An ensemble model for predicting the remaining useful performance of lithium-ion batteries

► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results. We develop...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 53; no. 6; pp. 811 - 820
Main Authors Xing, Yinjiao, Ma, Eden W.M., Tsui, Kwok-Leung, Pecht, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results. We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the battery’s degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble model’s prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model.
AbstractList We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the batteryas degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble modelas prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model.
► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability distribution. ► The robustness of the algorithm was verified by different datasets. ► More measured data, more accurate prediction results. We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model fuses an empirical exponential and a polynomial regression model to track the battery’s degradation trend over its cycle life based on experimental data analysis. Model parameters are adjusted online using a particle filtering (PF) approach. Experiments were conducted to compare our ensemble model’s prediction performance with the individual results of the exponential and polynomial models. A validation set of experimental battery capacity data was used to evaluate our model. In our conclusion, we presented the limitations of our model.
Author Ma, Eden W.M.
Xing, Yinjiao
Pecht, Michael
Tsui, Kwok-Leung
Author_xml – sequence: 1
  givenname: Yinjiao
  surname: Xing
  fullname: Xing, Yinjiao
  email: yxing3@student.cityu.edu.hk
  organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong
– sequence: 2
  givenname: Eden W.M.
  surname: Ma
  fullname: Ma, Eden W.M.
  email: eden.wm.ma@cityu.edu.hk
  organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong
– sequence: 3
  givenname: Kwok-Leung
  surname: Tsui
  fullname: Tsui, Kwok-Leung
  email: kltsui@cityu.edu.hk
  organization: Centre for Prognostics and System Health Management, City University of Hong Kong, Kowloon, Hong Kong
– sequence: 4
  givenname: Michael
  surname: Pecht
  fullname: Pecht, Michael
  email: pecht@calce.umd.edu
  organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20740, USA
BookMark eNqFkD1LBDEQhlMo-PkXJKXNnpNszO6BhSJ-gWCjjU3IZieaI5ucSVbw35vjtLERBoaB93kZngOyE2JAQk4YLBgwebZaTM6kmNAvODC-qAPQ7pB9AC4b3jGxRw5yXgFAB4ztk9erQDFknAaPdIojempjouuEozPFhTda3pEmnLQLm2vOaGdP15hqbNLBII2Welfe3Tw1LgY66FIwOcxHZNdqn_H4Zx-Sl9ub5-v75vHp7uH66rExbc9Lg91SdoKLfgDWC2stCj7KYZSIy16MPWcopGkBlkNr9dieC8u6vh9EN3TnA2B7SE63vesUP2bMRU0uG_ReB4xzVqztuBTAe1mjF9todZRzQquMK7rUt0vSzisGaqNRrdSvRrXRqOpUjRWXf_B1cpNOX_-Dl1sQq4dPh0ll47DKG11CU9QY3X8V33oflpM
CitedBy_id crossref_primary_10_1016_j_ensm_2022_05_007
crossref_primary_10_1109_TII_2018_2869429
crossref_primary_10_1002_bte2_20240036
crossref_primary_10_3390_en6094682
crossref_primary_10_1016_j_apenergy_2024_122825
crossref_primary_10_1016_j_energy_2025_135233
crossref_primary_10_1016_j_energy_2022_124725
crossref_primary_10_1016_j_apm_2019_08_024
crossref_primary_10_1016_j_isci_2021_102060
crossref_primary_10_1016_j_energy_2019_01_083
crossref_primary_10_1016_j_cja_2020_01_007
crossref_primary_10_1109_ACCESS_2020_2987426
crossref_primary_10_1109_TIM_2021_3125108
crossref_primary_10_1007_s10836_017_5688_3
crossref_primary_10_1016_j_ress_2017_11_020
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_1016_j_joule_2021_05_012
crossref_primary_10_1109_ACCESS_2020_3005229
crossref_primary_10_1108_IMDS_03_2019_0195
crossref_primary_10_1016_j_ensm_2024_103270
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_1109_ACCESS_2019_2910611
crossref_primary_10_1016_j_jpowsour_2022_231961
crossref_primary_10_1016_j_neucom_2017_11_062
crossref_primary_10_1016_j_microrel_2017_06_045
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_1016_j_egypro_2016_06_086
crossref_primary_10_1016_j_apenergy_2021_117511
crossref_primary_10_1016_j_est_2023_106969
crossref_primary_10_3389_fenrg_2022_984991
crossref_primary_10_1016_j_est_2024_112107
crossref_primary_10_1016_j_est_2024_114524
crossref_primary_10_1016_j_enbuild_2023_113045
crossref_primary_10_1016_j_jpowsour_2020_228192
crossref_primary_10_1007_s43236_021_00307_8
crossref_primary_10_3390_en6083654
crossref_primary_10_1016_j_egyr_2025_02_002
crossref_primary_10_1109_TII_2021_3051285
crossref_primary_10_1016_j_jpowsour_2018_12_001
crossref_primary_10_1109_TII_2017_2684821
crossref_primary_10_1016_j_est_2024_113603
crossref_primary_10_1016_j_est_2024_111304
crossref_primary_10_4271_2015_01_9147
crossref_primary_10_1002_est2_70080
crossref_primary_10_1016_j_est_2024_110695
crossref_primary_10_1016_j_energy_2021_123038
crossref_primary_10_1016_j_est_2023_109069
crossref_primary_10_1016_j_energy_2021_122189
crossref_primary_10_1109_TIM_2017_2708204
crossref_primary_10_1016_j_ress_2022_109046
crossref_primary_10_1109_TIM_2025_3541667
crossref_primary_10_1016_j_est_2023_106903
crossref_primary_10_1109_TEC_2021_3058531
crossref_primary_10_1016_j_est_2021_103072
crossref_primary_10_1016_j_est_2024_114702
crossref_primary_10_1007_s40974_024_00323_x
crossref_primary_10_1109_TIE_2020_2973876
crossref_primary_10_3390_app14020698
crossref_primary_10_1016_j_apenergy_2016_01_125
crossref_primary_10_1016_j_ress_2024_109954
crossref_primary_10_1109_JESTPE_2021_3098378
crossref_primary_10_1016_j_energy_2022_124538
crossref_primary_10_1016_j_microrel_2018_08_007
crossref_primary_10_1016_j_ress_2015_07_013
crossref_primary_10_3390_batteries9090441
crossref_primary_10_1016_j_ifacol_2024_07_455
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_3390_en7020520
crossref_primary_10_1016_j_measurement_2025_117084
crossref_primary_10_1016_j_ymssp_2014_07_005
crossref_primary_10_1016_j_energy_2023_128306
crossref_primary_10_3390_batteries10010026
crossref_primary_10_1016_j_psep_2023_10_042
crossref_primary_10_1109_TTE_2021_3074638
crossref_primary_10_1109_TVT_2024_3356116
crossref_primary_10_1016_j_microrel_2017_06_002
crossref_primary_10_1016_j_est_2022_105648
crossref_primary_10_3390_electronics10050540
crossref_primary_10_1007_s11431_022_2220_y
crossref_primary_10_2139_ssrn_4147559
crossref_primary_10_1016_j_est_2024_113878
crossref_primary_10_1016_j_est_2023_109195
crossref_primary_10_1016_j_ress_2016_10_026
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1007_s00521_020_05105_0
crossref_primary_10_1016_j_electacta_2017_10_007
crossref_primary_10_3390_machines10020072
crossref_primary_10_1016_j_est_2022_104209
crossref_primary_10_1016_j_ress_2023_109790
crossref_primary_10_3390_en17246326
crossref_primary_10_1016_j_apenergy_2021_117346
crossref_primary_10_2139_ssrn_4199925
crossref_primary_10_3390_batteries9020094
crossref_primary_10_1016_j_knosys_2020_106555
crossref_primary_10_1016_j_apenergy_2013_12_020
crossref_primary_10_1109_TVT_2020_3037088
crossref_primary_10_1016_j_apenergy_2025_125539
crossref_primary_10_1016_j_est_2024_111860
crossref_primary_10_1109_ACCESS_2018_2854224
crossref_primary_10_1016_j_ymssp_2015_11_008
crossref_primary_10_1149_1945_7111_ad0ea2
crossref_primary_10_1016_j_est_2023_109145
crossref_primary_10_1007_s43236_022_00428_8
crossref_primary_10_1016_j_ress_2023_109361
crossref_primary_10_1007_s00521_013_1520_x
crossref_primary_10_3390_en16062837
crossref_primary_10_1016_j_est_2022_105992
crossref_primary_10_1016_j_measurement_2019_07_064
crossref_primary_10_1115_1_4042234
crossref_primary_10_1109_ACCESS_2023_3234286
crossref_primary_10_1016_j_est_2023_110248
crossref_primary_10_1016_j_est_2024_110780
crossref_primary_10_1016_j_apenergy_2019_113591
crossref_primary_10_1016_j_est_2023_108042
crossref_primary_10_1109_TSMC_2022_3185102
crossref_primary_10_3390_wevj14050122
crossref_primary_10_1016_j_ress_2017_12_016
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1109_ACCESS_2022_3151975
crossref_primary_10_1115_1_4052274
crossref_primary_10_1016_j_rser_2019_109254
crossref_primary_10_1016_j_est_2020_102011
crossref_primary_10_1016_j_jclepro_2019_119409
crossref_primary_10_1016_j_est_2025_116024
crossref_primary_10_1016_j_est_2024_113827
crossref_primary_10_1109_ACCESS_2019_2913163
crossref_primary_10_1016_j_jpowsour_2023_233473
crossref_primary_10_1109_ACCESS_2024_3357736
crossref_primary_10_1016_j_ymssp_2014_10_010
crossref_primary_10_1002_qre_2229
crossref_primary_10_20517_ir_2023_16
crossref_primary_10_1109_JSEN_2023_3322135
crossref_primary_10_3389_fenrg_2022_972486
crossref_primary_10_1016_j_energy_2021_121233
crossref_primary_10_1016_j_apenergy_2023_122048
crossref_primary_10_1002_ese3_1428
crossref_primary_10_3390_en16031073
crossref_primary_10_1109_ACCESS_2020_2981261
crossref_primary_10_1016_j_est_2025_116152
crossref_primary_10_1016_j_energy_2023_129279
crossref_primary_10_7467_KSAE_2022_30_3_199
crossref_primary_10_1016_j_est_2023_110388
crossref_primary_10_1186_s10033_021_00577_0
crossref_primary_10_1038_s41597_024_03859_z
crossref_primary_10_1109_TR_2018_2829844
crossref_primary_10_1177_0142331216642836
crossref_primary_10_1109_TTE_2020_3017090
crossref_primary_10_3390_ma15175933
crossref_primary_10_1016_j_est_2024_110560
crossref_primary_10_1109_TII_2024_3495776
crossref_primary_10_1016_j_energy_2018_04_070
crossref_primary_10_1002_qre_3693
crossref_primary_10_1177_01423312221114506
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_jechem_2023_09_025
crossref_primary_10_1016_j_neucom_2019_09_074
crossref_primary_10_3390_electronics11111789
crossref_primary_10_3390_en9110896
crossref_primary_10_1002_qre_2320
crossref_primary_10_1016_j_est_2025_115352
crossref_primary_10_3390_app9091890
crossref_primary_10_1007_s00521_020_05031_1
crossref_primary_10_1109_ACCESS_2022_3208173
crossref_primary_10_1016_j_jpowsour_2024_234697
crossref_primary_10_3390_en7106492
crossref_primary_10_1109_TVT_2023_3234159
crossref_primary_10_1109_JESTPE_2021_3133697
crossref_primary_10_1016_j_apenergy_2021_118348
crossref_primary_10_1002_qre_3424
crossref_primary_10_1016_j_microrel_2020_113622
crossref_primary_10_1109_TIM_2024_3450095
crossref_primary_10_1016_j_jechem_2022_06_049
crossref_primary_10_1016_j_microrel_2018_07_047
crossref_primary_10_1016_j_microrel_2018_05_020
crossref_primary_10_1016_j_microrel_2016_03_030
crossref_primary_10_3390_wevj12040228
crossref_primary_10_1109_TIE_2019_2946551
crossref_primary_10_1016_j_energy_2022_124812
crossref_primary_10_1109_TTE_2024_3427334
crossref_primary_10_1016_j_energy_2018_10_131
crossref_primary_10_3390_su14169993
crossref_primary_10_1016_j_apenergy_2020_114817
crossref_primary_10_1186_s43067_023_00127_9
crossref_primary_10_1109_TTE_2021_3128018
crossref_primary_10_1016_j_jpowsour_2024_234674
crossref_primary_10_1002_cjce_23675
crossref_primary_10_1016_j_est_2023_109248
crossref_primary_10_1016_j_ymssp_2017_02_027
crossref_primary_10_1016_j_ijhydene_2019_01_190
crossref_primary_10_1016_j_jpowsour_2023_234007
crossref_primary_10_1016_j_est_2023_109352
crossref_primary_10_1016_j_apenergy_2016_04_057
crossref_primary_10_1088_1361_6501_ad0868
crossref_primary_10_1109_TIM_2025_3548227
crossref_primary_10_1177_14759217231216697
crossref_primary_10_3389_fenrg_2023_1059701
crossref_primary_10_1016_j_ress_2024_110313
crossref_primary_10_1016_j_eswa_2014_10_021
crossref_primary_10_1002_er_5464
crossref_primary_10_1016_j_ensm_2022_10_030
crossref_primary_10_1016_j_jclepro_2024_140686
crossref_primary_10_1016_j_ress_2015_03_036
crossref_primary_10_1109_TIM_2023_3332389
crossref_primary_10_3390_en10050691
crossref_primary_10_1007_s40843_023_2665_8
crossref_primary_10_1109_TEC_2023_3242876
crossref_primary_10_1109_TII_2022_3155597
crossref_primary_10_1016_j_microrel_2017_09_009
crossref_primary_10_3390_en13164183
crossref_primary_10_1016_j_egyai_2024_100462
crossref_primary_10_1016_j_heliyon_2024_e29402
crossref_primary_10_1016_j_jpowsour_2018_08_064
crossref_primary_10_1016_j_est_2022_104936
crossref_primary_10_1016_j_egyr_2022_09_043
crossref_primary_10_1016_j_engfailanal_2016_04_014
crossref_primary_10_1080_00949655_2016_1202953
crossref_primary_10_1002_int_22309
crossref_primary_10_1109_ACCESS_2021_3111927
crossref_primary_10_1038_s42256_024_00972_x
crossref_primary_10_1016_j_microrel_2017_02_003
crossref_primary_10_3390_batteries11010022
crossref_primary_10_1016_j_engfailanal_2022_106565
crossref_primary_10_1002_asmb_2063
crossref_primary_10_1109_TIE_2020_2978688
crossref_primary_10_1109_TMECH_2020_2986364
crossref_primary_10_1016_j_ress_2022_108945
crossref_primary_10_1109_TVT_2020_3039553
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1109_TTE_2024_3471626
crossref_primary_10_1109_TVT_2018_2805189
crossref_primary_10_1177_1687814020923202
crossref_primary_10_1016_j_energy_2024_133541
crossref_primary_10_1016_j_jafr_2024_101213
crossref_primary_10_17531_ein_2021_1_18
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_3390_en16031469
crossref_primary_10_1016_j_procs_2022_12_383
crossref_primary_10_1155_2018_5918068
crossref_primary_10_1109_TTE_2024_3354107
crossref_primary_10_1080_17445302_2023_2211241
crossref_primary_10_20964_2022_11_07
crossref_primary_10_1002_qre_2624
crossref_primary_10_1016_j_mtener_2024_101562
crossref_primary_10_1002_ente_202100767
crossref_primary_10_2139_ssrn_4063618
crossref_primary_10_1016_j_ress_2019_106618
crossref_primary_10_1016_j_energy_2022_125278
crossref_primary_10_3390_en9080572
crossref_primary_10_1088_1755_1315_93_1_012040
crossref_primary_10_1109_TVT_2020_3024019
crossref_primary_10_1149_1945_7111_ac0e4c
crossref_primary_10_3390_batteries10050164
crossref_primary_10_3390_s21041087
crossref_primary_10_1016_j_energy_2023_126726
crossref_primary_10_1016_j_microrel_2017_02_002
crossref_primary_10_1016_j_microrel_2023_114914
crossref_primary_10_1038_s44172_024_00304_2
crossref_primary_10_1007_s13042_018_0865_y
crossref_primary_10_1016_j_est_2025_116310
crossref_primary_10_3390_en16093858
crossref_primary_10_1016_j_fub_2025_100046
crossref_primary_10_1016_j_isci_2023_106547
crossref_primary_10_1016_j_est_2023_107493
crossref_primary_10_1109_TIE_2015_2393840
crossref_primary_10_1016_j_est_2023_108587
crossref_primary_10_1016_j_energy_2021_121986
crossref_primary_10_3390_en15186599
crossref_primary_10_1109_TTE_2017_2776558
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1109_TIM_2023_3346507
crossref_primary_10_1109_TIM_2016_2622838
crossref_primary_10_3390_en17071679
crossref_primary_10_1016_j_ress_2021_107542
crossref_primary_10_1109_TR_2017_2778804
crossref_primary_10_3390_s23052587
crossref_primary_10_1016_j_jpowsour_2023_233760
crossref_primary_10_1016_j_est_2021_103409
crossref_primary_10_1109_TMECH_2020_3040010
crossref_primary_10_1007_s11071_024_10815_4
crossref_primary_10_1002_er_3598
crossref_primary_10_1002_er_5413
crossref_primary_10_1109_TIM_2014_2348613
crossref_primary_10_1016_j_ifacol_2020_11_009
crossref_primary_10_1038_s41467_023_38458_w
crossref_primary_10_1109_TCST_2023_3316093
crossref_primary_10_1016_j_ress_2018_02_022
crossref_primary_10_1109_TCST_2018_2885681
crossref_primary_10_1109_TIE_2018_2808918
crossref_primary_10_1016_j_jpowsour_2023_233777
crossref_primary_10_1016_j_apenergy_2024_123542
crossref_primary_10_3390_batteries9110537
crossref_primary_10_1016_j_energy_2017_08_017
crossref_primary_10_1016_j_ress_2021_107797
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_1109_ACCESS_2019_2962502
crossref_primary_10_1109_TSMC_2015_2389757
crossref_primary_10_1088_1361_6501_ad7a94
crossref_primary_10_1002_er_5879
crossref_primary_10_1016_j_measurement_2014_11_031
crossref_primary_10_1016_j_jclepro_2018_06_182
crossref_primary_10_1155_2016_3838765
crossref_primary_10_1016_j_est_2022_106295
crossref_primary_10_3390_en17071695
crossref_primary_10_1109_TTE_2023_3331529
crossref_primary_10_3390_fractalfract7110827
crossref_primary_10_1109_TTE_2022_3161140
crossref_primary_10_1016_j_etran_2022_100164
crossref_primary_10_3390_electronics13152901
crossref_primary_10_1016_j_heliyon_2024_e39121
crossref_primary_10_1016_j_energy_2018_01_001
crossref_primary_10_1016_j_apenergy_2022_120584
crossref_primary_10_3390_batteries9120585
crossref_primary_10_1016_j_jclepro_2018_12_041
crossref_primary_10_3390_en14164833
crossref_primary_10_3389_fenrg_2022_1058999
crossref_primary_10_1186_s10033_024_01055_z
crossref_primary_10_1177_1748006X14550662
crossref_primary_10_3390_en17092154
crossref_primary_10_1002_cepa_3286
crossref_primary_10_1016_j_eswa_2023_123123
crossref_primary_10_1109_TIM_2016_2534258
crossref_primary_10_1038_s41597_023_02180_5
crossref_primary_10_1109_ACCESS_2019_2905740
crossref_primary_10_3390_en14092612
crossref_primary_10_1016_j_est_2021_102990
crossref_primary_10_1177_09576509231153907
crossref_primary_10_3390_en81112322
crossref_primary_10_1016_j_energy_2022_123598
crossref_primary_10_1016_j_energy_2022_123236
crossref_primary_10_1177_09544070231212531
crossref_primary_10_1016_j_ymssp_2018_09_033
crossref_primary_10_3390_batteries3040032
crossref_primary_10_1080_00401706_2017_1341341
crossref_primary_10_1016_j_est_2023_106797
crossref_primary_10_1109_TPEL_2021_3075558
crossref_primary_10_1016_j_eswa_2024_123563
crossref_primary_10_1016_j_egyr_2020_07_026
crossref_primary_10_1155_2015_631263
crossref_primary_10_1016_j_apenergy_2020_115338
crossref_primary_10_3390_en13184858
crossref_primary_10_1016_j_measurement_2019_107182
crossref_primary_10_1016_j_ifacol_2015_06_123
crossref_primary_10_3390_app6060166
crossref_primary_10_1016_j_ymssp_2019_01_060
crossref_primary_10_1016_j_cja_2017_11_010
crossref_primary_10_1109_TEC_2020_2995112
crossref_primary_10_1016_j_apacoust_2017_12_003
crossref_primary_10_1016_j_est_2020_101710
crossref_primary_10_1109_TIE_2018_2813964
crossref_primary_10_1149_1945_7111_acc696
crossref_primary_10_1016_j_microrel_2015_06_089
crossref_primary_10_1115_1_4028833
crossref_primary_10_1109_JSEN_2023_3277131
crossref_primary_10_1016_j_ress_2022_108651
crossref_primary_10_1155_2014_564894
crossref_primary_10_3390_en18030746
crossref_primary_10_1109_TPEL_2021_3104723
crossref_primary_10_1016_j_xcrp_2024_101891
crossref_primary_10_1109_TVT_2018_2864688
crossref_primary_10_1109_TR_2015_2451074
crossref_primary_10_1109_TTE_2022_3206469
crossref_primary_10_1016_j_ress_2023_109913
crossref_primary_10_1109_ACCESS_2020_2981947
crossref_primary_10_1016_j_est_2021_102726
crossref_primary_10_1016_j_ijoes_2023_100137
crossref_primary_10_1149_1945_7111_ad9353
crossref_primary_10_1002_est2_70133
crossref_primary_10_1016_j_energy_2023_128739
crossref_primary_10_3390_en18051236
crossref_primary_10_3390_en18051114
crossref_primary_10_1016_j_conengprac_2018_10_010
crossref_primary_10_1016_j_microrel_2016_07_151
crossref_primary_10_3390_batteries3030021
crossref_primary_10_1016_j_xcrp_2024_101941
crossref_primary_10_1155_2015_793161
crossref_primary_10_1016_j_ijoes_2023_100122
crossref_primary_10_1109_TTE_2022_3209629
crossref_primary_10_1109_TPEL_2023_3346335
crossref_primary_10_1016_j_est_2024_112594
crossref_primary_10_1080_15567036_2024_2399740
crossref_primary_10_1080_00224065_2018_1541388
crossref_primary_10_1109_ACCESS_2021_3120563
crossref_primary_10_1109_TII_2024_3452273
crossref_primary_10_1016_j_apenergy_2017_09_106
crossref_primary_10_1016_j_est_2024_113458
crossref_primary_10_1016_j_est_2020_101999
crossref_primary_10_3390_batteries4020015
crossref_primary_10_1016_j_ijoes_2024_100891
crossref_primary_10_1016_j_jpowsour_2016_04_119
crossref_primary_10_1016_j_est_2022_106457
crossref_primary_10_1016_j_est_2022_106335
crossref_primary_10_3390_s21020473
crossref_primary_10_1109_ACCESS_2018_2816684
crossref_primary_10_1021_acsomega_2c03043
crossref_primary_10_1038_s44296_024_00011_1
crossref_primary_10_1109_ACCESS_2024_3412914
crossref_primary_10_1109_TITS_2024_3355436
crossref_primary_10_1016_j_jpowsour_2020_228716
crossref_primary_10_1016_j_egyai_2021_100081
crossref_primary_10_1016_j_jpowsour_2014_03_091
crossref_primary_10_1061__ASCE_EY_1943_7897_0000865
crossref_primary_10_1016_j_energy_2023_127734
crossref_primary_10_1016_j_engfracmech_2018_03_013
crossref_primary_10_1016_j_est_2023_107862
crossref_primary_10_1109_ACCESS_2020_3017810
crossref_primary_10_1038_s41598_022_16692_4
crossref_primary_10_4271_2017_01_9078
crossref_primary_10_1016_j_measurement_2023_113885
crossref_primary_10_1016_j_rser_2025_115408
crossref_primary_10_1016_j_asoc_2022_108967
crossref_primary_10_3390_electronics8070751
crossref_primary_10_1016_j_measurement_2017_08_030
crossref_primary_10_1109_ACCESS_2023_3286307
crossref_primary_10_1016_j_apm_2023_09_007
crossref_primary_10_1016_j_ijhydene_2013_10_054
crossref_primary_10_3390_en15196909
crossref_primary_10_1016_j_ijoes_2025_100931
Cites_doi 10.1016/j.ejor.2010.11.018
10.1186/1471-2210-10-6
10.1109/TIM.2011.2115630
10.1149/1.2128096
10.1016/j.enconman.2008.03.013
10.1016/j.jpowsour.2011.03.101
10.1016/j.jpowsour.2010.06.011
10.1109/PHM.2008.4711430
10.1016/j.jpowsour.2004.02.033
10.1016/j.jpowsour.2008.01.028
10.1016/j.jpowsour.2011.08.040
10.1002/er.1655
10.1109/TSMCC.2010.2089979
10.1109/AUTEST.2007.4374280
10.1023/A:1008935410038
10.3390/en4111840
10.1016/S0378-7753(02)00490-1
10.1016/j.apenergy.2012.05.055
10.1109/AERO.2003.1234169
10.1109/78.978374
10.1109/TPEL.2009.2034966
10.1109/TIM.2008.2005965
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.microrel.2012.12.003
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 820
ExternalDocumentID 10_1016_j_microrel_2012_12_003
S0026271412005227
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c382t-e79674248b0184fffe42d6bd6ee984d821e46c3009b3fad354f1788b47b75b0e3
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Thu Jul 10 18:50:54 EDT 2025
Tue Jul 01 04:47:06 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Sun Apr 06 06:54:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-e79674248b0184fffe42d6bd6ee984d821e46c3009b3fad354f1788b47b75b0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1372640286
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1372640286
crossref_citationtrail_10_1016_j_microrel_2012_12_003
crossref_primary_10_1016_j_microrel_2012_12_003
elsevier_sciencedirect_doi_10_1016_j_microrel_2012_12_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Arulampalam, Maskell, Gordon, Clapp (b0130) 2002; 50
Bo, Zhifeng, Binggang (b0045) 2008; 49
Saha, Goebel, Poll, Christophersen (b0020) 2009; 58
Rufus F, Lee S, Thakker A. Health monitoring algorithms for space application batteries; 2008. p. 1–8.
Spiess, Neumeyer (b0125) 2010; 10
Doucet, Godsill, Andrieu (b0135) 2000; 10
Si, Wang, Hu, Zhou (b0105) 2011; 213
Andrea (b0160) 2010
Plett (b0060) 2004; 134
Friedman, Hastie, Tibshirani (b0180) 2008
Santhanagopalan, White (b0050) 2010; 34
Pattipati, Sankavaram, Pattipati (b0055) 2011; 41
Zhang, Lee (b0110) 2011; 196
Huggins (b0150) 2008
Xing, Ma, Tsui, Pecht (b0065) 2011; 4
Zhang, White (b0120) 2008; 179
Dai, Das, Pecht (b0170) 2012
Kim (b0015) 2010; 25
Spotnitz (b0035) 2003; 113
Micea, Ungurean, Cârstoiu, Groza (b0085) 2011; 60
Lee (b0185) 2005
Verbrugge, Koch (b0025) 2006; 153
Sun, Zuo, Wang, Pecht (b0175) 2011
Bergveld, Kruijt, Notten (b0165) 2002; vol. 1
Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques; 2003. p. 3257–270.
Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using bayesian regression and state estimation; 2007. p. 646-53.
He, Williard, Osterman, Pecht (b0080) 2011; 196
Schmidt, Bitzer, Imre, Guzzella (b0030) 2010; 195
Doucet (10.1016/j.microrel.2012.12.003_b0135) 2000; 10
Spotnitz (10.1016/j.microrel.2012.12.003_b0035) 2003; 113
10.1016/j.microrel.2012.12.003_b0155
Pattipati (10.1016/j.microrel.2012.12.003_b0055) 2011; 41
Zhang (10.1016/j.microrel.2012.12.003_b0110) 2011; 196
Zhang (10.1016/j.microrel.2012.12.003_b0120) 2008; 179
Verbrugge (10.1016/j.microrel.2012.12.003_b0025) 2006; 153
Spiess (10.1016/j.microrel.2012.12.003_b0125) 2010; 10
Sun (10.1016/j.microrel.2012.12.003_b0175) 2011
Xing (10.1016/j.microrel.2012.12.003_b0065) 2011; 4
He (10.1016/j.microrel.2012.12.003_b0080) 2011; 196
Andrea (10.1016/j.microrel.2012.12.003_b0160) 2010
Bo (10.1016/j.microrel.2012.12.003_b0045) 2008; 49
Santhanagopalan (10.1016/j.microrel.2012.12.003_b0050) 2010; 34
Schmidt (10.1016/j.microrel.2012.12.003_b0030) 2010; 195
Plett (10.1016/j.microrel.2012.12.003_b0060) 2004; 134
Friedman (10.1016/j.microrel.2012.12.003_b0180) 2008
Kim (10.1016/j.microrel.2012.12.003_b0015) 2010; 25
10.1016/j.microrel.2012.12.003_b0145
Arulampalam (10.1016/j.microrel.2012.12.003_b0130) 2002; 50
Bergveld (10.1016/j.microrel.2012.12.003_b0165) 2002; vol. 1
Micea (10.1016/j.microrel.2012.12.003_b0085) 2011; 60
Dai (10.1016/j.microrel.2012.12.003_b0170) 2012
Saha (10.1016/j.microrel.2012.12.003_b0020) 2009; 58
Lee (10.1016/j.microrel.2012.12.003_b0185) 2005
10.1016/j.microrel.2012.12.003_b0075
Si (10.1016/j.microrel.2012.12.003_b0105) 2011; 213
Huggins (10.1016/j.microrel.2012.12.003_b0150) 2008
References_xml – volume: 179
  start-page: 793
  year: 2008
  end-page: 798
  ident: b0120
  article-title: Capacity fade analysis of a lithium ion cell
  publication-title: J Power Sources
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: b0020
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: Instrum Meas, IEEE Trans on
– volume: 196
  start-page: 10314
  year: 2011
  end-page: 10321
  ident: b0080
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J Power Sources
– volume: 195
  start-page: 7634
  year: 2010
  end-page: 7638
  ident: b0030
  article-title: Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries
  publication-title: J Power Sources
– year: 2011
  ident: b0175
  article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
  publication-title: Mech Syst Signal Process
– volume: 49
  start-page: 2788
  year: 2008
  end-page: 2794
  ident: b0045
  article-title: State of charge estimation based on evolutionary neural network
  publication-title: Energy Convers Manage
– reference: Kozlowski JD. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques; 2003. p. 3257–270.
– reference: Saha B, Goebel K, Poll S, Christophersen J. An integrated approach to battery health monitoring using bayesian regression and state estimation; 2007. p. 646-53.
– volume: 34
  start-page: 152
  year: 2010
  end-page: 163
  ident: b0050
  article-title: State of charge estimation using an unscented filter for high power lithium ion cells
  publication-title: Int J Energy Res
– year: 2012
  ident: b0170
  article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions
  publication-title: Appl Energy
– volume: 153
  start-page: A187
  year: 2006
  ident: b0025
  article-title: Generalized recursive algorithm for adaptive multiparameter regression
  publication-title: J Electrochem Soc
– year: 2008
  ident: b0150
  article-title: Advanced batteries: materials science aspects
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: b0060
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
– volume: 10
  start-page: 197
  year: 2000
  end-page: 208
  ident: b0135
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statist Comput
– volume: 41
  start-page: 869
  year: 2011
  ident: b0055
  article-title: System identification and estimation framework for pivotal automotive battery management system characteristics
  publication-title: IEEE Trans Syst Man and Cyber – Part C Appl Rev
– volume: 50
  start-page: 174
  year: 2002
  end-page: 188
  ident: b0130
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Signal Process, IEEE Trans on
– reference: Rufus F, Lee S, Thakker A. Health monitoring algorithms for space application batteries; 2008. p. 1–8.
– volume: 25
  start-page: 1013
  year: 2010
  end-page: 1022
  ident: b0015
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: Power Electron, IEEE Trans on
– year: 2008
  ident: b0180
  publication-title: The elements of statistical learning
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: b0105
  article-title: Remaining useful life estimation – a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
– volume: vol. 1
  year: 2002
  ident: b0165
  publication-title: Battery management systems: design by modelling
– year: 2010
  ident: b0160
  article-title: Battery management systems for large lithium battery packs
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: b0110
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– volume: 4
  start-page: 1840
  year: 2011
  end-page: 1857
  ident: b0065
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
– year: 2005
  ident: b0185
  article-title: Nonlinear Bayesian filtering with applications to estimation and navigation
– volume: 113
  start-page: 72
  year: 2003
  end-page: 80
  ident: b0035
  article-title: Simulation of capacity fade in lithium-ion batteries
  publication-title: J Power Sources
– volume: 10
  start-page: 6
  year: 2010
  ident: b0125
  article-title: An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach
  publication-title: BMC Pharmacol
– volume: 60
  start-page: 1997
  year: 2011
  end-page: 2006
  ident: b0085
  article-title: Online state-of-health assessment for battery management systems
  publication-title: Instrum Meas, IEEE Trans on
– volume: 213
  start-page: 1
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0105
  article-title: Remaining useful life estimation – a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.11.018
– volume: 10
  start-page: 6
  year: 2010
  ident: 10.1016/j.microrel.2012.12.003_b0125
  article-title: An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach
  publication-title: BMC Pharmacol
  doi: 10.1186/1471-2210-10-6
– volume: 60
  start-page: 1997
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0085
  article-title: Online state-of-health assessment for battery management systems
  publication-title: Instrum Meas, IEEE Trans on
  doi: 10.1109/TIM.2011.2115630
– volume: 153
  start-page: A187
  year: 2006
  ident: 10.1016/j.microrel.2012.12.003_b0025
  article-title: Generalized recursive algorithm for adaptive multiparameter regression
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2128096
– volume: 49
  start-page: 2788
  year: 2008
  ident: 10.1016/j.microrel.2012.12.003_b0045
  article-title: State of charge estimation based on evolutionary neural network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.03.013
– year: 2010
  ident: 10.1016/j.microrel.2012.12.003_b0160
– volume: 196
  start-page: 6007
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0110
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– volume: 195
  start-page: 7634
  year: 2010
  ident: 10.1016/j.microrel.2012.12.003_b0030
  article-title: Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.06.011
– year: 2008
  ident: 10.1016/j.microrel.2012.12.003_b0150
– ident: 10.1016/j.microrel.2012.12.003_b0145
  doi: 10.1109/PHM.2008.4711430
– year: 2008
  ident: 10.1016/j.microrel.2012.12.003_b0180
– volume: 134
  start-page: 277
  year: 2004
  ident: 10.1016/j.microrel.2012.12.003_b0060
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0175
  article-title: Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
  publication-title: Mech Syst Signal Process
– volume: vol. 1
  year: 2002
  ident: 10.1016/j.microrel.2012.12.003_b0165
– volume: 179
  start-page: 793
  year: 2008
  ident: 10.1016/j.microrel.2012.12.003_b0120
  article-title: Capacity fade analysis of a lithium ion cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.01.028
– volume: 196
  start-page: 10314
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0080
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– year: 2005
  ident: 10.1016/j.microrel.2012.12.003_b0185
– volume: 34
  start-page: 152
  year: 2010
  ident: 10.1016/j.microrel.2012.12.003_b0050
  article-title: State of charge estimation using an unscented filter for high power lithium ion cells
  publication-title: Int J Energy Res
  doi: 10.1002/er.1655
– volume: 41
  start-page: 869
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0055
  article-title: System identification and estimation framework for pivotal automotive battery management system characteristics
  publication-title: IEEE Trans Syst Man and Cyber – Part C Appl Rev
  doi: 10.1109/TSMCC.2010.2089979
– ident: 10.1016/j.microrel.2012.12.003_b0155
  doi: 10.1109/AUTEST.2007.4374280
– volume: 10
  start-page: 197
  year: 2000
  ident: 10.1016/j.microrel.2012.12.003_b0135
  article-title: On sequential Monte Carlo sampling methods for Bayesian filtering
  publication-title: Statist Comput
  doi: 10.1023/A:1008935410038
– volume: 4
  start-page: 1840
  year: 2011
  ident: 10.1016/j.microrel.2012.12.003_b0065
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
  doi: 10.3390/en4111840
– volume: 113
  start-page: 72
  year: 2003
  ident: 10.1016/j.microrel.2012.12.003_b0035
  article-title: Simulation of capacity fade in lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00490-1
– year: 2012
  ident: 10.1016/j.microrel.2012.12.003_b0170
  article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.05.055
– ident: 10.1016/j.microrel.2012.12.003_b0075
  doi: 10.1109/AERO.2003.1234169
– volume: 50
  start-page: 174
  year: 2002
  ident: 10.1016/j.microrel.2012.12.003_b0130
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: Signal Process, IEEE Trans on
  doi: 10.1109/78.978374
– volume: 25
  start-page: 1013
  year: 2010
  ident: 10.1016/j.microrel.2012.12.003_b0015
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: Power Electron, IEEE Trans on
  doi: 10.1109/TPEL.2009.2034966
– volume: 58
  start-page: 291
  year: 2009
  ident: 10.1016/j.microrel.2012.12.003_b0020
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: Instrum Meas, IEEE Trans on
  doi: 10.1109/TIM.2008.2005965
SSID ssj0007011
Score 2.5458925
Snippet ► The capacity degradation of lithium battery was characterized by an ensemble model. ► The remaining useful performance was presented as probability...
We developed an ensemble model to characterize the capacity degradation and predict the remaining useful performance (RUP) of lithium-ion batteries. Our model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 811
SubjectTerms Battery
Degradation
Filtering
Fuses
Lithium-ion batteries
Mathematical models
On-line systems
Regression
Title An ensemble model for predicting the remaining useful performance of lithium-ion batteries
URI https://dx.doi.org/10.1016/j.microrel.2012.12.003
https://www.proquest.com/docview/1372640286
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-IzvrInXhX2x2x6JkaBGTpIQL0233Y0QKATo1d_ubB-KeuBg0lPbacjMZvb72Jn5ELqjlookNJSkhksiFcTCaKeIUA4sFGxChSTLy0D1h_Jp1Bk10H3dC-PLKqvcX-b0IltXd9qVN9uL8dj3-HLFNZOsGB7EfUe5lNqv8tbHd5mHpqxUzeOK-Lc3uoQnrZkveltafwTBePG3YC2e9XeD-pWqi_2nd4D2K-CIu-VvO0QNmx2hvY1xgsforZthYKV2ZqYWFxI3GCApXiz9YYwvb8aA9vDSzkpVCJyvrMunePHdO4DnDgMufx_nMwIBw6aYvglk-gQNew-v931SaSeQRAR8TawOFbBeGRgKHM45ZyVPlUmVtWEg04AzK1UiAGEZ4eJUdKRjwIaN1EZ3DLXiFDWzeWbPEA6SGFhUTGksgUyqIE6VjoWOqTLMhDI4R53aYVFSDRb3-hbTqK4gm0S1oyPv6AgucPQ5an_ZLcrRGlstwjoe0Y9FEkH-32p7WwcQnq_8sUic2Xm-ipjQgAoBZ6mLf3z_Eu3yUimDUHaFmutlbq8Br6zNTbEgb9BO9_G5P_gESb_rgg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKuhDhRZwpfZo1q-1k0MPqC1ayuMEEurFjRNbXbSbXe1uhLj0T_UPdpwHUDhwQEg5JRormnFm5otn5gP4xDyTeeoYLZxQVGm0hTNBU6kDSmgMQjUly_GJHpypH-f98yX42_XCxLLK1vc3Pr321u2dXqvN3nQ4jD2-QgvDFa-HBwnTVlYe-qtLxG3zLwff0Mifhdj_fvp1QFtqAZrLRCyoN6lGUKgSxxDihBC8EoV2hfY-TVSRCO6VziUmIE6GrJB9FTiCRaeMM33HvMR1n8GKQncRaRN2_9zUlRjGG5o-oWl8vVttyRe741hlN_PxzIOL-j9kx9Z1PyLeiQ11wNtfg5dtpkr2GmWsw5IvX8HqrfmFr-HnXkkQBvuxG3lSc-oQzIHJdBZPf2I9NcH0ksz8uKGhINXch2pEpjfNCmQSCAKB38NqTHGHEFeP-0T0_gbOnkSjb2G5nJT-HZAkzxC2ZYxlCtGrTrJCm0yajGnHXaqSDeh3CrN5O8k8EmqMbFeydmE7RduoaIsXKnoDetdy02aWx4MSaWcP-9-utBhwHpT92BkQn8_jOUxW-kk1t1waTEMxsdObj1h_B54PTo-P7NHByeF7eCEamg7K-AdYXswqv4XJ0sJt15uTwK-n_hr-AdcuJss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+model+for+predicting+the+remaining+useful+performance+of+lithium-ion+batteries&rft.jtitle=Microelectronics+and+reliability&rft.au=Xing%2C+Yinjiao&rft.au=Ma%2C+Eden+WM&rft.au=Tsui%2C+Kwok-Leung&rft.au=Pecht%2C+Michael&rft.date=2013-06-01&rft.issn=0026-2714&rft.volume=53&rft.issue=6&rft.spage=811&rft.epage=820&rft_id=info:doi/10.1016%2Fj.microrel.2012.12.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon