Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey
Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, po...
Saved in:
Published in | Multimedia tools and applications Vol. 78; no. 11; pp. 15169 - 15211 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modelling; Latent Dirichlet Allocation (LDA) is one of the most popular in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper will be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated highly scholarly articles (between 2003 to 2016) related to topic modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. In addition, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA. |
---|---|
AbstractList | Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text documents. Researchers have published many articles in the field of topic modeling and applied in various fields such as software engineering, political science, medical and linguistic science, etc. There are various methods for topic modelling; Latent Dirichlet Allocation (LDA) is one of the most popular in this field. Researchers have proposed various models based on the LDA in topic modeling. According to previous work, this paper will be very useful and valuable for introducing LDA approaches in topic modeling. In this paper, we investigated highly scholarly articles (between 2003 to 2016) related to topic modeling based on LDA to discover the research development, current trends and intellectual structure of topic modeling. In addition, we summarize challenges and introduce famous tools and datasets in topic modeling based on LDA. |
Author | Li, Yanchao Jelodar, Hamed Yuan, Chi Zhao, Liang Wang, Yongli Feng, Xia Jiang, Xiahui |
Author_xml | – sequence: 1 givenname: Hamed surname: Jelodar fullname: Jelodar, Hamed organization: School of Computer Science and Technology, Nanjing University of Science and Technology – sequence: 2 givenname: Yongli surname: Wang fullname: Wang, Yongli email: YongliWang@njust.edu.cn organization: School of Computer Science and Technology, Nanjing University of Science and Technology, China Electronics Technology Cyber Security Co., Ltd – sequence: 3 givenname: Chi surname: Yuan fullname: Yuan, Chi organization: School of Computer Science and Technology, Nanjing University of Science and Technology – sequence: 4 givenname: Xia surname: Feng fullname: Feng, Xia organization: School of Computer Science and Technology, Nanjing University of Science and Technology – sequence: 5 givenname: Xiahui surname: Jiang fullname: Jiang, Xiahui organization: School of Computer Science and Technology, Nanjing University of Science and Technology – sequence: 6 givenname: Yanchao surname: Li fullname: Li, Yanchao organization: School of Computer Science and Technology, Nanjing University of Science and Technology – sequence: 7 givenname: Liang surname: Zhao fullname: Zhao, Liang organization: School of Computer Science and Technology, Nanjing University of Science and Technology |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcDbhSMJplHMu5K6wsG3NR1SDM3NWU6GZNU6L936giCoKt7LpzvPs4EjVrXAkLnlNxQQvhtoJRkDBMqcCHKDGdHaExznmLOGR31OhUE85zQEzQJYUMILXKWjdGyUhHamCyst_qtgZiopnFaReva5LJazK4S1dZJdJ3VydbV0Nh2fTeocJ2ormvs4D50Sdj5D9ifomOjmgBn33WKXh_ul_MnXL08Ps9nFdapYBGbFECLVQG8JoYYQ4VmUJpamzotDZgypypThWJaKV4aDpSoMmUgFOFZVqzSKboY5nbeve8gRLlxO9_2KyXrH065IKLoXXRwae9C8GBk5-1W-b2kRB7Ck0N4sg9PHsKTWc_wX4y28evN6JVt_iXZQIZ-S7sG_3PT39AnKIWFxg |
CitedBy_id | crossref_primary_10_1590_1678_6971_eramd240062 crossref_primary_10_3390_jtaer19010029 crossref_primary_10_1108_JEDT_03_2023_0094 crossref_primary_10_1177_09697330241263991 crossref_primary_10_1016_j_cities_2025_105717 crossref_primary_10_1016_j_eswa_2023_119873 crossref_primary_10_1111_poms_13732 crossref_primary_10_1080_08839514_2024_2403904 crossref_primary_10_1016_j_jdmm_2024_100862 crossref_primary_10_2196_40913 crossref_primary_10_3389_fnut_2022_765794 crossref_primary_10_1080_10919392_2024_2435115 crossref_primary_10_1016_j_ijdrr_2023_104105 crossref_primary_10_1016_j_yebeh_2024_109842 crossref_primary_10_1080_09654313_2022_2158722 crossref_primary_10_3390_en16062556 crossref_primary_10_1007_s12564_021_09677_x crossref_primary_10_1016_j_esd_2022_10_007 crossref_primary_10_1177_03611981221112096 crossref_primary_10_1017_S1755773924000079 crossref_primary_10_3390_drones8110688 crossref_primary_10_1002_cpe_5834 crossref_primary_10_1080_1369118X_2020_1864005 crossref_primary_10_1109_ACCESS_2020_3001072 crossref_primary_10_1057_s41599_024_03725_8 crossref_primary_10_1016_j_wpi_2023_102238 crossref_primary_10_5812_semj_123803 crossref_primary_10_1016_j_aei_2023_101929 crossref_primary_10_1108_MD_01_2023_0080 crossref_primary_10_3390_socsci13020078 crossref_primary_10_3390_info13050208 crossref_primary_10_1016_j_trip_2022_100672 crossref_primary_10_1007_s10489_020_01798_x crossref_primary_10_14778_3397230_3397242 crossref_primary_10_1007_s10489_022_03938_x crossref_primary_10_34172_apb_2024_029 crossref_primary_10_1080_08912963_2024_2330075 crossref_primary_10_1016_j_erss_2023_103028 crossref_primary_10_1177_00323217241311660 crossref_primary_10_1109_TCSS_2019_2926144 crossref_primary_10_1016_j_ijinfomgt_2023_102723 crossref_primary_10_1016_j_knosys_2022_109873 crossref_primary_10_1016_j_jclepro_2024_144451 crossref_primary_10_1080_23311975_2024_2364837 crossref_primary_10_1097_BCO_0000000000001249 crossref_primary_10_1371_journal_pone_0283896 crossref_primary_10_3390_informatics9040087 crossref_primary_10_1016_j_wpi_2023_102212 crossref_primary_10_36548_jucct_2022_3_008 crossref_primary_10_1007_s11042_024_20294_9 crossref_primary_10_3390_urbansci8040222 crossref_primary_10_3390_app142110054 crossref_primary_10_1016_j_cities_2025_105753 crossref_primary_10_1016_j_knosys_2021_108014 crossref_primary_10_1177_08912424221126918 crossref_primary_10_1145_3623269 crossref_primary_10_1016_j_rtbm_2024_101202 crossref_primary_10_3390_su16156378 crossref_primary_10_2196_55199 crossref_primary_10_2196_40719 crossref_primary_10_11111_jkana_2024_30_5_529 crossref_primary_10_1051_wujns_2021266464 crossref_primary_10_1177_08944393231184532 crossref_primary_10_1016_j_ymssp_2021_108583 crossref_primary_10_1007_s11192_022_04615_z crossref_primary_10_1080_0960085X_2020_1814680 crossref_primary_10_1016_j_landusepol_2021_105428 crossref_primary_10_4040_jkan_20287 crossref_primary_10_3390_math9172041 crossref_primary_10_3390_vaccines10111929 crossref_primary_10_4108_eetiot_6447 crossref_primary_10_1016_j_appet_2024_107507 crossref_primary_10_1155_2020_8841437 crossref_primary_10_1016_j_futures_2021_102817 crossref_primary_10_1007_s11042_019_7567_7 crossref_primary_10_1016_j_jjimei_2023_100154 crossref_primary_10_32604_cmc_2024_050600 crossref_primary_10_1016_j_eswa_2020_114320 crossref_primary_10_1038_s40494_025_01641_x crossref_primary_10_1007_s12652_020_01956_6 crossref_primary_10_1108_GKMC_10_2023_0384 crossref_primary_10_3390_modelling6020027 crossref_primary_10_7739_jkafn_2024_31_4_480 crossref_primary_10_2196_47328 crossref_primary_10_1080_02650487_2025_2458996 crossref_primary_10_1080_07294360_2021_1967887 crossref_primary_10_3390_info12060221 crossref_primary_10_1177_00027642231207078 crossref_primary_10_1155_2019_1293194 crossref_primary_10_1007_s10708_023_10858_x crossref_primary_10_1007_s10462_023_10471_x crossref_primary_10_1016_j_ibmed_2024_100182 crossref_primary_10_3390_app14156468 crossref_primary_10_1016_j_esr_2022_100859 crossref_primary_10_1007_s13278_022_00967_9 crossref_primary_10_2196_47934 crossref_primary_10_1016_j_jenvman_2022_117043 crossref_primary_10_1007_s11227_024_06640_6 crossref_primary_10_3390_w15213810 crossref_primary_10_1016_j_patrec_2022_03_021 crossref_primary_10_1038_s41598_024_62770_0 crossref_primary_10_1108_GKMC_01_2021_0006 crossref_primary_10_1080_15256480_2024_2389532 crossref_primary_10_63179_pjset_v1i1_46 crossref_primary_10_3390_jtaer18030075 crossref_primary_10_1021_acs_analchem_3c03852 crossref_primary_10_1007_s10462_022_10196_3 crossref_primary_10_2196_19222 crossref_primary_10_3390_su152316530 crossref_primary_10_56294_dm2023183 crossref_primary_10_1016_j_procs_2021_08_123 crossref_primary_10_1016_j_ress_2024_110656 crossref_primary_10_1007_s11831_022_09805_9 crossref_primary_10_1016_j_jretconser_2024_104034 crossref_primary_10_3390_electronics13101859 crossref_primary_10_3390_f12060664 crossref_primary_10_32604_cmc_2024_053488 crossref_primary_10_1016_j_jik_2022_100238 crossref_primary_10_11627_jksie_2024_47_4_056 crossref_primary_10_2196_23983 crossref_primary_10_1016_j_istruc_2021_11_018 crossref_primary_10_29407_intensif_v8i1_22058 crossref_primary_10_1177_18724981251318456 crossref_primary_10_1016_j_eswa_2023_120440 crossref_primary_10_1371_journal_pone_0298298 crossref_primary_10_1365_s40702_023_00994_w crossref_primary_10_1007_s10579_024_09753_9 crossref_primary_10_4236_ojapps_2021_104038 crossref_primary_10_1155_2022_7021431 crossref_primary_10_1080_03772063_2023_2220687 crossref_primary_10_1080_2573234X_2019_1675478 crossref_primary_10_1007_s10462_024_11011_x crossref_primary_10_7232_JKIIE_2023_49_6_455 crossref_primary_10_1080_19331681_2023_2262973 crossref_primary_10_1109_ACCESS_2022_3151870 crossref_primary_10_3390_ijerph18105270 crossref_primary_10_1111_ijcs_12915 crossref_primary_10_1186_s13326_020_00226_w crossref_primary_10_1142_S0218194023300038 crossref_primary_10_1007_s11192_020_03719_8 crossref_primary_10_1109_ACCESS_2024_3454292 crossref_primary_10_1108_DTA_10_2023_0697 crossref_primary_10_1109_ACCESS_2024_3481671 crossref_primary_10_1016_j_chb_2024_108252 crossref_primary_10_1016_j_is_2022_102131 crossref_primary_10_4018_JOEUC_294902 crossref_primary_10_1016_j_heliyon_2025_e42785 crossref_primary_10_1109_MRA_2021_3105639 crossref_primary_10_1016_j_health_2023_100288 crossref_primary_10_1080_19475705_2021_2012530 crossref_primary_10_1016_j_artmed_2022_102428 crossref_primary_10_1016_j_scs_2024_105586 crossref_primary_10_1016_j_eswa_2023_121599 crossref_primary_10_1016_j_jclepro_2022_135840 crossref_primary_10_3389_fpsyg_2023_1290443 crossref_primary_10_1186_s12911_024_02418_1 crossref_primary_10_1080_09537325_2024_2389147 crossref_primary_10_1016_j_chb_2024_108248 crossref_primary_10_1007_s10639_024_12943_1 crossref_primary_10_3390_a16020094 crossref_primary_10_1080_25741292_2022_2162252 crossref_primary_10_3390_ijerph191610347 crossref_primary_10_1109_ACCESS_2024_3481442 crossref_primary_10_61186_jsdp_20_2_39 crossref_primary_10_1016_j_inffus_2023_101970 crossref_primary_10_1016_j_procs_2018_10_492 crossref_primary_10_1007_s00267_024_02001_4 crossref_primary_10_1007_s13412_024_00930_4 crossref_primary_10_1016_j_techfore_2024_123690 crossref_primary_10_1007_s10796_023_10432_3 crossref_primary_10_1108_DTA_04_2024_0373 crossref_primary_10_3390_healthcare10061087 crossref_primary_10_3389_fmicb_2024_1510139 crossref_primary_10_3233_JIFS_220115 crossref_primary_10_1016_j_jclepro_2021_128818 crossref_primary_10_1016_j_jenvman_2023_117376 crossref_primary_10_1109_JBHI_2020_3001216 crossref_primary_10_1016_j_rser_2024_114705 crossref_primary_10_3390_su14137722 crossref_primary_10_1007_s40264_022_01176_1 crossref_primary_10_17496_kmer_2022_24_2_93 crossref_primary_10_1016_j_trip_2025_101325 crossref_primary_10_1007_s10506_023_09371_w crossref_primary_10_3389_fdmed_2022_833191 crossref_primary_10_1007_s11135_023_01695_8 crossref_primary_10_1097_PPO_0000000000000692 crossref_primary_10_2139_ssrn_4137347 crossref_primary_10_17496_kmer_23_043 crossref_primary_10_1016_j_ipm_2024_103959 crossref_primary_10_1016_j_isci_2024_111606 crossref_primary_10_1002_itl2_259 crossref_primary_10_7759_cureus_69030 crossref_primary_10_1002_cai2_68 crossref_primary_10_1108_GKMC_08_2022_0206 crossref_primary_10_14770_jgsk_2024_034 crossref_primary_10_1007_s00521_023_09400_4 crossref_primary_10_3390_s24154892 crossref_primary_10_1108_JARHE_04_2024_0157 crossref_primary_10_3390_ijerph18083963 crossref_primary_10_1016_j_ins_2021_01_008 crossref_primary_10_3390_educsci12110798 crossref_primary_10_1109_ACCESS_2022_3202960 crossref_primary_10_1109_TNSE_2023_3258931 crossref_primary_10_1007_s12583_021_1589_6 crossref_primary_10_1061_PPSCFX_SCENG_1458 crossref_primary_10_1007_s10479_023_05583_0 crossref_primary_10_3390_vaccines10122166 crossref_primary_10_1016_j_jbusres_2022_113488 crossref_primary_10_1007_s10639_024_13225_6 crossref_primary_10_3390_su17052328 crossref_primary_10_1002_sd_3027 crossref_primary_10_1007_s42979_021_00789_0 crossref_primary_10_2196_19625 crossref_primary_10_1016_j_datak_2025_102417 crossref_primary_10_1080_19427867_2022_2052643 crossref_primary_10_1049_2023_6613434 crossref_primary_10_1057_s11369_022_00299_8 crossref_primary_10_1109_ACCESS_2019_2960538 crossref_primary_10_3390_make5020029 crossref_primary_10_22467_jwmr_2025_03209 crossref_primary_10_1109_TKDE_2023_3300814 crossref_primary_10_1007_s00180_024_01584_0 crossref_primary_10_1002_bse_3763 crossref_primary_10_1016_j_nhres_2022_02_001 crossref_primary_10_1016_j_procs_2020_10_082 crossref_primary_10_5902_2318133887052 crossref_primary_10_1080_14742837_2021_1967736 crossref_primary_10_1016_j_chbr_2023_100322 crossref_primary_10_3390_su14052617 crossref_primary_10_1016_j_foar_2024_07_010 crossref_primary_10_1108_JHTT_04_2021_0116 crossref_primary_10_1109_JSTARS_2023_3348874 crossref_primary_10_1016_j_lisr_2024_101326 crossref_primary_10_1371_journal_pone_0288681 crossref_primary_10_3390_info14110609 crossref_primary_10_1016_j_giq_2024_101939 crossref_primary_10_1007_s13278_022_00898_5 crossref_primary_10_1016_j_techfore_2021_120692 crossref_primary_10_1108_DPRG_09_2023_0130 crossref_primary_10_3390_info14110600 crossref_primary_10_1108_BFJ_05_2021_0510 crossref_primary_10_3390_su17041689 crossref_primary_10_3390_su14063533 crossref_primary_10_1016_j_jretconser_2025_104285 crossref_primary_10_3389_fcomm_2022_1080948 crossref_primary_10_1016_j_cose_2023_103476 crossref_primary_10_1016_j_scitotenv_2024_171556 crossref_primary_10_3389_fcomp_2024_1486581 crossref_primary_10_1186_s13677_022_00291_9 crossref_primary_10_1016_j_ces_2024_120118 crossref_primary_10_1016_j_jum_2024_12_001 crossref_primary_10_1016_j_techfore_2023_123131 crossref_primary_10_1080_01446193_2022_2162096 crossref_primary_10_1108_JABS_10_2022_0354 crossref_primary_10_1109_TNSRE_2023_3304758 crossref_primary_10_1186_s40494_024_01504_x crossref_primary_10_1177_17480485241290361 crossref_primary_10_1177_03611981221125744 crossref_primary_10_1016_j_chb_2025_108651 crossref_primary_10_1007_s11760_024_03374_z crossref_primary_10_3390_computation12020028 crossref_primary_10_1007_s10489_023_04452_4 crossref_primary_10_1016_j_technovation_2021_102236 crossref_primary_10_2478_jdis_2024_0031 crossref_primary_10_1109_ACCESS_2021_3106120 crossref_primary_10_1109_MITP_2024_3433511 crossref_primary_10_1007_s44230_023_00058_8 crossref_primary_10_32604_cmc_2024_051598 crossref_primary_10_1016_j_ipm_2022_103185 crossref_primary_10_1007_s00357_024_09476_0 crossref_primary_10_1007_s10479_024_06433_3 crossref_primary_10_1007_s42979_021_00649_x crossref_primary_10_1057_s41599_025_04503_w crossref_primary_10_1088_1742_6596_1405_1_012004 crossref_primary_10_3390_app11156834 crossref_primary_10_1108_JM2_05_2022_0135 crossref_primary_10_1007_s00003_025_01553_9 crossref_primary_10_3390_fi12120210 crossref_primary_10_3390_jtaer19040174 crossref_primary_10_1093_reseval_rvaf005 crossref_primary_10_1088_1757_899X_1077_1_012012 crossref_primary_10_1109_ACCESS_2024_3521433 crossref_primary_10_1080_00207543_2024_2373425 crossref_primary_10_1093_pnasnexus_pgae155 crossref_primary_10_1007_s11280_022_01101_7 crossref_primary_10_1016_j_energy_2024_133624 crossref_primary_10_1016_j_ssci_2025_106804 crossref_primary_10_1016_j_chb_2025_108627 crossref_primary_10_1007_s10639_023_11817_2 crossref_primary_10_1016_j_eswa_2024_124632 crossref_primary_10_1145_3632297 crossref_primary_10_2196_64447 crossref_primary_10_1007_s10479_023_05594_x crossref_primary_10_1007_s10639_024_13003_4 crossref_primary_10_1109_TCSS_2022_3200213 crossref_primary_10_1007_s13042_024_02523_7 crossref_primary_10_3390_bs13100787 crossref_primary_10_3390_su16166983 crossref_primary_10_1080_02634937_2024_2442441 crossref_primary_10_1080_09613218_2022_2142498 crossref_primary_10_1016_j_tourman_2024_105007 crossref_primary_10_1016_j_heliyon_2022_e10635 crossref_primary_10_1108_MRR_03_2020_0139 crossref_primary_10_1007_s12652_019_01541_6 crossref_primary_10_2196_64838 crossref_primary_10_1007_s11469_022_00958_z crossref_primary_10_1021_acssynbio_1c00611 crossref_primary_10_3389_fpubh_2021_716333 crossref_primary_10_47836_jlc_10_01_06 crossref_primary_10_1108_EJIM_06_2023_0497 crossref_primary_10_1080_1540496X_2023_2199119 crossref_primary_10_1007_s11227_023_05423_9 crossref_primary_10_1016_j_seps_2024_101995 crossref_primary_10_3389_frma_2024_1189099 crossref_primary_10_1080_02188791_2024_2427182 crossref_primary_10_1177_14604582221075549 crossref_primary_10_1108_SJME_03_2022_0035 crossref_primary_10_2196_25697 crossref_primary_10_1007_s42979_023_02492_8 crossref_primary_10_1016_j_technovation_2021_102447 crossref_primary_10_1108_JD_08_2021_0157 crossref_primary_10_1177_09702385241256014 crossref_primary_10_1016_j_bdr_2024_100474 crossref_primary_10_1016_j_lwt_2024_116435 crossref_primary_10_1093_llc_fqad093 crossref_primary_10_3390_fi14040103 crossref_primary_10_1080_13645579_2023_2186566 crossref_primary_10_1016_j_ocecoaman_2022_106188 crossref_primary_10_1109_ACCESS_2022_3152159 crossref_primary_10_1007_s10479_024_06126_x crossref_primary_10_1016_j_neucom_2021_09_078 crossref_primary_10_1007_s10664_021_10014_4 crossref_primary_10_2139_ssrn_4193714 crossref_primary_10_1016_j_spc_2022_12_016 crossref_primary_10_1016_j_jjimei_2021_100032 crossref_primary_10_1007_s12652_022_04104_4 crossref_primary_10_1177_00139165241298067 crossref_primary_10_21511_ee_13_1__2022_08 crossref_primary_10_1016_j_heliyon_2024_e38510 crossref_primary_10_3389_fmed_2024_1415319 crossref_primary_10_1038_s41598_022_14396_3 crossref_primary_10_1111_rssc_12546 crossref_primary_10_32604_cmc_2023_031848 crossref_primary_10_1155_2022_7191657 crossref_primary_10_1016_j_envsci_2024_103966 crossref_primary_10_1007_s00267_023_01798_w crossref_primary_10_1016_j_jjimei_2024_100307 crossref_primary_10_1080_00343404_2024_2355998 crossref_primary_10_1016_j_resconrec_2020_105146 crossref_primary_10_1108_K_06_2024_1458 crossref_primary_10_1016_j_tranpol_2024_05_020 crossref_primary_10_1097_MD_0000000000040482 crossref_primary_10_1016_j_autcon_2024_105501 crossref_primary_10_1016_j_techfore_2022_122139 crossref_primary_10_30699_ijmm_17_2_150 crossref_primary_10_1016_j_techsoc_2024_102666 crossref_primary_10_1007_s11269_024_03894_w crossref_primary_10_1016_j_ijhm_2023_103473 crossref_primary_10_1108_IJQRM_07_2021_0217 crossref_primary_10_1007_s41870_022_01123_4 crossref_primary_10_1016_j_procs_2023_08_057 crossref_primary_10_1007_s10489_021_03098_4 crossref_primary_10_1016_j_inffus_2023_102142 crossref_primary_10_1109_JAS_2023_123156 crossref_primary_10_3390_su13031070 crossref_primary_10_1057_s41599_023_01768_x crossref_primary_10_1016_j_techfore_2023_122420 crossref_primary_10_2196_33909 crossref_primary_10_2478_jdis_2021_0024 crossref_primary_10_3233_IP_210321 crossref_primary_10_1108_JSOCM_01_2024_0006 crossref_primary_10_1016_j_iref_2023_05_006 crossref_primary_10_2196_40676 crossref_primary_10_2196_42856 crossref_primary_10_1016_j_procs_2024_08_122 crossref_primary_10_1016_j_jhtm_2022_07_002 crossref_primary_10_1111_ejed_12913 crossref_primary_10_3389_fonc_2023_1077922 crossref_primary_10_1109_ACCESS_2024_3443730 crossref_primary_10_3390_su15043057 crossref_primary_10_3390_su16010147 crossref_primary_10_1016_j_snb_2024_135706 crossref_primary_10_3389_fpubh_2025_1535218 crossref_primary_10_4018_JOEUC_356500 crossref_primary_10_1016_j_knosys_2021_107113 crossref_primary_10_1057_s41299_024_00199_x crossref_primary_10_1145_3469886 crossref_primary_10_1016_j_heliyon_2023_e20988 crossref_primary_10_1016_j_jjimei_2022_100150 crossref_primary_10_1177_0193841X231176869 crossref_primary_10_1002_int_22225 crossref_primary_10_3233_IDA_230349 crossref_primary_10_2478_jdis_2021_0008 crossref_primary_10_1108_ECAM_09_2024_1250 crossref_primary_10_1186_s40410_023_00223_3 crossref_primary_10_1515_dsll_2024_0010 crossref_primary_10_1080_09273948_2023_2262028 crossref_primary_10_1016_j_resconrec_2022_106636 crossref_primary_10_1016_j_tele_2020_101553 crossref_primary_10_1016_j_ins_2025_121941 crossref_primary_10_1016_j_landurbplan_2025_105323 crossref_primary_10_1155_2022_6751413 crossref_primary_10_1007_s11192_023_04642_4 crossref_primary_10_1109_ACCESS_2019_2950045 crossref_primary_10_1016_j_jbankfin_2025_107393 crossref_primary_10_1109_ACCESS_2023_3271751 crossref_primary_10_1016_j_neucom_2025_129638 crossref_primary_10_3390_aerospace8120357 crossref_primary_10_54439_gupayad_1316544 crossref_primary_10_1080_17512786_2024_2411624 crossref_primary_10_1016_j_jclepro_2023_137545 crossref_primary_10_1108_AJIM_12_2022_0531 crossref_primary_10_1177_1759720X241308037 crossref_primary_10_52911_itall_1193460 crossref_primary_10_1155_2024_8373370 crossref_primary_10_3390_tropicalmed7120425 crossref_primary_10_1016_j_procs_2023_01_321 crossref_primary_10_1016_j_compedu_2022_104700 crossref_primary_10_1007_s00500_022_07534_6 crossref_primary_10_3233_WEB_220089 crossref_primary_10_1155_jonm_2857497 crossref_primary_10_1016_j_xjep_2024_100712 crossref_primary_10_1109_ACCESS_2020_3001190 crossref_primary_10_3390_s25061731 crossref_primary_10_1145_3432690 crossref_primary_10_16995_dscn_10231 crossref_primary_10_1371_journal_pone_0305866 crossref_primary_10_4018_IJNCR_2020040102 crossref_primary_10_1016_j_artmed_2021_102096 crossref_primary_10_3389_fpsyg_2022_986838 crossref_primary_10_1049_cps2_12035 crossref_primary_10_29132_ijpas_1119552 crossref_primary_10_1016_j_ijmedinf_2022_104941 crossref_primary_10_1007_s13278_024_01213_0 crossref_primary_10_1108_ITP_12_2021_0930 crossref_primary_10_19053_20278306_v12_n2_2022_15271 crossref_primary_10_1080_0951192X_2024_2314781 crossref_primary_10_1109_ACCESS_2020_3001184 crossref_primary_10_1108_DTA_12_2023_0868 crossref_primary_10_1016_j_chb_2024_108500 crossref_primary_10_3389_frma_2024_1493944 crossref_primary_10_1080_09548963_2021_1998763 crossref_primary_10_1007_s10639_024_12726_8 crossref_primary_10_1108_LHT_08_2022_0401 crossref_primary_10_1109_ACCESS_2025_3539598 crossref_primary_10_1080_09588221_2024_2317849 crossref_primary_10_46790_erzisosbil_968808 crossref_primary_10_1016_j_inffus_2021_10_013 crossref_primary_10_1155_2021_8166376 crossref_primary_10_1108_INTR_08_2023_0649 crossref_primary_10_1155_2021_3315695 crossref_primary_10_1016_j_rtbm_2023_101031 crossref_primary_10_1007_s13278_023_01068_x crossref_primary_10_1007_s40012_022_00355_w crossref_primary_10_1049_sfw2_1905538 crossref_primary_10_1016_j_procs_2023_10_324 crossref_primary_10_3390_app142210616 crossref_primary_10_1186_s13756_021_00891_1 crossref_primary_10_1108_MIP_10_2023_0526 crossref_primary_10_1007_s00766_021_00370_4 crossref_primary_10_3390_ijerph191912793 crossref_primary_10_1145_3610063 crossref_primary_10_1145_3698797 crossref_primary_10_2196_47223 crossref_primary_10_1002_sys_21601 crossref_primary_10_1007_s00500_020_05067_4 crossref_primary_10_1109_MCG_2022_3149683 crossref_primary_10_3390_math10040585 crossref_primary_10_1007_s00607_024_01296_9 crossref_primary_10_1371_journal_pone_0248503 crossref_primary_10_2139_ssrn_4200134 crossref_primary_10_1016_j_eswa_2020_113347 crossref_primary_10_1016_j_jisa_2023_103501 crossref_primary_10_1016_j_neucom_2023_126614 crossref_primary_10_1186_s12911_022_01747_3 crossref_primary_10_1109_ACCESS_2020_3041645 crossref_primary_10_1177_18724981251319629 crossref_primary_10_12677_jisp_2024_134036 crossref_primary_10_1145_3695251 crossref_primary_10_1108_IJWIS_05_2024_0137 crossref_primary_10_1007_s10696_023_09520_y crossref_primary_10_1108_LHT_09_2020_0216 crossref_primary_10_3390_su11247108 crossref_primary_10_1108_K_07_2021_0584 crossref_primary_10_3390_electronics13101902 crossref_primary_10_1145_3507900 crossref_primary_10_48084_etasr_7257 crossref_primary_10_1016_j_ijdrr_2024_104546 crossref_primary_10_1016_j_tourman_2024_104981 crossref_primary_10_3390_geosciences14110314 crossref_primary_10_1007_s00521_022_07992_x crossref_primary_10_1016_j_heliyon_2024_e25411 crossref_primary_10_1080_10641734_2024_2334939 crossref_primary_10_1186_s40537_022_00636_w crossref_primary_10_3390_app15063355 crossref_primary_10_1016_j_ejor_2021_11_024 crossref_primary_10_1177_15586898211067647 crossref_primary_10_1371_journal_pone_0280221 crossref_primary_10_3390_su15053919 crossref_primary_10_3390_land13060843 crossref_primary_10_1007_s11219_023_09614_8 crossref_primary_10_1016_j_cie_2022_108395 crossref_primary_10_1108_EJIM_09_2022_0531 crossref_primary_10_32604_cmc_2023_040638 crossref_primary_10_3390_app142311350 crossref_primary_10_1016_j_comcom_2021_08_021 crossref_primary_10_20879_kjjcs_2023_67_1_004 crossref_primary_10_1016_j_ipm_2023_103376 crossref_primary_10_34172_doh_2021_32 crossref_primary_10_3390_computers12100191 crossref_primary_10_1177_17504813231207948 crossref_primary_10_7717_peerj_cs_991 crossref_primary_10_1007_s10639_023_12159_9 crossref_primary_10_3389_fpubh_2024_1105383 crossref_primary_10_1007_s10664_024_10476_2 crossref_primary_10_1016_j_trip_2024_101103 crossref_primary_10_1016_j_jksuci_2022_09_018 crossref_primary_10_1016_j_matcom_2020_12_009 crossref_primary_10_3390_su151712798 crossref_primary_10_1016_j_neunet_2024_106494 crossref_primary_10_1145_3459089 crossref_primary_10_1016_j_rser_2023_113242 crossref_primary_10_2196_29385 crossref_primary_10_1001_jamanetworkopen_2022_15014 crossref_primary_10_7831_ras_12_0_128 crossref_primary_10_3389_fvets_2024_1463332 crossref_primary_10_1007_s40615_024_01996_0 crossref_primary_10_1111_anti_70009 crossref_primary_10_29049_rjcc_2024_32_5_636 crossref_primary_10_1108_IJWBR_12_2023_0084 crossref_primary_10_1109_ACCESS_2023_3332854 crossref_primary_10_3390_app9010150 crossref_primary_10_3390_microorganisms12061237 crossref_primary_10_1371_journal_pone_0270872 crossref_primary_10_1155_2022_4116661 crossref_primary_10_1007_s11257_022_09354_7 crossref_primary_10_1016_j_aej_2024_10_098 crossref_primary_10_3390_app15020856 crossref_primary_10_1007_s13278_024_01233_w crossref_primary_10_1556_2006_2020_00031 crossref_primary_10_1016_j_scitotenv_2022_159981 crossref_primary_10_1016_j_heliyon_2024_e41246 crossref_primary_10_1007_s44196_024_00656_9 crossref_primary_10_1016_j_chaos_2023_113642 crossref_primary_10_2298_YJOR2403029L crossref_primary_10_1016_j_trd_2021_102856 crossref_primary_10_1109_ACCESS_2020_2974983 crossref_primary_10_2139_ssrn_4525957 crossref_primary_10_54097_ehss_v4i_2767 crossref_primary_10_1016_j_techfore_2023_123098 crossref_primary_10_1109_ACCESS_2021_3062052 crossref_primary_10_1016_j_eswa_2023_122511 crossref_primary_10_1109_ACCESS_2019_2960468 crossref_primary_10_1007_s13198_023_02082_0 crossref_primary_10_1080_13602381_2024_2352602 crossref_primary_10_3390_asi5010027 crossref_primary_10_1061_NHREFO_NHENG_1739 crossref_primary_10_1109_ACCESS_2022_3195337 crossref_primary_10_3390_en17235990 crossref_primary_10_1007_s13753_022_00405_6 crossref_primary_10_1007_s11192_021_04165_w crossref_primary_10_3390_buildings14103047 crossref_primary_10_1016_j_trd_2024_104422 crossref_primary_10_3389_fcomp_2021_775368 crossref_primary_10_3389_fpsyg_2023_1266220 crossref_primary_10_3390_geosciences15030100 crossref_primary_10_7717_peerj_cs_947 crossref_primary_10_3390_su151512065 crossref_primary_10_4040_jkan_23052 crossref_primary_10_1080_10447318_2024_2375799 crossref_primary_10_1007_s11192_021_04097_5 crossref_primary_10_1080_10919392_2021_1911586 crossref_primary_10_1016_j_jclepro_2024_141445 crossref_primary_10_1057_s41599_023_02274_w crossref_primary_10_1177_20594364231188350 crossref_primary_10_1109_ACCESS_2021_3106879 crossref_primary_10_1016_j_compind_2023_103996 crossref_primary_10_1007_s10796_024_10565_z crossref_primary_10_4018_IJSDS_310065 crossref_primary_10_1145_3462478 crossref_primary_10_1109_TITS_2022_3161623 crossref_primary_10_3390_computation9120140 crossref_primary_10_34135_mmidentity_2023_31 crossref_primary_10_1016_j_isci_2024_109883 crossref_primary_10_1109_ACCESS_2020_3039168 crossref_primary_10_14267_VEZTUD_2024_06_04 crossref_primary_10_1111_csp2_376 crossref_primary_10_1108_IJBM_08_2022_0351 crossref_primary_10_3390_app14135866 crossref_primary_10_1016_j_frl_2024_106116 crossref_primary_10_3233_JIFS_212614 crossref_primary_10_1186_s41239_023_00414_5 crossref_primary_10_1016_j_aap_2025_107965 crossref_primary_10_1016_j_infsof_2024_107499 crossref_primary_10_1177_00343552251320928 crossref_primary_10_32604_cmc_2023_036779 crossref_primary_10_1016_j_telpol_2023_102613 crossref_primary_10_1109_ACCESS_2023_3290488 crossref_primary_10_1177_01655515221148365 crossref_primary_10_1007_s11227_024_06887_z crossref_primary_10_1016_j_im_2022_103704 crossref_primary_10_3390_educsci13100987 crossref_primary_10_3390_app112311091 crossref_primary_10_1007_s12652_021_03658_z crossref_primary_10_17821_srels_2023_v60i5_170707 crossref_primary_10_1145_3589338 crossref_primary_10_1109_ACCESS_2025_3542562 crossref_primary_10_1080_02614367_2024_2392583 crossref_primary_10_1109_TNSM_2021_3131266 crossref_primary_10_1093_her_cyac002 crossref_primary_10_1016_j_eswa_2023_121391 crossref_primary_10_1093_llc_fqae009 crossref_primary_10_1177_03063127251321826 crossref_primary_10_3390_data7120173 crossref_primary_10_1007_s00354_022_00182_2 crossref_primary_10_1016_j_heliyon_2024_e40568 crossref_primary_10_1109_ACCESS_2023_3334619 crossref_primary_10_7763_IJCTE_2023_V15_1332 crossref_primary_10_1007_s11528_022_00794_x crossref_primary_10_1016_j_jisa_2020_102668 crossref_primary_10_1038_s41746_024_01383_3 crossref_primary_10_1002_itl2_273 crossref_primary_10_1016_j_eneco_2024_107564 crossref_primary_10_1016_j_jclepro_2022_134318 crossref_primary_10_3389_ebm_2025_10389 crossref_primary_10_1007_s43621_024_00286_3 crossref_primary_10_1016_j_jafr_2024_101342 crossref_primary_10_3390_info15030139 crossref_primary_10_1016_j_jbusres_2022_113377 crossref_primary_10_1016_j_procs_2022_11_308 crossref_primary_10_12677_CSA_2024_142048 crossref_primary_10_1016_j_techsoc_2022_102112 crossref_primary_10_1016_j_heliyon_2024_e31626 crossref_primary_10_1177_01655515211007724 crossref_primary_10_1155_2022_7882396 crossref_primary_10_1007_s10640_021_00554_0 crossref_primary_10_1016_j_asoc_2021_107720 crossref_primary_10_3390_math10162846 crossref_primary_10_35674_kent_1396279 crossref_primary_10_1057_s41599_023_02377_4 crossref_primary_10_1177_23998083241272097 crossref_primary_10_3390_app13010342 crossref_primary_10_1057_s41599_024_02668_4 crossref_primary_10_1007_s10489_020_02033_3 crossref_primary_10_1016_j_cose_2023_103128 crossref_primary_10_1016_j_eswa_2022_116741 crossref_primary_10_1080_09537287_2023_2286523 crossref_primary_10_1097_MD_0000000000037375 crossref_primary_10_1016_j_techfore_2024_123561 crossref_primary_10_1016_j_dim_2023_100061 crossref_primary_10_1016_j_future_2021_06_044 crossref_primary_10_1080_2331186X_2024_2447169 crossref_primary_10_1109_ACCESS_2020_3010033 crossref_primary_10_4018_JGIM_344835 crossref_primary_10_1016_j_procs_2021_10_003 crossref_primary_10_3390_info15030151 crossref_primary_10_1186_s12909_025_06674_1 crossref_primary_10_1109_TEM_2024_3385298 crossref_primary_10_1007_s11192_024_04961_0 crossref_primary_10_1175_WCAS_D_21_0163_1 crossref_primary_10_1007_s00180_022_01284_7 crossref_primary_10_3390_su142416392 crossref_primary_10_1016_j_erss_2020_101704 crossref_primary_10_1515_jisys_2022_0027 crossref_primary_10_1016_j_heliyon_2024_e38042 crossref_primary_10_1016_j_ijdrr_2023_103843 crossref_primary_10_1017_dsj_2024_15 crossref_primary_10_1155_2022_3865898 crossref_primary_10_12799_jkachn_2021_32_4_467 crossref_primary_10_7717_peerj_cs_1193 crossref_primary_10_1038_s41598_024_64527_1 crossref_primary_10_3390_publications13020015 crossref_primary_10_1057_s41599_024_04335_0 crossref_primary_10_1109_ACCESS_2023_3332644 crossref_primary_10_1016_j_cherd_2022_05_018 crossref_primary_10_1108_IMDS_05_2021_0283 crossref_primary_10_1590_1982_7849rac2024240102_en crossref_primary_10_1007_s41060_020_00232_2 crossref_primary_10_1155_2022_4421228 crossref_primary_10_3390_su131910856 crossref_primary_10_33940_data_2023_3_2 crossref_primary_10_1057_s41599_024_03530_3 crossref_primary_10_3390_ijgi13050141 crossref_primary_10_5041_RMMJ_10400 crossref_primary_10_1016_j_nlp_2024_100066 crossref_primary_10_4018_IJIIT_296239 crossref_primary_10_3390_su14095430 crossref_primary_10_1007_s10489_021_02898_y crossref_primary_10_1016_j_jup_2024_101799 crossref_primary_10_3390_rs13214414 crossref_primary_10_1108_K_11_2020_0788 crossref_primary_10_1108_IJEM_01_2023_0005 crossref_primary_10_1016_j_infsof_2021_106676 crossref_primary_10_3389_fpubh_2023_1088119 crossref_primary_10_1007_s11042_022_13202_6 crossref_primary_10_3390_app11136237 crossref_primary_10_1108_IJQRM_01_2022_0024 crossref_primary_10_1016_j_techsoc_2023_102446 crossref_primary_10_1007_s12626_021_00069_6 crossref_primary_10_1007_s11948_024_00472_6 crossref_primary_10_1016_j_envsci_2022_10_020 crossref_primary_10_3390_ijerph20053840 crossref_primary_10_1016_j_entcom_2023_100576 crossref_primary_10_1016_j_jretconser_2024_103802 crossref_primary_10_1016_j_ress_2024_110032 crossref_primary_10_3390_fi14070206 crossref_primary_10_3390_bdcc6040130 crossref_primary_10_1186_s12911_024_02656_3 crossref_primary_10_3390_app13179803 crossref_primary_10_1162_qss_a_00222 crossref_primary_10_3390_e22111303 crossref_primary_10_1016_j_ijcce_2024_05_003 crossref_primary_10_1186_s12888_023_05386_4 crossref_primary_10_1057_s41599_024_03066_6 crossref_primary_10_33206_mjss_894809 crossref_primary_10_1016_j_iot_2023_100772 crossref_primary_10_1007_s13369_022_06704_w crossref_primary_10_1108_IJBM_03_2024_0136 crossref_primary_10_3390_ijerph19095594 crossref_primary_10_1145_3638050 crossref_primary_10_1186_s13012_021_01120_4 crossref_primary_10_1007_s42979_020_00311_y crossref_primary_10_3390_ijerph19169800 crossref_primary_10_3390_su162411086 crossref_primary_10_1007_s00521_020_05662_4 crossref_primary_10_1007_s13278_021_00772_w crossref_primary_10_1039_D4FD00087K crossref_primary_10_1007_s00371_024_03655_1 crossref_primary_10_1177_2050157920934509 crossref_primary_10_1145_3703594 crossref_primary_10_1371_journal_pone_0272350 crossref_primary_10_1016_j_heliyon_2023_e18768 crossref_primary_10_1145_3689649 crossref_primary_10_31796_ogummf_1375611 crossref_primary_10_1007_s10639_024_13146_4 crossref_primary_10_1016_j_elerap_2022_101160 crossref_primary_10_12720_jait_15_1_79_86 crossref_primary_10_1007_s10845_024_02323_4 crossref_primary_10_1098_rsos_241692 crossref_primary_10_1108_BFJ_07_2021_0823 crossref_primary_10_1108_JIC_02_2020_0057 crossref_primary_10_1016_j_techfore_2022_122277 crossref_primary_10_1017_jlc_2024_13 crossref_primary_10_1007_s12530_022_09450_4 crossref_primary_10_3390_beverages10030074 crossref_primary_10_1016_j_heliyon_2024_e39953 crossref_primary_10_1016_j_jclepro_2023_138457 crossref_primary_10_3389_frsc_2023_1199041 crossref_primary_10_3390_systems12090380 crossref_primary_10_1155_2021_5051667 crossref_primary_10_3390_jpm12050797 crossref_primary_10_1016_j_energy_2024_133134 crossref_primary_10_1016_j_cities_2024_104857 crossref_primary_10_1016_j_knosys_2021_107273 crossref_primary_10_3390_app12042157 crossref_primary_10_1007_s11042_024_19981_4 crossref_primary_10_1007_s13278_025_01445_8 crossref_primary_10_1016_j_jcpo_2024_100505 crossref_primary_10_3233_JIFS_212135 crossref_primary_10_1080_13683500_2022_2086107 crossref_primary_10_3390_info13090434 crossref_primary_10_1016_j_aei_2021_101508 crossref_primary_10_12677_CSA_2023_138153 crossref_primary_10_3390_joitmc7020139 crossref_primary_10_1177_20539517211003310 crossref_primary_10_1016_j_jretconser_2024_103895 crossref_primary_10_1007_s11192_021_04247_9 crossref_primary_10_1016_j_tra_2020_05_005 crossref_primary_10_2139_ssrn_4948587 crossref_primary_10_1108_IJCHM_03_2021_0301 crossref_primary_10_1007_s10664_024_10500_5 crossref_primary_10_51551_verimlilik_1526436 crossref_primary_10_1108_EJIM_09_2023_0800 crossref_primary_10_1016_j_rser_2024_114350 crossref_primary_10_1108_BIJ_09_2021_0564 crossref_primary_10_1016_j_heliyon_2024_e29712 crossref_primary_10_1016_j_rser_2022_112856 crossref_primary_10_7739_jkafn_2024_31_2_157 crossref_primary_10_1080_19427867_2023_2212998 crossref_primary_10_3390_math11244917 crossref_primary_10_1016_j_jretconser_2023_103363 crossref_primary_10_32604_cmc_2023_032864 crossref_primary_10_3390_su162411275 crossref_primary_10_1016_j_eswa_2024_123279 crossref_primary_10_1016_j_chaos_2020_110123 crossref_primary_10_1016_j_cie_2024_110411 crossref_primary_10_1108_TR_06_2022_0303 crossref_primary_10_2196_48491 crossref_primary_10_3390_electronics11193022 crossref_primary_10_1007_s10772_024_10142_4 crossref_primary_10_3390_info14090474 crossref_primary_10_21015_vtcs_v11i1_1489 crossref_primary_10_1016_j_compchemeng_2022_107786 crossref_primary_10_1145_3665245 crossref_primary_10_3390_app12126243 crossref_primary_10_1109_ACCESS_2023_3264763 crossref_primary_10_3390_su16146186 crossref_primary_10_1142_S0218126620502485 crossref_primary_10_3390_su132011474 crossref_primary_10_1007_s13278_022_00980_y crossref_primary_10_1002_erv_2884 crossref_primary_10_3390_vetsci11100477 crossref_primary_10_1177_00202940231224586 crossref_primary_10_1177_13567667251323644 crossref_primary_10_1016_j_ijdrr_2023_103670 crossref_primary_10_3390_pathogens13100901 crossref_primary_10_1016_j_ipm_2021_102531 crossref_primary_10_1007_s12650_020_00739_7 crossref_primary_10_1016_j_datak_2023_102183 crossref_primary_10_1007_s10506_021_09303_6 |
Cites_doi | 10.1109/CC.2016.7781721 10.1109/TMM.2015.2510329 10.6028/NIST.SP.500-250.xlingual-umass 10.1016/j.ins.2016.05.047 10.1016/j.ins.2016.01.013 10.3115/v1/N15-1074 10.1145/2846092 10.1007/s10664-015-9402-8 10.1145/1143844.1143917 10.1007/978-1-4614-3223-4_13 10.1145/2487788.2488002 10.1109/ICME.2014.6890165 10.1371/journal.pone.0087555 10.1016/j.knosys.2012.08.003 10.1145/2786451.2786464 10.1016/j.poetic.2013.06.004 10.1007/s11042-015-2731-1 10.17705/1CAIS.03907 10.1016/j.future.2015.10.012 10.1109/TPAMI.2018.2852750 10.1007/s11263-010-0363-5 10.1016/j.knosys.2015.02.021 10.3115/v1/N15-2003 10.1016/j.knosys.2014.11.017 10.3115/1620754.1620824 10.1145/1985793.1986020 10.1162/tacl_a_00163 10.1016/j.infsof.2010.04.002 10.1145/2484028.2484035 10.1145/1553374.1553535 10.1007/s10916-012-9915-2 10.1371/journal.pone.0017243 10.1016/j.is.2013.11.003 10.1016/j.datak.2013.07.003 10.1609/icwsm.v4i1.14062 10.1007/978-3-642-20841-6_37 10.1016/j.patcog.2011.04.029 10.1002/cpe.3474 10.1145/2736277.2741115 10.1109/TIP.2016.2624140 10.1145/2488388.2488514 10.1109/TKDE.2013.116 10.1007/978-3-642-21726-5_14 10.1145/1718487.1718522 10.1214/09-AOAS309 10.1109/TVCG.2016.2598445 10.1145/2588555.2593685 10.1109/TKDE.2015.2492565 10.1109/TASL.2011.2164530 10.5244/C.25.112 10.1145/1367497.1367513 10.1016/j.dss.2014.02.003 10.1109/ICSE.2013.6606598 10.1109/SNPD.2016.7515925 10.1016/j.jbi.2016.02.003 10.18653/v1/P17-1068 10.1145/2124295.2124312 10.1145/2187836.2187955 10.1145/2254556.2254572 10.1609/aaai.v30i1.9892 10.1016/j.knosys.2016.02.005 10.1109/ICDAR.2007.4377099 10.1145/1935826.1935932 10.1016/j.ipm.2016.10.004 10.1145/2124295.2124306 10.1145/2956234 10.1016/j.knosys.2015.03.020 10.1109/MIS.2015.91 10.1109/ICSM.2010.5609687 10.1145/1143844.1143859 10.1016/j.cviu.2014.02.011 10.1109/ASONAM.2016.7752329 10.1007/s11263-009-0275-4 10.1016/j.neucom.2016.08.017 10.1609/aaai.v24i1.7717 10.1016/j.infsof.2017.04.007 10.1109/CCST.2015.7389660 10.1016/j.neucom.2015.10.144 10.1109/ICMLA.2008.47 10.1145/1985441.1985467 10.1016/j.knosys.2014.05.018 10.1109/HICSS.2015.350 10.1145/1321631.1321709 10.1007/978-3-642-35527-1_2 10.1145/2063576.2063616 10.1007/978-3-319-10840-7_5 10.1109/TGRS.2012.2219314 10.1145/2811268 10.1109/MSR.2009.5069496 10.1145/1963405.1963443 10.1145/2339530.2339692 10.1609/aaai.v24i1.7523 10.1145/2020408.2020480 10.1109/MIS.2014.20 10.1093/bioinformatics/btq576 10.1016/j.ins.2016.06.040 10.1145/2020408.2020481 10.18653/v1/P16-1064 10.1007/s11655-011-0699-x 10.1109/TGRS.2012.2205579 10.1109/TVCG.2013.212 10.1109/ICASSP.2014.6854595 10.3115/1699510.1699543 10.1073/pnas.0307752101 10.1109/TKDE.2016.2556661 10.1007/978-3-642-45005-1_12 10.1162/tacl_a_00140 10.1109/CVPR.2008.4587390 10.1177/0894439313506847 10.1016/j.patcog.2013.06.010 10.1145/2645710.2645765 10.1007/s11280-013-0221-9 10.1109/TKDE.2014.2313872 10.1109/WCRE.2008.33 10.1186/1471-2105-15-267 10.1007/s10115-014-0764-9 10.1145/2470654.2470659 10.1145/1529282.1529607 10.1609/aaai.v30i1.9969 10.1145/1806799.1806817 10.1007/978-3-642-12275-0_39 10.1007/s11704-009-0062-y 10.1145/1571941.1571989 10.1609/aaai.v31i1.10717 10.1016/j.knosys.2014.02.003 10.1109/SocialCom-PASSAT.2012.107 10.1016/j.eswa.2013.12.051 10.1109/CVPR.2009.5206800 10.1007/978-3-642-20161-5_34 10.1109/ICSM.2010.5609654 10.1145/860458.860460 10.1016/j.eswa.2014.07.009 10.1609/aaai.v29i1.9268 10.1177/0165551514538744 10.1016/j.inffus.2016.10.004 10.1016/j.csl.2016.03.004 10.1145/1150402.1150450 10.1016/j.neucom.2014.07.053 10.1016/j.neucom.2015.06.047 10.1145/1718487.1718520 10.1016/j.future.2015.12.001 10.1109/LGRS.2009.2023536 10.1109/ICDM.2008.140 10.1109/TKDE.2013.175 10.1109/TASL.2010.2050717 10.1145/1963192.1963222 10.1145/1835804.1835922 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-018-6894-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 15211 |
ExternalDocumentID | 10_1007_s11042_018_6894_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China under Grant grantid: 61170035 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3EH 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c382t-f3eec8b6e7d0f0ff18c2e9fdcfd39fef951a4a6a2caa79f7e10a932e8a07446b3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:29:04 EDT 2025 Tue Jul 01 02:06:55 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Fri Feb 21 02:37:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Topic modeling Semantic web Latent Dirichlet allocation Gibbs sampling Tag recommendation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-f3eec8b6e7d0f0ff18c2e9fdcfd39fef951a4a6a2caa79f7e10a932e8a07446b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2138378086 |
PQPubID | 54626 |
PageCount | 43 |
ParticipantIDs | proquest_journals_2138378086 crossref_primary_10_1007_s11042_018_6894_4 crossref_citationtrail_10_1007_s11042_018_6894_4 springer_journals_10_1007_s11042_018_6894_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ZengJLiuZ-QCaoX-QFast online EM for big topic modelingIEEE Trans Knowl Data Eng201628367568810.1109/TKDE.2015.2492565 Eidelman V, Boyd-Graber J, Resnik P (2012) Topic models for dynamic translation model adaptation. In: Proceedings of the 50th annual meeting of the association for computational linguistics: short papers-volume 2. Association for computational linguistics Rennie J (2017) The 20 Newsgroups data set. http Gethers M, Poshyvanyk D (2010) Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE international conference on software maintenance (ICSM). IEEE FuXDynamic online HDP model for discovering evolutionary topics from Chinese social textsNeurocomputing201617141242410.1016/j.neucom.2015.06.047 PaulMGirjuRA two-dimensional topic-aspect model for discovering multi-faceted topicsUrbana2010516180136 WangTProduct aspect extraction supervised with online domain knowledgeKnowl-Based Syst2014718610010.1016/j.knosys.2014.05.018 YangM-CRimH-CIdentifying interesting Twitter contents using topical analysisExpert Syst Appl20144194330433610.1016/j.eswa.2013.12.051 AlSumait L, Barbara D, Domeniconi C (2008) On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM’08. IEEE QinZCongYWanTTopic modeling of Chinese language beyond a bag-of-wordsComputer Speech and Language201640607810.1016/j.csl.2016.03.004 Alashri S et al (2016) An analysis of sentiments on facebook during the 2016 US presidential election. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016. IEEE LiZMultimedia news summarization in searchACM Transactions on Intelligent Systems and Technology (TIST)20167333 Xiao C et al (2017) Adverse drug reaction prediction with symbolic latent dirichlet allocation in AAAI Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th international conference on world wide web. ACM GerberMSPredicting crime using Twitter and kernel density estimationDecis Support Syst20146111512510.1016/j.dss.2014.02.003 SiersdorferSAnalyzing and mining comments and comment ratings on the social webACM Trans Web (TWEB)20148317 Wang S et al (2014) Cross media topic analytics based on synergetic content and user behavior modeling. In: IEEE International Conference on Multimedia and Expo (ICME), 2014. IEEE Yan X et al (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on world wide web. ACM Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE transactions on pattern analysis and machine intelligence WuHLocally discriminative topic modelingPattern Recogn20124516176251225.6822110.1016/j.patcog.2011.04.029 Chen B et al (2010) What is an opinion about? Exploring political standpoints using opinion scoring model. In: AAAI PaulMJDredzeMYou are what you tweet: analyzing twitter for public healthIcwsm201120265272 Linstead E, Lopes C, Baldi P (2008) An application of latent Dirichlet allocation to analyzing software evolution. In: 7th international conference on machine learning and applications, 2008. ICMLA’08. IEEE Chen L et al (2013) WT-LDA: user tagging augmented LDA for web service clustering. In: International conference on service-oriented computing. Springer YoshiiKGotoMA nonparametric Bayesian multipitch analyzer based on infinite latent harmonic allocation. IEEE Transactions on AudioSpeech, and Language Processing201220371773010.1109/TASL.2011.2164530 LewisDDRcv1: a new benchmark collection for text categorization researchJ Mach Learn Res20045Apr361397 WangHFinding complex biological relationships in recent PubMed articles using Bio-LDAPloS one201163e1724310.1371/journal.pone.0017243 XianghuaFMulti-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexiconKnowl-Based Syst20133718619510.1016/j.knosys.2012.08.003 SandhausEThe New York times annotated corpus2008PhiladelphiaLinguistic Data Consortium Phan X-H, Nguyen C-T (2006) Jgibblda: a java implementation of latent dirichlet allocation (lda) using gibbs sampling for parameter estimation and inference Cong Y et al (2012) Cross-modal information retrieval-a case study on Chinese wikipedia. In: International conference on advanced data mining and applications. Springer, Berlin Chaney AJ-B, Blei DM (2012) Visualizing Topic Models in ICWSM Cordeiro M (2012) Twitter event detection: combining wavelet analysis and topic inference summarization in doctoral symposium on informatics engineering Heintz I et al (2013) Automatic extraction of linguistic metaphor with lda topic modeling Inproceedings of the First Workshop on Metaphor in NLP Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Li J, Cardie C, Li S (2013) TopicSpam: a topic-model based approach for spam detection in ACL (2) Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining text data. Springer, pp 415–463 Chuang J, Manning CD, Heer J (2012) Termite: Visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces. ACM ZirnCStuckenschmidtHMultidimensional topic analysis in political textsData and Knowledge Engineering201490385310.1016/j.datak.2013.07.003 Lacoste-Julien S, Sha F, Jordan MI (2009) DiscLDA: discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems Xie P, Yang D, Xing EP (2015) Incorporating word correlation knowledge into topic modeling in HLT-NAACL Sharma V et al (2015) Analyzing Newspaper Crime Reports for Identification of Safe Transit Paths in HLT-NAACL ZoghbiSVulicIMoensM-FLatent Dirichlet allocation for linking user-generated content and e-commerce dataInf Sci201636757359910.1016/j.ins.2016.05.047 Chang J, Blei DM (2009) Relational topic models for document networks in international conference on artificial intelligence and statistics GretarssonBTopicnets: Visual analysis of large text corpora with topic modelingACM Transactions on Intelligent Systems and Technology (TIST)20123223 Manandhar S, Yuret D (2013) Second joint conference on lexical and computational semantics (* sem), volume 2: Proceedings of the seventh international workshop on semantic evaluation (semeval 2013). In: 2nd joint conference on lexical and computational semantics (* SEM), volume 2: proceedings of the 7th international workshop on semantic evaluation (SemEval 2013) FuXDynamic non-parametric joint sentiment topic mixture modelKnowl-Based Syst20158210211410.1016/j.knosys.2015.02.021 Everingham M et al (2008) The pascal visual object classes challenge 2007 (voc 2007) results (2007) Preotiuc-Pietro D et al (2017) Beyond binary labels: political ideology prediction of twitter users Inproceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) LiuBIdentifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocationBioinformatics201026243105311110.1093/bioinformatics/btq576 Thomas SW (2011) Mining software repositories using topic models. In: Proceedings of the 33rd international conference on software engineering. ACM Nakano T, Yoshii K, Goto M (2014) Vocal timbre analysis using latent Dirichlet allocation and cross-gender vocal timbre similarity. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. IEEE QianSMulti-modal event topic model for social event analysisIEEE Trans Multimedia201618223324610.1109/TMM.2015.2510329 SunSLuoCChenJA review of natural language processing techniques for opinion mining systemsInformation Fusion201736102510.1016/j.inffus.2016.10.004 Bhattacharya P et al (2014) Inferring user interests in the twitter social network. In: Proceedings of the 8th ACM conference on recommender systems. ACM ChooJUtopian: User-driven topic modeling based on interactive nonnegative matrix factorizationIEEE transactions on visualization and computer graphics201319121992200110.1109/TVCG.2013.212 TangHA multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite imagesIEEE Trans Geosci Remote Sens20135131680169210.1109/TGRS.2012.2205579 Yang X et al (2017) Characterizing malicious Android apps by mining topic-specific data flow signatures Information and Software Technology BisginHA phenome-guided drug repositioning through a latent variable modelBMC Bioinforma201415126710.1186/1471-2105-15-267 ZhengXIncorporating appraisal expression patterns into topic modeling for aspect and sentiment word identificationKnowl-Based Syst201461294710.1016/j.knosys.2014.02.003 Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th IEEE International working conference on mining software repositories, 2009. MSR’09. IEEE Ramage D, Rosen E (2011) Stanford topic modeling toolbox ZhaoFA personalized hashtag recommendation approach using LDA-based topic model in microblog environmentFutur Gener Comput Syst20166519620610.1016/j.future.2015.10.012 LiXOuyangJZhouXSupervised topic models for multi-label classificationNeurocomputing201514981181910.1016/j.neucom.2014.07.053 YehJ-FTanY-SLeeC-HTopic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocationNeurocomputing201621631031810.1016/j.neucom.2016.08.017 LiuZPlda+: Parallel latent dirichlet allocation with data placement and pipeline processingACM Transactions on Intelligent Systems and Technology (TIST)20112326 Wilson AT, Chew PA (2010) Term weighting schemes for latent dirichlet allocation. In: Human language technologies: the 2010 annual conference of the north a 6894_CR64 MS Gerber (6894_CR45) 2014; 61 6894_CR61 6894_CR62 6894_CR149 6894_CR148 TL Griffiths (6894_CR51) 2004; 101 6894_CR144 6894_CR154 6894_CR153 6894_CR151 6894_CR150 M Kim (6894_CR66) 2017; 23 M Lui (6894_CR100) 2014; 2 6894_CR67 6894_CR68 6894_CR69 6894_CR70 6894_CR74 6894_CR75 6894_CR72 6894_CR159 6894_CR157 6894_CR156 H Bisgin (6894_CR11) 2014; 15 H-M Lu (6894_CR97) 2016; 60 6894_CR155 6894_CR165 6894_CR164 Y Rao (6894_CR127) 2016; 31 6894_CR161 6894_CR76 6894_CR77 R Cohen (6894_CR31) 2014; 9 6894_CR85 DQ Nguyen (6894_CR113) 2015; 3 6894_CR129 6894_CR126 6894_CR125 6894_CR124 6894_CR132 6894_CR131 P Hu (6894_CR58) 2014; 47 6894_CR89 6894_CR87 6894_CR88 6894_CR93 DA McFarland (6894_CR106) 2013; 41 6894_CR90 6894_CR96 J Wang (6894_CR162) 2014; 124 6894_CR95 6894_CR139 6894_CR137 6894_CR136 6894_CR135 6894_CR133 6894_CR143 C Zirn (6894_CR204) 2014; 90 6894_CR98 S Sun (6894_CR145) 2017; 36 K Yoshii (6894_CR186) 2012; 20 M Song (6894_CR140) 2014; 29 T Wang (6894_CR163) 2014; 71 H Tang (6894_CR147) 2013; 51 6894_CR198 6894_CR195 6894_CR193 6894_CR192 Z Li (6894_CR78) 2013; 10 6894_CR191 H Wu (6894_CR171) 2012; 45 6894_CR190 S Debortoli (6894_CR36) 2016; 39 J Choo (6894_CR28) 2013; 19 J Weng (6894_CR167) 2011; 11 SK Lukins (6894_CR99) 2010; 52 H Wang (6894_CR158) 2011; 6 L Zhang (6894_CR196) 2015; 27 6894_CR169 6894_CR168 E Sandhaus (6894_CR134) 2008 6894_CR166 6894_CR174 6894_CR173 6894_CR170 VC Cheng (6894_CR23) 2014; 26 6894_CR179 T-H Chen (6894_CR22) 2016; 21 6894_CR177 6894_CR185 6894_CR184 6894_CR182 X Wang (6894_CR160) 2012; 12 6894_CR181 6894_CR180 S Tan (6894_CR146) 2014; 26 J Philbin (6894_CR119) 2011; 95 X Fu (6894_CR43) 2015; 82 B Gretarsson (6894_CR50) 2012; 3 A Daud (6894_CR35) 2010; 4 Y Ren (6894_CR130) 2016; 369 P Srijith (6894_CR141) 2017; 53 X Zheng (6894_CR201) 2014; 61 C Li (6894_CR79) 2015; 44 Z Qin (6894_CR123) 2016; 40 W Xie (6894_CR175) 2016; 28 X Fu (6894_CR44) 2016; 171 KE Levy (6894_CR71) 2014; 32 C Vaduva (6894_CR152) 2013; 51 M-C Yang (6894_CR178) 2014; 41 Z Li (6894_CR83) 2016; 7 X-P Zhang (6894_CR194) 2011; 17 KW Prier (6894_CR121) 2011 Z Cheng (6894_CR25) 2016; 34 Z Li (6894_CR84) 2017; 26 6894_CR18 6894_CR19 MH Alam (6894_CR2) 2016; 339 Y Rao (6894_CR128) 2014; 17 6894_CR13 Y Liu (6894_CR94) 2016; 210 6894_CR10 6894_CR16 6894_CR17 6894_CR14 6894_CR15 J-T Chien (6894_CR26) 2011; 19 DD Lewis (6894_CR73) 2004; 5 6894_CR20 6894_CR109 F Zhao (6894_CR199) 2016; 65 6894_CR107 6894_CR105 6894_CR104 6894_CR103 Z Liu (6894_CR92) 2011; 2 6894_CR102 6894_CR101 M Steyvers (6894_CR142) 2007; 427 X Yu (6894_CR189) 2015; 42 6894_CR110 6894_CR29 M Lienou (6894_CR86) 2010; 7 J Zeng (6894_CR202) 2016; 28 6894_CR24 6894_CR21 6894_CR27 Y Li (6894_CR81) 2016; 13 Y Zhang (6894_CR197) 2017; 66 M Everingham (6894_CR41) 2010; 88 6894_CR30 M Paul (6894_CR115) 2010; 51 R Yu (6894_CR188) 2015; 10 6894_CR118 6894_CR117 X Li (6894_CR80) 2015; 149 6894_CR114 J-F Yeh (6894_CR183) 2016; 216 6894_CR112 6894_CR111 S Siersdorfer (6894_CR138) 2014; 8 6894_CR120 J Miao (6894_CR108) 2016; 34 6894_CR34 Z Huang (6894_CR60) 2013; 37 6894_CR32 6894_CR33 DM Blei (6894_CR12) 2003; 3 6894_CR38 K Yu (6894_CR187) 2014; 15 6894_CR39 6894_CR37 Y Kim (6894_CR65) 2014; 42 6894_CR42 6894_CR40 6894_CR203 6894_CR200 B Liu (6894_CR91) 2010; 26 F Xianghua (6894_CR172) 2013; 37 A Bagheri (6894_CR7) 2014; 40 S Qian (6894_CR122) 2016; 18 6894_CR46 Z Xu (6894_CR176) 2017; 76 6894_CR49 6894_CR47 6894_CR48 6894_CR9 L Hou (6894_CR59) 2015; 76 6894_CR52 6894_CR53 D Jiang (6894_CR63) 2015; 84 6894_CR1 6894_CR4 S Zoghbi (6894_CR205) 2016; 367 6894_CR3 6894_CR6 6894_CR5 6894_CR8 MJ Paul (6894_CR116) 2011; 20 C Li (6894_CR82) 2016; 99 6894_CR56 6894_CR57 6894_CR54 6894_CR55 |
References_xml | – reference: Hu Y et al (2012) ET-LDA: joint topic modeling for aligning events and their twitter feedback. In: AAAI – reference: Balasubramanyan R et al (2012) Modeling polarizing topics: When do different political communities respond differently to the same news? in ICWSM – reference: Heintz I et al (2013) Automatic extraction of linguistic metaphor with lda topic modeling Inproceedings of the First Workshop on Metaphor in NLP – reference: Jiang Z et al (2012) Using link topic model to analyze traditional chinese medicine clinical symptom-herb regularities. In: 2012 IEEE 14th international conference on e-health networking, applications and services (Healthcom). IEEE – reference: Rehurek R, Sojka P (2011) Gensim-statistical semantics in python – reference: XianghuaFMulti-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexiconKnowl-Based Syst20133718619510.1016/j.knosys.2012.08.003 – reference: Manandhar S, Yuret D (2013) Second joint conference on lexical and computational semantics (* sem), volume 2: Proceedings of the seventh international workshop on semantic evaluation (semeval 2013). In: 2nd joint conference on lexical and computational semantics (* SEM), volume 2: proceedings of the 7th international workshop on semantic evaluation (SemEval 2013) – reference: Li J, Cardie C, Li S (2013) TopicSpam: a topic-model based approach for spam detection in ACL (2) – reference: ZhangLSunXZhugeHTopic discovery of clusters from documents with geographical locationConcurrency and Computation: Practice and Experience201527154015403810.1002/cpe.3474 – reference: Chen T-H et al (2012) Explaining software defects using topic models. In: 2012 9th IEEE working conference on mining software repositories (MSR), IEEE – reference: Chen L et al (2013) WT-LDA: user tagging augmented LDA for web service clustering. In: International conference on service-oriented computing. Springer – reference: WangTProduct aspect extraction supervised with online domain knowledgeKnowl-Based Syst2014718610010.1016/j.knosys.2014.05.018 – reference: WuHLocally discriminative topic modelingPattern Recogn20124516176251225.6822110.1016/j.patcog.2011.04.029 – reference: LiCThe author-topic-community model for author interest profiling and community discoveryKnowl Inf Syst201544235938310.1007/s10115-014-0764-9 – reference: Chang J (2011) lda: collapsed Gibbs sampling methods for topic models. R – reference: QianSMulti-modal event topic model for social event analysisIEEE Trans Multimedia201618223324610.1109/TMM.2015.2510329 – reference: LiZEnhancing news organization for convenient retrieval and browsing. ACM Transactions on Multimedia ComputingCommunications, and Applications (TOMM)20131011 – reference: YuRHeXLiuYGlad: group anomaly detection in social media analysisACM Transactions on Knowledge Discovery from Data (TKDD)20151021810.1145/2811268 – reference: Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM – reference: HouLNewsminer: Multifaceted news analysis for event searchKnowl-Based Syst201576172910.1016/j.knosys.2014.11.017 – reference: Wang Y, Mori G (2011) Max-margin latent Dirichlet allocation for image classification and annotation. In: BMVC – reference: Wang Y-C, Burke M, Kraut RE (2013) Gender, topic, and audience response: an analysis of user-generated content on facebook. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM – reference: BisginHA phenome-guided drug repositioning through a latent variable modelBMC Bioinforma201415126710.1186/1471-2105-15-267 – reference: Asgari E, Chappelier J-C (2013) Linguistic Resources and Topic Models for the Analysis of Persian Poems in CLfL@ NAACL-HLT – reference: ZirnCStuckenschmidtHMultidimensional topic analysis in political textsData and Knowledge Engineering201490385310.1016/j.datak.2013.07.003 – reference: Wilson AT, Chew PA (2010) Term weighting schemes for latent dirichlet allocation. In: Human language technologies: the 2010 annual conference of the north american chapter of the association for computational linguistics. Association for Computational Linguistics – reference: VaduvaCGavatIDatcuMLatent Dirichlet allocation for spatial analysis of satellite imagesIEEE Trans Geosci Remote Sens20135152770278610.1109/TGRS.2012.2219314 – reference: RenYWangRJiDA topic-enhanced word embedding for Twitter sentiment classificationInf Sci201636918819810.1016/j.ins.2016.06.040 – reference: FuXDynamic online HDP model for discovering evolutionary topics from Chinese social textsNeurocomputing201617141242410.1016/j.neucom.2015.06.047 – reference: ChengVCProbabilistic aspect mining model for drug reviewsIEEE Trans Knowl Data Eng20142682002201310.1109/TKDE.2013.175 – reference: Wang Y et al (2016) Catching fire via” Likes”: inferring topic preferences of trump followers on twitter. In: ICWSM – reference: Yin H et al (2014) A temporal context-aware model for user behavior modeling in social media systems. In: Proceedings of the ACM SIGMOD international conference on Management of data, 2014. ACM – reference: Henderson K, Eliassi-Rad T (2009) Applying latent dirichlet allocation to group discovery in large graphs. In: 2009 Proceedings of the ACM symposium on applied computing. ACM – reference: Yang X et al (2017) Characterizing malicious Android apps by mining topic-specific data flow signatures Information and Software Technology – reference: Chuang J, Manning CD, Heer J (2012) Termite: Visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces. ACM – reference: Everingham M et al (2008) The pascal visual object classes challenge 2007 (voc 2007) results (2007) – reference: JiangDSG-WSTD: a framework for scalable geographic web search topic discoveryKnowl-Based Syst201584183310.1016/j.knosys.2015.03.020 – reference: SiersdorferSAnalyzing and mining comments and comment ratings on the social webACM Trans Web (TWEB)20148317 – reference: Blei DM, Jordan MI (2003) Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval. ACM – reference: ZoghbiSVulicIMoensM-FLatent Dirichlet allocation for linking user-generated content and e-commerce dataInf Sci201636757359910.1016/j.ins.2016.05.047 – reference: Ramage D, Manning CD, Dumais S (2011) Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM – reference: LiCHierarchical Bayesian nonparametric models for knowledge discovery from electronic medical recordsKnowl-Based Syst20169916818210.1016/j.knosys.2016.02.005 – reference: Linstead E et al (2007) Mining concepts from code with probabilistic topic models. ACM, Inproceedings of the twenty-second IEEE/ACM international conference on automated software engineering – reference: PhilbinJSivicJZissermanAGeometric latent dirichlet allocation on a matching graph for large-scale image datasetsInt J Comput Vis201195213815328350461235.6828210.1007/s11263-010-0363-5 – reference: BagheriASaraeeMDe JongFADM-LDA: an aspect detection model based on topic modelling using the structure of review sentencesJ Inf Sci201440562163610.1177/0165551514538744 – reference: MiaoJHuangJXZhaoJTopPRF: a probabilistic framework for integrating topic space into pseudo relevance feedbackACM Transactions on Information Systems (TOIS)20163442210.1145/2956234 – reference: SandhausEThe New York times annotated corpus2008PhiladelphiaLinguistic Data Consortium – reference: Steyvers M, Griffiths T (2011) Matlab topic modeling toolbox 1.4. http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm – reference: Shi B et al (2016) Detecting common discussion topics across culture from news reader comments in ACL (1) – reference: WangJImage tag refinement by regularized latent Dirichlet allocationComput Vis Image Underst2014124617010.1016/j.cviu.2014.02.011 – reference: McInerney J, Blei DM (2014) Discovering newsworthy tweets with a geographical topic model in NewsKDD: Data Science for News Publishing workshop Workshop in conjunction with KDD2014 the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining – reference: Linstead E, Lopes C, Baldi P (2008) An application of latent Dirichlet allocation to analyzing software evolution. In: 7th international conference on machine learning and applications, 2008. ICMLA’08. IEEE – reference: ChengZShenJOn effective location-aware music recommendationACM Transactions on Information Systems (TOIS)201634213356738010.1145/2846092 – reference: Cheng X et al (2014) Btm: topic modeling over short texts. IEEE Transactions on Knowledge and Data Engineering 26(1):2928–2941 – reference: Wang C, Blei DM (2009) Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In: Advances in neural information processing systems – reference: Bauer S et al (2012) Talking places: Modelling and analysing linguistic content in foursquare. In: Privacy, security, risk and trust (PASSAT), 2012 international conference on and 2012 international confernece on social computing (SocialCom). IEEE – reference: PaulMGirjuRA two-dimensional topic-aspect model for discovering multi-faceted topicsUrbana2010516180136 – reference: LuH-MWeiC-PHsiaoF-YModeling healthcare data using multiple-channel latent Dirichlet allocationJ Biomed Inform20166021022310.1016/j.jbi.2016.02.003 – reference: Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering, vol 1. ACM – reference: Eisenstein J et al (2010) A latent variable model for geographic lexical variation. In: Proceedings of the 2010 conference on empirical methods in natural language processings. Association for computational linguistics – reference: HuangZLuXDuanHLatent treatment pattern discovery for clinical processesJournal of medical systems2013372991510.1007/s10916-012-9915-2 – reference: NguyenDQImproving topic models with latent feature word representationsTransactions of the Association for Computational Linguistics2015329931310.1162/tacl_a_00140 – reference: GerberMSPredicting crime using Twitter and kernel density estimationDecis Support Syst20146111512510.1016/j.dss.2014.02.003 – reference: LukinsSKKraftNAEtzkornLHBug localization using latent dirichlet allocationInf Softw Technol201052997299010.1016/j.infsof.2010.04.002 – reference: AlamMHRyuW-JLeeSJoint multi-grain topic sentiment: modeling semantic aspects for online reviewsInf Sci201633920622310.1016/j.ins.2016.01.013 – reference: Rennie J (2017) The 20 Newsgroups data set. http – reference: EveringhamMThe pascal visual object classes (voc) challengeInt J Comput Vis201088230333810.1007/s11263-009-0275-4 – reference: Nakano T, Yoshii K, Goto M (2014) Vocal timbre analysis using latent Dirichlet allocation and cross-gender vocal timbre similarity. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014. IEEE – reference: Preotiuc-Pietro D et al (2017) Beyond binary labels: political ideology prediction of twitter users Inproceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) – reference: SrijithPSub-story detection in Twitter with hierarchical Dirichlet processesInf Process Manag2017534989100310.1016/j.ipm.2016.10.004 – reference: Weng J et al (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining. ACM – reference: Xiao C et al (2017) Adverse drug reaction prediction with symbolic latent dirichlet allocation in AAAI – reference: ChenT-HThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8 – reference: Cohen R, Ruths D (2013) Classifying political orientation on twitter: it’s not easy!. In: ICWSM – reference: Cong Y et al (2012) Cross-modal information retrieval-a case study on Chinese wikipedia. In: International conference on advanced data mining and applications. Springer, Berlin – reference: WangHFinding complex biological relationships in recent PubMed articles using Bio-LDAPloS one201163e1724310.1371/journal.pone.0017243 – reference: Zhang J et al (2013) Social Influence Locality for Modeling Retweeting Behaviors in IJCAI – reference: Mao X-L et al, SSHLDA: a semi-supervised hierarchical topic model (2012). In: Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Association for computational linguistics – reference: SteyversMGriffithsTProbabilistic topic modelsHandbook of latent semantic analysis20074277424440 – reference: Eidelman V, Boyd-Graber J, Resnik P (2012) Topic models for dynamic translation model adaptation. In: Proceedings of the 50th annual meeting of the association for computational linguistics: short papers-volume 2. Association for computational linguistics – reference: RaoYContextual sentiment topic model for adaptive social emotion classificationIEEE Intell Syst2016311414710.1109/MIS.2015.91 – reference: Sizov S (2010) Geofolk latent spatial semantics in web 2.0 social media. In: Proceedings of the third ACM international conference on web search and data mining. ACM – reference: Lewis DD (1997) Reuters-21578 text categorization collection – reference: QinZCongYWanTTopic modeling of Chinese language beyond a bag-of-wordsComputer Speech and Language201640607810.1016/j.csl.2016.03.004 – reference: Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE transactions on pattern analysis and machine intelligence – reference: Wick M, Ross M, Learned-Miller E (2007) Context-sensitive error correction: using topic models to improve OCR. In: 9th international conference on document analysis and recognition, 2007. ICDAR 2007. IEEE – reference: Ramage D et al (2009) Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 conference on empirical methods in natural language processing: volume 1-volume 1. Association for computational linguistics – reference: Sun X et al (2016) Exploring topic models in software engineering data analysis: a survey. In: 2016 17th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD). IEEE – reference: Thomas SW (2011) Mining software repositories using topic models. In: Proceedings of the 33rd international conference on software engineering. ACM – reference: Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM – reference: LewisDDRcv1: a new benchmark collection for text categorization researchJ Mach Learn Res20045Apr361397 – reference: LiuBIdentifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocationBioinformatics201026243105311110.1093/bioinformatics/btq576 – reference: LiXOuyangJZhouXSupervised topic models for multi-label classificationNeurocomputing201514981181910.1016/j.neucom.2014.07.053 – reference: ZengJLiuZ-QCaoX-QFast online EM for big topic modelingIEEE Trans Knowl Data Eng201628367568810.1109/TKDE.2015.2492565 – reference: Li R (2012) Towards social user profiling: unified and discriminative influence model for inferring home locations. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM – reference: Panichella A et al (2013) How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the 2013 international conference on software engineering. IEEE Press – reference: Yin Z et al (2011) Geographical topic discovery and comparison. In: Proceedings of the 20th international conference on world wide web. ACM – reference: Greene D, Cross JP (2015) Unveiling the political agenda of the european parliament plenary: a topical analysis. In: Proceedings of the ACM web science conference. ACM – reference: WengJLeeB-SEvent detection in twitterICWSM201111401408 – reference: Minka T, Lafferty J (2002) Expectation-propagation for the generative aspect model. In: Proceedings of the eighteenth conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc – reference: Gethers M, Poshyvanyk D (2010) Using relational topic models to capture coupling among classes in object-oriented software systems. In: 2010 IEEE international conference on software maintenance (ICSM). IEEE – reference: Giri R et al (2014) User behavior modeling in a cellular network using latent dirichlet allocation. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer, Berlin – reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res20033Jan99310221112.68379 – reference: Cristani M et al (2008) Geo-located image analysis using latent representations. in Computer Vision and Pattern Recognition, 2008. CVPR, vol 2008. IEEE, IEEE Conference on – reference: SunSLuoCChenJA review of natural language processing techniques for opinion mining systemsInformation Fusion201736102510.1016/j.inffus.2016.10.004 – reference: Fang Y et al (2012) Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the fifth ACM international conference on web search and data mining. ACM – reference: Bhattacharya P et al (2014) Inferring user interests in the twitter social network. In: Proceedings of the 8th ACM conference on recommender systems. ACM – reference: Yang M, Kiang M (2015) Extracting Consumer Health Expressions of Drug Safety from Web Forum. In: 2015 48th Hawaii international conference on system sciences (HICSS). IEEE – reference: Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th IEEE International working conference on mining software repositories, 2009. MSR’09. IEEE – reference: YangM-CRimH-CIdentifying interesting Twitter contents using topical analysisExpert Syst Appl20144194330433610.1016/j.eswa.2013.12.051 – reference: Lin CX et al (2010) PET: a statistical model for popular events tracking in social communities. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM – reference: LiZTangJWeakly supervised deep matrix factorization for social image understandingIEEE Trans Image Process201726127628835800020701281510.1109/TIP.2016.2624140 – reference: Yano T, Smith NA (2010) What’s worthy of comment? content and comment volume in political blogs in ICWSM – reference: Zhai Z, Liu B, Xu H, Jia P (2011) Constrained LDA for grouping product features in opinion mining. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 448–459 – reference: SongMKimMCJeongYKAnalyzing the political landscape of 2012 korean presidential election in twitterIEEE Intell Syst2014292182610.1109/MIS.2014.20 – reference: ZhangYiDoctor: personalized and professionalized medical recommendations based on hybrid matrix factorizationFutur Gener Comput Syst201766303510.1016/j.future.2015.12.001 – reference: Lange D, Naumann F (2011) Frequency-aware similarity measures: why Arnold Schwarzenegger is always a duplicate. In: Proceedings of the 20th ACM international conference on Information and knowledge management. ACM – reference: Chen S-H et al (2015) Latent dirichlet allocation based blog analysis for criminal intention detection system. In: 2015 International Carnahan Conference on Security Technology (ICCST). IEEE – reference: LiYDesign and implementation of Weibo sentiment analysis based on LDA and dependency parsingChina Communications201613119110510.1109/CC.2016.7781721 – reference: Hong L, Frias-Martinez E, Frias-Martinez V (2016) Topic models to infer socio-economic maps in AAAI – reference: Chang J, Blei DM (2009) Relational topic models for document networks in international conference on artificial intelligence and statistics – reference: Sharma V et al (2015) Analyzing Newspaper Crime Reports for Identification of Safe Transit Paths in HLT-NAACL – reference: Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining text data. Springer, pp 415–463 – reference: GretarssonBTopicnets: Visual analysis of large text corpora with topic modelingACM Transactions on Intelligent Systems and Technology (TIST)20123223 – reference: ZhaoFA personalized hashtag recommendation approach using LDA-based topic model in microblog environmentFutur Gener Comput Syst20166519620610.1016/j.future.2015.10.012 – reference: Chaney AJ-B, Blei DM (2012) Visualizing Topic Models in ICWSM – reference: ChooJUtopian: User-driven topic modeling based on interactive nonnegative matrix factorizationIEEE transactions on visualization and computer graphics201319121992200110.1109/TVCG.2013.212 – reference: Rosen-Zvi M et al (2004) The author-topic model for authors and documents. In: Proceedings of the 20th conference on uncertainty in artificial intelligence. AUAI Press – reference: YuKMining hidden knowledge for drug safety assessment: topic modeling of LiverTox as a case studyBMC Bioinforma20141517S6 – reference: Jagarlamudi J, Daume H III (2010) Extracting multilingual topics from unaligned comparable corpora. In: ECIR. Springer – reference: Phan X-H, Nguyen C-T (2006) Jgibblda: a java implementation of latent dirichlet allocation (lda) using gibbs sampling for parameter estimation and inference – reference: WangXGerberMSBrownDEAutomatic Crime Prediction Using Events Extracted from Twitter PostsSBP201212231238 – reference: GriffithsTLSteyversMFinding scientific topicsProc Natl Acad Sci2004101suppl 15228523510.1073/pnas.0307752101 – reference: TanSInterpreting the public sentiment variations on twitterIEEE transactions on knowledge and data engineering20142651158117010.1109/TKDE.2013.116 – reference: KimYShimKTWILITE: a recommendation system for twitter using a probabilistic model based on latent Dirichlet allocationInf Syst201442597710.1016/j.is.2013.11.003 – reference: Xie P, Yang D, Xing EP (2015) Incorporating word correlation knowledge into topic modeling in HLT-NAACL – reference: YoshiiKGotoMA nonparametric Bayesian multipitch analyzer based on infinite latent harmonic allocation. IEEE Transactions on AudioSpeech, and Language Processing201220371773010.1109/TASL.2011.2164530 – reference: Lin J et al, Addressing cold-start in app recommendation: latent user models constructed from twitter followers (2013). In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval. ACM – reference: Thomas SW et al (2011) Modeling the evolution of topics in source code histories. In: Proceedings of the 8th working conference on mining software repositories. ACM – reference: Zhao WX et al (2011) Comparing twitter and traditional media using topic models. In: European conference on information retrieval. Springer – reference: HuPLatent topic model for audio retrievalPattern Recogn20144731138114310.1016/j.patcog.2013.06.010 – reference: Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet allocation. In: 15th working conference on reverse engineering, 2008. WCRE’08. IEEE – reference: Zhang H et al (2007) Probabilistic community discovery using hierarchical latent gaussian mixture model. In: AAAI – reference: Wang S et al (2014) Cross media topic analytics based on synergetic content and user behavior modeling. In: IEEE International Conference on Multimedia and Expo (ICME), 2014. IEEE – reference: Lacoste-Julien S, Sha F, Jordan MI (2009) DiscLDA: discriminative learning for dimensionality reduction and classification. In: Advances in neural information processing systems – reference: RaoYBuilding emotional dictionary for sentiment analysis of online newsWorld Wide Web201417472374210.1007/s11280-013-0221-9 – reference: Larkey LS, Connell ME (2001) Arabic information retrieval at UMass in TREC-10 in TREC – reference: ZhangX-PTopic model for chinese medicine diagnosis and prescription regularities analysis: case on diabetesChinese Journal Of Integrative Medicine201117430731310.1007/s11655-011-0699-x – reference: Yuan J et al (2015) Lightlda: big topic models on modest computer clusters. In: Proceedings of the 24th international conference on world wide web. International world wide web conferences steering committee – reference: Hong L, Dan O, Davison BD (2011) Predicting popular messages in twitter. In: Proceedings of the 20th international conference companion on world wide web. ACM – reference: Guo J et al (2009) Named entity recognition in query. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval. ACM – reference: Chong W, Blei D, Li F-F (2009) Simultaneous image classification and annotation. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE – reference: Li W, McCallum A (2006) Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of the 23rd international conference on machine learning. ACM – reference: LiuZPlda+: Parallel latent dirichlet allocation with data placement and pipeline processingACM Transactions on Intelligent Systems and Technology (TIST)20112326 – reference: CohenRRedundancy-aware topic modeling for patient record notesPloS one201492e8755510.1371/journal.pone.0087555 – reference: AlSumait L, Barbara D, Domeniconi C (2008) On-line lda: adaptive topic models for mining text streams with applications to topic detection and tracking. In: Eighth IEEE International Conference on Data Mining, 2008. ICDM’08. IEEE – reference: Savage T et al (2010) Topic XP: exploring topics in source code using latent Dirichlet allocation. In: 2010 IEEE International Conference on software maintenance (ICSM). IEEE – reference: Alashri S et al (2016) An analysis of sentiments on facebook during the 2016 US presidential election. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016. IEEE – reference: Godin F et al (2013) Using topic models for twitter hashtag recommendation. In: Proceedings of the 22nd international conference on world wide web. ACM – reference: Lee S et al (2016) LARGen: automatic signature generation for Malwares using latent Dirichlet allocation IEEE Transactions on Dependable and Secure Computing – reference: Yuan B et al (2014). In: International conference on web information systems engineering. Springer, Berlin – reference: McCallum A, Corrada-Emmanuel A, Wang X (2005) Topic and role discovery in social networks. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp 786–791 – reference: LiZMultimedia news summarization in searchACM Transactions on Intelligent Systems and Technology (TIST)20167333 – reference: XieWTopicsketch: real-time bursty topic detection from twitterIEEE Trans Knowl Data Eng20162882216222910.1109/TKDE.2016.2556661 – reference: Chen B et al (2010) What is an opinion about? Exploring political standpoints using opinion scoring model. In: AAAI – reference: Li F, Huang M, Zhu X (2010) Sentiment Analysis with Global Topics and Local Dependency in AAAI – reference: TangHA multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite imagesIEEE Trans Geosci Remote Sens20135131680169210.1109/TGRS.2012.2205579 – reference: Yan X et al (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on world wide web. ACM – reference: FuXDynamic non-parametric joint sentiment topic mixture modelKnowl-Based Syst20158210211410.1016/j.knosys.2015.02.021 – reference: Madan A et al (2011) Pervasive sensing to model political opinions in face-to-face networks. In: International conference on pervasive computing. Springer – reference: Jo Y, Oh AH (2011) Aspect and sentiment unification model for online review analysis. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM – reference: Yano T, Cohen WW, Smith NA (2009) Predicting response to political blog posts with topic models. In: Proceedings of human language technologies: the 2009 annual conference of the north american chapter of the association for computational linguistics. Association for computational linguistics – reference: Ahmed A et al (2012) Scalable inference in latent variable models. In: Proceedings of the fifth ACM international conference on web search and data mining. ACM – reference: YuXYangJXieZ-QA semantic overlapping community detection algorithm based on field samplingExpert Syst Appl201542136637510.1016/j.eswa.2014.07.009 – reference: PrierKWIdentifying health-related topics on twitter. in International Conference on Social Computing2011Behavioral-Cultural Modeling, and PredictionSpringer – reference: Zhai K et al (2012) Mr. LDA: a flexible large scale topic modeling package using variational inference in mapreduce. In: Proceedings of the 21st international conference on world wide web. ACM – reference: McCallum AK (2002), A machine learning for language toolkit, Mallet – reference: McFarlandDADifferentiating language usage through topic modelsPoetics2013416607625313788310.1016/j.poetic.2013.06.004 – reference: ZhengXIncorporating appraisal expression patterns into topic modeling for aspect and sentiment word identificationKnowl-Based Syst201461294710.1016/j.knosys.2014.02.003 – reference: ChienJ-TChuehC-HDirichlet class language models for speech recognitionIEEE Transactions on Audio Speech, and Language Processing201119348249510.1109/TASL.2010.2050717 – reference: LiuYWangJJiangYPT-LDA: a latent variable model to predict personality traits of social network usersNeurocomputing201621015516310.1016/j.neucom.2015.10.144 – reference: KimMTopiclens: efficient multi-level visual topic exploration of large-scale document collectionsIEEE Trans Vis Comput Graph201723115116010.1109/TVCG.2016.2598445 – reference: YehJ-FTanY-SLeeC-HTopic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocationNeurocomputing201621631031810.1016/j.neucom.2016.08.017 – reference: Wu Y et al (2012) Ranking gene-drug relationships in biomedical literature using latent dirichlet allocation. In: Pacific symposium on biocomputing. NIH Public Access – reference: Millar JR, Peterson GL, Mendenhall MJ (2009) Document clustering and visualization with latent Dirichlet allocation and self-organizing maps in FLAIRS Conference – reference: PaulMJDredzeMYou are what you tweet: analyzing twitter for public healthIcwsm201120265272 – reference: Diao Q et al (2012) Finding bursty topics from microblogs. In: Proceedings of the 50th annual meeting of the association for computational linguistics: long papers-volume 1. Association for Computational Linguistics – reference: Paul M, Factorial M. Dredze. (2012) LDA: Sparse multi-dimensional text models in advances in neural information processing systems – reference: LevyKEFranklinMDriving regulation: using topic models to examine political contention in the US trucking industrySoc Sci Comput Rev201432218219410.1177/0894439313506847 – reference: Vulic I, De Smet W, Moens M-F (2011) Identifying word translations from comparable corpora using latent topic models. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies: short papers-volume 2. Association for computational linguistics – reference: Wallach HM, Mimno DM, McCallum A (2009) Rethinking LDA: why priors matter. In: Advances in neural information processing systems – reference: Liu Y et al (2016). In: AAAI, Fortune teller: predicting Your Career Path – reference: Lu H-M, Lee C-H (2015) The topic-over-time mixed membership model (TOT-MMM): a twitter hashtag recommendation model that accommodates for temporal clustering effects. IEEE Intell Sys 30(1):18–25 – reference: Roberts K et al (2012) EmpaTweet: annotating and detecting emotions on twitter. In: LREC – reference: Murdock J, Allen C (2015) Visualization Techniques for Topic Model Checking. In: AAAI – reference: DebortoliSText mining for information systems researchers: an annotated topic modeling tutorialCAIS201639710.17705/1CAIS.03907 – reference: Zhu J, Ahmed A, Xing EP (2009) MedLDA: maximum margin supervised topic models for regression and classification. In: Proceedings of the 26th annual international conference on machine learning. ACM – reference: Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th international conference on world wide web. ACM – reference: DaudAKnowledge discovery through directed probabilistic topic models: a surveyFrontiers of Computer Science in China20104228030110.1007/s11704-009-0062-y – reference: XuZCrowdsourcing based social media data analysis of urban emergency eventsMultimedia Tools and Applications2017769115671158410.1007/s11042-015-2731-1 – reference: LienouMMaitreHDatcuMSemantic annotation of satellite images using latent Dirichlet allocationIEEE Geosci Remote Sens Lett201071283210.1109/LGRS.2009.2023536 – reference: Cordeiro M (2012) Twitter event detection: combining wavelet analysis and topic inference summarization in doctoral symposium on informatics engineering – reference: LuiMLauJHBaldwinTAutomatic detection and language identification of multilingual documentsTransactions of the Association for Computational Linguistics20142274010.1162/tacl_a_00163 – reference: Blei DM, Lafferty JD (2006) Dynamic topic models. In: Proceedings of the 23rd international conference on machine learning. ACM – reference: Ramage D, Rosen E (2011) Stanford topic modeling toolbox – volume: 13 start-page: 91 issue: 11 year: 2016 ident: 6894_CR81 publication-title: China Communications doi: 10.1109/CC.2016.7781721 – ident: 6894_CR110 – ident: 6894_CR156 – volume: 18 start-page: 233 issue: 2 year: 2016 ident: 6894_CR122 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2015.2510329 – ident: 6894_CR133 – ident: 6894_CR69 doi: 10.6028/NIST.SP.500-250.xlingual-umass – ident: 6894_CR104 – volume: 367 start-page: 573 year: 2016 ident: 6894_CR205 publication-title: Inf Sci doi: 10.1016/j.ins.2016.05.047 – volume: 339 start-page: 206 year: 2016 ident: 6894_CR2 publication-title: Inf Sci doi: 10.1016/j.ins.2016.01.013 – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 6894_CR78 publication-title: Communications, and Applications (TOMM) – ident: 6894_CR174 doi: 10.3115/v1/N15-1074 – volume: 34 start-page: 13 issue: 2 year: 2016 ident: 6894_CR25 publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/2846092 – ident: 6894_CR53 – volume: 21 start-page: 1843 issue: 5 year: 2016 ident: 6894_CR22 publication-title: Empir Softw Eng doi: 10.1007/s10664-015-9402-8 – ident: 6894_CR74 doi: 10.1145/1143844.1143917 – ident: 6894_CR93 doi: 10.1007/978-1-4614-3223-4_13 – ident: 6894_CR109 – ident: 6894_CR70 – ident: 6894_CR48 doi: 10.1145/2487788.2488002 – volume: 3 start-page: 993 issue: Jan year: 2003 ident: 6894_CR12 publication-title: J Mach Learn Res – ident: 6894_CR164 doi: 10.1109/ICME.2014.6890165 – volume: 9 start-page: e87555 issue: 2 year: 2014 ident: 6894_CR31 publication-title: PloS one doi: 10.1371/journal.pone.0087555 – volume: 37 start-page: 186 year: 2013 ident: 6894_CR172 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.08.003 – ident: 6894_CR49 doi: 10.1145/2786451.2786464 – volume: 12 start-page: 231 year: 2012 ident: 6894_CR160 publication-title: SBP – volume: 41 start-page: 607 issue: 6 year: 2013 ident: 6894_CR106 publication-title: Poetics doi: 10.1016/j.poetic.2013.06.004 – volume-title: Identifying health-related topics on twitter. in International Conference on Social Computing year: 2011 ident: 6894_CR121 – volume: 76 start-page: 11567 issue: 9 year: 2017 ident: 6894_CR176 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-015-2731-1 – volume: 39 start-page: 7 year: 2016 ident: 6894_CR36 publication-title: CAIS doi: 10.17705/1CAIS.03907 – volume: 65 start-page: 196 year: 2016 ident: 6894_CR199 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2015.10.012 – ident: 6894_CR17 – ident: 6894_CR85 doi: 10.1109/TPAMI.2018.2852750 – volume: 95 start-page: 138 issue: 2 year: 2011 ident: 6894_CR119 publication-title: Int J Comput Vis doi: 10.1007/s11263-010-0363-5 – volume: 82 start-page: 102 year: 2015 ident: 6894_CR43 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.02.021 – ident: 6894_CR136 doi: 10.3115/v1/N15-2003 – ident: 6894_CR126 – volume: 76 start-page: 17 year: 2015 ident: 6894_CR59 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.11.017 – ident: 6894_CR181 doi: 10.3115/1620754.1620824 – ident: 6894_CR148 doi: 10.1145/1985793.1986020 – volume: 2 start-page: 27 year: 2014 ident: 6894_CR100 publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00163 – volume: 20 start-page: 265 year: 2011 ident: 6894_CR116 publication-title: Icwsm – volume: 52 start-page: 972 issue: 9 year: 2010 ident: 6894_CR99 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2010.04.002 – ident: 6894_CR103 – ident: 6894_CR88 doi: 10.1145/2484028.2484035 – ident: 6894_CR203 doi: 10.1145/1553374.1553535 – volume: 5 start-page: 361 issue: Apr year: 2004 ident: 6894_CR73 publication-title: J Mach Learn Res – ident: 6894_CR8 – volume: 37 start-page: 9915 issue: 2 year: 2013 ident: 6894_CR60 publication-title: Journal of medical systems doi: 10.1007/s10916-012-9915-2 – volume: 6 start-page: e17243 issue: 3 year: 2011 ident: 6894_CR158 publication-title: PloS one doi: 10.1371/journal.pone.0017243 – volume: 42 start-page: 59 year: 2014 ident: 6894_CR65 publication-title: Inf Syst doi: 10.1016/j.is.2013.11.003 – volume: 90 start-page: 38 year: 2014 ident: 6894_CR204 publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2013.07.003 – ident: 6894_CR182 doi: 10.1609/icwsm.v4i1.14062 – ident: 6894_CR192 doi: 10.1007/978-3-642-20841-6_37 – volume: 45 start-page: 617 issue: 1 year: 2012 ident: 6894_CR171 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.04.029 – volume: 27 start-page: 4015 issue: 15 year: 2015 ident: 6894_CR196 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.3474 – ident: 6894_CR191 doi: 10.1145/2736277.2741115 – ident: 6894_CR40 – volume: 26 start-page: 276 issue: 1 year: 2017 ident: 6894_CR84 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2624140 – ident: 6894_CR77 – ident: 6894_CR177 doi: 10.1145/2488388.2488514 – volume: 26 start-page: 1158 issue: 5 year: 2014 ident: 6894_CR146 publication-title: IEEE transactions on knowledge and data engineering doi: 10.1109/TKDE.2013.116 – ident: 6894_CR101 doi: 10.1007/978-3-642-21726-5_14 – ident: 6894_CR139 doi: 10.1145/1718487.1718522 – ident: 6894_CR16 doi: 10.1214/09-AOAS309 – ident: 6894_CR5 – volume: 23 start-page: 151 issue: 1 year: 2017 ident: 6894_CR66 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2016.2598445 – ident: 6894_CR185 doi: 10.1145/2588555.2593685 – volume: 28 start-page: 675 issue: 3 year: 2016 ident: 6894_CR202 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2492565 – volume: 20 start-page: 717 issue: 3 year: 2012 ident: 6894_CR186 publication-title: Speech, and Language Processing doi: 10.1109/TASL.2011.2164530 – ident: 6894_CR157 doi: 10.5244/C.25.112 – ident: 6894_CR151 doi: 10.1145/1367497.1367513 – volume: 61 start-page: 115 year: 2014 ident: 6894_CR45 publication-title: Decis Support Syst doi: 10.1016/j.dss.2014.02.003 – ident: 6894_CR114 doi: 10.1109/ICSE.2013.6606598 – ident: 6894_CR144 doi: 10.1109/SNPD.2016.7515925 – volume: 60 start-page: 210 year: 2016 ident: 6894_CR97 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.02.003 – ident: 6894_CR120 doi: 10.18653/v1/P17-1068 – ident: 6894_CR1 doi: 10.1145/2124295.2124312 – ident: 6894_CR39 – volume: 427 start-page: 424 issue: 7 year: 2007 ident: 6894_CR142 publication-title: Handbook of latent semantic analysis – ident: 6894_CR200 doi: 10.1145/2187836.2187955 – ident: 6894_CR170 – ident: 6894_CR29 doi: 10.1145/2254556.2254572 – ident: 6894_CR56 doi: 10.1609/aaai.v30i1.9892 – volume: 99 start-page: 168 year: 2016 ident: 6894_CR82 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.02.005 – ident: 6894_CR168 doi: 10.1109/ICDAR.2007.4377099 – ident: 6894_CR64 doi: 10.1145/1935826.1935932 – volume: 53 start-page: 989 issue: 4 year: 2017 ident: 6894_CR141 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2016.10.004 – ident: 6894_CR42 doi: 10.1145/2124295.2124306 – volume: 34 start-page: 22 issue: 4 year: 2016 ident: 6894_CR108 publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/2956234 – volume: 84 start-page: 18 year: 2015 ident: 6894_CR63 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.03.020 – volume: 51 start-page: 36 issue: 61801 year: 2010 ident: 6894_CR115 publication-title: Urbana – volume: 31 start-page: 41 issue: 1 year: 2016 ident: 6894_CR127 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2015.91 – ident: 6894_CR46 doi: 10.1109/ICSM.2010.5609687 – ident: 6894_CR102 – ident: 6894_CR14 doi: 10.1145/1143844.1143859 – ident: 6894_CR33 – volume: 124 start-page: 61 year: 2014 ident: 6894_CR162 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2014.02.011 – ident: 6894_CR3 doi: 10.1109/ASONAM.2016.7752329 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 6894_CR41 publication-title: Int J Comput Vis doi: 10.1007/s11263-009-0275-4 – volume: 216 start-page: 310 year: 2016 ident: 6894_CR183 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.017 – ident: 6894_CR18 doi: 10.1609/aaai.v24i1.7717 – ident: 6894_CR107 – ident: 6894_CR180 doi: 10.1016/j.infsof.2017.04.007 – ident: 6894_CR72 – ident: 6894_CR21 doi: 10.1109/CCST.2015.7389660 – volume: 210 start-page: 155 year: 2016 ident: 6894_CR94 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.144 – ident: 6894_CR90 doi: 10.1109/ICMLA.2008.47 – ident: 6894_CR149 doi: 10.1145/1985441.1985467 – ident: 6894_CR169 – volume-title: The New York times annotated corpus year: 2008 ident: 6894_CR134 – volume: 71 start-page: 86 year: 2014 ident: 6894_CR163 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.05.018 – ident: 6894_CR179 doi: 10.1109/HICSS.2015.350 – ident: 6894_CR89 doi: 10.1145/1321631.1321709 – ident: 6894_CR96 – ident: 6894_CR32 doi: 10.1007/978-3-642-35527-1_2 – ident: 6894_CR68 doi: 10.1145/2063576.2063616 – ident: 6894_CR47 doi: 10.1007/978-3-319-10840-7_5 – volume: 11 start-page: 401 year: 2011 ident: 6894_CR167 publication-title: ICWSM – ident: 6894_CR38 – volume: 51 start-page: 2770 issue: 5 year: 2013 ident: 6894_CR152 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2012.2219314 – ident: 6894_CR118 – volume: 10 start-page: 18 issue: 2 year: 2015 ident: 6894_CR188 publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/2811268 – ident: 6894_CR150 doi: 10.1109/MSR.2009.5069496 – ident: 6894_CR184 doi: 10.1145/1963405.1963443 – ident: 6894_CR76 doi: 10.1145/2339530.2339692 – ident: 6894_CR75 doi: 10.1609/aaai.v24i1.7523 – ident: 6894_CR153 – ident: 6894_CR159 doi: 10.1145/2020408.2020480 – volume: 29 start-page: 18 issue: 2 year: 2014 ident: 6894_CR140 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2014.20 – volume: 26 start-page: 3105 issue: 24 year: 2010 ident: 6894_CR91 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq576 – ident: 6894_CR15 – volume: 369 start-page: 188 year: 2016 ident: 6894_CR130 publication-title: Inf Sci doi: 10.1016/j.ins.2016.06.040 – ident: 6894_CR125 doi: 10.1145/2020408.2020481 – ident: 6894_CR67 – ident: 6894_CR137 doi: 10.18653/v1/P16-1064 – ident: 6894_CR129 – volume: 17 start-page: 307 issue: 4 year: 2011 ident: 6894_CR194 publication-title: Chinese Journal Of Integrative Medicine doi: 10.1007/s11655-011-0699-x – volume: 51 start-page: 1680 issue: 3 year: 2013 ident: 6894_CR147 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2012.2205579 – ident: 6894_CR131 – volume: 19 start-page: 1992 issue: 12 year: 2013 ident: 6894_CR28 publication-title: IEEE transactions on visualization and computer graphics doi: 10.1109/TVCG.2013.212 – ident: 6894_CR154 – ident: 6894_CR112 doi: 10.1109/ICASSP.2014.6854595 – ident: 6894_CR37 – ident: 6894_CR124 doi: 10.3115/1699510.1699543 – ident: 6894_CR193 – volume: 101 start-page: 5228 issue: suppl 1 year: 2004 ident: 6894_CR51 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0307752101 – volume: 28 start-page: 2216 issue: 8 year: 2016 ident: 6894_CR175 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2556661 – ident: 6894_CR62 – ident: 6894_CR20 doi: 10.1007/978-3-642-45005-1_12 – volume: 3 start-page: 299 year: 2015 ident: 6894_CR113 publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00140 – ident: 6894_CR34 doi: 10.1109/CVPR.2008.4587390 – volume: 32 start-page: 182 issue: 2 year: 2014 ident: 6894_CR71 publication-title: Soc Sci Comput Rev doi: 10.1177/0894439313506847 – volume: 47 start-page: 1138 issue: 3 year: 2014 ident: 6894_CR58 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.06.010 – volume: 3 start-page: 23 issue: 2 year: 2012 ident: 6894_CR50 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – ident: 6894_CR10 doi: 10.1145/2645710.2645765 – volume: 2 start-page: 26 issue: 3 year: 2011 ident: 6894_CR92 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 17 start-page: 723 issue: 4 year: 2014 ident: 6894_CR128 publication-title: World Wide Web doi: 10.1007/s11280-013-0221-9 – ident: 6894_CR117 – ident: 6894_CR165 – ident: 6894_CR24 doi: 10.1109/TKDE.2014.2313872 – ident: 6894_CR98 doi: 10.1109/WCRE.2008.33 – volume: 15 start-page: 267 issue: 1 year: 2014 ident: 6894_CR11 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-15-267 – volume: 44 start-page: 359 issue: 2 year: 2015 ident: 6894_CR79 publication-title: Knowl Inf Syst doi: 10.1007/s10115-014-0764-9 – ident: 6894_CR19 – ident: 6894_CR161 doi: 10.1145/2470654.2470659 – ident: 6894_CR143 – ident: 6894_CR54 doi: 10.1145/1529282.1529607 – ident: 6894_CR95 doi: 10.1609/aaai.v30i1.9969 – volume: 15 start-page: S6 issue: 17 year: 2014 ident: 6894_CR187 publication-title: BMC Bioinforma – ident: 6894_CR6 doi: 10.1145/1806799.1806817 – ident: 6894_CR132 – volume: 8 start-page: 17 issue: 3 year: 2014 ident: 6894_CR138 publication-title: ACM Trans Web (TWEB) – ident: 6894_CR190 – ident: 6894_CR105 – ident: 6894_CR57 – ident: 6894_CR61 doi: 10.1007/978-3-642-12275-0_39 – volume: 4 start-page: 280 issue: 2 year: 2010 ident: 6894_CR35 publication-title: Frontiers of Computer Science in China doi: 10.1007/s11704-009-0062-y – ident: 6894_CR52 doi: 10.1145/1571941.1571989 – ident: 6894_CR195 – ident: 6894_CR173 doi: 10.1609/aaai.v31i1.10717 – volume: 61 start-page: 29 year: 2014 ident: 6894_CR201 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.02.003 – ident: 6894_CR9 doi: 10.1109/SocialCom-PASSAT.2012.107 – volume: 41 start-page: 4330 issue: 9 year: 2014 ident: 6894_CR178 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.051 – ident: 6894_CR27 doi: 10.1109/CVPR.2009.5206800 – ident: 6894_CR198 doi: 10.1007/978-3-642-20161-5_34 – ident: 6894_CR135 doi: 10.1109/ICSM.2010.5609654 – ident: 6894_CR13 doi: 10.1145/860458.860460 – volume: 7 start-page: 33 issue: 3 year: 2016 ident: 6894_CR83 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 42 start-page: 366 issue: 1 year: 2015 ident: 6894_CR189 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.07.009 – ident: 6894_CR111 doi: 10.1609/aaai.v29i1.9268 – volume: 40 start-page: 621 issue: 5 year: 2014 ident: 6894_CR7 publication-title: J Inf Sci doi: 10.1177/0165551514538744 – volume: 36 start-page: 10 year: 2017 ident: 6894_CR145 publication-title: Information Fusion doi: 10.1016/j.inffus.2016.10.004 – volume: 40 start-page: 60 year: 2016 ident: 6894_CR123 publication-title: Computer Speech and Language doi: 10.1016/j.csl.2016.03.004 – ident: 6894_CR155 doi: 10.1145/1150402.1150450 – volume: 149 start-page: 811 year: 2015 ident: 6894_CR80 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.053 – ident: 6894_CR30 – volume: 171 start-page: 412 year: 2016 ident: 6894_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.047 – ident: 6894_CR166 doi: 10.1145/1718487.1718520 – volume: 66 start-page: 30 year: 2017 ident: 6894_CR197 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2015.12.001 – volume: 7 start-page: 28 issue: 1 year: 2010 ident: 6894_CR86 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2009.2023536 – ident: 6894_CR4 doi: 10.1109/ICDM.2008.140 – volume: 26 start-page: 2002 issue: 8 year: 2014 ident: 6894_CR23 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.175 – volume: 19 start-page: 482 issue: 3 year: 2011 ident: 6894_CR26 publication-title: IEEE Transactions on Audio Speech, and Language Processing doi: 10.1109/TASL.2010.2050717 – ident: 6894_CR55 doi: 10.1145/1963192.1963222 – ident: 6894_CR87 doi: 10.1145/1835804.1835922 |
SSID | ssj0016524 |
Score | 2.6755695 |
Snippet | Topic modeling is one of the most powerful techniques in text mining for data mining, latent data discovery, and finding relationships among data and text... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15169 |
SubjectTerms | Computer Communication Networks Computer Science Data mining Data Structures and Information Theory Dirichlet problem Modelling Multimedia Information Systems Researchers Software engineering Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlg4GUpTpzEZquAqkKFqZW6RY5zFkgordoUiX_P5dUWBEhsiWJ7uIt93_m7ByHnNlEclAGmwEcHReiQaWF9BjzxHFdbG0N-3_H0HPSG4nHkj6o87lkd7V5TksVJvUx243kqicMlC6QSTKyTDR9d9zyOa-h2FtRB4FedbKXD0Bzymsr8aYmvxmiJML-RooWt6e6S7Qok0k6p1T2yBmmT7NQNGGi1H5tka6Wa4D4Z9BE3phnFU-zVvKA-aE6ql1dy9KJ_37mkOk1oNp68Glp0wMFpt-XT7IauUtn4Rmfz6Tt8HJBh92Fw12NV0wRmPOlmzHoARsYBhIljHWu5NC4omxibeMqCRUSlhQ60a7QOlQ2BOxoxHEiNYEIEsXdIGuk4hSNCwfo80CEiJm1FKEzsgxtqxEsBupWKyxZxaulFpqoonje2eIuWtZBzgUco8CgXeCRa5GoxZVKW0_hrcLtWSVTtrFnk8tynluiJtch1rabl518XO_7X6BOyichIlTFhbdLIpnM4RfSRxWfF3_YJHirQjw priority: 102 providerName: Springer Nature |
Title | Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey |
URI | https://link.springer.com/article/10.1007/s11042-018-6894-4 https://www.proquest.com/docview/2138378086 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7ct44McGojAqP-yBARZx4iT2XlAL7SY2KoRWaTxFjnMWk1Ba1gyJ_37nxlkHEntKIsd-uLPvPt_Z9wEcuEoL1Ba5xpQ2KNLk3EiXchRVEsXGuRJ9vOPLLDuZy88X6UUIuK3CscrOJq4NdbWwPkb-PhZ-L6UIgX9Y_uKeNcpnVwOFxjb0yQQr1YP-eDL7-u02j5ClgdZWRZx8o-jymuvLc8JfTYmE4pnSksu_PdMGbv6TIV07nuljeBgQIxu1Kn4CW1jvwqOOjYGFxbkLD-6UFtyD8zMCkXXDyKRd2h-kHOYz7G18jr0--zQ6ZKauWLNYXlq2psOhbkft2-odu5vXpi-2ur76jX-ewnw6Of94wgODAreJihvuEkSrygzzKnKRc0LZGLWrrKsS7dARvDLSZCa2xuTa5SgiQ4AOlSFkIbMyeQa9elHjc2DoUpGZnOCTcTKXtkwxzg2Bp4z2mFqoAUSd9Aobyot7loufxaYwshd4QQIvvMALOYA3t12WbW2N-37e71RShGW2KjaTYgBvOzVtmv872Iv7B3sJO4SLdHsibB96zdU1viLs0ZRD2FbT4yH0R9PxeOafx99PJ8Mw7ah1Ho9uANQh2k0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAc-gAqtqXFh1biUatx4iR2papChe0CC6dF4pY6zlggoeyWDa34U_2NHefBUiS4cUsU24fxZOYbj2c-gA-u0AK1Ra4xpgBFmpQb6WKOooiC0DiXoz_vODpOBify4DQ-nYO_XS2Mv1bZ2cTaUBdj68_IP4fCx1KKEPi3yS_uWaN8drWj0GjU4hCv_1DINv26v0v7-zEM-3uj7wPesgpwG6mw4i5CtCpPMC0CFzgnlA1Ru8K6ItIOHUEOI01iQmtMql2KIjAEclAZ8rYyySNa9wk8lRF5cl-Z3v9xk7VI4pZEVwWcPLHosqh1qZ7whTCBUDxRWnL5vx-cgds7-djazfVfwvMWn7KdRqFewRyWS_Ci435grSlYgsVbjQyXYTQkyFpWjAzouT0jVWA-n9-cBrKN4e7OJjNlwarx5NyymnyHpn1pnqaf2O0sOr2x6dXlb7xegZNHkexrmC_HJa4CQxeLxKQE1oyTqbR5jGFqCKolFNFqoXoQdNLLbNvM3HNqXGSzNsxe4BkJPPMCz2QPtm6mTJpOHg8NXuu2JGt_6mk2U8EebHfbNPt872JvHl5sHRYGo6NhNtw_PnwLzwiR6eYu2hrMV5dX-I5QT5W_r1WNwc_H1u1_eu4T3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRarKoVDaim2B-tBK_bIaJ05iIyEEXVZQtitUgcQtdZyxilRlt2wA8df4dYw3CUsrlRu3REl8GL_MvPHY8wDeukIL1Ba5xpgSFGlSbqSLOYoiCkLjXI5-veP7MNk7lt9O4pM5uG7Pwvhtla1PnDrqYmT9GvmXUPhcSnldINdsizjs9bfGf7hXkPKV1lZOo4bIAV5dUvo22dzv0Vy_C8P-7tHXPd4oDHAbqbDiLkK0Kk8wLQIXOCeUDVG7wroi0g4d0Q8jTWJCa0yqXYoiMER4UBmKvDLJIxr3EcynPivqwPzO7vDwx20NI4kbSV0VcIrLoq2pTg_uCX8sJhCKJ0pLLv-OijOq-091dhr0-kvwtGGrbLuG1zOYw3IZFlslCNY4hmVYuNPW8DkcDYjAlhUjd3pqfxEwmK_u12uD7P2gt_2BmbJg1Wh8atlUioc-26ivJp_Z3Zo63bHJ-dkFXr2A4wex7UvolKMSV4Chi0ViUqJuxslU2jzGMDVE3BLKb7VQXQha62W2aW3uFTZ-Z7OmzN7gGRk88wbPZBc-3n4yrvt63PfyajslWfOLT7IZILvwqZ2m2eP_Dvbq_sHewGPCdTbYHx68hidEz3S9MW0VOtXZOa4RBary9QZrDH4-NLxvAOMfGXE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Dirichlet+allocation+%28LDA%29+and+topic+modeling%3A+models%2C+applications%2C+a+survey&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jelodar%2C+Hamed&rft.au=Wang%2C+Yongli&rft.au=Yuan%2C+Chi&rft.au=Xia%2C+Feng&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=11&rft.spage=15169&rft.epage=15211&rft_id=info:doi/10.1007%2Fs11042-018-6894-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |