196_40719
crossref_primary_10_11111_jkana_2024_30_5_529
crossref_primary_10_1051_wujns_2021266464
crossref_primary_10_1177_08944393231184532
crossref_primary_10_1016_j_ymssp_2021_108583
crossref_primary_10_1007_s11192_022_04615_z
crossref_primary_10_1080_0960085X_2020_1814680
crossref_primary_10_1016_j_landusepol_2021_105428
crossref_primary_10_4040_jkan_20287
crossref_primary_10_3390_math9172041
crossref_primary_10_3390_vaccines10111929
crossref_primary_10_4108_eetiot_6447
crossref_primary_10_1016_j_appet_2024_107507
crossref_primary_10_1155_2020_8841437
crossref_primary_10_1016_j_futures_2021_102817
crossref_primary_10_1007_s11042_019_7567_7
crossref_primary_10_1016_j_jjimei_2023_100154
crossref_primary_10_32604_cmc_2024_050600
crossref_primary_10_1016_j_eswa_2020_114320
crossref_primary_10_1038_s40494_025_01641_x
crossref_primary_10_1007_s12652_020_01956_6
crossref_primary_10_1108_GKMC_10_2023_0384
crossref_primary_10_3390_modelling6020027
crossref_primary_10_7739_jkafn_2024_31_4_480
crossref_primary_10_2196_47328
crossref_primary_10_1080_02650487_2025_2458996
crossref_primary_10_1080_07294360_2021_1967887
crossref_primary_10_3390_info12060221
crossref_primary_10_1177_00027642231207078
crossref_primary_10_1155_2019_1293194
crossref_primary_10_1007_s10708_023_10858_x
crossref_primary_10_1007_s10462_023_10471_x
crossref_primary_10_1016_j_ibmed_2024_100182
crossref_primary_10_3390_app14156468
crossref_primary_10_1016_j_esr_2022_100859
crossref_primary_10_1007_s13278_022_00967_9
crossref_primary_10_2196_47934
crossref_primary_10_1016_j_jenvman_2022_117043
crossref_primary_10_1007_s11227_024_06640_6
crossref_primary_10_3390_w15213810
crossref_primary_10_1016_j_patrec_2022_03_021
crossref_primary_10_1038_s41598_024_62770_0
crossref_primary_10_1108_GKMC_01_2021_0006
crossref_primary_10_1080_15256480_2024_2389532
crossref_primary_10_63179_pjset_v1i1_46
crossref_primary_10_3390_jtaer18030075
crossref_primary_10_1021_acs_analchem_3c03852
crossref_primary_10_1007_s10462_022_10196_3
crossref_primary_10_2196_19222
crossref_primary_10_3390_su152316530
crossref_primary_10_56294_dm2023183
crossref_primary_10_1016_j_procs_2021_08_123
crossref_primary_10_1016_j_ress_2024_110656
crossref_primary_10_1007_s11831_022_09805_9
crossref_primary_10_1016_j_jretconser_2024_104034
crossref_primary_10_3390_electronics13101859
crossref_primary_10_3390_f12060664
crossref_primary_10_32604_cmc_2024_053488
crossref_primary_10_1016_j_jik_2022_100238
crossref_primary_10_11627_jksie_2024_47_4_056
crossref_primary_10_2196_23983
crossref_primary_10_1016_j_istruc_2021_11_018
crossref_primary_10_29407_intensif_v8i1_22058
crossref_primary_10_1177_18724981251318456
crossref_primary_10_1016_j_eswa_2023_120440
crossref_primary_10_1371_journal_pone_0298298
crossref_primary_10_1365_s40702_023_00994_w
crossref_primary_10_1007_s10579_024_09753_9
crossref_primary_10_4236_ojapps_2021_104038
crossref_primary_10_1155_2022_7021431
crossref_primary_10_1080_03772063_2023_2220687
crossref_primary_10_1080_2573234X_2019_1675478
crossref_primary_10_1007_s10462_024_11011_x
crossref_primary_10_7232_JKIIE_2023_49_6_455
crossref_primary_10_1080_19331681_2023_2262973
crossref_primary_10_1109_ACCESS_2022_3151870
crossref_primary_10_3390_ijerph18105270
crossref_primary_10_1111_ijcs_12915
crossref_primary_10_1186_s13326_020_00226_w
crossref_primary_10_1142_S0218194023300038
crossref_primary_10_1007_s11192_020_03719_8
crossref_primary_10_1109_ACCESS_2024_3454292
crossref_primary_10_1108_DTA_10_2023_0697
crossref_primary_10_1109_ACCESS_2024_3481671
crossref_primary_10_1016_j_chb_2024_108252
crossref_primary_10_1016_j_is_2022_102131
crossref_primary_10_4018_JOEUC_294902
crossref_primary_10_1016_j_heliyon_2025_e42785
crossref_primary_10_1109_MRA_2021_3105639
crossref_primary_10_1016_j_health_2023_100288
crossref_primary_10_1080_19475705_2021_2012530
crossref_primary_10_1016_j_artmed_2022_102428
crossref_primary_10_1016_j_scs_2024_105586
crossref_primary_10_1016_j_eswa_2023_121599
crossref_primary_10_1016_j_jclepro_2022_135840
crossref_primary_10_3389_fpsyg_2023_1290443
crossref_primary_10_1186_s12911_024_02418_1
crossref_primary_10_1080_09537325_2024_2389147
crossref_primary_10_1016_j_chb_2024_108248
crossref_primary_10_1007_s10639_024_12943_1
crossref_primary_10_3390_a16020094
crossref_primary_10_1080_25741292_2022_2162252
crossref_primary_10_3390_ijerph191610347
crossref_primary_10_1109_ACCESS_2024_3481442
crossref_primary_10_61186_jsdp_20_2_39
crossref_primary_10_1016_j_inffus_2023_101970
crossref_primary_10_1016_j_procs_2018_10_492
crossref_primary_10_1007_s00267_024_02001_4
crossref_primary_10_1007_s13412_024_00930_4
crossref_primary_10_1016_j_techfore_2024_123690
crossref_primary_10_1007_s10796_023_10432_3
crossref_primary_10_1108_DTA_04_2024_0373
crossref_primary_10_3390_healthcare10061087
crossref_primary_10_3389_fmicb_2024_1510139
crossref_primary_10_3233_JIFS_220115
crossref_primary_10_1016_j_jclepro_2021_128818
crossref_primary_10_1016_j_jenvman_2023_117376
crossref_primary_10_1109_JBHI_2020_3001216
crossref_primary_10_1016_j_rser_2024_114705
crossref_primary_10_3390_su14137722
crossref_primary_10_1007_s40264_022_01176_1
crossref_primary_10_17496_kmer_2022_24_2_93
crossref_primary_10_1016_j_trip_2025_101325
crossref_primary_10_1007_s10506_023_09371_w
crossref_primary_10_3389_fdmed_2022_833191
crossref_primary_10_1007_s11135_023_01695_8
crossref_primary_10_1097_PPO_0000000000000692
crossref_primary_10_2139_ssrn_4137347
crossref_primary_10_17496_kmer_23_043
crossref_primary_10_1016_j_ipm_2024_103959
crossref_primary_10_1016_j_isci_2024_111606
crossref_primary_10_1002_itl2_259
crossref_primary_10_7759_cureus_69030
crossref_primary_10_1002_cai2_68
crossref_primary_10_1108_GKMC_08_2022_0206
crossref_primary_10_14770_jgsk_2024_034
crossref_primary_10_1007_s00521_023_09400_4
crossref_primary_10_3390_s24154892
crossref_primary_10_1108_JARHE_04_2024_0157
crossref_primary_10_3390_ijerph18083963
crossref_primary_10_1016_j_ins_2021_01_008
crossref_primary_10_3390_educsci12110798
crossref_primary_10_1109_ACCESS_2022_3202960
crossref_primary_10_1109_TNSE_2023_3258931
crossref_primary_10_1007_s12583_021_1589_6
crossref_primary_10_1061_PPSCFX_SCENG_1458
crossref_primary_10_1007_s10479_023_05583_0
crossref_primary_10_3390_vaccines10122166
crossref_primary_10_1016_j_jbusres_2022_113488
crossref_primary_10_1007_s10639_024_13225_6
crossref_primary_10_3390_su17052328
crossref_primary_10_1002_sd_3027
crossref_primary_10_1007_s42979_021_00789_0
crossref_primary_10_2196_19625
crossref_primary_10_1016_j_datak_2025_102417
crossref_primary_10_1080_19427867_2022_2052643
crossref_primary_10_1049_2023_6613434
crossref_primary_10_1057_s11369_022_00299_8
crossref_primary_10_1109_ACCESS_2019_2960538
crossref_primary_10_3390_make5020029
crossref_primary_10_22467_jwmr_2025_03209
crossref_primary_10_1109_TKDE_2023_3300814
crossref_primary_10_1007_s00180_024_01584_0
crossref_primary_10_1002_bse_3763
crossref_primary_10_1016_j_nhres_2022_02_001
crossref_primary_10_1016_j_procs_2020_10_082
crossref_primary_10_5902_2318133887052
crossref_primary_10_1080_14742837_2021_1967736
crossref_primary_10_1016_j_chbr_2023_100322
crossref_primary_10_3390_su14052617
crossref_primary_10_1016_j_foar_2024_07_010
crossref_primary_10_1108_JHTT_04_2021_0116
crossref_primary_10_1109_JSTARS_2023_3348874
crossref_primary_10_1016_j_lisr_2024_101326
crossref_primary_10_1371_journal_pone_0288681
crossref_primary_10_3390_info14110609
crossref_primary_10_1016_j_giq_2024_101939
crossref_primary_10_1007_s13278_022_00898_5
crossref_primary_10_1016_j_techfore_2021_120692
crossref_primary_10_1108_DPRG_09_2023_0130
crossref_primary_10_3390_info14110600
crossref_primary_10_1108_BFJ_05_2021_0510
crossref_primary_10_3390_su17041689
crossref_primary_10_3390_su14063533
crossref_primary_10_1016_j_jretconser_2025_104285
crossref_primary_10_3389_fcomm_2022_1080948
crossref_primary_10_1016_j_cose_2023_103476
crossref_primary_10_1016_j_scitotenv_2024_171556
crossref_primary_10_3389_fcomp_2024_1486581
crossref_primary_10_1186_s13677_022_00291_9
crossref_primary_10_1016_j_ces_2024_120118
crossref_primary_10_1016_j_jum_2024_12_001
crossref_primary_10_1016_j_techfore_2023_123131
crossref_primary_10_1080_01446193_2022_2162096
crossref_primary_10_1108_JABS_10_2022_0354
crossref_primary_10_1109_TNSRE_2023_3304758
crossref_primary_10_1186_s40494_024_01504_x
crossref_primary_10_1177_17480485241290361
crossref_primary_10_1177_03611981221125744
crossref_primary_10_1016_j_chb_2025_108651
crossref_primary_10_1007_s11760_024_03374_z
crossref_primary_10_3390_computation12020028
crossref_primary_10_1007_s10489_023_04452_4
crossref_primary_10_1016_j_technovation_2021_102236
crossref_primary_10_2478_jdis_2024_0031
crossref_primary_10_1109_ACCESS_2021_3106120
crossref_primary_10_1109_MITP_2024_3433511
crossref_primary_10_1007_s44230_023_00058_8
crossref_primary_10_32604_cmc_2024_051598
crossref_primary_10_1016_j_ipm_2022_103185
crossref_primary_10_1007_s00357_024_09476_0
crossref_primary_10_1007_s10479_024_06433_3
crossref_primary_10_1007_s42979_021_00649_x
crossref_primary_10_1057_s41599_025_04503_w
crossref_primary_10_1088_1742_6596_1405_1_012004
crossref_primary_10_3390_app11156834
crossref_primary_10_1108_JM2_05_2022_0135
crossref_primary_10_1007_s00003_025_01553_9
crossref_primary_10_3390_fi12120210
crossref_primary_10_3390_jtaer19040174
crossref_primary_10_1093_reseval_rvaf005
crossref_primary_10_1088_1757_899X_1077_1_012012
crossref_primary_10_1109_ACCESS_2024_3521433
crossref_primary_10_1080_00207543_2024_2373425
crossref_primary_10_1093_pnasnexus_pgae155
crossref_primary_10_1007_s11280_022_01101_7
crossref_primary_10_1016_j_energy_2024_133624
crossref_primary_10_1016_j_ssci_2025_106804
crossref_primary_10_1016_j_chb_2025_108627
crossref_primary_10_1007_s10639_023_11817_2
crossref_primary_10_1016_j_eswa_2024_124632
crossref_primary_10_1145_3632297
crossref_primary_10_2196_64447
crossref_primary_10_1007_s10479_023_05594_x
crossref_primary_10_1007_s10639_024_13003_4
crossref_primary_10_1109_TCSS_2022_3200213
crossref_primary_10_1007_s13042_024_02523_7
crossref_primary_10_3390_bs13100787
crossref_primary_10_3390_su16166983
crossref_primary_10_1080_02634937_2024_2442441
crossref_primary_10_1080_09613218_2022_2142498
crossref_primary_10_1016_j_tourman_2024_105007
crossref_primary_10_1016_j_heliyon_2022_e10635
crossref_primary_10_1108_MRR_03_2020_0139
crossref_primary_10_1007_s12652_019_01541_6
crossref_primary_10_2196_64838
crossref_primary_10_1007_s11469_022_00958_z
crossref_primary_10_1021_acssynbio_1c00611
crossref_primary_10_3389_fpubh_2021_716333
crossref_primary_10_47836_jlc_10_01_06
crossref_primary_10_1108_EJIM_06_2023_0497
crossref_primary_10_1080_1540496X_2023_2199119
crossref_primary_10_1007_s11227_023_05423_9
crossref_primary_10_1016_j_seps_2024_101995
crossref_primary_10_3389_frma_2024_1189099
crossref_primary_10_1080_02188791_2024_2427182
crossref_primary_10_1177_14604582221075549
crossref_primary_10_1108_SJME_03_2022_0035
crossref_primary_10_2196_25697
crossref_primary_10_1007_s42979_023_02492_8
crossref_primary_10_1016_j_technovation_2021_102447
crossref_primary_10_1108_JD_08_2021_0157
crossref_primary_10_1177_09702385241256014
crossref_primary_10_1016_j_bdr_2024_100474
crossref_primary_10_1016_j_lwt_2024_116435
crossref_primary_10_1093_llc_fqad093
crossref_primary_10_3390_fi14040103
crossref_primary_10_1080_13645579_2023_2186566
crossref_primary_10_1016_j_ocecoaman_2022_106188
crossref_primary_10_1109_ACCESS_2022_3152159
crossref_primary_10_1007_s10479_024_06126_x
crossref_primary_10_1016_j_neucom_2021_09_078
crossref_primary_10_1007_s10664_021_10014_4
crossref_primary_10_2139_ssrn_4193714
crossref_primary_10_1016_j_spc_2022_12_016
crossref_primary_10_1016_j_jjimei_2021_100032
crossref_primary_10_1007_s12652_022_04104_4
crossref_primary_10_1177_00139165241298067
crossref_primary_10_21511_ee_13_1__2022_08
crossref_primary_10_1016_j_heliyon_2024_e38510
crossref_primary_10_3389_fmed_2024_1415319
crossref_primary_10_1038_s41598_022_14396_3
crossref_primary_10_1111_rssc_12546
crossref_primary_10_32604_cmc_2023_031848
crossref_primary_10_1155_2022_7191657
crossref_primary_10_1016_j_envsci_2024_103966
crossref_primary_10_1007_s00267_023_01798_w
crossref_primary_10_1016_j_jjimei_2024_100307
crossref_primary_10_1080_00343404_2024_2355998
crossref_primary_10_1016_j_resconrec_2020_105146
crossref_primary_10_1108_K_06_2024_1458
crossref_primary_10_1016_j_tranpol_2024_05_020
crossref_primary_10_1097_MD_0000000000040482
crossref_primary_10_1016_j_autcon_2024_105501
crossref_primary_10_1016_j_techfore_2022_122139
crossref_primary_10_30699_ijmm_17_2_150
crossref_primary_10_1016_j_techsoc_2024_102666
crossref_primary_10_1007_s11269_024_03894_w
crossref_primary_10_1016_j_ijhm_2023_103473
crossref_primary_10_1108_IJQRM_07_2021_0217
crossref_primary_10_1007_s41870_022_01123_4
crossref_primary_10_1016_j_procs_2023_08_057
crossref_primary_10_1007_s10489_021_03098_4
crossref_primary_10_1016_j_inffus_2023_102142
crossref_primary_10_1109_JAS_2023_123156
crossref_primary_10_3390_su13031070
crossref_primary_10_1057_s41599_023_01768_x
crossref_primary_10_1016_j_techfore_2023_122420
crossref_primary_10_2196_33909
crossref_primary_10_2478_jdis_2021_0024
crossref_primary_10_3233_IP_210321
crossref_primary_10_1108_JSOCM_01_2024_0006
crossref_primary_10_1016_j_iref_2023_05_006
crossref_primary_10_2196_40676
crossref_primary_10_2196_42856
crossref_primary_10_1016_j_procs_2024_08_122
crossref_primary_10_1016_j_jhtm_2022_07_002
crossref_primary_10_1111_ejed_12913
crossref_primary_10_3389_fonc_2023_1077922
crossref_primary_10_1109_ACCESS_2024_3443730
crossref_primary_10_3390_su15043057
crossref_primary_10_3390_su16010147
crossref_primary_10_1016_j_snb_2024_135706
crossref_primary_10_3389_fpubh_2025_1535218
crossref_primary_10_4018_JOEUC_356500
crossref_primary_10_1016_j_knosys_2021_107113
crossref_primary_10_1057_s41299_024_00199_x
crossref_primary_10_1145_3469886
crossref_primary_10_1016_j_heliyon_2023_e20988
crossref_primary_10_1016_j_jjimei_2022_100150
crossref_primary_10_1177_0193841X231176869
crossref_primary_10_1002_int_22225
crossref_primary_10_3233_IDA_230349
crossref_primary_10_2478_jdis_2021_0008
crossref_primary_10_1108_ECAM_09_2024_1250
crossref_primary_10_1186_s40410_023_00223_3
crossref_primary_10_1515_dsll_2024_0010
crossref_primary_10_1080_09273948_2023_2262028
crossref_primary_10_1016_j_resconrec_2022_106636
crossref_primary_10_1016_j_tele_2020_101553
crossref_primary_10_1016_j_ins_2025_121941
crossref_primary_10_1016_j_landurbplan_2025_105323
crossref_primary_10_1155_2022_6751413
crossref_primary_10_1007_s11192_023_04642_4
crossref_primary_10_1109_ACCESS_2019_2950045
crossref_primary_10_1016_j_jbankfin_2025_107393
crossref_primary_10_1109_ACCESS_2023_3271751
crossref_primary_10_1016_j_neucom_2025_129638
crossref_primary_10_3390_aerospace8120357
crossref_primary_10_54439_gupayad_1316544
crossref_primary_10_1080_17512786_2024_2411624
crossref_primary_10_1016_j_jclepro_2023_137545
crossref_primary_10_1108_AJIM_12_2022_0531
crossref_primary_10_1177_1759720X241308037
crossref_primary_10_52911_itall_1193460
crossref_primary_10_1155_2024_8373370
crossref_primary_10_3390_tropicalmed7120425
crossref_primary_10_1016_j_procs_2023_01_321
crossref_primary_10_1016_j_compedu_2022_104700
crossref_primary_10_1007_s00500_022_07534_6
crossref_primary_10_3233_WEB_220089
crossref_primary_10_1155_jonm_2857497
crossref_primary_10_1016_j_xjep_2024_100712
crossref_primary_10_1109_ACCESS_2020_3001190
crossref_primary_10_3390_s25061731
crossref_primary_10_1145_3432690
crossref_primary_10_16995_dscn_10231
crossref_primary_10_1371_journal_pone_0305866
crossref_primary_10_4018_IJNCR_2020040102
crossref_primary_10_1016_j_artmed_2021_102096
crossref_primary_10_3389_fpsyg_2022_986838
crossref_primary_10_1049_cps2_12035
crossref_primary_10_29132_ijpas_1119552
crossref_primary_10_1016_j_ijmedinf_2022_104941
crossref_primary_10_1007_s13278_024_01213_0
crossref_primary_10_1108_ITP_12_2021_0930
crossref_primary_10_19053_20278306_v12_n2_2022_15271
crossref_primary_10_1080_0951192X_2024_2314781
crossref_primary_10_1109_ACCESS_2020_3001184
crossref_primary_10_1108_DTA_12_2023_0868
crossref_primary_10_1016_j_chb_2024_108500
crossref_primary_10_3389_frma_2024_1493944
crossref_primary_10_1080_09548963_2021_1998763
crossref_primary_10_1007_s10639_024_12726_8
crossref_primary_10_1108_LHT_08_2022_0401
crossref_primary_10_1109_ACCESS_2025_3539598
crossref_primary_10_1080_09588221_2024_2317849
crossref_primary_10_46790_erzisosbil_968808
crossref_primary_10_1016_j_inffus_2021_10_013
crossref_primary_10_1155_2021_8166376
crossref_primary_10_1108_INTR_08_2023_0649
crossref_primary_10_1155_2021_3315695
crossref_primary_10_1016_j_rtbm_2023_101031
crossref_primary_10_1007_s13278_023_01068_x
crossref_primary_10_1007_s40012_022_00355_w
crossref_primary_10_1049_sfw2_1905538
crossref_primary_10_1016_j_procs_2023_10_324
crossref_primary_10_3390_app142210616
crossref_primary_10_1186_s13756_021_00891_1
crossref_primary_10_1108_MIP_10_2023_0526
crossref_primary_10_1007_s00766_021_00370_4
crossref_primary_10_3390_ijerph191912793
crossref_primary_10_1145_3610063
crossref_primary_10_1145_3698797
crossref_primary_10_2196_47223
crossref_primary_10_1002_sys_21601
crossref_primary_10_1007_s00500_020_05067_4
crossref_primary_10_1109_MCG_2022_3149683
crossref_primary_10_3390_math10040585
crossref_primary_10_1007_s00607_024_01296_9
crossref_primary_10_1371_journal_pone_0248503
crossref_primary_10_2139_ssrn_4200134
crossref_primary_10_1016_j_eswa_2020_113347
crossref_primary_10_1016_j_jisa_2023_103501
crossref_primary_10_1016_j_neucom_2023_126614
crossref_primary_10_1186_s12911_022_01747_3
crossref_primary_10_1109_ACCESS_2020_3041645
crossref_primary_10_1177_18724981251319629
crossref_primary_10_12677_jisp_2024_134036
crossref_primary_10_1145_3695251
crossref_primary_10_1108_IJWIS_05_2024_0137
crossref_primary_10_1007_s10696_023_09520_y
crossref_primary_10_1108_LHT_09_2020_0216
crossref_primary_10_3390_su11247108
crossref_primary_10_1108_K_07_2021_0584
crossref_primary_10_3390_electronics13101902
crossref_primary_10_1145_3507900
crossref_primary_10_48084_etasr_7257
crossref_primary_10_1016_j_ijdrr_2024_104546
crossref_primary_10_1016_j_tourman_2024_104981
crossref_primary_10_3390_geosciences14110314
crossref_primary_10_1007_s00521_022_07992_x
crossref_primary_10_1016_j_heliyon_2024_e25411
crossref_primary_10_1080_10641734_2024_2334939
crossref_primary_10_1186_s40537_022_00636_w
crossref_primary_10_3390_app15063355
crossref_primary_10_1016_j_ejor_2021_11_024
crossref_primary_10_1177_15586898211067647
crossref_primary_10_1371_journal_pone_0280221
crossref_primary_10_3390_su15053919
crossref_primary_10_3390_land13060843
crossref_primary_10_1007_s11219_023_09614_8
crossref_primary_10_1016_j_cie_2022_108395
crossref_primary_10_1108_EJIM_09_2022_0531
crossref_primary_10_32604_cmc_2023_040638
crossref_primary_10_3390_app142311350
crossref_primary_10_1016_j_comcom_2021_08_021
crossref_primary_10_20879_kjjcs_2023_67_1_004
crossref_primary_10_1016_j_ipm_2023_103376
crossref_primary_10_34172_doh_2021_32
crossref_primary_10_3390_computers12100191
crossref_primary_10_1177_17504813231207948
crossref_primary_10_7717_peerj_cs_991
crossref_primary_10_1007_s10639_023_12159_9
crossref_primary_10_3389_fpubh_2024_1105383
crossref_primary_10_1007_s10664_024_10476_2
crossref_primary_10_1016_j_trip_2024_101103
crossref_primary_10_1016_j_jksuci_2022_09_018
crossref_primary_10_1016_j_matcom_2020_12_009
crossref_primary_10_3390_su151712798
crossref_primary_10_1016_j_neunet_2024_106494
crossref_primary_10_1145_3459089
crossref_primary_10_1016_j_rser_2023_113242
crossref_primary_10_2196_29385
crossref_primary_10_1001_jamanetworkopen_2022_15014
crossref_primary_10_7831_ras_12_0_128
crossref_primary_10_3389_fvets_2024_1463332
crossref_primary_10_1007_s40615_024_01996_0
crossref_primary_10_1111_anti_70009
crossref_primary_10_29049_rjcc_2024_32_5_636
crossref_primary_10_1108_IJWBR_12_2023_0084
crossref_primary_10_1109_ACCESS_2023_3332854
crossref_primary_10_3390_app9010150
crossref_primary_10_3390_microorganisms12061237
crossref_primary_10_1371_journal_pone_0270872
crossref_primary_10_1155_2022_4116661
crossref_primary_10_1007_s11257_022_09354_7
crossref_primary_10_1016_j_aej_2024_10_098
crossref_primary_10_3390_app15020856
crossref_primary_10_1007_s13278_024_01233_w
crossref_primary_10_1556_2006_2020_00031
crossref_primary_10_1016_j_scitotenv_2022_159981
crossref_primary_10_1016_j_heliyon_2024_e41246
crossref_primary_10_1007_s44196_024_00656_9
crossref_primary_10_1016_j_chaos_2023_113642
crossref_primary_10_2298_YJOR2403029L
crossref_primary_10_1016_j_trd_2021_102856
crossref_primary_10_1109_ACCESS_2020_2974983
crossref_primary_10_2139_ssrn_4525957
crossref_primary_10_54097_ehss_v4i_2767
crossref_primary_10_1016_j_techfore_2023_123098
crossref_primary_10_1109_ACCESS_2021_3062052
crossref_primary_10_1016_j_eswa_2023_122511
crossref_primary_10_1109_ACCESS_2019_2960468
crossref_primary_10_1007_s13198_023_02082_0
crossref_primary_10_1080_13602381_2024_2352602
crossref_primary_10_3390_asi5010027
crossref_primary_10_1061_NHREFO_NHENG_1739
crossref_primary_10_1109_ACCESS_2022_3195337
crossref_primary_10_3390_en17235990
crossref_primary_10_1007_s13753_022_00405_6
crossref_primary_10_1007_s11192_021_04165_w
crossref_primary_10_3390_buildings14103047
crossref_primary_10_1016_j_trd_2024_104422
crossref_primary_10_3389_fcomp_2021_775368
crossref_primary_10_3389_fpsyg_2023_1266220
crossref_primary_10_3390_geosciences15030100
crossref_primary_10_7717_peerj_cs_947
crossref_primary_10_3390_su151512065
crossref_primary_10_4040_jkan_23052
crossref_primary_10_1080_10447318_2024_2375799
crossref_primary_10_1007_s11192_021_04097_5
crossref_primary_10_1080_10919392_2021_1911586
crossref_primary_10_1016_j_jclepro_2024_141445
crossref_primary_10_1057_s41599_023_02274_w
crossref_primary_10_1177_20594364231188350
crossref_primary_10_1109_ACCESS_2021_3106879
crossref_primary_10_1016_j_compind_2023_103996
crossref_primary_10_1007_s10796_024_10565_z
crossref_primary_10_4018_IJSDS_310065
crossref_primary_10_1145_3462478
crossref_primary_10_1109_TITS_2022_3161623
crossref_primary_10_3390_computation9120140
crossref_primary_10_34135_mmidentity_2023_31
crossref_primary_10_1016_j_isci_2024_109883
crossref_primary_10_1109_ACCESS_2020_3039168
crossref_primary_10_14267_VEZTUD_2024_06_04
crossref_primary_10_1111_csp2_376
crossref_primary_10_1108_IJBM_08_2022_0351
crossref_primary_10_3390_app14135866
crossref_primary_10_1016_j_frl_2024_106116
crossref_primary_10_3233_JIFS_212614
crossref_primary_10_1186_s41239_023_00414_5
crossref_primary_10_1016_j_aap_2025_107965
crossref_primary_10_1016_j_infsof_2024_107499
crossref_primary_10_1177_00343552251320928
crossref_primary_10_32604_cmc_2023_036779
crossref_primary_10_1016_j_telpol_2023_102613
crossref_primary_10_1109_ACCESS_2023_3290488
crossref_primary_10_1177_01655515221148365
crossref_primary_10_1007_s11227_024_06887_z
crossref_primary_10_1016_j_im_2022_103704
crossref_primary_10_3390_educsci13100987
crossref_primary_10_3390_app112311091
crossref_primary_10_1007_s12652_021_03658_z
crossref_primary_10_17821_srels_2023_v60i5_170707
crossref_primary_10_1145_3589338
crossref_primary_10_1109_ACCESS_2025_3542562
crossref_primary_10_1080_02614367_2024_2392583
crossref_primary_10_1109_TNSM_2021_3131266
crossref_primary_10_1093_her_cyac002
crossref_primary_10_1016_j_eswa_2023_121391
crossref_primary_10_1093_llc_fqae009
crossref_primary_10_1177_03063127251321826
crossref_primary_10_3390_data7120173
crossref_primary_10_1007_s00354_022_00182_2
crossref_primary_10_1016_j_heliyon_2024_e40568
crossref_primary_10_1109_ACCESS_2023_3334619
crossref_primary_10_7763_IJCTE_2023_V15_1332
crossref_primary_10_1007_s11528_022_00794_x
crossref_primary_10_1016_j_jisa_2020_102668
crossref_primary_10_1038_s41746_024_01383_3
crossref_primary_10_1002_itl2_273
crossref_primary_10_1016_j_eneco_2024_107564
crossref_primary_10_1016_j_jclepro_2022_134318
crossref_primary_10_3389_ebm_2025_10389
crossref_primary_10_1007_s43621_024_00286_3
crossref_primary_10_1016_j_jafr_2024_101342
crossref_primary_10_3390_info15030139
crossref_primary_10_1016_j_jbusres_2022_113377
crossref_primary_10_1016_j_procs_2022_11_308
crossref_primary_10_12677_CSA_2024_142048
crossref_primary_10_1016_j_techsoc_2022_102112
crossref_primary_10_1016_j_heliyon_2024_e31626
crossref_primary_10_1177_01655515211007724
crossref_primary_10_1155_2022_7882396
crossref_primary_10_1007_s10640_021_00554_0
crossref_primary_10_1016_j_asoc_2021_107720
crossref_primary_10_3390_math10162846
crossref_primary_10_35674_kent_1396279
crossref_primary_10_1057_s41599_023_02377_4
crossref_primary_10_1177_23998083241272097
crossref_primary_10_3390_app13010342
crossref_primary_10_1057_s41599_024_02668_4
crossref_primary_10_1007_s10489_020_02033_3
crossref_primary_10_1016_j_cose_2023_103128
crossref_primary_10_1016_j_eswa_2022_116741
crossref_primary_10_1080_09537287_2023_2286523
crossref_primary_10_1097_MD_0000000000037375
crossref_primary_10_1016_j_techfore_2024_123561
crossref_primary_10_1016_j_dim_2023_100061
crossref_primary_10_1016_j_future_2021_06_044
crossref_primary_10_1080_2331186X_2024_2447169
crossref_primary_10_1109_ACCESS_2020_3010033
crossref_primary_10_4018_JGIM_344835
crossref_primary_10_1016_j_procs_2021_10_003
crossref_primary_10_3390_info15030151
crossref_primary_10_1186_s12909_025_06674_1
crossref_primary_10_1109_TEM_2024_3385298
crossref_primary_10_1007_s11192_024_04961_0
crossref_primary_10_1175_WCAS_D_21_0163_1
crossref_primary_10_1007_s00180_022_01284_7
crossref_primary_10_3390_su142416392
crossref_primary_10_1016_j_erss_2020_101704
crossref_primary_10_1515_jisys_2022_0027
crossref_primary_10_1016_j_heliyon_2024_e38042
crossref_primary_10_1016_j_ijdrr_2023_103843
crossref_primary_10_1017_dsj_2024_15
crossref_primary_10_1155_2022_3865898
crossref_primary_10_12799_jkachn_2021_32_4_467
crossref_primary_10_7717_peerj_cs_1193
crossref_primary_10_1038_s41598_024_64527_1
crossref_primary_10_3390_publications13020015
crossref_primary_10_1057_s41599_024_04335_0
crossref_primary_10_1109_ACCESS_2023_3332644
crossref_primary_10_1016_j_cherd_2022_05_018
crossref_primary_10_1108_IMDS_05_2021_0283
crossref_primary_10_1590_1982_7849rac2024240102_en
crossref_primary_10_1007_s41060_020_00232_2
crossref_primary_10_1155_2022_4421228
crossref_primary_10_3390_su131910856
crossref_primary_10_33940_data_2023_3_2
crossref_primary_10_1057_s41599_024_03530_3
crossref_primary_10_3390_ijgi13050141
crossref_primary_10_5041_RMMJ_10400
crossref_primary_10_1016_j_nlp_2024_100066
crossref_primary_10_4018_IJIIT_296239
crossref_primary_10_3390_su14095430
crossref_primary_10_1007_s10489_021_02898_y
crossref_primary_10_1016_j_jup_2024_101799
crossref_primary_10_3390_rs13214414
crossref_primary_10_1108_K_11_2020_0788
crossref_primary_10_1108_IJEM_01_2023_0005
crossref_primary_10_1016_j_infsof_2021_106676
crossref_primary_10_3389_fpubh_2023_1088119
crossref_primary_10_1007_s11042_022_13202_6
crossref_primary_10_3390_app11136237
crossref_primary_10_1108_IJQRM_01_2022_0024
crossref_primary_10_1016_j_techsoc_2023_102446
crossref_primary_10_1007_s12626_021_00069_6
crossref_primary_10_1007_s11948_024_00472_6
crossref_primary_10_1016_j_envsci_2022_10_020
crossref_primary_10_3390_ijerph20053840
crossref_primary_10_1016_j_entcom_2023_100576
crossref_primary_10_1016_j_jretconser_2024_103802
crossref_primary_10_1016_j_ress_2024_110032
crossref_primary_10_3390_fi14070206
crossref_primary_10_3390_bdcc6040130
crossref_primary_10_1186_s12911_024_02656_3
crossref_primary_10_3390_app13179803
crossref_primary_10_1162_qss_a_00222
crossref_primary_10_3390_e22111303
crossref_primary_10_1016_j_ijcce_2024_05_003
crossref_primary_10_1186_s12888_023_05386_4
crossref_primary_10_1057_s41599_024_03066_6
crossref_primary_10_33206_mjss_894809
crossref_primary_10_1016_j_iot_2023_100772
crossref_primary_10_1007_s13369_022_06704_w
crossref_primary_10_1108_IJBM_03_2024_0136
crossref_primary_10_3390_ijerph19095594
crossref_primary_10_1145_3638050
crossref_primary_10_1186_s13012_021_01120_4
crossref_primary_10_1007_s42979_020_00311_y
crossref_primary_10_3390_ijerph19169800
crossref_primary_10_3390_su162411086
crossref_primary_10_1007_s00521_020_05662_4
crossref_primary_10_1007_s13278_021_00772_w
crossref_primary_10_1039_D4FD00087K
crossref_primary_10_1007_s00371_024_03655_1
crossref_primary_10_1177_2050157920934509
crossref_primary_10_1145_3703594
crossref_primary_10_1371_journal_pone_0272350
crossref_primary_10_1016_j_heliyon_2023_e18768
crossref_primary_10_1145_3689649
crossref_primary_10_31796_ogummf_1375611
crossref_primary_10_1007_s10639_024_13146_4
crossref_primary_10_1016_j_elerap_2022_101160
crossref_primary_10_12720_jait_15_1_79_86
crossref_primary_10_1007_s10845_024_02323_4
crossref_primary_10_1098_rsos_241692
crossref_primary_10_1108_BFJ_07_2021_0823
crossref_primary_10_1108_JIC_02_2020_0057
crossref_primary_10_1016_j_techfore_2022_122277
crossref_primary_10_1017_jlc_2024_13
crossref_primary_10_1007_s12530_022_09450_4
crossref_primary_10_3390_beverages10030074
crossref_primary_10_1016_j_heliyon_2024_e39953
crossref_primary_10_1016_j_jclepro_2023_138457
crossref_primary_10_3389_frsc_2023_1199041
crossref_primary_10_3390_systems12090380
crossref_primary_10_1155_2021_5051667
crossref_primary_10_3390_jpm12050797
crossref_primary_10_1016_j_energy_2024_133134
crossref_primary_10_1016_j_cities_2024_104857
crossref_primary_10_1016_j_knosys_2021_107273
crossref_primary_10_3390_app12042157
crossref_primary_10_1007_s11042_024_19981_4
crossref_primary_10_1007_s13278_025_01445_8
crossref_primary_10_1016_j_jcpo_2024_100505
crossref_primary_10_3233_JIFS_212135
crossref_primary_10_1080_13683500_2022_2086107
crossref_primary_10_3390_info13090434
crossref_primary_10_1016_j_aei_2021_101508
crossref_primary_10_12677_CSA_2023_138153
crossref_primary_10_3390_joitmc7020139
crossref_primary_10_1177_20539517211003310
crossref_primary_10_1016_j_jretconser_2024_103895
crossref_primary_10_1007_s11192_021_04247_9
crossref_primary_10_1016_j_tra_2020_05_005
crossref_primary_10_2139_ssrn_4948587
crossref_primary_10_1108_IJCHM_03_2021_0301
crossref_primary_10_1007_s10664_024_10500_5
crossref_primary_10_51551_verimlilik_1526436
crossref_primary_10_1108_EJIM_09_2023_0800
crossref_primary_10_1016_j_rser_2024_114350
crossref_primary_10_1108_BIJ_09_2021_0564
crossref_primary_10_1016_j_heliyon_2024_e29712
crossref_primary_10_1016_j_rser_2022_112856
crossref_primary_10_7739_jkafn_2024_31_2_157
crossref_primary_10_1080_19427867_2023_2212998
crossref_primary_10_3390_math11244917
crossref_primary_10_1016_j_jretconser_2023_103363
crossref_primary_10_32604_cmc_2023_032864
crossref_primary_10_3390_su162411275
crossref_primary_10_1016_j_eswa_2024_123279
crossref_primary_10_1016_j_chaos_2020_110123
crossref_primary_10_1016_j_cie_2024_110411
crossref_primary_10_1108_TR_06_2022_0303
crossref_primary_10_2196_48491
crossref_primary_10_3390_electronics11193022
crossref_primary_10_1007_s10772_024_10142_4
crossref_primary_10_3390_info14090474
crossref_primary_10_21015_vtcs_v11i1_1489
crossref_primary_10_1016_j_compchemeng_2022_107786
crossref_primary_10_1145_3665245
crossref_primary_10_3390_app12126243
crossref_primary_10_1109_ACCESS_2023_3264763
crossref_primary_10_3390_su16146186
crossref_primary_10_1142_S0218126620502485
crossref_primary_10_3390_su132011474
crossref_primary_10_1007_s13278_022_00980_y
crossref_primary_10_1002_erv_2884
crossref_primary_10_3390_vetsci11100477
crossref_primary_10_1177_00202940231224586
crossref_primary_10_1177_13567667251323644
crossref_primary_10_1016_j_ijdrr_2023_103670
crossref_primary_10_3390_pathogens13100901
crossref_primary_10_1016_j_ipm_2021_102531
crossref_primary_10_1007_s12650_020_00739_7
crossref_primary_10_1016_j_datak_2023_102183
crossref_primary_10_1007_s10506_021_09303_6
Cites_doi 10.1109/CC.2016.7781721
10.1109/TMM.2015.2510329
10.6028/NIST.SP.500-250.xlingual-umass
10.1016/j.ins.2016.05.047
10.1016/j.ins.2016.01.013
10.3115/v1/N15-1074
10.1145/2846092
10.1007/s10664-015-9402-8
10.1145/1143844.1143917
10.1007/978-1-4614-3223-4_13
10.1145/2487788.2488002
10.1109/ICME.2014.6890165
10.1371/journal.pone.0087555
10.1016/j.knosys.2012.08.003
10.1145/2786451.2786464
10.1016/j.poetic.2013.06.004
10.1007/s11042-015-2731-1
10.17705/1CAIS.03907
10.1016/j.future.2015.10.012
10.1109/TPAMI.2018.2852750
10.1007/s11263-010-0363-5
10.1016/j.knosys.2015.02.021
10.3115/v1/N15-2003
10.1016/j.knosys.2014.11.017
10.3115/1620754.1620824
10.1145/1985793.1986020
10.1162/tacl_a_00163
10.1016/j.infsof.2010.04.002
10.1145/2484028.2484035
10.1145/1553374.1553535
10.1007/s10916-012-9915-2
10.1371/journal.pone.0017243
10.1016/j.is.2013.11.003
10.1016/j.datak.2013.07.003
10.1609/icwsm.v4i1.14062
10.1007/978-3-642-20841-6_37
10.1016/j.patcog.2011.04.029
10.1002/cpe.3474
10.1145/2736277.2741115
10.1109/TIP.2016.2624140
10.1145/2488388.2488514
10.1109/TKDE.2013.116
10.1007/978-3-642-21726-5_14
10.1145/1718487.1718522
10.1214/09-AOAS309
10.1109/TVCG.2016.2598445
10.1145/2588555.2593685
10.1109/TKDE.2015.2492565
10.1109/TASL.2011.2164530
10.5244/C.25.112
10.1145/1367497.1367513
10.1016/j.dss.2014.02.003
10.1109/ICSE.2013.6606598
10.1109/SNPD.2016.7515925
10.1016/j.jbi.2016.02.003
10.18653/v1/P17-1068
10.1145/2124295.2124312
10.1145/2187836.2187955
10.1145/2254556.2254572
10.1609/aaai.v30i1.9892
10.1016/j.knosys.2016.02.005
10.1109/ICDAR.2007.4377099
10.1145/1935826.1935932
10.1016/j.ipm.2016.10.004
10.1145/2124295.2124306
10.1145/2956234
10.1016/j.knosys.2015.03.020
10.1109/MIS.2015.91
10.1109/ICSM.2010.5609687
10.1145/1143844.1143859
10.1016/j.cviu.2014.02.011
10.1109/ASONAM.2016.7752329
10.1007/s11263-009-0275-4
10.1016/j.neucom.2016.08.017
10.1609/aaai.v24i1.7717
10.1016/j.infsof.2017.04.007
10.1109/CCST.2015.7389660
10.1016/j.neucom.2015.10.144
10.1109/ICMLA.2008.47
10.1145/1985441.1985467
10.1016/j.knosys.2014.05.018
10.1109/HICSS.2015.350
10.1145/1321631.1321709
10.1007/978-3-642-35527-1_2
10.1145/2063576.2063616
10.1007/978-3-319-10840-7_5
10.1109/TGRS.2012.2219314
10.1145/2811268
10.1109/MSR.2009.5069496
10.1145/1963405.1963443
10.1145/2339530.2339692
10.1609/aaai.v24i1.7523
10.1145/2020408.2020480
10.1109/MIS.2014.20
10.1093/bioinformatics/btq576
10.1016/j.ins.2016.06.040
10.1145/2020408.2020481
10.18653/v1/P16-1064
10.1007/s11655-011-0699-x
10.1109/TGRS.2012.2205579
10.1109/TVCG.2013.212
10.1109/ICASSP.2014.6854595
10.3115/1699510.1699543
10.1073/pnas.0307752101
10.1109/TKDE.2016.2556661
10.1007/978-3-642-45005-1_12
10.1162/tacl_a_00140
10.1109/CVPR.2008.4587390
10.1177/0894439313506847
10.1016/j.patcog.2013.06.010
10.1145/2645710.2645765
10.1007/s11280-013-0221-9
10.1109/TKDE.2014.2313872
10.1109/WCRE.2008.33
10.1186/1471-2105-15-267
10.1007/s10115-014-0764-9
10.1145/2470654.2470659
10.1145/1529282.1529607
10.1609/aaai.v30i1.9969
10.1145/1806799.1806817
10.1007/978-3-642-12275-0_39
10.1007/s11704-009-0062-y
10.1145/1571941.1571989
10.1609/aaai.v31i1.10717
10.1016/j.knosys.2014.02.003
10.1109/SocialCom-PASSAT.2012.107
10.1016/j.eswa.2013.12.051
10.1109/CVPR.2009.5206800
10.1007/978-3-642-20161-5_34
10.1109/ICSM.2010.5609654
10.1145/860458.860460
10.1016/j.eswa.2014.07.009
10.1609/aaai.v29i1.9268
10.1177/0165551514538744
10.1016/j.inffus.2016.10.004
10.1016/j.csl.2016.03.004
10.1145/1150402.1150450
10.1016/j.neucom.2014.07.053
10.1016/j.neucom.2015.06.047
10.1145/1718487.1718520
10.1016/j.future.2015.12.001
10.1109/LGRS.2009.2023536
10.1109/ICDM.2008.140
10.1109/TKDE.2013.175
10.1109/TASL.2010.2050717
10.1145/1963192.1963222
10.1145/1835804.1835922
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-018-6894-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 15211
ExternalDocumentID 10_1007_s11042_018_6894_4
GrantInformation_xml – fundername: National Natural Science Foundation of China under Grant
  grantid: 61170035
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
3EH
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c382t-f3eec8b6e7d0f0ff18c2e9fdcfd39fef951a4a6a2caa79f7e10a932e8a07446b3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:29:04 EDT 2025
Tue Jul 01 02:06:55 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Fri Feb 21 02:37:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Topic modeling
Semantic web
Latent Dirichlet allocation
Gibbs sampling
Tag recommendation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-f3eec8b6e7d0f0ff18c2e9fdcfd39fef951a4a6a2caa79f7e10a932e8a07446b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2138378086
PQPubID 54626
PageCount 43
ParticipantIDs proquest_journals_2138378086
crossref_primary_10_1007_s11042_018_6894_4
crossref_citationtrail_10_1007_s11042_018_6894_4
springer_journals_10_1007_s11042_018_6894_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZengJLiuZ-QCaoX-QFast online EM for big topic modelingIEEE Trans Knowl Data Eng201628367568810.1109/TKDE.2015.2492565
Eidelman V, Boyd-Graber J, Resnik P (2012) Topic models for dynamic translation model adaptation. In: Proceedings of the 50th annual meeting of the association for computational linguistics: short papers-volume 2. Association for computational linguistics
Rennie J (2017) The 20 Newsgroups data set. http
Gethers M, Poshyvanyk D (2010) Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE international conference on software maintenance (ICSM). IEEE
FuXDynamic online HDP model for discovering evolutionary topics from Chinese social textsNeurocomputing201617141242410.1016/j.neucom.2015.06.047
PaulMGirjuRA two-dimensional topic-aspect model for discovering multi-faceted topicsUrbana2010516180136
WangTProduct aspect extraction supervised with online domain knowledgeKnowl-Based Syst2014718610010.1016/j.knosys.2014.05.018
YangM-CRimH-CIdentifying interesting Twitter contents using topical analysisExpert Syst Appl20144194330433610.1016/j.eswa.2013.12.051
AlSumait L, Barbara D, Domeniconi C (2008) On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM’08. IEEE
QinZCongYWanTTopic modeling of Chinese language beyond a bag-of-wordsComputer Speech and Language201640607810.1016/j.csl.2016.03.004
Alashri S et al (2016) An analysis of sentiments on facebook during the 2016 US presidential election. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016. IEEE
LiZMultimedia news summarization in searchACM Transactions on Intelligent Systems and Technology (TIST)20167333
Xiao C et al (2017) Adverse drug reaction prediction with symbolic latent dirichlet allocation in AAAI
Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th international conference on world wide web. ACM
GerberMSPredicting crime using Twitter and kernel density estimationDecis Support Syst20146111512510.1016/j.dss.2014.02.003
SiersdorferSAnalyzing and mining comments and comment ratings on the social webACM Trans Web (TWEB)20148317
Wang S et al (2014) Cross media topic analytics based on synergetic content and user behavior modeling. In: IEEE International Conference on Multimedia and Expo (ICME), 2014. IEEE
Yan X et al (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on world wide web. ACM
Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE transactions on pattern analysis and machine intelligence
WuHLocally discriminative topic modelingPattern Recogn20124516176251225.6822110.1016/j.patcog.2011.04.029
Chen B et al (2010) What is an opinion about? Exploring political standpoints using opinion scoring model. In: AAAI
PaulMJDredzeMYou are what you tweet: analyzing twitter for public healthIcwsm201120265272
Linstead E, Lopes C, Baldi P (2008) An application of latent Dirichlet allocation to analyzing software evolution. In: 7th international conference on machine learning and applications, 2008. ICMLA’08. IEEE
Chen L et al (2013) WT-LDA: user tagging augmented LDA for web service clustering. In: International conference on service-oriented computing. Springer
YoshiiKGotoMA nonparametric Bayesian multipitch analyzer based on infinite latent harmonic allocation. IEEE Transactions on AudioSpeech, and Language Processing201220371773010.1109/TASL.2011.2164530
LewisDDRcv1: a new benchmark collection for text categorization researchJ Mach Learn Res20045Apr361397
WangHFinding complex biological relationships in recent PubMed articles using Bio-LDAPloS one201163e1724310.1371/journal.pone.0017243
XianghuaFMulti-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexiconKnowl-Based Syst20133718619510.1016/j.knosys.2012.08.003
SandhausEThe New York times annotated corpus2008PhiladelphiaLinguistic Data Consortium
Phan X-H, Nguyen C-T (2006) Jgibblda: a java implementation of latent dirichlet allocation (lda) using gibbs sampling for parameter estimation and inference
Cong Y et al (2012) Cross-modal information retrieval-a case study on Chinese wikipedia. In: International conference on advanced data mining and applications. Springer, Berlin
Chaney AJ-B, Blei DM (2012) Visualizing Topic Models in ICWSM
Cordeiro M (2012) Twitter event detection: combining wavelet analysis and topic inference summarization in doctoral symposium on informatics engineering
Heintz I et al (2013) Automatic extraction of linguistic metaphor with lda topic modeling Inproceedings of the First Workshop on Metaphor in NLP
Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
Li J, Cardie C, Li S (2013) TopicSpam: a topic-model based approach for spam detection in ACL (2)
Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining text data. Springer, pp 415–463
Chuang J, Manning CD, Heer J (2012) Termite: Visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces. ACM
ZirnCStuckenschmidtHMultidimensional topic analysis in political textsData and Knowledge Engineering201490385310.1016/j.datak.2013.07.003
Lacoste-Julien S, Sha F, Jordan MI (2009) DiscLDA: discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems
Xie P, Yang D, Xing EP (2015) Incorporating word correlation knowledge into topic modeling in HLT-NAACL
Sharma V et al (2015) Analyzing Newspaper Crime Reports for Identification of Safe Transit Paths in HLT-NAACL
ZoghbiSVulicIMoensM-FLatent Dirichlet allocation for linking user-generated content and e-commerce dataInf Sci201636757359910.1016/j.ins.2016.05.047
Chang J, Blei DM (2009) Relational topic models for document networks in international conference on artificial intelligence and statistics
GretarssonBTopicnets: Visual analysis of large text corpora with topic modelingACM Transactions on Intelligent Systems and Technology (TIST)20123223
Manandhar S, Yuret D (2013) Second joint conference on lexical and computational semantics (* sem), volume 2: Proceedings of the seventh international workshop on semantic evaluation (semeval 2013). In: 2nd joint conference on lexical and computational semantics (* SEM), volume 2: proceedings of the 7th international workshop on semantic evaluation (SemEval 2013)
FuXDynamic non-parametric joint sentiment topic mixture modelKnowl-Based Syst20158210211410.1016/j.knosys.2015.02.021
Everingham M et al (2008) The pascal visual object classes challenge 2007 (voc 2007) results (2007)
Preotiuc-Pietro D et al (2017) Beyond binary labels: political ideology prediction of twitter users Inproceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
LiuBIdentifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocationBioinformatics201026243105311110.1093/bioinformatics/btq576
Thomas SW (2011) Mining software repositories using topic models. In: Proceedings of the 33rd international conference on software engineering. ACM
Nakano T, Yoshii K, Goto M (2014) Vocal timbre analysis using latent Dirichlet allocation and cross-gender vocal timbre similarity. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. IEEE
QianSMulti-modal event topic model for social event analysisIEEE Trans Multimedia201618223324610.1109/TMM.2015.2510329
SunSLuoCChenJA review of natural language processing techniques for opinion mining systemsInformation Fusion201736102510.1016/j.inffus.2016.10.004
Bhattacharya P et al (2014) Inferring user interests in the twitter social network. In: Proceedings of the 8th ACM conference on recommender systems. ACM
ChooJUtopian: User-driven topic modeling based on interactive nonnegative matrix factorizationIEEE transactions on visualization and computer graphics201319121992200110.1109/TVCG.2013.212
TangHA multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite imagesIEEE Trans Geosci Remote Sens20135131680169210.1109/TGRS.2012.2205579
Yang X et al (2017) Characterizing malicious Android apps by mining topic-specific data flow signatures Information and Software Technology
BisginHA phenome-guided drug repositioning through a latent variable modelBMC Bioinforma201415126710.1186/1471-2105-15-267
ZhengXIncorporating appraisal expression patterns into topic modeling for aspect and sentiment word identificationKnowl-Based Syst201461294710.1016/j.knosys.2014.02.003
Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th IEEE International working conference on mining software repositories, 2009. MSR’09. IEEE
Ramage D, Rosen E (2011) Stanford topic modeling toolbox
ZhaoFA personalized hashtag recommendation approach using LDA-based topic model in microblog environmentFutur Gener Comput Syst20166519620610.1016/j.future.2015.10.012
LiXOuyangJZhouXSupervised topic models for multi-label classificationNeurocomputing201514981181910.1016/j.neucom.2014.07.053
YehJ-FTanY-SLeeC-HTopic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocationNeurocomputing201621631031810.1016/j.neucom.2016.08.017
LiuZPlda+: Parallel latent dirichlet allocation with data placement and pipeline processingACM Transactions on Intelligent Systems and Technology (TIST)20112326
Wilson AT, Chew PA (2010) Term weighting schemes for latent dirichlet allocation. In: Human language technologies: the 2010 annual conference of the north a
6894_CR64
MS Gerber (6894_CR45) 2014; 61
6894_CR61
6894_CR62
6894_CR149
6894_CR148
TL Griffiths (6894_CR51) 2004; 101
6894_CR144
6894_CR154
6894_CR153
6894_CR151
6894_CR150
M Kim (6894_CR66) 2017; 23
M Lui (6894_CR100) 2014; 2
6894_CR67
6894_CR68
6894_CR69
6894_CR70
6894_CR74
6894_CR75
6894_CR72
6894_CR159
6894_CR157
6894_CR156
H Bisgin (6894_CR11) 2014; 15
H-M Lu (6894_CR97) 2016; 60
6894_CR155
6894_CR165
6894_CR164
Y Rao (6894_CR127) 2016; 31
6894_CR161
6894_CR76
6894_CR77
R Cohen (6894_CR31) 2014; 9
6894_CR85
DQ Nguyen (6894_CR113) 2015; 3
6894_CR129
6894_CR126
6894_CR125
6894_CR124
6894_CR132
6894_CR131
P Hu (6894_CR58) 2014; 47
6894_CR89
6894_CR87
6894_CR88
6894_CR93
DA McFarland (6894_CR106) 2013; 41
6894_CR90
6894_CR96
J Wang (6894_CR162) 2014; 124
6894_CR95
6894_CR139
6894_CR137
6894_CR136
6894_CR135
6894_CR133
6894_CR143
C Zirn (6894_CR204) 2014; 90
6894_CR98
S Sun (6894_CR145) 2017; 36
K Yoshii (6894_CR186) 2012; 20
M Song (6894_CR140) 2014; 29
T Wang (6894_CR163) 2014; 71
H Tang (6894_CR147) 2013; 51
6894_CR198
6894_CR195
6894_CR193
6894_CR192
Z Li (6894_CR78) 2013; 10
6894_CR191
H Wu (6894_CR171) 2012; 45
6894_CR190
S Debortoli (6894_CR36) 2016; 39
J Choo (6894_CR28) 2013; 19
J Weng (6894_CR167) 2011; 11
SK Lukins (6894_CR99) 2010; 52
H Wang (6894_CR158) 2011; 6
L Zhang (6894_CR196) 2015; 27
6894_CR169
6894_CR168
E Sandhaus (6894_CR134) 2008
6894_CR166
6894_CR174
6894_CR173
6894_CR170
VC Cheng (6894_CR23) 2014; 26
6894_CR179
T-H Chen (6894_CR22) 2016; 21
6894_CR177
6894_CR185
6894_CR184
6894_CR182
X Wang (6894_CR160) 2012; 12
6894_CR181
6894_CR180
S Tan (6894_CR146) 2014; 26
J Philbin (6894_CR119) 2011; 95
X Fu (6894_CR43) 2015; 82
B Gretarsson (6894_CR50) 2012; 3
A Daud (6894_CR35) 2010; 4
Y Ren (6894_CR130) 2016; 369
P Srijith (6894_CR141) 2017; 53
X Zheng (6894_CR201) 2014; 61
C Li (6894_CR79) 2015; 44
Z Qin (6894_CR123) 2016; 40
W Xie (6894_CR175) 2016; 28
X Fu (6894_CR44) 2016; 171
KE Levy (6894_CR71) 2014; 32
C Vaduva (6894_CR152) 2013; 51
M-C Yang (6894_CR178) 2014; 41
Z Li (6894_CR83) 2016; 7
X-P Zhang (6894_CR194) 2011; 17
KW Prier (6894_CR121) 2011
Z Cheng (6894_CR25) 2016; 34
Z Li (6894_CR84) 2017; 26
6894_CR18
6894_CR19
MH Alam (6894_CR2) 2016; 339
Y Rao (6894_CR128) 2014; 17
6894_CR13
Y Liu (6894_CR94) 2016; 210
6894_CR10
6894_CR16
6894_CR17
6894_CR14
6894_CR15
J-T Chien (6894_CR26) 2011; 19
DD Lewis (6894_CR73) 2004; 5
6894_CR20
6894_CR109
F Zhao (6894_CR199) 2016; 65
6894_CR107
6894_CR105
6894_CR104
6894_CR103
Z Liu (6894_CR92) 2011; 2
6894_CR102
6894_CR101
M Steyvers (6894_CR142) 2007; 427
X Yu (6894_CR189) 2015; 42
6894_CR110
6894_CR29
M Lienou (6894_CR86) 2010; 7
J Zeng (6894_CR202) 2016; 28
6894_CR24
6894_CR21
6894_CR27
Y Li (6894_CR81) 2016; 13
Y Zhang (6894_CR197) 2017; 66
M Everingham (6894_CR41) 2010; 88
6894_CR30
M Paul (6894_CR115) 2010; 51
R Yu (6894_CR188) 2015; 10
6894_CR118
6894_CR117
X Li (6894_CR80) 2015; 149
6894_CR114
J-F Yeh (6894_CR183) 2016; 216
6894_CR112
6894_CR111
S Siersdorfer (6894_CR138) 2014; 8
6894_CR120
J Miao (6894_CR108) 2016; 34
6894_CR34
Z Huang (6894_CR60) 2013; 37
6894_CR32
6894_CR33
DM Blei (6894_CR12) 2003; 3
6894_CR38
K Yu (6894_CR187) 2014; 15
6894_CR39
6894_CR37
Y Kim (6894_CR65) 2014; 42
6894_CR42
6894_CR40
6894_CR203
6894_CR200
B Liu (6894_CR91) 2010; 26
F Xianghua (6894_CR172) 2013; 37
A Bagheri (6894_CR7) 2014; 40
S Qian (6894_CR122) 2016; 18
6894_CR46
Z Xu (6894_CR176) 2017; 76
6894_CR49
6894_CR47
6894_CR48
6894_CR9
L Hou (6894_CR59) 2015; 76
6894_CR52
6894_CR53
D Jiang (6894_CR63) 2015; 84
6894_CR1
6894_CR4
S Zoghbi (6894_CR205) 2016; 367
6894_CR3
6894_CR6
6894_CR5
6894_CR8
MJ Paul (6894_CR116) 2011; 20
C Li (6894_CR82) 2016; 99
6894_CR56
6894_CR57
6894_CR54
6894_CR55
References_xml – reference: Hu Y et al (2012) ET-LDA: joint topic modeling for aligning events and their twitter feedback. In: AAAI
– reference: Balasubramanyan R et al (2012) Modeling polarizing topics: When do different political communities respond differently to the same news? in ICWSM
– reference: Heintz I et al (2013) Automatic extraction of linguistic metaphor with lda topic modeling Inproceedings of the First Workshop on Metaphor in NLP
– reference: Jiang Z et al (2012) Using link topic model to analyze traditional chinese medicine clinical symptom-herb regularities. In: 2012 IEEE 14th international conference on e-health networking, applications and services (Healthcom). IEEE
– reference: Rehurek R, Sojka P (2011) Gensim-statistical semantics in python
– reference: XianghuaFMulti-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexiconKnowl-Based Syst20133718619510.1016/j.knosys.2012.08.003
– reference: Manandhar S, Yuret D (2013) Second joint conference on lexical and computational semantics (* sem), volume 2: Proceedings of the seventh international workshop on semantic evaluation (semeval 2013). In: 2nd joint conference on lexical and computational semantics (* SEM), volume 2: proceedings of the 7th international workshop on semantic evaluation (SemEval 2013)
– reference: Li J, Cardie C, Li S (2013) TopicSpam: a topic-model based approach for spam detection in ACL (2)
– reference: ZhangLSunXZhugeHTopic discovery of clusters from documents with geographical locationConcurrency and Computation: Practice and Experience201527154015403810.1002/cpe.3474
– reference: Chen T-H et al (2012) Explaining software defects using topic models. In: 2012 9th IEEE working conference on mining software repositories (MSR), IEEE
– reference: Chen L et al (2013) WT-LDA: user tagging augmented LDA for web service clustering. In: International conference on service-oriented computing. Springer
– reference: WangTProduct aspect extraction supervised with online domain knowledgeKnowl-Based Syst2014718610010.1016/j.knosys.2014.05.018
– reference: WuHLocally discriminative topic modelingPattern Recogn20124516176251225.6822110.1016/j.patcog.2011.04.029
– reference: LiCThe author-topic-community model for author interest profiling and community discoveryKnowl Inf Syst201544235938310.1007/s10115-014-0764-9
– reference: Chang J (2011) lda: collapsed Gibbs sampling methods for topic models. R
– reference: QianSMulti-modal event topic model for social event analysisIEEE Trans Multimedia201618223324610.1109/TMM.2015.2510329
– reference: LiZEnhancing news organization for convenient retrieval and browsing. ACM Transactions on Multimedia ComputingCommunications, and Applications (TOMM)20131011
– reference: YuRHeXLiuYGlad: group anomaly detection in social media analysisACM Transactions on Knowledge Discovery from Data (TKDD)20151021810.1145/2811268
– reference: Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
– reference: HouLNewsminer: Multifaceted news analysis for event searchKnowl-Based Syst201576172910.1016/j.knosys.2014.11.017
– reference: Wang Y, Mori G (2011) Max-margin latent Dirichlet allocation for image classification and annotation. In: BMVC
– reference: Wang Y-C, Burke M, Kraut RE (2013) Gender, topic, and audience response: an analysis of user-generated content on facebook. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM
– reference: BisginHA phenome-guided drug repositioning through a latent variable modelBMC Bioinforma201415126710.1186/1471-2105-15-267
– reference: Asgari E, Chappelier J-C (2013) Linguistic Resources and Topic Models for the Analysis of Persian Poems in CLfL@ NAACL-HLT
– reference: ZirnCStuckenschmidtHMultidimensional topic analysis in political textsData and Knowledge Engineering201490385310.1016/j.datak.2013.07.003
– reference: Wilson AT, Chew PA (2010) Term weighting schemes for latent dirichlet allocation. In: Human language technologies: the 2010 annual conference of the north american chapter of the association for computational linguistics. Association for Computational Linguistics
– reference: VaduvaCGavatIDatcuMLatent Dirichlet allocation for spatial analysis of satellite imagesIEEE Trans Geosci Remote Sens20135152770278610.1109/TGRS.2012.2219314
– reference: RenYWangRJiDA topic-enhanced word embedding for Twitter sentiment classificationInf Sci201636918819810.1016/j.ins.2016.06.040
– reference: FuXDynamic online HDP model for discovering evolutionary topics from Chinese social textsNeurocomputing201617141242410.1016/j.neucom.2015.06.047
– reference: ChengVCProbabilistic aspect mining model for drug reviewsIEEE Trans Knowl Data Eng20142682002201310.1109/TKDE.2013.175
– reference: Wang Y et al (2016) Catching fire via” Likes”: inferring topic preferences of trump followers on twitter. In: ICWSM
– reference: Yin H et al (2014) A temporal context-aware model for user behavior modeling in social media systems. In: Proceedings of the ACM SIGMOD international conference on Management of data, 2014. ACM
– reference: Henderson K, Eliassi-Rad T (2009) Applying latent dirichlet allocation to group discovery in large graphs. In: 2009 Proceedings of the ACM symposium on applied computing. ACM
– reference: Yang X et al (2017) Characterizing malicious Android apps by mining topic-specific data flow signatures Information and Software Technology
– reference: Chuang J, Manning CD, Heer J (2012) Termite: Visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces. ACM
– reference: Everingham M et al (2008) The pascal visual object classes challenge 2007 (voc 2007) results (2007)
– reference: JiangDSG-WSTD: a framework for scalable geographic web search topic discoveryKnowl-Based Syst201584183310.1016/j.knosys.2015.03.020
– reference: SiersdorferSAnalyzing and mining comments and comment ratings on the social webACM Trans Web (TWEB)20148317
– reference: Blei DM, Jordan MI (2003) Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval. ACM
– reference: ZoghbiSVulicIMoensM-FLatent Dirichlet allocation for linking user-generated content and e-commerce dataInf Sci201636757359910.1016/j.ins.2016.05.047
– reference: Ramage D, Manning CD, Dumais S (2011) Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM
– reference: LiCHierarchical Bayesian nonparametric models for knowledge discovery from electronic medical recordsKnowl-Based Syst20169916818210.1016/j.knosys.2016.02.005
– reference: Linstead E et al (2007) Mining concepts from code with probabilistic topic models. ACM, Inproceedings of the twenty-second IEEE/ACM international conference on automated software engineering
– reference: PhilbinJSivicJZissermanAGeometric latent dirichlet allocation on a matching graph for large-scale image datasetsInt J Comput Vis201195213815328350461235.6828210.1007/s11263-010-0363-5
– reference: BagheriASaraeeMDe JongFADM-LDA: an aspect detection model based on topic modelling using the structure of review sentencesJ Inf Sci201440562163610.1177/0165551514538744
– reference: MiaoJHuangJXZhaoJTopPRF: a probabilistic framework for integrating topic space into pseudo relevance feedbackACM Transactions on Information Systems (TOIS)20163442210.1145/2956234
– reference: SandhausEThe New York times annotated corpus2008PhiladelphiaLinguistic Data Consortium
– reference: Steyvers M, Griffiths T (2011) Matlab topic modeling toolbox 1.4. http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
– reference: Shi B et al (2016) Detecting common discussion topics across culture from news reader comments in ACL (1)
– reference: WangJImage tag refinement by regularized latent Dirichlet allocationComput Vis Image Underst2014124617010.1016/j.cviu.2014.02.011
– reference: McInerney J, Blei DM (2014) Discovering newsworthy tweets with a geographical topic model in NewsKDD: Data Science for News Publishing workshop Workshop in conjunction with KDD2014 the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– reference: Linstead E, Lopes C, Baldi P (2008) An application of latent Dirichlet allocation to analyzing software evolution. In: 7th international conference on machine learning and applications, 2008. ICMLA’08. IEEE
– reference: ChengZShenJOn effective location-aware music recommendationACM Transactions on Information Systems (TOIS)201634213356738010.1145/2846092
– reference: Cheng X et al (2014) Btm: topic modeling over short texts. IEEE Transactions on Knowledge and Data Engineering 26(1):2928–2941
– reference: Wang C, Blei DM (2009) Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In: Advances in neural information processing systems
– reference: Bauer S et al (2012) Talking places: Modelling and analysing linguistic content in foursquare. In: Privacy, security, risk and trust (PASSAT), 2012 international conference on and 2012 international confernece on social computing (SocialCom). IEEE
– reference: PaulMGirjuRA two-dimensional topic-aspect model for discovering multi-faceted topicsUrbana2010516180136
– reference: LuH-MWeiC-PHsiaoF-YModeling healthcare data using multiple-channel latent Dirichlet allocationJ Biomed Inform20166021022310.1016/j.jbi.2016.02.003
– reference: Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering, vol 1. ACM
– reference: Eisenstein J et al (2010) A latent variable model for geographic lexical variation. In: Proceedings of the 2010 conference on empirical methods in natural language processings. Association for computational linguistics
– reference: HuangZLuXDuanHLatent treatment pattern discovery for clinical processesJournal of medical systems2013372991510.1007/s10916-012-9915-2
– reference: NguyenDQImproving topic models with latent feature word representationsTransactions of the Association for Computational Linguistics2015329931310.1162/tacl_a_00140
– reference: GerberMSPredicting crime using Twitter and kernel density estimationDecis Support Syst20146111512510.1016/j.dss.2014.02.003
– reference: LukinsSKKraftNAEtzkornLHBug localization using latent dirichlet allocationInf Softw Technol201052997299010.1016/j.infsof.2010.04.002
– reference: AlamMHRyuW-JLeeSJoint multi-grain topic sentiment: modeling semantic aspects for online reviewsInf Sci201633920622310.1016/j.ins.2016.01.013
– reference: Rennie J (2017) The 20 Newsgroups data set. http
– reference: EveringhamMThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4
– reference: Nakano T, Yoshii K, Goto M (2014) Vocal timbre analysis using latent Dirichlet allocation and cross-gender vocal timbre similarity. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. IEEE
– reference: Preotiuc-Pietro D et al (2017) Beyond binary labels: political ideology prediction of twitter users Inproceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– reference: SrijithPSub-story detection in Twitter with hierarchical Dirichlet processesInf Process Manag2017534989100310.1016/j.ipm.2016.10.004
– reference: Weng J et al (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining. ACM
– reference: Xiao C et al (2017) Adverse drug reaction prediction with symbolic latent dirichlet allocation in AAAI
– reference: ChenT-HThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8
– reference: Cohen R, Ruths D (2013) Classifying political orientation on twitter: it’s not easy!. In: ICWSM
– reference: Cong Y et al (2012) Cross-modal information retrieval-a case study on Chinese wikipedia. In: International conference on advanced data mining and applications. Springer, Berlin
– reference: WangHFinding complex biological relationships in recent PubMed articles using Bio-LDAPloS one201163e1724310.1371/journal.pone.0017243
– reference: Zhang J et al (2013) Social Influence Locality for Modeling Retweeting Behaviors in IJCAI
– reference: Mao X-L et al, SSHLDA: a semi-supervised hierarchical topic model (2012). In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Association for computational linguistics
– reference: SteyversMGriffithsTProbabilistic topic modelsHandbook of latent semantic analysis20074277424440
– reference: Eidelman V, Boyd-Graber J, Resnik P (2012) Topic models for dynamic translation model adaptation. In: Proceedings of the 50th annual meeting of the association for computational linguistics: short papers-volume 2. Association for computational linguistics
– reference: RaoYContextual sentiment topic model for adaptive social emotion classificationIEEE Intell Syst2016311414710.1109/MIS.2015.91
– reference: Sizov S (2010) Geofolk latent spatial semantics in web 2.0 social media. In: Proceedings of the third ACM international conference on web search and data mining. ACM
– reference: Lewis DD (1997) Reuters-21578 text categorization collection
– reference: QinZCongYWanTTopic modeling of Chinese language beyond a bag-of-wordsComputer Speech and Language201640607810.1016/j.csl.2016.03.004
– reference: Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE transactions on pattern analysis and machine intelligence
– reference: Wick M, Ross M, Learned-Miller E (2007) Context-sensitive error correction: using topic models to improve OCR. In: 9th international conference on document analysis and recognition, 2007. ICDAR 2007. IEEE
– reference: Ramage D et al (2009) Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 conference on empirical methods in natural language processing: volume 1-volume 1. Association for computational linguistics
– reference: Sun X et al (2016) Exploring topic models in software engineering data analysis: a survey. In: 2016 17th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD). IEEE
– reference: Thomas SW (2011) Mining software repositories using topic models. In: Proceedings of the 33rd international conference on software engineering. ACM
– reference: Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM
– reference: LewisDDRcv1: a new benchmark collection for text categorization researchJ Mach Learn Res20045Apr361397
– reference: LiuBIdentifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocationBioinformatics201026243105311110.1093/bioinformatics/btq576
– reference: LiXOuyangJZhouXSupervised topic models for multi-label classificationNeurocomputing201514981181910.1016/j.neucom.2014.07.053
– reference: ZengJLiuZ-QCaoX-QFast online EM for big topic modelingIEEE Trans Knowl Data Eng201628367568810.1109/TKDE.2015.2492565
– reference: Li R (2012) Towards social user profiling: unified and discriminative influence model for inferring home locations. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM
– reference: Panichella A et al (2013) How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the 2013 international conference on software engineering. IEEE Press
– reference: Yin Z et al (2011) Geographical topic discovery and comparison. In: Proceedings of the 20th international conference on world wide web. ACM
– reference: Greene D, Cross JP (2015) Unveiling the political agenda of the european parliament plenary: a topical analysis. In: Proceedings of the ACM web science conference. ACM
– reference: WengJLeeB-SEvent detection in twitterICWSM201111401408
– reference: Minka T, Lafferty J (2002) Expectation-propagation for the generative aspect model. In: Proceedings of the eighteenth conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc
– reference: Gethers M, Poshyvanyk D (2010) Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE international conference on software maintenance (ICSM). IEEE
– reference: Giri R et al (2014) User behavior modeling in a cellular network using latent dirichlet allocation. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer, Berlin
– reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res20033Jan99310221112.68379
– reference: Cristani M et al (2008) Geo-located image analysis using latent representations. in Computer Vision and Pattern Recognition, 2008. CVPR, vol 2008. IEEE, IEEE Conference on
– reference: SunSLuoCChenJA review of natural language processing techniques for opinion mining systemsInformation Fusion201736102510.1016/j.inffus.2016.10.004
– reference: Fang Y et al (2012) Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the fifth ACM international conference on web search and data mining. ACM
– reference: Bhattacharya P et al (2014) Inferring user interests in the twitter social network. In: Proceedings of the 8th ACM conference on recommender systems. ACM
– reference: Yang M, Kiang M (2015) Extracting Consumer Health Expressions of Drug Safety from Web Forum. In: 2015 48th Hawaii international conference on system sciences (HICSS). IEEE
– reference: Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th IEEE International working conference on mining software repositories, 2009. MSR’09. IEEE
– reference: YangM-CRimH-CIdentifying interesting Twitter contents using topical analysisExpert Syst Appl20144194330433610.1016/j.eswa.2013.12.051
– reference: Lin CX et al (2010) PET: a statistical model for popular events tracking in social communities. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM
– reference: LiZTangJWeakly supervised deep matrix factorization for social image understandingIEEE Trans Image Process201726127628835800020701281510.1109/TIP.2016.2624140
– reference: Yano T, Smith NA (2010) What’s worthy of comment? content and comment volume in political blogs in ICWSM
– reference: Zhai Z, Liu B, Xu H, Jia P (2011) Constrained LDA for grouping product features in opinion mining. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 448–459
– reference: SongMKimMCJeongYKAnalyzing the political landscape of 2012 korean presidential election in twitterIEEE Intell Syst2014292182610.1109/MIS.2014.20
– reference: ZhangYiDoctor: personalized and professionalized medical recommendations based on hybrid matrix factorizationFutur Gener Comput Syst201766303510.1016/j.future.2015.12.001
– reference: Lange D, Naumann F (2011) Frequency-aware similarity measures: why Arnold Schwarzenegger is always a duplicate. In: Proceedings of the 20th ACM international conference on Information and knowledge management. ACM
– reference: Chen S-H et al (2015) Latent dirichlet allocation based blog analysis for criminal intention detection system. In: 2015 International Carnahan Conference on Security Technology (ICCST). IEEE
– reference: LiYDesign and implementation of Weibo sentiment analysis based on LDA and dependency parsingChina Communications201613119110510.1109/CC.2016.7781721
– reference: Hong L, Frias-Martinez E, Frias-Martinez V (2016) Topic models to infer socio-economic maps in AAAI
– reference: Chang J, Blei DM (2009) Relational topic models for document networks in international conference on artificial intelligence and statistics
– reference: Sharma V et al (2015) Analyzing Newspaper Crime Reports for Identification of Safe Transit Paths in HLT-NAACL
– reference: Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining text data. Springer, pp 415–463
– reference: GretarssonBTopicnets: Visual analysis of large text corpora with topic modelingACM Transactions on Intelligent Systems and Technology (TIST)20123223
– reference: ZhaoFA personalized hashtag recommendation approach using LDA-based topic model in microblog environmentFutur Gener Comput Syst20166519620610.1016/j.future.2015.10.012
– reference: Chaney AJ-B, Blei DM (2012) Visualizing Topic Models in ICWSM
– reference: ChooJUtopian: User-driven topic modeling based on interactive nonnegative matrix factorizationIEEE transactions on visualization and computer graphics201319121992200110.1109/TVCG.2013.212
– reference: Rosen-Zvi M et al (2004) The author-topic model for authors and documents. In: Proceedings of the 20th conference on uncertainty in artificial intelligence. AUAI Press
– reference: YuKMining hidden knowledge for drug safety assessment: topic modeling of LiverTox as a case studyBMC Bioinforma20141517S6
– reference: Jagarlamudi J, Daume H III (2010) Extracting multilingual topics from unaligned comparable corpora. In: ECIR. Springer
– reference: Phan X-H, Nguyen C-T (2006) Jgibblda: a java implementation of latent dirichlet allocation (lda) using gibbs sampling for parameter estimation and inference
– reference: WangXGerberMSBrownDEAutomatic Crime Prediction Using Events Extracted from Twitter PostsSBP201212231238
– reference: GriffithsTLSteyversMFinding scientific topicsProc Natl Acad Sci2004101suppl 15228523510.1073/pnas.0307752101
– reference: TanSInterpreting the public sentiment variations on twitterIEEE transactions on knowledge and data engineering20142651158117010.1109/TKDE.2013.116
– reference: KimYShimKTWILITE: a recommendation system for twitter using a probabilistic model based on latent Dirichlet allocationInf Syst201442597710.1016/j.is.2013.11.003
– reference: Xie P, Yang D, Xing EP (2015) Incorporating word correlation knowledge into topic modeling in HLT-NAACL
– reference: YoshiiKGotoMA nonparametric Bayesian multipitch analyzer based on infinite latent harmonic allocation. IEEE Transactions on AudioSpeech, and Language Processing201220371773010.1109/TASL.2011.2164530
– reference: Lin J et al, Addressing cold-start in app recommendation: latent user models constructed from twitter followers (2013). In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval. ACM
– reference: Thomas SW et al (2011) Modeling the evolution of topics in source code histories. In: Proceedings of the 8th working conference on mining software repositories. ACM
– reference: Zhao WX et al (2011) Comparing twitter and traditional media using topic models. In: European conference on information retrieval. Springer
– reference: HuPLatent topic model for audio retrievalPattern Recogn20144731138114310.1016/j.patcog.2013.06.010
– reference: Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet allocation. In: 15th working conference on reverse engineering, 2008. WCRE’08. IEEE
– reference: Zhang H et al (2007) Probabilistic community discovery using hierarchical latent gaussian mixture model. In: AAAI
– reference: Wang S et al (2014) Cross media topic analytics based on synergetic content and user behavior modeling. In: IEEE International Conference on Multimedia and Expo (ICME), 2014. IEEE
– reference: Lacoste-Julien S, Sha F, Jordan MI (2009) DiscLDA: discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems
– reference: RaoYBuilding emotional dictionary for sentiment analysis of online newsWorld Wide Web201417472374210.1007/s11280-013-0221-9
– reference: Larkey LS, Connell ME (2001) Arabic information retrieval at UMass in TREC-10 in TREC
– reference: ZhangX-PTopic model for chinese medicine diagnosis and prescription regularities analysis: case on diabetesChinese Journal Of Integrative Medicine201117430731310.1007/s11655-011-0699-x
– reference: Yuan J et al (2015) Lightlda: big topic models on modest computer clusters. In: Proceedings of the 24th international conference on world wide web. International world wide web conferences steering committee
– reference: Hong L, Dan O, Davison BD (2011) Predicting popular messages in twitter. In: Proceedings of the 20th international conference companion on world wide web. ACM
– reference: Guo J et al (2009) Named entity recognition in query. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval. ACM
– reference: Chong W, Blei D, Li F-F (2009) Simultaneous image classification and annotation. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE
– reference: Li W, McCallum A (2006) Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of the 23rd international conference on machine learning. ACM
– reference: LiuZPlda+: Parallel latent dirichlet allocation with data placement and pipeline processingACM Transactions on Intelligent Systems and Technology (TIST)20112326
– reference: CohenRRedundancy-aware topic modeling for patient record notesPloS one201492e8755510.1371/journal.pone.0087555
– reference: AlSumait L, Barbara D, Domeniconi C (2008) On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM’08. IEEE
– reference: Savage T et al (2010) Topic XP: exploring topics in source code using latent Dirichlet allocation. In: 2010 IEEE International Conference on software maintenance (ICSM). IEEE
– reference: Alashri S et al (2016) An analysis of sentiments on facebook during the 2016 US presidential election. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016. IEEE
– reference: Godin F et al (2013) Using topic models for twitter hashtag recommendation. In: Proceedings of the 22nd international conference on world wide web. ACM
– reference: Lee S et al (2016) LARGen: automatic signature generation for Malwares using latent Dirichlet allocation IEEE Transactions on Dependable and Secure Computing
– reference: Yuan B et al (2014). In: International conference on web information systems engineering. Springer, Berlin
– reference: McCallum A, Corrada-Emmanuel A, Wang X (2005) Topic and role discovery in social networks. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp 786–791
– reference: LiZMultimedia news summarization in searchACM Transactions on Intelligent Systems and Technology (TIST)20167333
– reference: XieWTopicsketch: real-time bursty topic detection from twitterIEEE Trans Knowl Data Eng20162882216222910.1109/TKDE.2016.2556661
– reference: Chen B et al (2010) What is an opinion about? Exploring political standpoints using opinion scoring model. In: AAAI
– reference: Li F, Huang M, Zhu X (2010) Sentiment Analysis with Global Topics and Local Dependency in AAAI
– reference: TangHA multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite imagesIEEE Trans Geosci Remote Sens20135131680169210.1109/TGRS.2012.2205579
– reference: Yan X et al (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on world wide web. ACM
– reference: FuXDynamic non-parametric joint sentiment topic mixture modelKnowl-Based Syst20158210211410.1016/j.knosys.2015.02.021
– reference: Madan A et al (2011) Pervasive sensing to model political opinions in face-to-face networks. In: International conference on pervasive computing. Springer
– reference: Jo Y, Oh AH (2011) Aspect and sentiment unification model for online review analysis. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM
– reference: Yano T, Cohen WW, Smith NA (2009) Predicting response to political blog posts with topic models. In: Proceedings of human language technologies: the 2009 annual conference of the north american chapter of the association for computational linguistics. Association for computational linguistics
– reference: Ahmed A et al (2012) Scalable inference in latent variable models. In: Proceedings of the fifth ACM international conference on web search and data mining. ACM
– reference: YuXYangJXieZ-QA semantic overlapping community detection algorithm based on field samplingExpert Syst Appl201542136637510.1016/j.eswa.2014.07.009
– reference: PrierKWIdentifying health-related topics on twitter. in International Conference on Social Computing2011Behavioral-Cultural Modeling, and PredictionSpringer
– reference: Zhai K et al (2012) Mr. LDA: a flexible large scale topic modeling package using variational inference in mapreduce. In: Proceedings of the 21st international conference on world wide web. ACM
– reference: McCallum AK (2002), A machine learning for language toolkit, Mallet
– reference: McFarlandDADifferentiating language usage through topic modelsPoetics2013416607625313788310.1016/j.poetic.2013.06.004
– reference: ZhengXIncorporating appraisal expression patterns into topic modeling for aspect and sentiment word identificationKnowl-Based Syst201461294710.1016/j.knosys.2014.02.003
– reference: ChienJ-TChuehC-HDirichlet class language models for speech recognitionIEEE Transactions on Audio Speech, and Language Processing201119348249510.1109/TASL.2010.2050717
– reference: LiuYWangJJiangYPT-LDA: a latent variable model to predict personality traits of social network usersNeurocomputing201621015516310.1016/j.neucom.2015.10.144
– reference: KimMTopiclens: efficient multi-level visual topic exploration of large-scale document collectionsIEEE Trans Vis Comput Graph201723115116010.1109/TVCG.2016.2598445
– reference: YehJ-FTanY-SLeeC-HTopic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocationNeurocomputing201621631031810.1016/j.neucom.2016.08.017
– reference: Wu Y et al (2012) Ranking gene-drug relationships in biomedical literature using latent dirichlet allocation. In: Pacific symposium on biocomputing. NIH Public Access
– reference: Millar JR, Peterson GL, Mendenhall MJ (2009) Document clustering and visualization with latent Dirichlet allocation and self-organizing maps in FLAIRS Conference
– reference: PaulMJDredzeMYou are what you tweet: analyzing twitter for public healthIcwsm201120265272
– reference: Diao Q et al (2012) Finding bursty topics from microblogs. In: Proceedings of the 50th annual meeting of the association for computational linguistics: long papers-volume 1. Association for Computational Linguistics
– reference: Paul M, Factorial M. Dredze. (2012) LDA: Sparse multi-dimensional text models in advances in neural information processing systems
– reference: LevyKEFranklinMDriving regulation: using topic models to examine political contention in the US trucking industrySoc Sci Comput Rev201432218219410.1177/0894439313506847
– reference: Vulic I, De Smet W, Moens M-F (2011) Identifying word translations from comparable corpora using latent topic models. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies: short papers-volume 2. Association for computational linguistics
– reference: Wallach HM, Mimno DM, McCallum A (2009) Rethinking LDA: why priors matter. In: Advances in neural information processing systems
– reference: Liu Y et al (2016). In: AAAI, Fortune teller: predicting Your Career Path
– reference: Lu H-M, Lee C-H (2015) The topic-over-time mixed membership model (TOT-MMM): a twitter hashtag recommendation model that accommodates for temporal clustering effects. IEEE Intell Sys 30(1):18–25
– reference: Roberts K et al (2012) EmpaTweet: annotating and detecting emotions on twitter. In: LREC
– reference: Murdock J, Allen C (2015) Visualization Techniques for Topic Model Checking. In: AAAI
– reference: DebortoliSText mining for information systems researchers: an annotated topic modeling tutorialCAIS201639710.17705/1CAIS.03907
– reference: Zhu J, Ahmed A, Xing EP (2009) MedLDA: maximum margin supervised topic models for regression and classification. In: Proceedings of the 26th annual international conference on machine learning. ACM
– reference: Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th international conference on world wide web. ACM
– reference: DaudAKnowledge discovery through directed probabilistic topic models: a surveyFrontiers of Computer Science in China20104228030110.1007/s11704-009-0062-y
– reference: XuZCrowdsourcing based social media data analysis of urban emergency eventsMultimedia Tools and Applications2017769115671158410.1007/s11042-015-2731-1
– reference: LienouMMaitreHDatcuMSemantic annotation of satellite images using latent Dirichlet allocationIEEE Geosci Remote Sens Lett201071283210.1109/LGRS.2009.2023536
– reference: Cordeiro M (2012) Twitter event detection: combining wavelet analysis and topic inference summarization in doctoral symposium on informatics engineering
– reference: LuiMLauJHBaldwinTAutomatic detection and language identification of multilingual documentsTransactions of the Association for Computational Linguistics20142274010.1162/tacl_a_00163
– reference: Blei DM, Lafferty JD (2006) Dynamic topic models. In: Proceedings of the 23rd international conference on machine learning. ACM
– reference: Ramage D, Rosen E (2011) Stanford topic modeling toolbox
– volume: 13
  start-page: 91
  issue: 11
  year: 2016
  ident: 6894_CR81
  publication-title: China Communications
  doi: 10.1109/CC.2016.7781721
– ident: 6894_CR110
– ident: 6894_CR156
– volume: 18
  start-page: 233
  issue: 2
  year: 2016
  ident: 6894_CR122
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2015.2510329
– ident: 6894_CR133
– ident: 6894_CR69
  doi: 10.6028/NIST.SP.500-250.xlingual-umass
– ident: 6894_CR104
– volume: 367
  start-page: 573
  year: 2016
  ident: 6894_CR205
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.05.047
– volume: 339
  start-page: 206
  year: 2016
  ident: 6894_CR2
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.01.013
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 6894_CR78
  publication-title: Communications, and Applications (TOMM)
– ident: 6894_CR174
  doi: 10.3115/v1/N15-1074
– volume: 34
  start-page: 13
  issue: 2
  year: 2016
  ident: 6894_CR25
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/2846092
– ident: 6894_CR53
– volume: 21
  start-page: 1843
  issue: 5
  year: 2016
  ident: 6894_CR22
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-015-9402-8
– ident: 6894_CR74
  doi: 10.1145/1143844.1143917
– ident: 6894_CR93
  doi: 10.1007/978-1-4614-3223-4_13
– ident: 6894_CR109
– ident: 6894_CR70
– ident: 6894_CR48
  doi: 10.1145/2487788.2488002
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 6894_CR12
  publication-title: J Mach Learn Res
– ident: 6894_CR164
  doi: 10.1109/ICME.2014.6890165
– volume: 9
  start-page: e87555
  issue: 2
  year: 2014
  ident: 6894_CR31
  publication-title: PloS one
  doi: 10.1371/journal.pone.0087555
– volume: 37
  start-page: 186
  year: 2013
  ident: 6894_CR172
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.08.003
– ident: 6894_CR49
  doi: 10.1145/2786451.2786464
– volume: 12
  start-page: 231
  year: 2012
  ident: 6894_CR160
  publication-title: SBP
– volume: 41
  start-page: 607
  issue: 6
  year: 2013
  ident: 6894_CR106
  publication-title: Poetics
  doi: 10.1016/j.poetic.2013.06.004
– volume-title: Identifying health-related topics on twitter. in International Conference on Social Computing
  year: 2011
  ident: 6894_CR121
– volume: 76
  start-page: 11567
  issue: 9
  year: 2017
  ident: 6894_CR176
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-015-2731-1
– volume: 39
  start-page: 7
  year: 2016
  ident: 6894_CR36
  publication-title: CAIS
  doi: 10.17705/1CAIS.03907
– volume: 65
  start-page: 196
  year: 2016
  ident: 6894_CR199
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2015.10.012
– ident: 6894_CR17
– ident: 6894_CR85
  doi: 10.1109/TPAMI.2018.2852750
– volume: 95
  start-page: 138
  issue: 2
  year: 2011
  ident: 6894_CR119
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-010-0363-5
– volume: 82
  start-page: 102
  year: 2015
  ident: 6894_CR43
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.02.021
– ident: 6894_CR136
  doi: 10.3115/v1/N15-2003
– ident: 6894_CR126
– volume: 76
  start-page: 17
  year: 2015
  ident: 6894_CR59
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.11.017
– ident: 6894_CR181
  doi: 10.3115/1620754.1620824
– ident: 6894_CR148
  doi: 10.1145/1985793.1986020
– volume: 2
  start-page: 27
  year: 2014
  ident: 6894_CR100
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00163
– volume: 20
  start-page: 265
  year: 2011
  ident: 6894_CR116
  publication-title: Icwsm
– volume: 52
  start-page: 972
  issue: 9
  year: 2010
  ident: 6894_CR99
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2010.04.002
– ident: 6894_CR103
– ident: 6894_CR88
  doi: 10.1145/2484028.2484035
– ident: 6894_CR203
  doi: 10.1145/1553374.1553535
– volume: 5
  start-page: 361
  issue: Apr
  year: 2004
  ident: 6894_CR73
  publication-title: J Mach Learn Res
– ident: 6894_CR8
– volume: 37
  start-page: 9915
  issue: 2
  year: 2013
  ident: 6894_CR60
  publication-title: Journal of medical systems
  doi: 10.1007/s10916-012-9915-2
– volume: 6
  start-page: e17243
  issue: 3
  year: 2011
  ident: 6894_CR158
  publication-title: PloS one
  doi: 10.1371/journal.pone.0017243
– volume: 42
  start-page: 59
  year: 2014
  ident: 6894_CR65
  publication-title: Inf Syst
  doi: 10.1016/j.is.2013.11.003
– volume: 90
  start-page: 38
  year: 2014
  ident: 6894_CR204
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2013.07.003
– ident: 6894_CR182
  doi: 10.1609/icwsm.v4i1.14062
– ident: 6894_CR192
  doi: 10.1007/978-3-642-20841-6_37
– volume: 45
  start-page: 617
  issue: 1
  year: 2012
  ident: 6894_CR171
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.04.029
– volume: 27
  start-page: 4015
  issue: 15
  year: 2015
  ident: 6894_CR196
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.3474
– ident: 6894_CR191
  doi: 10.1145/2736277.2741115
– ident: 6894_CR40
– volume: 26
  start-page: 276
  issue: 1
  year: 2017
  ident: 6894_CR84
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2624140
– ident: 6894_CR77
– ident: 6894_CR177
  doi: 10.1145/2488388.2488514
– volume: 26
  start-page: 1158
  issue: 5
  year: 2014
  ident: 6894_CR146
  publication-title: IEEE transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2013.116
– ident: 6894_CR101
  doi: 10.1007/978-3-642-21726-5_14
– ident: 6894_CR139
  doi: 10.1145/1718487.1718522
– ident: 6894_CR16
  doi: 10.1214/09-AOAS309
– ident: 6894_CR5
– volume: 23
  start-page: 151
  issue: 1
  year: 2017
  ident: 6894_CR66
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2016.2598445
– ident: 6894_CR185
  doi: 10.1145/2588555.2593685
– volume: 28
  start-page: 675
  issue: 3
  year: 2016
  ident: 6894_CR202
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2492565
– volume: 20
  start-page: 717
  issue: 3
  year: 2012
  ident: 6894_CR186
  publication-title: Speech, and Language Processing
  doi: 10.1109/TASL.2011.2164530
– ident: 6894_CR157
  doi: 10.5244/C.25.112
– ident: 6894_CR151
  doi: 10.1145/1367497.1367513
– volume: 61
  start-page: 115
  year: 2014
  ident: 6894_CR45
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2014.02.003
– ident: 6894_CR114
  doi: 10.1109/ICSE.2013.6606598
– ident: 6894_CR144
  doi: 10.1109/SNPD.2016.7515925
– volume: 60
  start-page: 210
  year: 2016
  ident: 6894_CR97
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2016.02.003
– ident: 6894_CR120
  doi: 10.18653/v1/P17-1068
– ident: 6894_CR1
  doi: 10.1145/2124295.2124312
– ident: 6894_CR39
– volume: 427
  start-page: 424
  issue: 7
  year: 2007
  ident: 6894_CR142
  publication-title: Handbook of latent semantic analysis
– ident: 6894_CR200
  doi: 10.1145/2187836.2187955
– ident: 6894_CR170
– ident: 6894_CR29
  doi: 10.1145/2254556.2254572
– ident: 6894_CR56
  doi: 10.1609/aaai.v30i1.9892
– volume: 99
  start-page: 168
  year: 2016
  ident: 6894_CR82
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.02.005
– ident: 6894_CR168
  doi: 10.1109/ICDAR.2007.4377099
– ident: 6894_CR64
  doi: 10.1145/1935826.1935932
– volume: 53
  start-page: 989
  issue: 4
  year: 2017
  ident: 6894_CR141
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2016.10.004
– ident: 6894_CR42
  doi: 10.1145/2124295.2124306
– volume: 34
  start-page: 22
  issue: 4
  year: 2016
  ident: 6894_CR108
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/2956234
– volume: 84
  start-page: 18
  year: 2015
  ident: 6894_CR63
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.03.020
– volume: 51
  start-page: 36
  issue: 61801
  year: 2010
  ident: 6894_CR115
  publication-title: Urbana
– volume: 31
  start-page: 41
  issue: 1
  year: 2016
  ident: 6894_CR127
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2015.91
– ident: 6894_CR46
  doi: 10.1109/ICSM.2010.5609687
– ident: 6894_CR102
– ident: 6894_CR14
  doi: 10.1145/1143844.1143859
– ident: 6894_CR33
– volume: 124
  start-page: 61
  year: 2014
  ident: 6894_CR162
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2014.02.011
– ident: 6894_CR3
  doi: 10.1109/ASONAM.2016.7752329
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 6894_CR41
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– volume: 216
  start-page: 310
  year: 2016
  ident: 6894_CR183
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.017
– ident: 6894_CR18
  doi: 10.1609/aaai.v24i1.7717
– ident: 6894_CR107
– ident: 6894_CR180
  doi: 10.1016/j.infsof.2017.04.007
– ident: 6894_CR72
– ident: 6894_CR21
  doi: 10.1109/CCST.2015.7389660
– volume: 210
  start-page: 155
  year: 2016
  ident: 6894_CR94
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.144
– ident: 6894_CR90
  doi: 10.1109/ICMLA.2008.47
– ident: 6894_CR149
  doi: 10.1145/1985441.1985467
– ident: 6894_CR169
– volume-title: The New York times annotated corpus
  year: 2008
  ident: 6894_CR134
– volume: 71
  start-page: 86
  year: 2014
  ident: 6894_CR163
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.05.018
– ident: 6894_CR179
  doi: 10.1109/HICSS.2015.350
– ident: 6894_CR89
  doi: 10.1145/1321631.1321709
– ident: 6894_CR96
– ident: 6894_CR32
  doi: 10.1007/978-3-642-35527-1_2
– ident: 6894_CR68
  doi: 10.1145/2063576.2063616
– ident: 6894_CR47
  doi: 10.1007/978-3-319-10840-7_5
– volume: 11
  start-page: 401
  year: 2011
  ident: 6894_CR167
  publication-title: ICWSM
– ident: 6894_CR38
– volume: 51
  start-page: 2770
  issue: 5
  year: 2013
  ident: 6894_CR152
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2219314
– ident: 6894_CR118
– volume: 10
  start-page: 18
  issue: 2
  year: 2015
  ident: 6894_CR188
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/2811268
– ident: 6894_CR150
  doi: 10.1109/MSR.2009.5069496
– ident: 6894_CR184
  doi: 10.1145/1963405.1963443
– ident: 6894_CR76
  doi: 10.1145/2339530.2339692
– ident: 6894_CR75
  doi: 10.1609/aaai.v24i1.7523
– ident: 6894_CR153
– ident: 6894_CR159
  doi: 10.1145/2020408.2020480
– volume: 29
  start-page: 18
  issue: 2
  year: 2014
  ident: 6894_CR140
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2014.20
– volume: 26
  start-page: 3105
  issue: 24
  year: 2010
  ident: 6894_CR91
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq576
– ident: 6894_CR15
– volume: 369
  start-page: 188
  year: 2016
  ident: 6894_CR130
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.040
– ident: 6894_CR125
  doi: 10.1145/2020408.2020481
– ident: 6894_CR67
– ident: 6894_CR137
  doi: 10.18653/v1/P16-1064
– ident: 6894_CR129
– volume: 17
  start-page: 307
  issue: 4
  year: 2011
  ident: 6894_CR194
  publication-title: Chinese Journal Of Integrative Medicine
  doi: 10.1007/s11655-011-0699-x
– volume: 51
  start-page: 1680
  issue: 3
  year: 2013
  ident: 6894_CR147
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2205579
– ident: 6894_CR131
– volume: 19
  start-page: 1992
  issue: 12
  year: 2013
  ident: 6894_CR28
  publication-title: IEEE transactions on visualization and computer graphics
  doi: 10.1109/TVCG.2013.212
– ident: 6894_CR154
– ident: 6894_CR112
  doi: 10.1109/ICASSP.2014.6854595
– ident: 6894_CR37
– ident: 6894_CR124
  doi: 10.3115/1699510.1699543
– ident: 6894_CR193
– volume: 101
  start-page: 5228
  issue: suppl 1
  year: 2004
  ident: 6894_CR51
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0307752101
– volume: 28
  start-page: 2216
  issue: 8
  year: 2016
  ident: 6894_CR175
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2556661
– ident: 6894_CR62
– ident: 6894_CR20
  doi: 10.1007/978-3-642-45005-1_12
– volume: 3
  start-page: 299
  year: 2015
  ident: 6894_CR113
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00140
– ident: 6894_CR34
  doi: 10.1109/CVPR.2008.4587390
– volume: 32
  start-page: 182
  issue: 2
  year: 2014
  ident: 6894_CR71
  publication-title: Soc Sci Comput Rev
  doi: 10.1177/0894439313506847
– volume: 47
  start-page: 1138
  issue: 3
  year: 2014
  ident: 6894_CR58
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.06.010
– volume: 3
  start-page: 23
  issue: 2
  year: 2012
  ident: 6894_CR50
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– ident: 6894_CR10
  doi: 10.1145/2645710.2645765
– volume: 2
  start-page: 26
  issue: 3
  year: 2011
  ident: 6894_CR92
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– volume: 17
  start-page: 723
  issue: 4
  year: 2014
  ident: 6894_CR128
  publication-title: World Wide Web
  doi: 10.1007/s11280-013-0221-9
– ident: 6894_CR117
– ident: 6894_CR165
– ident: 6894_CR24
  doi: 10.1109/TKDE.2014.2313872
– ident: 6894_CR98
  doi: 10.1109/WCRE.2008.33
– volume: 15
  start-page: 267
  issue: 1
  year: 2014
  ident: 6894_CR11
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-15-267
– volume: 44
  start-page: 359
  issue: 2
  year: 2015
  ident: 6894_CR79
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-014-0764-9
– ident: 6894_CR19
– ident: 6894_CR161
  doi: 10.1145/2470654.2470659
– ident: 6894_CR143
– ident: 6894_CR54
  doi: 10.1145/1529282.1529607
– ident: 6894_CR95
  doi: 10.1609/aaai.v30i1.9969
– volume: 15
  start-page: S6
  issue: 17
  year: 2014
  ident: 6894_CR187
  publication-title: BMC Bioinforma
– ident: 6894_CR6
  doi: 10.1145/1806799.1806817
– ident: 6894_CR132
– volume: 8
  start-page: 17
  issue: 3
  year: 2014
  ident: 6894_CR138
  publication-title: ACM Trans Web (TWEB)
– ident: 6894_CR190
– ident: 6894_CR105
– ident: 6894_CR57
– ident: 6894_CR61
  doi: 10.1007/978-3-642-12275-0_39
– volume: 4
  start-page: 280
  issue: 2
  year: 2010
  ident: 6894_CR35
  publication-title: Frontiers of Computer Science in China
  doi: 10.1007/s11704-009-0062-y
– ident: 6894_CR52
  doi: 10.1145/1571941.1571989
– ident: 6894_CR195
– ident: 6894_CR173
  doi: 10.1609/aaai.v31i1.10717
– volume: 61
  start-page: 29
  year: 2014
  ident: 6894_CR201
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.02.003
– ident: 6894_CR9
  doi: 10.1109/SocialCom-PASSAT.2012.107
– volume: 41
  start-page: 4330
  issue: 9
  year: 2014
  ident: 6894_CR178
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.051
– ident: 6894_CR27
  doi: 10.1109/CVPR.2009.5206800
– ident: 6894_CR198
  doi: 10.1007/978-3-642-20161-5_34
– ident: 6894_CR135
  doi: 10.1109/ICSM.2010.5609654
– ident: 6894_CR13
  doi: 10.1145/860458.860460
– volume: 7
  start-page: 33
  issue: 3
  year: 2016
  ident: 6894_CR83
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– volume: 42
  start-page: 366
  issue: 1
  year: 2015
  ident: 6894_CR189
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.07.009
– ident: 6894_CR111
  doi: 10.1609/aaai.v29i1.9268
– volume: 40
  start-page: 621
  issue: 5
  year: 2014
  ident: 6894_CR7
  publication-title: J Inf Sci
  doi: 10.1177/0165551514538744
– volume: 36
  start-page: 10
  year: 2017
  ident: 6894_CR145
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2016.10.004
– volume: 40
  start-page: 60
  year: 2016
  ident: 6894_CR123
  publication-title: Computer Speech and Language
  doi: 10.1016/j.csl.2016.03.004
– ident: 6894_CR155
  doi: 10.1145/1150402.1150450
– volume: 149
  start-page: 811
  year: 2015
  ident: 6894_CR80
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.053
– ident: 6894_CR30
– volume: 171
  start-page: 412
  year: 2016
  ident: 6894_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.047
– ident: 6894_CR166
  doi: 10.1145/1718487.1718520
– volume: 66
  start-page: 30
  year: 2017
  ident: 6894_CR197
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2015.12.001
– volume: 7
  start-page: 28
  issue: 1
  year: 2010
  ident: 6894_CR86
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2009.2023536
– ident: 6894_CR4
  doi: 10.1109/ICDM.2008.140
– volume: 26
  start-page: 2002
  issue: 8
  year: 2014
  ident: 6894_CR23
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.175
– volume: 19
  start-page: 482
  issue: 3
  year: 2011
  ident: 6894_CR26
  publication-title: IEEE Transactions on Audio Speech, and Language Processing
  doi: 10.1109/TASL.2010.2050717
– ident: 6894_CR55
  doi: 10.1145/1963192.1963222
– ident: 6894_CR87
  doi: 10.1145/1835804.1835922
SSID ssj0016524
Score 2.6755695
Snippet Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15169
SubjectTerms Computer Communication Networks
Computer Science
Data mining
Data Structures and Information Theory
Dirichlet problem
Modelling
Multimedia Information Systems
Researchers
Software engineering
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlg4GUpTpzEZquAqkKFqZW6RY5zFkgordoUiX_P5dUWBEhsiWJ7uIt93_m7ByHnNlEclAGmwEcHReiQaWF9BjzxHFdbG0N-3_H0HPSG4nHkj6o87lkd7V5TksVJvUx243kqicMlC6QSTKyTDR9d9zyOa-h2FtRB4FedbKXD0Bzymsr8aYmvxmiJML-RooWt6e6S7Qok0k6p1T2yBmmT7NQNGGi1H5tka6Wa4D4Z9BE3phnFU-zVvKA-aE6ql1dy9KJ_37mkOk1oNp68Glp0wMFpt-XT7IauUtn4Rmfz6Tt8HJBh92Fw12NV0wRmPOlmzHoARsYBhIljHWu5NC4omxibeMqCRUSlhQ60a7QOlQ2BOxoxHEiNYEIEsXdIGuk4hSNCwfo80CEiJm1FKEzsgxtqxEsBupWKyxZxaulFpqoonje2eIuWtZBzgUco8CgXeCRa5GoxZVKW0_hrcLtWSVTtrFnk8tynluiJtch1rabl518XO_7X6BOyichIlTFhbdLIpnM4RfSRxWfF3_YJHirQjw
  priority: 102
  providerName: Springer Nature
Title Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey
URI https://link.springer.com/article/10.1007/s11042-018-6894-4
https://www.proquest.com/docview/2138378086
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7ct44McGojAqP-yBARZx4iT2XlAL7SY2KoRWaTxFjnMWk1Ba1gyJ_37nxlkHEntKIsd-uLPvPt_Z9wEcuEoL1Ba5xpQ2KNLk3EiXchRVEsXGuRJ9vOPLLDuZy88X6UUIuK3CscrOJq4NdbWwPkb-PhZ-L6UIgX9Y_uKeNcpnVwOFxjb0yQQr1YP-eDL7-u02j5ClgdZWRZx8o-jymuvLc8JfTYmE4pnSksu_PdMGbv6TIV07nuljeBgQIxu1Kn4CW1jvwqOOjYGFxbkLD-6UFtyD8zMCkXXDyKRd2h-kHOYz7G18jr0--zQ6ZKauWLNYXlq2psOhbkft2-odu5vXpi-2ur76jX-ewnw6Of94wgODAreJihvuEkSrygzzKnKRc0LZGLWrrKsS7dARvDLSZCa2xuTa5SgiQ4AOlSFkIbMyeQa9elHjc2DoUpGZnOCTcTKXtkwxzg2Bp4z2mFqoAUSd9Aobyot7loufxaYwshd4QQIvvMALOYA3t12WbW2N-37e71RShGW2KjaTYgBvOzVtmv872Iv7B3sJO4SLdHsibB96zdU1viLs0ZRD2FbT4yH0R9PxeOafx99PJ8Mw7ah1Ho9uANQh2k0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAc-gAqtqXFh1biUatx4iR2papChe0CC6dF4pY6zlggoeyWDa34U_2NHefBUiS4cUsU24fxZOYbj2c-gA-u0AK1Ra4xpgBFmpQb6WKOooiC0DiXoz_vODpOBify4DQ-nYO_XS2Mv1bZ2cTaUBdj68_IP4fCx1KKEPi3yS_uWaN8drWj0GjU4hCv_1DINv26v0v7-zEM-3uj7wPesgpwG6mw4i5CtCpPMC0CFzgnlA1Ru8K6ItIOHUEOI01iQmtMql2KIjAEclAZ8rYyySNa9wk8lRF5cl-Z3v9xk7VI4pZEVwWcPLHosqh1qZ7whTCBUDxRWnL5vx-cgds7-djazfVfwvMWn7KdRqFewRyWS_Ci435grSlYgsVbjQyXYTQkyFpWjAzouT0jVWA-n9-cBrKN4e7OJjNlwarx5NyymnyHpn1pnqaf2O0sOr2x6dXlb7xegZNHkexrmC_HJa4CQxeLxKQE1oyTqbR5jGFqCKolFNFqoXoQdNLLbNvM3HNqXGSzNsxe4BkJPPMCz2QPtm6mTJpOHg8NXuu2JGt_6mk2U8EebHfbNPt872JvHl5sHRYGo6NhNtw_PnwLzwiR6eYu2hrMV5dX-I5QT5W_r1WNwc_H1u1_eu4T3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRarKoVDaim2B-tBK_bIaJ05iIyEEXVZQtitUgcQtdZyxilRlt2wA8df4dYw3CUsrlRu3REl8GL_MvPHY8wDeukIL1Ba5xpgSFGlSbqSLOYoiCkLjXI5-veP7MNk7lt9O4pM5uG7Pwvhtla1PnDrqYmT9GvmXUPhcSnldINdsizjs9bfGf7hXkPKV1lZOo4bIAV5dUvo22dzv0Vy_C8P-7tHXPd4oDHAbqbDiLkK0Kk8wLQIXOCeUDVG7wroi0g4d0Q8jTWJCa0yqXYoiMER4UBmKvDLJIxr3EcynPivqwPzO7vDwx20NI4kbSV0VcIrLoq2pTg_uCX8sJhCKJ0pLLv-OijOq-091dhr0-kvwtGGrbLuG1zOYw3IZFlslCNY4hmVYuNPW8DkcDYjAlhUjd3pqfxEwmK_u12uD7P2gt_2BmbJg1Wh8atlUioc-26ivJp_Z3Zo63bHJ-dkFXr2A4wex7UvolKMSV4Chi0ViUqJuxslU2jzGMDVE3BLKb7VQXQha62W2aW3uFTZ-Z7OmzN7gGRk88wbPZBc-3n4yrvt63PfyajslWfOLT7IZILvwqZ2m2eP_Dvbq_sHewGPCdTbYHx68hidEz3S9MW0VOtXZOa4RBary9QZrDH4-NLxvAOMfGXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Dirichlet+allocation+%28LDA%29+and+topic+modeling%3A+models%2C+applications%2C+a+survey&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jelodar%2C+Hamed&rft.au=Wang%2C+Yongli&rft.au=Yuan%2C+Chi&rft.au=Xia%2C+Feng&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=11&rft.spage=15169&rft.epage=15211&rft_id=info:doi/10.1007%2Fs11042-018-6894-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon