An ensemble model for predicting the remaining useful performance of lithium-ion batteries
► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results. We develop...
Saved in:
Published in | Microelectronics and reliability Vol. 53; no. 6; pp. 811 - 820 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results.
We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the battery’s degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble model’s prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model. |
---|---|
AbstractList | We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the batteryas degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble modelas prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model. ► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results. We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the battery’s degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble model’s prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model. |
Author | Ma, Eden W.M. Xing, Yinjiao Pecht, Michael Tsui, Kwok-Leung |
Author_xml | – sequence: 1 givenname: Yinjiao surname: Xing fullname: Xing, Yinjiao email: yxing3@student.cityu.edu.hk organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong – sequence: 2 givenname: Eden W.M. surname: Ma fullname: Ma, Eden W.M. email: eden.wm.ma@cityu.edu.hk organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong – sequence: 3 givenname: Kwok-Leung surname: Tsui fullname: Tsui, Kwok-Leung email: kltsui@cityu.edu.hk organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong – sequence: 4 givenname: Michael surname: Pecht fullname: Pecht, Michael email: pecht@calce.umd.edu organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20740, USA |
BookMark | eNqFkD1LBDEQhlMo-PkXJKXNnpNszO6BhSJ-gWCjjU3IZieaI5ucSVbw35vjtLERBoaB93kZngOyE2JAQk4YLBgwebZaTM6kmNAvODC-qAPQ7pB9AC4b3jGxRw5yXgFAB4ztk9erQDFknAaPdIojempjouuEozPFhTda3pEmnLQLm2vOaGdP15hqbNLBII2Welfe3Tw1LgY66FIwOcxHZNdqn_H4Zx-Sl9ub5-v75vHp7uH66rExbc9Lg91SdoKLfgDWC2stCj7KYZSIy16MPWcopGkBlkNr9dieC8u6vh9EN3TnA2B7SE63vesUP2bMRU0uG_ReB4xzVqztuBTAe1mjF9todZRzQquMK7rUt0vSzisGaqNRrdSvRrXRqOpUjRWXf_B1cpNOX_-Dl1sQq4dPh0ll47DKG11CU9QY3X8V33oflpM |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_05_007 crossref_primary_10_1109_TII_2018_2869429 crossref_primary_10_1002_bte2_20240036 crossref_primary_10_3390_en6094682 crossref_primary_10_1016_j_apenergy_2024_122825 crossref_primary_10_1016_j_energy_2025_135233 crossref_primary_10_1016_j_energy_2022_124725 crossref_primary_10_1016_j_apm_2019_08_024 crossref_primary_10_1016_j_isci_2021_102060 crossref_primary_10_1016_j_energy_2019_01_083 crossref_primary_10_1016_j_cja_2020_01_007 crossref_primary_10_1109_ACCESS_2020_2987426 crossref_primary_10_1109_TIM_2021_3125108 crossref_primary_10_1007_s10836_017_5688_3 crossref_primary_10_1016_j_ress_2017_11_020 crossref_primary_10_1149_1945_7111_ad24c1 crossref_primary_10_1016_j_joule_2021_05_012 crossref_primary_10_1109_ACCESS_2020_3005229 crossref_primary_10_1108_IMDS_03_2019_0195 crossref_primary_10_1016_j_ensm_2024_103270 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_1109_ACCESS_2019_2910611 crossref_primary_10_1016_j_jpowsour_2022_231961 crossref_primary_10_1016_j_neucom_2017_11_062 crossref_primary_10_1016_j_microrel_2017_06_045 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_1016_j_egypro_2016_06_086 crossref_primary_10_1016_j_apenergy_2021_117511 crossref_primary_10_1016_j_est_2023_106969 crossref_primary_10_3389_fenrg_2022_984991 crossref_primary_10_1016_j_est_2024_112107 crossref_primary_10_1016_j_est_2024_114524 crossref_primary_10_1016_j_enbuild_2023_113045 crossref_primary_10_1016_j_jpowsour_2020_228192 crossref_primary_10_1007_s43236_021_00307_8 crossref_primary_10_3390_en6083654 crossref_primary_10_1016_j_egyr_2025_02_002 crossref_primary_10_1109_TII_2021_3051285 crossref_primary_10_1016_j_jpowsour_2018_12_001 crossref_primary_10_1109_TII_2017_2684821 crossref_primary_10_1016_j_est_2024_113603 crossref_primary_10_1016_j_est_2024_111304 crossref_primary_10_4271_2015_01_9147 crossref_primary_10_1002_est2_70080 crossref_primary_10_1016_j_est_2024_110695 crossref_primary_10_1016_j_energy_2021_123038 crossref_primary_10_1016_j_est_2023_109069 crossref_primary_10_1016_j_energy_2021_122189 crossref_primary_10_1109_TIM_2017_2708204 crossref_primary_10_1016_j_ress_2022_109046 crossref_primary_10_1109_TIM_2025_3541667 crossref_primary_10_1016_j_est_2023_106903 crossref_primary_10_1109_TEC_2021_3058531 crossref_primary_10_1016_j_est_2021_103072 crossref_primary_10_1016_j_est_2024_114702 crossref_primary_10_1007_s40974_024_00323_x crossref_primary_10_1109_TIE_2020_2973876 crossref_primary_10_3390_app14020698 crossref_primary_10_1016_j_apenergy_2016_01_125 crossref_primary_10_1016_j_ress_2024_109954 crossref_primary_10_1109_JESTPE_2021_3098378 crossref_primary_10_1016_j_energy_2022_124538 crossref_primary_10_1016_j_microrel_2018_08_007 crossref_primary_10_1016_j_ress_2015_07_013 crossref_primary_10_3390_batteries9090441 crossref_primary_10_1016_j_ifacol_2024_07_455 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_3390_en7020520 crossref_primary_10_1016_j_measurement_2025_117084 crossref_primary_10_1016_j_ymssp_2014_07_005 crossref_primary_10_1016_j_energy_2023_128306 crossref_primary_10_3390_batteries10010026 crossref_primary_10_1016_j_psep_2023_10_042 crossref_primary_10_1109_TTE_2021_3074638 crossref_primary_10_1109_TVT_2024_3356116 crossref_primary_10_1016_j_microrel_2017_06_002 crossref_primary_10_1016_j_est_2022_105648 crossref_primary_10_3390_electronics10050540 crossref_primary_10_1007_s11431_022_2220_y crossref_primary_10_2139_ssrn_4147559 crossref_primary_10_1016_j_est_2024_113878 crossref_primary_10_1016_j_est_2023_109195 crossref_primary_10_1016_j_ress_2016_10_026 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1007_s00521_020_05105_0 crossref_primary_10_1016_j_electacta_2017_10_007 crossref_primary_10_3390_machines10020072 crossref_primary_10_1016_j_est_2022_104209 crossref_primary_10_1016_j_ress_2023_109790 crossref_primary_10_3390_en17246326 crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_2139_ssrn_4199925 crossref_primary_10_3390_batteries9020094 crossref_primary_10_1016_j_knosys_2020_106555 crossref_primary_10_1016_j_apenergy_2013_12_020 crossref_primary_10_1109_TVT_2020_3037088 crossref_primary_10_1016_j_apenergy_2025_125539 crossref_primary_10_1016_j_est_2024_111860 crossref_primary_10_1109_ACCESS_2018_2854224 crossref_primary_10_1016_j_ymssp_2015_11_008 crossref_primary_10_1149_1945_7111_ad0ea2 crossref_primary_10_1016_j_est_2023_109145 crossref_primary_10_1007_s43236_022_00428_8 crossref_primary_10_1016_j_ress_2023_109361 crossref_primary_10_1007_s00521_013_1520_x crossref_primary_10_3390_en16062837 crossref_primary_10_1016_j_est_2022_105992 crossref_primary_10_1016_j_measurement_2019_07_064 crossref_primary_10_1115_1_4042234 crossref_primary_10_1109_ACCESS_2023_3234286 crossref_primary_10_1016_j_est_2023_110248 crossref_primary_10_1016_j_est_2024_110780 crossref_primary_10_1016_j_apenergy_2019_113591 crossref_primary_10_1016_j_est_2023_108042 crossref_primary_10_1109_TSMC_2022_3185102 crossref_primary_10_3390_wevj14050122 crossref_primary_10_1016_j_ress_2017_12_016 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1109_ACCESS_2022_3151975 crossref_primary_10_1115_1_4052274 crossref_primary_10_1016_j_rser_2019_109254 crossref_primary_10_1016_j_est_2020_102011 crossref_primary_10_1016_j_jclepro_2019_119409 crossref_primary_10_1016_j_est_2025_116024 crossref_primary_10_1016_j_est_2024_113827 crossref_primary_10_1109_ACCESS_2019_2913163 crossref_primary_10_1016_j_jpowsour_2023_233473 crossref_primary_10_1109_ACCESS_2024_3357736 crossref_primary_10_1016_j_ymssp_2014_10_010 crossref_primary_10_1002_qre_2229 crossref_primary_10_20517_ir_2023_16 crossref_primary_10_1109_JSEN_2023_3322135 crossref_primary_10_3389_fenrg_2022_972486 crossref_primary_10_1016_j_energy_2021_121233 crossref_primary_10_1016_j_apenergy_2023_122048 crossref_primary_10_1002_ese3_1428 crossref_primary_10_3390_en16031073 crossref_primary_10_1109_ACCESS_2020_2981261 crossref_primary_10_1016_j_est_2025_116152 crossref_primary_10_1016_j_energy_2023_129279 crossref_primary_10_7467_KSAE_2022_30_3_199 crossref_primary_10_1016_j_est_2023_110388 crossref_primary_10_1186_s10033_021_00577_0 crossref_primary_10_1038_s41597_024_03859_z crossref_primary_10_1109_TR_2018_2829844 crossref_primary_10_1177_0142331216642836 crossref_primary_10_1109_TTE_2020_3017090 crossref_primary_10_3390_ma15175933 crossref_primary_10_1016_j_est_2024_110560 crossref_primary_10_1109_TII_2024_3495776 crossref_primary_10_1016_j_energy_2018_04_070 crossref_primary_10_1002_qre_3693 crossref_primary_10_1177_01423312221114506 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1016_j_jechem_2023_09_025 crossref_primary_10_1016_j_neucom_2019_09_074 crossref_primary_10_3390_electronics11111789 crossref_primary_10_3390_en9110896 crossref_primary_10_1002_qre_2320 crossref_primary_10_1016_j_est_2025_115352 crossref_primary_10_3390_app9091890 crossref_primary_10_1007_s00521_020_05031_1 crossref_primary_10_1109_ACCESS_2022_3208173 crossref_primary_10_1016_j_jpowsour_2024_234697 crossref_primary_10_3390_en7106492 crossref_primary_10_1109_TVT_2023_3234159 crossref_primary_10_1109_JESTPE_2021_3133697 crossref_primary_10_1016_j_apenergy_2021_118348 crossref_primary_10_1002_qre_3424 crossref_primary_10_1016_j_microrel_2020_113622 crossref_primary_10_1109_TIM_2024_3450095 crossref_primary_10_1016_j_jechem_2022_06_049 crossref_primary_10_1016_j_microrel_2018_07_047 crossref_primary_10_1016_j_microrel_2018_05_020 crossref_primary_10_1016_j_microrel_2016_03_030 crossref_primary_10_3390_wevj12040228 crossref_primary_10_1109_TIE_2019_2946551 crossref_primary_10_1016_j_energy_2022_124812 crossref_primary_10_1109_TTE_2024_3427334 crossref_primary_10_1016_j_energy_2018_10_131 crossref_primary_10_3390_su14169993 crossref_primary_10_1016_j_apenergy_2020_114817 crossref_primary_10_1186_s43067_023_00127_9 crossref_primary_10_1109_TTE_2021_3128018 crossref_primary_10_1016_j_jpowsour_2024_234674 crossref_primary_10_1002_cjce_23675 crossref_primary_10_1016_j_est_2023_109248 crossref_primary_10_1016_j_ymssp_2017_02_027 crossref_primary_10_1016_j_ijhydene_2019_01_190 crossref_primary_10_1016_j_jpowsour_2023_234007 crossref_primary_10_1016_j_est_2023_109352 crossref_primary_10_1016_j_apenergy_2016_04_057 crossref_primary_10_1088_1361_6501_ad0868 crossref_primary_10_1109_TIM_2025_3548227 crossref_primary_10_1177_14759217231216697 crossref_primary_10_3389_fenrg_2023_1059701 crossref_primary_10_1016_j_ress_2024_110313 crossref_primary_10_1016_j_eswa_2014_10_021 crossref_primary_10_1002_er_5464 crossref_primary_10_1016_j_ensm_2022_10_030 crossref_primary_10_1016_j_jclepro_2024_140686 crossref_primary_10_1016_j_ress_2015_03_036 crossref_primary_10_1109_TIM_2023_3332389 crossref_primary_10_3390_en10050691 crossref_primary_10_1007_s40843_023_2665_8 crossref_primary_10_1109_TEC_2023_3242876 crossref_primary_10_1109_TII_2022_3155597 crossref_primary_10_1016_j_microrel_2017_09_009 crossref_primary_10_3390_en13164183 crossref_primary_10_1016_j_egyai_2024_100462 crossref_primary_10_1016_j_heliyon_2024_e29402 crossref_primary_10_1016_j_jpowsour_2018_08_064 crossref_primary_10_1016_j_est_2022_104936 crossref_primary_10_1016_j_egyr_2022_09_043 crossref_primary_10_1016_j_engfailanal_2016_04_014 crossref_primary_10_1080_00949655_2016_1202953 crossref_primary_10_1002_int_22309 crossref_primary_10_1109_ACCESS_2021_3111927 crossref_primary_10_1038_s42256_024_00972_x crossref_primary_10_1016_j_microrel_2017_02_003 crossref_primary_10_3390_batteries11010022 crossref_primary_10_1016_j_engfailanal_2022_106565 crossref_primary_10_1002_asmb_2063 crossref_primary_10_1109_TIE_2020_2978688 crossref_primary_10_1109_TMECH_2020_2986364 crossref_primary_10_1016_j_ress_2022_108945 crossref_primary_10_1109_TVT_2020_3039553 crossref_primary_10_1016_j_rser_2021_111903 crossref_primary_10_1109_TTE_2024_3471626 crossref_primary_10_1109_TVT_2018_2805189 crossref_primary_10_1177_1687814020923202 crossref_primary_10_1016_j_energy_2024_133541 crossref_primary_10_1016_j_jafr_2024_101213 crossref_primary_10_17531_ein_2021_1_18 crossref_primary_10_1016_j_joule_2019_11_018 crossref_primary_10_3390_en16031469 crossref_primary_10_1016_j_procs_2022_12_383 crossref_primary_10_1155_2018_5918068 crossref_primary_10_1109_TTE_2024_3354107 crossref_primary_10_1080_17445302_2023_2211241 crossref_primary_10_20964_2022_11_07 crossref_primary_10_1002_qre_2624 crossref_primary_10_1016_j_mtener_2024_101562 crossref_primary_10_1002_ente_202100767 crossref_primary_10_2139_ssrn_4063618 crossref_primary_10_1016_j_ress_2019_106618 crossref_primary_10_1016_j_energy_2022_125278 crossref_primary_10_3390_en9080572 crossref_primary_10_1088_1755_1315_93_1_012040 crossref_primary_10_1109_TVT_2020_3024019 crossref_primary_10_1149_1945_7111_ac0e4c crossref_primary_10_3390_batteries10050164 crossref_primary_10_3390_s21041087 crossref_primary_10_1016_j_energy_2023_126726 crossref_primary_10_1016_j_microrel_2017_02_002 crossref_primary_10_1016_j_microrel_2023_114914 crossref_primary_10_1038_s44172_024_00304_2 crossref_primary_10_1007_s13042_018_0865_y crossref_primary_10_1016_j_est_2025_116310 crossref_primary_10_3390_en16093858 crossref_primary_10_1016_j_fub_2025_100046 crossref_primary_10_1016_j_isci_2023_106547 crossref_primary_10_1016_j_est_2023_107493 crossref_primary_10_1109_TIE_2015_2393840 crossref_primary_10_1016_j_est_2023_108587 crossref_primary_10_1016_j_energy_2021_121986 crossref_primary_10_3390_en15186599 crossref_primary_10_1109_TTE_2017_2776558 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_1109_TIM_2023_3346507 crossref_primary_10_1109_TIM_2016_2622838 crossref_primary_10_3390_en17071679 crossref_primary_10_1016_j_ress_2021_107542 crossref_primary_10_1109_TR_2017_2778804 crossref_primary_10_3390_s23052587 crossref_primary_10_1016_j_jpowsour_2023_233760 crossref_primary_10_1016_j_est_2021_103409 crossref_primary_10_1109_TMECH_2020_3040010 crossref_primary_10_1007_s11071_024_10815_4 crossref_primary_10_1002_er_3598 crossref_primary_10_1002_er_5413 crossref_primary_10_1109_TIM_2014_2348613 crossref_primary_10_1016_j_ifacol_2020_11_009 crossref_primary_10_1038_s41467_023_38458_w crossref_primary_10_1109_TCST_2023_3316093 crossref_primary_10_1016_j_ress_2018_02_022 crossref_primary_10_1109_TCST_2018_2885681 crossref_primary_10_1109_TIE_2018_2808918 crossref_primary_10_1016_j_jpowsour_2023_233777 crossref_primary_10_1016_j_apenergy_2024_123542 crossref_primary_10_3390_batteries9110537 crossref_primary_10_1016_j_energy_2017_08_017 crossref_primary_10_1016_j_ress_2021_107797 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_1109_ACCESS_2019_2962502 crossref_primary_10_1109_TSMC_2015_2389757 crossref_primary_10_1088_1361_6501_ad7a94 crossref_primary_10_1002_er_5879 crossref_primary_10_1016_j_measurement_2014_11_031 crossref_primary_10_1016_j_jclepro_2018_06_182 crossref_primary_10_1155_2016_3838765 crossref_primary_10_1016_j_est_2022_106295 crossref_primary_10_3390_en17071695 crossref_primary_10_1109_TTE_2023_3331529 crossref_primary_10_3390_fractalfract7110827 crossref_primary_10_1109_TTE_2022_3161140 crossref_primary_10_1016_j_etran_2022_100164 crossref_primary_10_3390_electronics13152901 crossref_primary_10_1016_j_heliyon_2024_e39121 crossref_primary_10_1016_j_energy_2018_01_001 crossref_primary_10_1016_j_apenergy_2022_120584 crossref_primary_10_3390_batteries9120585 crossref_primary_10_1016_j_jclepro_2018_12_041 crossref_primary_10_3390_en14164833 crossref_primary_10_3389_fenrg_2022_1058999 crossref_primary_10_1186_s10033_024_01055_z crossref_primary_10_1177_1748006X14550662 crossref_primary_10_3390_en17092154 crossref_primary_10_1002_cepa_3286 crossref_primary_10_1016_j_eswa_2023_123123 crossref_primary_10_1109_TIM_2016_2534258 crossref_primary_10_1038_s41597_023_02180_5 crossref_primary_10_1109_ACCESS_2019_2905740 crossref_primary_10_3390_en14092612 crossref_primary_10_1016_j_est_2021_102990 crossref_primary_10_1177_09576509231153907 crossref_primary_10_3390_en81112322 crossref_primary_10_1016_j_energy_2022_123598 crossref_primary_10_1016_j_energy_2022_123236 crossref_primary_10_1177_09544070231212531 crossref_primary_10_1016_j_ymssp_2018_09_033 crossref_primary_10_3390_batteries3040032 crossref_primary_10_1080_00401706_2017_1341341 crossref_primary_10_1016_j_est_2023_106797 crossref_primary_10_1109_TPEL_2021_3075558 crossref_primary_10_1016_j_eswa_2024_123563 crossref_primary_10_1016_j_egyr_2020_07_026 crossref_primary_10_1155_2015_631263 crossref_primary_10_1016_j_apenergy_2020_115338 crossref_primary_10_3390_en13184858 crossref_primary_10_1016_j_measurement_2019_107182 crossref_primary_10_1016_j_ifacol_2015_06_123 crossref_primary_10_3390_app6060166 crossref_primary_10_1016_j_ymssp_2019_01_060 crossref_primary_10_1016_j_cja_2017_11_010 crossref_primary_10_1109_TEC_2020_2995112 crossref_primary_10_1016_j_apacoust_2017_12_003 crossref_primary_10_1016_j_est_2020_101710 crossref_primary_10_1109_TIE_2018_2813964 crossref_primary_10_1149_1945_7111_acc696 crossref_primary_10_1016_j_microrel_2015_06_089 crossref_primary_10_1115_1_4028833 crossref_primary_10_1109_JSEN_2023_3277131 crossref_primary_10_1016_j_ress_2022_108651 crossref_primary_10_1155_2014_564894 crossref_primary_10_3390_en18030746 crossref_primary_10_1109_TPEL_2021_3104723 crossref_primary_10_1016_j_xcrp_2024_101891 crossref_primary_10_1109_TVT_2018_2864688 crossref_primary_10_1109_TR_2015_2451074 crossref_primary_10_1109_TTE_2022_3206469 crossref_primary_10_1016_j_ress_2023_109913 crossref_primary_10_1109_ACCESS_2020_2981947 crossref_primary_10_1016_j_est_2021_102726 crossref_primary_10_1016_j_ijoes_2023_100137 crossref_primary_10_1149_1945_7111_ad9353 crossref_primary_10_1002_est2_70133 crossref_primary_10_1016_j_energy_2023_128739 crossref_primary_10_3390_en18051236 crossref_primary_10_3390_en18051114 crossref_primary_10_1016_j_conengprac_2018_10_010 crossref_primary_10_1016_j_microrel_2016_07_151 crossref_primary_10_3390_batteries3030021 crossref_primary_10_1016_j_xcrp_2024_101941 crossref_primary_10_1155_2015_793161 crossref_primary_10_1016_j_ijoes_2023_100122 crossref_primary_10_1109_TTE_2022_3209629 crossref_primary_10_1109_TPEL_2023_3346335 crossref_primary_10_1016_j_est_2024_112594 crossref_primary_10_1080_15567036_2024_2399740 crossref_primary_10_1080_00224065_2018_1541388 crossref_primary_10_1109_ACCESS_2021_3120563 crossref_primary_10_1109_TII_2024_3452273 crossref_primary_10_1016_j_apenergy_2017_09_106 crossref_primary_10_1016_j_est_2024_113458 crossref_primary_10_1016_j_est_2020_101999 crossref_primary_10_3390_batteries4020015 crossref_primary_10_1016_j_ijoes_2024_100891 crossref_primary_10_1016_j_jpowsour_2016_04_119 crossref_primary_10_1016_j_est_2022_106457 crossref_primary_10_1016_j_est_2022_106335 crossref_primary_10_3390_s21020473 crossref_primary_10_1109_ACCESS_2018_2816684 crossref_primary_10_1021_acsomega_2c03043 crossref_primary_10_1038_s44296_024_00011_1 crossref_primary_10_1109_ACCESS_2024_3412914 crossref_primary_10_1109_TITS_2024_3355436 crossref_primary_10_1016_j_jpowsour_2020_228716 crossref_primary_10_1016_j_egyai_2021_100081 crossref_primary_10_1016_j_jpowsour_2014_03_091 crossref_primary_10_1061__ASCE_EY_1943_7897_0000865 crossref_primary_10_1016_j_energy_2023_127734 crossref_primary_10_1016_j_engfracmech_2018_03_013 crossref_primary_10_1016_j_est_2023_107862 crossref_primary_10_1109_ACCESS_2020_3017810 crossref_primary_10_1038_s41598_022_16692_4 crossref_primary_10_4271_2017_01_9078 crossref_primary_10_1016_j_measurement_2023_113885 crossref_primary_10_1016_j_rser_2025_115408 crossref_primary_10_1016_j_asoc_2022_108967 crossref_primary_10_3390_electronics8070751 crossref_primary_10_1016_j_measurement_2017_08_030 crossref_primary_10_1109_ACCESS_2023_3286307 crossref_primary_10_1016_j_apm_2023_09_007 crossref_primary_10_1016_j_ijhydene_2013_10_054 crossref_primary_10_3390_en15196909 crossref_primary_10_1016_j_ijoes_2025_100931 |
Cites_doi | 10.1016/j.ejor.2010.11.018 10.1186/1471-2210-10-6 10.1109/TIM.2011.2115630 10.1149/1.2128096 10.1016/j.enconman.2008.03.013 10.1016/j.jpowsour.2011.03.101 10.1016/j.jpowsour.2010.06.011 10.1109/PHM.2008.4711430 10.1016/j.jpowsour.2004.02.033 10.1016/j.jpowsour.2008.01.028 10.1016/j.jpowsour.2011.08.040 10.1002/er.1655 10.1109/TSMCC.2010.2089979 10.1109/AUTEST.2007.4374280 10.1023/A:1008935410038 10.3390/en4111840 10.1016/S0378-7753(02)00490-1 10.1016/j.apenergy.2012.05.055 10.1109/AERO.2003.1234169 10.1109/78.978374 10.1109/TPEL.2009.2034966 10.1109/TIM.2008.2005965 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1016/j.microrel.2012.12.003 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 820 |
ExternalDocumentID | 10_1016_j_microrel_2012_12_003 S0026271412005227 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSH SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c382t-e79674248b0184fffe42d6bd6ee984d821e46c3009b3fad354f1788b47b75b0e3 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Thu Jul 10 18:50:54 EDT 2025 Tue Jul 01 04:47:06 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Sun Apr 06 06:54:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-e79674248b0184fffe42d6bd6ee984d821e46c3009b3fad354f1788b47b75b0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1372640286 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1372640286 crossref_citationtrail_10_1016_j_microrel_2012_12_003 crossref_primary_10_1016_j_microrel_2012_12_003 elsevier_sciencedirect_doi_10_1016_j_microrel_2012_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Arulampalam, Maskell, Gordon, Clapp (b0130) 2002; 50 Bo, Zhifeng, Binggang (b0045) 2008; 49 Saha, Goebel, Poll, Christophersen (b0020) 2009; 58 Rufus F, Lee S, Thakker A. Health monitoring algorithms for space application batteries; 2008. p. 1–8. Spiess, Neumeyer (b0125) 2010; 10 Doucet, Godsill, Andrieu (b0135) 2000; 10 Si, Wang, Hu, Zhou (b0105) 2011; 213 Andrea (b0160) 2010 Plett (b0060) 2004; 134 Friedman, Hastie, Tibshirani (b0180) 2008 Santhanagopalan, White (b0050) 2010; 34 Pattipati, Sankavaram, Pattipati (b0055) 2011; 41 Zhang, Lee (b0110) 2011; 196 Huggins (b0150) 2008 Xing, Ma, Tsui, Pecht (b0065) 2011; 4 Zhang, White (b0120) 2008; 179 Dai, Das, Pecht (b0170) 2012 Kim (b0015) 2010; 25 Spotnitz (b0035) 2003; 113 Micea, Ungurean, Cârstoiu, Groza (b0085) 2011; 60 Lee (b0185) 2005 Verbrugge, Koch (b0025) 2006; 153 Sun, Zuo, Wang, Pecht (b0175) 2011 Bergveld, Kruijt, Notten (b0165) 2002; vol. 1 Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques; 2003. p. 3257–270. Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using bayesian regression and state estimation; 2007. p. 646-53. He, Williard, Osterman, Pecht (b0080) 2011; 196 Schmidt, Bitzer, Imre, Guzzella (b0030) 2010; 195 Doucet (10.1016/j.microrel.2012.12.003_b0135) 2000; 10 Spotnitz (10.1016/j.microrel.2012.12.003_b0035) 2003; 113 10.1016/j.microrel.2012.12.003_b0155 Pattipati (10.1016/j.microrel.2012.12.003_b0055) 2011; 41 Zhang (10.1016/j.microrel.2012.12.003_b0110) 2011; 196 Zhang (10.1016/j.microrel.2012.12.003_b0120) 2008; 179 Verbrugge (10.1016/j.microrel.2012.12.003_b0025) 2006; 153 Spiess (10.1016/j.microrel.2012.12.003_b0125) 2010; 10 Sun (10.1016/j.microrel.2012.12.003_b0175) 2011 Xing (10.1016/j.microrel.2012.12.003_b0065) 2011; 4 He (10.1016/j.microrel.2012.12.003_b0080) 2011; 196 Andrea (10.1016/j.microrel.2012.12.003_b0160) 2010 Bo (10.1016/j.microrel.2012.12.003_b0045) 2008; 49 Santhanagopalan (10.1016/j.microrel.2012.12.003_b0050) 2010; 34 Schmidt (10.1016/j.microrel.2012.12.003_b0030) 2010; 195 Plett (10.1016/j.microrel.2012.12.003_b0060) 2004; 134 Friedman (10.1016/j.microrel.2012.12.003_b0180) 2008 Kim (10.1016/j.microrel.2012.12.003_b0015) 2010; 25 10.1016/j.microrel.2012.12.003_b0145 Arulampalam (10.1016/j.microrel.2012.12.003_b0130) 2002; 50 Bergveld (10.1016/j.microrel.2012.12.003_b0165) 2002; vol. 1 Micea (10.1016/j.microrel.2012.12.003_b0085) 2011; 60 Dai (10.1016/j.microrel.2012.12.003_b0170) 2012 Saha (10.1016/j.microrel.2012.12.003_b0020) 2009; 58 Lee (10.1016/j.microrel.2012.12.003_b0185) 2005 10.1016/j.microrel.2012.12.003_b0075 Si (10.1016/j.microrel.2012.12.003_b0105) 2011; 213 Huggins (10.1016/j.microrel.2012.12.003_b0150) 2008 |
References_xml | – volume: 179 start-page: 793 year: 2008 end-page: 798 ident: b0120 article-title: Capacity fade analysis of a lithium ion cell publication-title: J Power Sources – volume: 58 start-page: 291 year: 2009 end-page: 296 ident: b0020 article-title: Prognostics methods for battery health monitoring using a Bayesian framework publication-title: Instrum Meas, IEEE Trans on – volume: 196 start-page: 10314 year: 2011 end-page: 10321 ident: b0080 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J Power Sources – volume: 195 start-page: 7634 year: 2010 end-page: 7638 ident: b0030 article-title: Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries publication-title: J Power Sources – year: 2011 ident: b0175 article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance publication-title: Mech Syst Signal Process – volume: 49 start-page: 2788 year: 2008 end-page: 2794 ident: b0045 article-title: State of charge estimation based on evolutionary neural network publication-title: Energy Convers Manage – reference: Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques; 2003. p. 3257–270. – reference: Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using bayesian regression and state estimation; 2007. p. 646-53. – volume: 34 start-page: 152 year: 2010 end-page: 163 ident: b0050 article-title: State of charge estimation using an unscented filter for high power lithium ion cells publication-title: Int J Energy Res – year: 2012 ident: b0170 article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions publication-title: Appl Energy – volume: 153 start-page: A187 year: 2006 ident: b0025 article-title: Generalized recursive algorithm for adaptive multiparameter regression publication-title: J Electrochem Soc – year: 2008 ident: b0150 article-title: Advanced batteries: materials science aspects – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: b0060 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources – volume: 10 start-page: 197 year: 2000 end-page: 208 ident: b0135 article-title: On sequential Monte Carlo sampling methods for Bayesian filtering publication-title: Statist Comput – volume: 41 start-page: 869 year: 2011 ident: b0055 article-title: System identification and estimation framework for pivotal automotive battery management system characteristics publication-title: IEEE Trans Syst Man and Cyber – Part C Appl Rev – volume: 50 start-page: 174 year: 2002 end-page: 188 ident: b0130 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Signal Process, IEEE Trans on – reference: Rufus F, Lee S, Thakker A. Health monitoring algorithms for space application batteries; 2008. p. 1–8. – volume: 25 start-page: 1013 year: 2010 end-page: 1022 ident: b0015 article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer publication-title: Power Electron, IEEE Trans on – year: 2008 ident: b0180 publication-title: The elements of statistical learning – volume: 213 start-page: 1 year: 2011 end-page: 14 ident: b0105 article-title: Remaining useful life estimation – a review on the statistical data driven approaches publication-title: Eur J Oper Res – volume: vol. 1 year: 2002 ident: b0165 publication-title: Battery management systems: design by modelling – year: 2010 ident: b0160 article-title: Battery management systems for large lithium battery packs – volume: 196 start-page: 6007 year: 2011 end-page: 6014 ident: b0110 article-title: A review on prognostics and health monitoring of Li-ion battery publication-title: J Power Sources – volume: 4 start-page: 1840 year: 2011 end-page: 1857 ident: b0065 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies – year: 2005 ident: b0185 article-title: Nonlinear Bayesian filtering with applications to estimation and navigation – volume: 113 start-page: 72 year: 2003 end-page: 80 ident: b0035 article-title: Simulation of capacity fade in lithium-ion batteries publication-title: J Power Sources – volume: 10 start-page: 6 year: 2010 ident: b0125 article-title: An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach publication-title: BMC Pharmacol – volume: 60 start-page: 1997 year: 2011 end-page: 2006 ident: b0085 article-title: Online state-of-health assessment for battery management systems publication-title: Instrum Meas, IEEE Trans on – volume: 213 start-page: 1 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0105 article-title: Remaining useful life estimation – a review on the statistical data driven approaches publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.11.018 – volume: 10 start-page: 6 year: 2010 ident: 10.1016/j.microrel.2012.12.003_b0125 article-title: An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach publication-title: BMC Pharmacol doi: 10.1186/1471-2210-10-6 – volume: 60 start-page: 1997 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0085 article-title: Online state-of-health assessment for battery management systems publication-title: Instrum Meas, IEEE Trans on doi: 10.1109/TIM.2011.2115630 – volume: 153 start-page: A187 year: 2006 ident: 10.1016/j.microrel.2012.12.003_b0025 article-title: Generalized recursive algorithm for adaptive multiparameter regression publication-title: J Electrochem Soc doi: 10.1149/1.2128096 – volume: 49 start-page: 2788 year: 2008 ident: 10.1016/j.microrel.2012.12.003_b0045 article-title: State of charge estimation based on evolutionary neural network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.03.013 – year: 2010 ident: 10.1016/j.microrel.2012.12.003_b0160 – volume: 196 start-page: 6007 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0110 article-title: A review on prognostics and health monitoring of Li-ion battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.03.101 – volume: 195 start-page: 7634 year: 2010 ident: 10.1016/j.microrel.2012.12.003_b0030 article-title: Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.06.011 – year: 2008 ident: 10.1016/j.microrel.2012.12.003_b0150 – ident: 10.1016/j.microrel.2012.12.003_b0145 doi: 10.1109/PHM.2008.4711430 – year: 2008 ident: 10.1016/j.microrel.2012.12.003_b0180 – volume: 134 start-page: 277 year: 2004 ident: 10.1016/j.microrel.2012.12.003_b0060 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.033 – year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0175 article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance publication-title: Mech Syst Signal Process – volume: vol. 1 year: 2002 ident: 10.1016/j.microrel.2012.12.003_b0165 – volume: 179 start-page: 793 year: 2008 ident: 10.1016/j.microrel.2012.12.003_b0120 article-title: Capacity fade analysis of a lithium ion cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.01.028 – volume: 196 start-page: 10314 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0080 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – year: 2005 ident: 10.1016/j.microrel.2012.12.003_b0185 – volume: 34 start-page: 152 year: 2010 ident: 10.1016/j.microrel.2012.12.003_b0050 article-title: State of charge estimation using an unscented filter for high power lithium ion cells publication-title: Int J Energy Res doi: 10.1002/er.1655 – volume: 41 start-page: 869 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0055 article-title: System identification and estimation framework for pivotal automotive battery management system characteristics publication-title: IEEE Trans Syst Man and Cyber – Part C Appl Rev doi: 10.1109/TSMCC.2010.2089979 – ident: 10.1016/j.microrel.2012.12.003_b0155 doi: 10.1109/AUTEST.2007.4374280 – volume: 10 start-page: 197 year: 2000 ident: 10.1016/j.microrel.2012.12.003_b0135 article-title: On sequential Monte Carlo sampling methods for Bayesian filtering publication-title: Statist Comput doi: 10.1023/A:1008935410038 – volume: 4 start-page: 1840 year: 2011 ident: 10.1016/j.microrel.2012.12.003_b0065 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies doi: 10.3390/en4111840 – volume: 113 start-page: 72 year: 2003 ident: 10.1016/j.microrel.2012.12.003_b0035 article-title: Simulation of capacity fade in lithium-ion batteries publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00490-1 – year: 2012 ident: 10.1016/j.microrel.2012.12.003_b0170 article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.05.055 – ident: 10.1016/j.microrel.2012.12.003_b0075 doi: 10.1109/AERO.2003.1234169 – volume: 50 start-page: 174 year: 2002 ident: 10.1016/j.microrel.2012.12.003_b0130 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: Signal Process, IEEE Trans on doi: 10.1109/78.978374 – volume: 25 start-page: 1013 year: 2010 ident: 10.1016/j.microrel.2012.12.003_b0015 article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer publication-title: Power Electron, IEEE Trans on doi: 10.1109/TPEL.2009.2034966 – volume: 58 start-page: 291 year: 2009 ident: 10.1016/j.microrel.2012.12.003_b0020 article-title: Prognostics methods for battery health monitoring using a Bayesian framework publication-title: Instrum Meas, IEEE Trans on doi: 10.1109/TIM.2008.2005965 |
SSID | ssj0007011 |
Score | 2.5458925 |
Snippet | ► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability... We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 811 |
SubjectTerms | Battery Degradation Filtering Fuses Lithium-ion batteries Mathematical models On-line systems Regression |
Title | An ensemble model for predicting the remaining useful performance of lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.microrel.2012.12.003 https://www.proquest.com/docview/1372640286 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-IzvrInXhX2x2x6JkaBGTpIQL0233Y0QKATo1d_ubB-KeuBg0lPbacjMZvb72Jn5ELqjlookNJSkhksiFcTCaKeIUA4sFGxChSTLy0D1h_Jp1Bk10H3dC-PLKqvcX-b0IltXd9qVN9uL8dj3-HLFNZOsGB7EfUe5lNqv8tbHd5mHpqxUzeOK-Lc3uoQnrZkveltafwTBePG3YC2e9XeD-pWqi_2nd4D2K-CIu-VvO0QNmx2hvY1xgsforZthYKV2ZqYWFxI3GCApXiz9YYwvb8aA9vDSzkpVCJyvrMunePHdO4DnDgMufx_nMwIBw6aYvglk-gQNew-v931SaSeQRAR8TawOFbBeGRgKHM45ZyVPlUmVtWEg04AzK1UiAGEZ4eJUdKRjwIaN1EZ3DLXiFDWzeWbPEA6SGFhUTGksgUyqIE6VjoWOqTLMhDI4R53aYVFSDRb3-hbTqK4gm0S1oyPv6AgucPQ5an_ZLcrRGlstwjoe0Y9FEkH-32p7WwcQnq_8sUic2Xm-ipjQgAoBZ6mLf3z_Eu3yUimDUHaFmutlbq8Br6zNTbEgb9BO9_G5P_gESb_rgg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKuhDhRZwpfZo1q-1k0MPqC1ayuMEEurFjRNbXbSbXe1uhLj0T_UPdpwHUDhwQEg5JRormnFm5otn5gP4xDyTeeoYLZxQVGm0hTNBU6kDSmgMQjUly_GJHpypH-f98yX42_XCxLLK1vc3Pr321u2dXqvN3nQ4jD2-QgvDFa-HBwnTVlYe-qtLxG3zLwff0Mifhdj_fvp1QFtqAZrLRCyoN6lGUKgSxxDihBC8EoV2hfY-TVSRCO6VziUmIE6GrJB9FTiCRaeMM33HvMR1n8GKQncRaRN2_9zUlRjGG5o-oWl8vVttyRe741hlN_PxzIOL-j9kx9Z1PyLeiQ11wNtfg5dtpkr2GmWsw5IvX8HqrfmFr-HnXkkQBvuxG3lSc-oQzIHJdBZPf2I9NcH0ksz8uKGhINXch2pEpjfNCmQSCAKB38NqTHGHEFeP-0T0_gbOnkSjb2G5nJT-HZAkzxC2ZYxlCtGrTrJCm0yajGnHXaqSDeh3CrN5O8k8EmqMbFeydmE7RduoaIsXKnoDetdy02aWx4MSaWcP-9-utBhwHpT92BkQn8_jOUxW-kk1t1waTEMxsdObj1h_B54PTo-P7NHByeF7eCEamg7K-AdYXswqv4XJ0sJt15uTwK-n_hr-AdcuJss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+model+for+predicting+the+remaining+useful+performance+of+lithium-ion+batteries&rft.jtitle=Microelectronics+and+reliability&rft.au=Xing%2C+Yinjiao&rft.au=Ma%2C+Eden+WM&rft.au=Tsui%2C+Kwok-Leung&rft.au=Pecht%2C+Michael&rft.date=2013-06-01&rft.issn=0026-2714&rft.volume=53&rft.issue=6&rft.spage=811&rft.epage=820&rft_id=info:doi/10.1016%2Fj.microrel.2012.12.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |