Entanglement Wedge Reconstruction via Universal Recovery Channels

In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in ord...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 9; no. 3; p. 031011
Main Authors Cotler, Jordan, Hayden, Patrick, Penington, Geoffrey, Salton, Grant, Swingle, Brian, Walter, Michael
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in order to address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting code. Having access only to a subregion of the boundary is as if part of the holographic code has been damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering information from a damaged code is addressed by the theory of universal recovery channels. We apply and extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact equivalence between bulk and boundary relative entropies, but these are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. We show that the framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new physical insights. Most notably, we find that a bulk operator acting in a given boundary region’s entanglement wedge can be expressed as the response of the boundary region’s modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes’s rule that attempts to undo the noise induced by restricting to only a portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.
AbstractList In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in order to address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting code. Having access only to a subregion of the boundary is as if part of the holographic code has been damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering information from a damaged code is addressed by the theory of universal recovery channels. We apply and extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact equivalence between bulk and boundary relative entropies, but these are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. We show that the framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new physical insights. Most notably, we find that a bulk operator acting in a given boundary region’s entanglement wedge can be expressed as the response of the boundary region’s modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes’s rule that attempts to undo the noise induced by restricting to only a portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.
ArticleNumber 031011
Author Penington, Geoffrey
Swingle, Brian
Walter, Michael
Cotler, Jordan
Hayden, Patrick
Salton, Grant
Author_xml – sequence: 1
  givenname: Jordan
  surname: Cotler
  fullname: Cotler, Jordan
– sequence: 2
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
– sequence: 3
  givenname: Geoffrey
  surname: Penington
  fullname: Penington, Geoffrey
– sequence: 4
  givenname: Grant
  orcidid: 0000-0003-3191-0325
  surname: Salton
  fullname: Salton, Grant
– sequence: 5
  givenname: Brian
  surname: Swingle
  fullname: Swingle, Brian
– sequence: 6
  givenname: Michael
  surname: Walter
  fullname: Walter, Michael
BookMark eNp9UMFqGzEQFcGBpkk-oLeFnu1opNVqdQzGbQOBBtOQ3MSsPHLWbCRXkg3--27iNJQcOpcZ5s1783if2STEQIx9AT4D4PLq7umQl7R_nJkZl8ABTtiZgIZPpeTt5J_5E7vMecPHajjUWp-x60UoGNYDPVMo1QOt1lQtycWQS9q50sdQ7Xus7kO_p5RxeAXH8VDNnzAEGvIFO_U4ZLp86-fs_tvi1_zH9Pbn95v59e3UyVaUKUnjPToSUjpnWgTZjhZq8KobEaVBNlqDUAY9r6k1SglE7bQ3K-CuEfKc3Rx1VxE3dpv6Z0wHG7G3r4uY1hZT6d1AFkh3ite640LVqHwHhKKl1pHXsOr4qPX1qLVN8feOcrGbuEthtG-FUryB1ggzXsHxyqWYcyL__hW4fQne_g3eGnsMfuToDxzXF3zJsSTsh_8w_wC29ouI
CitedBy_id crossref_primary_10_1007_JHEP09_2022_190
crossref_primary_10_1103_PhysRevLett_128_220502
crossref_primary_10_21468_SciPostPhys_16_6_152
crossref_primary_10_21468_SciPostPhys_12_1_003
crossref_primary_10_4213_tmf10824
crossref_primary_10_22331_q_2025_02_26_1650
crossref_primary_10_1088_1674_1137_ad32be
crossref_primary_10_1007_JHEP08_2022_143
crossref_primary_10_1007_JHEP06_2024_155
crossref_primary_10_1007_JHEP08_2020_132
crossref_primary_10_1007_JHEP10_2023_164
crossref_primary_10_1103_PhysRevB_102_045114
crossref_primary_10_1007_JHEP08_2019_152
crossref_primary_10_1007_JHEP04_2022_175
crossref_primary_10_1103_PhysRevD_109_126012
crossref_primary_10_21468_SciPostPhys_16_6_144
crossref_primary_10_1007_JHEP04_2023_009
crossref_primary_10_1103_PRXQuantum_5_020304
crossref_primary_10_1103_PhysRevD_108_016008
crossref_primary_10_1103_PhysRevD_103_126018
crossref_primary_10_1103_PhysRevD_104_046004
crossref_primary_10_1103_PhysRevD_106_046009
crossref_primary_10_1093_qmath_haad014
crossref_primary_10_1007_JHEP10_2019_239
crossref_primary_10_1088_1674_1137_ac69ba
crossref_primary_10_1007_JHEP08_2024_014
crossref_primary_10_1007_JHEP08_2024_016
crossref_primary_10_1103_PhysRevD_108_046005
crossref_primary_10_1103_RevModPhys_93_035002
crossref_primary_10_21468_SciPostPhys_16_1_024
crossref_primary_10_1103_PhysRevLett_128_020403
crossref_primary_10_1103_PhysRevD_108_046007
crossref_primary_10_1007_JHEP03_2023_026
crossref_primary_10_1007_JHEP09_2022_002
crossref_primary_10_1103_PhysRevD_110_086002
crossref_primary_10_1007_JHEP01_2025_086
crossref_primary_10_1007_JHEP12_2019_007
crossref_primary_10_1007_JHEP08_2020_121
crossref_primary_10_1103_PRXQuantum_4_020334
crossref_primary_10_22331_q_2022_11_28_864
crossref_primary_10_1103_PhysRevD_101_066011
crossref_primary_10_21468_SciPostPhys_12_4_137
crossref_primary_10_1007_JHEP03_2022_110
crossref_primary_10_1007_JHEP11_2021_212
crossref_primary_10_1103_PRXQuantum_3_020314
crossref_primary_10_1007_JHEP07_2024_013
crossref_primary_10_1007_JHEP04_2020_173
crossref_primary_10_1007_JHEP11_2021_177
crossref_primary_10_1103_PhysRevD_102_086021
crossref_primary_10_1007_JHEP10_2019_233
crossref_primary_10_22331_q_2023_05_23_1013
crossref_primary_10_1007_JHEP11_2021_192
crossref_primary_10_1007_s00220_024_05192_3
crossref_primary_10_1007_JHEP04_2024_079
crossref_primary_10_1007_JHEP10_2019_009
crossref_primary_10_1088_1674_1137_acdd60
crossref_primary_10_1103_PRXQuantum_4_010321
crossref_primary_10_1007_JHEP08_2022_118
crossref_primary_10_1007_JHEP09_2020_002
crossref_primary_10_21468_SciPostPhys_9_1_001
crossref_primary_10_1007_JHEP07_2023_025
crossref_primary_10_1007_JHEP11_2022_153
crossref_primary_10_21468_SciPostPhys_9_5_067
crossref_primary_10_1007_JHEP05_2022_158
crossref_primary_10_1007_JHEP11_2019_175
crossref_primary_10_1088_1751_8121_acef7d
crossref_primary_10_1007_JHEP08_2019_099
crossref_primary_10_1103_PhysRevD_102_066008
crossref_primary_10_21468_SciPostPhysLectNotes_22
crossref_primary_10_1103_PhysRevD_109_086011
crossref_primary_10_1007_JHEP03_2022_205
crossref_primary_10_1007_JHEP07_2024_069
crossref_primary_10_1007_JHEP02_2023_052
crossref_primary_10_1007_JHEP03_2020_033
crossref_primary_10_1007_JHEP10_2019_015
crossref_primary_10_1007_JHEP03_2020_152
crossref_primary_10_1007_JHEP12_2023_020
crossref_primary_10_1088_1367_2630_accd11
crossref_primary_10_1007_JHEP01_2020_168
crossref_primary_10_1007_JHEP02_2024_079
crossref_primary_10_1007_JHEP06_2022_089
crossref_primary_10_1103_PhysRevD_110_046007
crossref_primary_10_1007_JHEP03_2020_191
crossref_primary_10_1007_JHEP08_2023_056
crossref_primary_10_21468_SciPostPhys_12_5_157
crossref_primary_10_1103_PhysRevD_105_026018
crossref_primary_10_1007_JHEP06_2024_151
crossref_primary_10_1007_JHEP11_2019_069
crossref_primary_10_1103_PhysRevD_107_026016
crossref_primary_10_1103_PhysRevA_101_032303
crossref_primary_10_1103_PhysRevD_110_085015
crossref_primary_10_1103_PhysRevD_102_086009
crossref_primary_10_1007_JHEP11_2023_188
crossref_primary_10_1103_PhysRevD_102_086001
Cites_doi 10.1103/PhysRevD.73.086003
10.1007/JHEP12(2014)162
10.1007/s00023-018-0716-0
10.1007/JHEP04(2015)163
10.1016/0003-4916(61)90032-X
10.1007/s00220-016-2778-5
10.1103/PhysRevD.83.106009
10.1007/s00220-007-0362-8
10.1103/PhysRevD.75.106001
10.1103/PhysRevLett.117.021601
10.1109/18.761271
10.1016/S0370-2693(98)00377-3
10.1109/TIT.2012.2191695
10.1023/A:1026654312961
10.1007/s00220-004-1049-z
10.1007/JHEP11(2016)009
10.1088/1126-6708/2007/07/062
10.1103/PhysRevD.74.066009
10.1007/JHEP06(2015)149
10.4310/ATMP.1998.v2.n2.a1
10.1088/0264-9381/31/22/225007
10.1088/0264-9381/29/23/235025
10.1103/PhysRevLett.96.181602
10.4310/ATMP.1998.v2.n2.a2
10.1007/JHEP07(2017)151
10.1088/0264-9381/29/15/155009
10.1007/JHEP12(2016)145
10.1007/JHEP06(2016)004
10.1007/BF01212345
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.9.031011
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_1e7b5047b0254a5fb1ea28e8cef71db0
10_1103_PhysRevX_9_031011
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c382t-e39fface233cc98a13801441f5b39f57136771259af04e89552aa7c7f9d10c623
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:32:07 EDT 2025
Fri Jul 25 11:51:51 EDT 2025
Tue Jul 01 01:33:19 EDT 2025
Thu Apr 24 22:50:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-e39fface233cc98a13801441f5b39f57136771259af04e89552aa7c7f9d10c623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3191-0325
OpenAccessLink https://doaj.org/article/1e7b5047b0254a5fb1ea28e8cef71db0
PQID 2550618929
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_1e7b5047b0254a5fb1ea28e8cef71db0
proquest_journals_2550618929
crossref_primary_10_1103_PhysRevX_9_031011
crossref_citationtrail_10_1103_PhysRevX_9_031011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 20190701
  day: 01
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.9.031011Cc17R1
PhysRevX.9.031011Cc16R1
PhysRevX.9.031011Cc15R1
PhysRevX.9.031011Cc36R1
PhysRevX.9.031011Cc37R1
PhysRevX.9.031011Cc19R1
PhysRevX.9.031011Cc18R1
PhysRevX.9.031011Cc23R1
A. Winter (PhysRevX.9.031011Cc24R1) 2012
PhysRevX.9.031011Cc21R1
M. Ohya (PhysRevX.9.031011Cc26R1) 2004
PhysRevX.9.031011Cc1R2
PhysRevX.9.031011Cc2R1
D. Petz (PhysRevX.9.031011Cc35R1) 2007
PhysRevX.9.031011Cc1R1
PhysRevX.9.031011Cc4R1
PhysRevX.9.031011Cc3R1
PhysRevX.9.031011Cc6R1
PhysRevX.9.031011Cc5R1
PhysRevX.9.031011Cc9R1
PhysRevX.9.031011Cc28R1
PhysRevX.9.031011Cc27R1
PhysRevX.9.031011Cc7R1
PhysRevX.9.031011Cc8R1
PhysRevX.9.031011Cc25R1
PhysRevX.9.031011Cc32R1
PhysRevX.9.031011Cc33R1
PhysRevX.9.031011Cc13R1
PhysRevX.9.031011Cc12R1
PhysRevX.9.031011Cc11R1
PhysRevX.9.031011Cc30R1
PhysRevX.9.031011Cc10R1
References_xml – ident: PhysRevX.9.031011Cc3R1
  doi: 10.1103/PhysRevD.73.086003
– ident: PhysRevX.9.031011Cc10R1
  doi: 10.1007/JHEP12(2014)162
– ident: PhysRevX.9.031011Cc25R1
  doi: 10.1007/s00023-018-0716-0
– ident: PhysRevX.9.031011Cc30R1
  doi: 10.1007/JHEP04(2015)163
– ident: PhysRevX.9.031011Cc37R1
  doi: 10.1016/0003-4916(61)90032-X
– ident: PhysRevX.9.031011Cc36R1
  doi: 10.1007/s00220-016-2778-5
– ident: PhysRevX.9.031011Cc5R1
  doi: 10.1103/PhysRevD.83.106009
– ident: PhysRevX.9.031011Cc18R1
  doi: 10.1007/s00220-007-0362-8
– ident: PhysRevX.9.031011Cc4R1
  doi: 10.1103/PhysRevD.75.106001
– volume-title: Quantum Information Theory and Quantum Statistics
  year: 2007
  ident: PhysRevX.9.031011Cc35R1
– ident: PhysRevX.9.031011Cc15R1
  doi: 10.1103/PhysRevLett.117.021601
– ident: PhysRevX.9.031011Cc32R1
  doi: 10.1109/18.761271
– ident: PhysRevX.9.031011Cc27R1
  doi: 10.1016/S0370-2693(98)00377-3
– ident: PhysRevX.9.031011Cc21R1
  doi: 10.1109/TIT.2012.2191695
– ident: PhysRevX.9.031011Cc1R1
  doi: 10.1023/A:1026654312961
– ident: PhysRevX.9.031011Cc17R1
  doi: 10.1007/s00220-004-1049-z
– ident: PhysRevX.9.031011Cc13R1
  doi: 10.1007/JHEP11(2016)009
– ident: PhysRevX.9.031011Cc9R1
  doi: 10.1088/1126-6708/2007/07/062
– ident: PhysRevX.9.031011Cc2R1
  doi: 10.1103/PhysRevD.74.066009
– volume-title: Quantum Entropy and Its Use
  year: 2004
  ident: PhysRevX.9.031011Cc26R1
– ident: PhysRevX.9.031011Cc12R1
  doi: 10.1007/JHEP06(2015)149
– ident: PhysRevX.9.031011Cc1R2
  doi: 10.4310/ATMP.1998.v2.n2.a1
– ident: PhysRevX.9.031011Cc11R1
  doi: 10.1088/0264-9381/31/22/225007
– ident: PhysRevX.9.031011Cc7R1
  doi: 10.1088/0264-9381/29/23/235025
– ident: PhysRevX.9.031011Cc8R1
  doi: 10.1103/PhysRevLett.96.181602
– ident: PhysRevX.9.031011Cc28R1
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: PhysRevX.9.031011Cc33R1
  doi: 10.1007/JHEP07(2017)151
– ident: PhysRevX.9.031011Cc6R1
  doi: 10.1088/0264-9381/29/15/155009
– ident: PhysRevX.9.031011Cc19R1
  doi: 10.1007/JHEP12(2016)145
– ident: PhysRevX.9.031011Cc16R1
  doi: 10.1007/JHEP06(2016)004
– ident: PhysRevX.9.031011Cc23R1
  doi: 10.1007/BF01212345
– volume-title: Proceedings of the BIRS Workshop
  year: 2012
  ident: PhysRevX.9.031011Cc24R1
SSID ssj0000601477
Score 2.6204183
Snippet In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 031011
SubjectTerms Bayesian analysis
Channels
Equivalence
Error correcting codes
Error correction
Field theory
Gravity
Mathematical analysis
Mechanical systems
Operators (mathematics)
Perturbation
Physicists
Quantum entanglement
Quantum gravity
Quantum phenomena
Reconstruction
Recovery
Relativity
Robustness (mathematics)
Spacetime
Statistical inference
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRP3E6pQ8-CdX0I03yJJtsiKCIONxbSK6JCNKpG4L_vZc23RBhL6U0aSmX5O53l8vvCDkvJFDQQGMoChnnlsvYFAIvzLE8Lzl14OOQ9w_F7Ti_m7BJCLjNQlplqxNrRV1OwcfIrxD6oukRaM2vPz5jXzXK766GEhrrZANVsBAdsjEYPjw-LaIsnm0k5zxsZyY0u_KJlU_2e3LpyU1xPiZ_DFLN2_9PLde2ZrRDtgNIjPrNqO6SNVvtkc06WRNm-6Q_rBDSvTaJ39GLj4hF3o1cksFG3286CjkX-CHfiLc_kT9LUKE1PCDj0fD55jYOpRBiyEQ6j20mndNg0ywDkEInmahdIccMtjDuidc4YhWpHc2tkIylWnPgTpYJBYQ4h6RTTSt7RCKaaAMCP0JNmVMn0WERmYDCpNIh3ii7hLbyUBB4wn25indV-ws0U60IlVSNCLvkYvHKR0OSsarzwAt50dHzW9cPpl-vKiwXlVhuGM258Yf1NXMmsToVVoB1-IuGdkmvHSIVFt1MLafI8ermE7KFuEc2Wbc90sHBsaeILebmLEygX_n1z2w
  priority: 102
  providerName: ProQuest
Title Entanglement Wedge Reconstruction via Universal Recovery Channels
URI https://www.proquest.com/docview/2550618929
https://doaj.org/article/1e7b5047b0254a5fb1ea28e8cef71db0
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46EbyIP3E6Rw-ehLqkaZrkuMnmEBwiiruFJE1EkCpsDPzvfWm6qQh68VJKk6blvTTv-9KXLwidFdJiqy1ObVHINHdcpqYQcGCe5XnJsbdhHvJmUowf8uspm37Z6ivkhEV54Gi4HnHcMJxzE5Zta-YNcToTTljnOSlNzdYh5n0hU3EMBujPefMbk2DaCwmVd24xvQiiptAPybdAVOv1_xiO6xgz2kHbDThM-vGldtGaq_bQZp2kaWf7qD-sAMo9xYTv5DHMhCWBPn6KwCaLZ500uRbQUCiE0_ckrCGoIAoeoIfR8P5ynDZbIKSWimyeOiq919ZllForhSZU1BTIMwMljAfBNQ4YRWqPcyckY5nW3HIvS4ItQJtD1KpeK3eEEky0sQIawabMsZdAVAQVtjCZ9IAzyjbCS3so2-iDh20qXlTNEzBVSxMqqaIJ2-h8dctbFMf4rfIgGHlVMeha1xfA26rxtvrL223UWbpINR_bTAErAlQiAOgd_8czTtAWoCIZc3I7qAUudKeAPOami9bF6KqLNgbDye1dt-5yH5Tz2bg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8QjNGLUcH4BGUPciFZ6W7bbXswBJXnQz4OBuK71bbbEhOzD3wEwz_l38jMfjxCTLhx2Wy23c1mOu1vZjr9DcD7ygQWXGB5qCqTi6hM7iuNF5mkELViKVAc8ui4mpyKb1M5XYJ_w1kYSqsc1sR2oa5ngWLk22j6IvRoRPOd84ucqkbR7upQQqNTi4N4_RddtvnH_S84vptlOd47-TzJ-6oCeeC6vMwjNym5EEvOQzDaFVy3XkWSHlukIg4zhbBvXGIiaiNl6ZwKKpm6YKEiogNc8h8JjkhOJ9PHXxcxHeI2EUr1m6cF49uUxvk9Xk0_EJUqan9xB_7aKgH_gUCLbOPn8Kw3SbPdTodewFJsXsLjNjU0zFdgd69BA_KsSzPPflD8LSOn9ZZ6Nrv65bI-wwM_RI14e53RyYUGsXcVTh9ERK9guZk18TVkrHA-aPwI87VgyaB7pLkOlS9NQuumHgEb5GFDz0pOxTF-29Y7YdwOIrTGdiIcwdbilfOOkuO-zp9IyIuOxKbdPpj9ObP95LRFVF4yoTxRAziZfBFdqaMOMeEvejaC9WGIbD_F5_ZWId_c37wBTyYnR4f2cP_4YA2eosVlunzfdVjGgYpv0aq59O9aVcrg50Pr7g3hTwm3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entanglement+Wedge+Reconstruction+via+Universal+Recovery+Channels&rft.jtitle=Physical+review.+X&rft.au=Cotler%2C+Jordan&rft.au=Hayden%2C+Patrick&rft.au=Penington%2C+Geoffrey&rft.au=Salton%2C+Grant&rft.date=2019-07-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevX.9.031011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_9_031011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon