Entanglement Wedge Reconstruction via Universal Recovery Channels
In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in ord...
Saved in:
Published in | Physical review. X Vol. 9; no. 3; p. 031011 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in order to address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting code. Having access only to a subregion of the boundary is as if part of the holographic code has been damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering information from a damaged code is addressed by the theory of universal recovery channels. We apply and extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact equivalence between bulk and boundary relative entropies, but these are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. We show that the framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new physical insights. Most notably, we find that a bulk operator acting in a given boundary region’s entanglement wedge can be expressed as the response of the boundary region’s modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes’s rule that attempts to undo the noise induced by restricting to only a portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra. |
---|---|
AbstractList | In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in order to address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting code. Having access only to a subregion of the boundary is as if part of the holographic code has been damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering information from a damaged code is addressed by the theory of universal recovery channels. We apply and extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact equivalence between bulk and boundary relative entropies, but these are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. We show that the framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new physical insights. Most notably, we find that a bulk operator acting in a given boundary region’s entanglement wedge can be expressed as the response of the boundary region’s modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes’s rule that attempts to undo the noise induced by restricting to only a portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra. |
ArticleNumber | 031011 |
Author | Penington, Geoffrey Swingle, Brian Walter, Michael Cotler, Jordan Hayden, Patrick Salton, Grant |
Author_xml | – sequence: 1 givenname: Jordan surname: Cotler fullname: Cotler, Jordan – sequence: 2 givenname: Patrick surname: Hayden fullname: Hayden, Patrick – sequence: 3 givenname: Geoffrey surname: Penington fullname: Penington, Geoffrey – sequence: 4 givenname: Grant orcidid: 0000-0003-3191-0325 surname: Salton fullname: Salton, Grant – sequence: 5 givenname: Brian surname: Swingle fullname: Swingle, Brian – sequence: 6 givenname: Michael surname: Walter fullname: Walter, Michael |
BookMark | eNp9UMFqGzEQFcGBpkk-oLeFnu1opNVqdQzGbQOBBtOQ3MSsPHLWbCRXkg3--27iNJQcOpcZ5s1783if2STEQIx9AT4D4PLq7umQl7R_nJkZl8ABTtiZgIZPpeTt5J_5E7vMecPHajjUWp-x60UoGNYDPVMo1QOt1lQtycWQS9q50sdQ7Xus7kO_p5RxeAXH8VDNnzAEGvIFO_U4ZLp86-fs_tvi1_zH9Pbn95v59e3UyVaUKUnjPToSUjpnWgTZjhZq8KobEaVBNlqDUAY9r6k1SglE7bQ3K-CuEfKc3Rx1VxE3dpv6Z0wHG7G3r4uY1hZT6d1AFkh3ite640LVqHwHhKKl1pHXsOr4qPX1qLVN8feOcrGbuEthtG-FUryB1ggzXsHxyqWYcyL__hW4fQne_g3eGnsMfuToDxzXF3zJsSTsh_8w_wC29ouI |
CitedBy_id | crossref_primary_10_1007_JHEP09_2022_190 crossref_primary_10_1103_PhysRevLett_128_220502 crossref_primary_10_21468_SciPostPhys_16_6_152 crossref_primary_10_21468_SciPostPhys_12_1_003 crossref_primary_10_4213_tmf10824 crossref_primary_10_22331_q_2025_02_26_1650 crossref_primary_10_1088_1674_1137_ad32be crossref_primary_10_1007_JHEP08_2022_143 crossref_primary_10_1007_JHEP06_2024_155 crossref_primary_10_1007_JHEP08_2020_132 crossref_primary_10_1007_JHEP10_2023_164 crossref_primary_10_1103_PhysRevB_102_045114 crossref_primary_10_1007_JHEP08_2019_152 crossref_primary_10_1007_JHEP04_2022_175 crossref_primary_10_1103_PhysRevD_109_126012 crossref_primary_10_21468_SciPostPhys_16_6_144 crossref_primary_10_1007_JHEP04_2023_009 crossref_primary_10_1103_PRXQuantum_5_020304 crossref_primary_10_1103_PhysRevD_108_016008 crossref_primary_10_1103_PhysRevD_103_126018 crossref_primary_10_1103_PhysRevD_104_046004 crossref_primary_10_1103_PhysRevD_106_046009 crossref_primary_10_1093_qmath_haad014 crossref_primary_10_1007_JHEP10_2019_239 crossref_primary_10_1088_1674_1137_ac69ba crossref_primary_10_1007_JHEP08_2024_014 crossref_primary_10_1007_JHEP08_2024_016 crossref_primary_10_1103_PhysRevD_108_046005 crossref_primary_10_1103_RevModPhys_93_035002 crossref_primary_10_21468_SciPostPhys_16_1_024 crossref_primary_10_1103_PhysRevLett_128_020403 crossref_primary_10_1103_PhysRevD_108_046007 crossref_primary_10_1007_JHEP03_2023_026 crossref_primary_10_1007_JHEP09_2022_002 crossref_primary_10_1103_PhysRevD_110_086002 crossref_primary_10_1007_JHEP01_2025_086 crossref_primary_10_1007_JHEP12_2019_007 crossref_primary_10_1007_JHEP08_2020_121 crossref_primary_10_1103_PRXQuantum_4_020334 crossref_primary_10_22331_q_2022_11_28_864 crossref_primary_10_1103_PhysRevD_101_066011 crossref_primary_10_21468_SciPostPhys_12_4_137 crossref_primary_10_1007_JHEP03_2022_110 crossref_primary_10_1007_JHEP11_2021_212 crossref_primary_10_1103_PRXQuantum_3_020314 crossref_primary_10_1007_JHEP07_2024_013 crossref_primary_10_1007_JHEP04_2020_173 crossref_primary_10_1007_JHEP11_2021_177 crossref_primary_10_1103_PhysRevD_102_086021 crossref_primary_10_1007_JHEP10_2019_233 crossref_primary_10_22331_q_2023_05_23_1013 crossref_primary_10_1007_JHEP11_2021_192 crossref_primary_10_1007_s00220_024_05192_3 crossref_primary_10_1007_JHEP04_2024_079 crossref_primary_10_1007_JHEP10_2019_009 crossref_primary_10_1088_1674_1137_acdd60 crossref_primary_10_1103_PRXQuantum_4_010321 crossref_primary_10_1007_JHEP08_2022_118 crossref_primary_10_1007_JHEP09_2020_002 crossref_primary_10_21468_SciPostPhys_9_1_001 crossref_primary_10_1007_JHEP07_2023_025 crossref_primary_10_1007_JHEP11_2022_153 crossref_primary_10_21468_SciPostPhys_9_5_067 crossref_primary_10_1007_JHEP05_2022_158 crossref_primary_10_1007_JHEP11_2019_175 crossref_primary_10_1088_1751_8121_acef7d crossref_primary_10_1007_JHEP08_2019_099 crossref_primary_10_1103_PhysRevD_102_066008 crossref_primary_10_21468_SciPostPhysLectNotes_22 crossref_primary_10_1103_PhysRevD_109_086011 crossref_primary_10_1007_JHEP03_2022_205 crossref_primary_10_1007_JHEP07_2024_069 crossref_primary_10_1007_JHEP02_2023_052 crossref_primary_10_1007_JHEP03_2020_033 crossref_primary_10_1007_JHEP10_2019_015 crossref_primary_10_1007_JHEP03_2020_152 crossref_primary_10_1007_JHEP12_2023_020 crossref_primary_10_1088_1367_2630_accd11 crossref_primary_10_1007_JHEP01_2020_168 crossref_primary_10_1007_JHEP02_2024_079 crossref_primary_10_1007_JHEP06_2022_089 crossref_primary_10_1103_PhysRevD_110_046007 crossref_primary_10_1007_JHEP03_2020_191 crossref_primary_10_1007_JHEP08_2023_056 crossref_primary_10_21468_SciPostPhys_12_5_157 crossref_primary_10_1103_PhysRevD_105_026018 crossref_primary_10_1007_JHEP06_2024_151 crossref_primary_10_1007_JHEP11_2019_069 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1103_PhysRevA_101_032303 crossref_primary_10_1103_PhysRevD_110_085015 crossref_primary_10_1103_PhysRevD_102_086009 crossref_primary_10_1007_JHEP11_2023_188 crossref_primary_10_1103_PhysRevD_102_086001 |
Cites_doi | 10.1103/PhysRevD.73.086003 10.1007/JHEP12(2014)162 10.1007/s00023-018-0716-0 10.1007/JHEP04(2015)163 10.1016/0003-4916(61)90032-X 10.1007/s00220-016-2778-5 10.1103/PhysRevD.83.106009 10.1007/s00220-007-0362-8 10.1103/PhysRevD.75.106001 10.1103/PhysRevLett.117.021601 10.1109/18.761271 10.1016/S0370-2693(98)00377-3 10.1109/TIT.2012.2191695 10.1023/A:1026654312961 10.1007/s00220-004-1049-z 10.1007/JHEP11(2016)009 10.1088/1126-6708/2007/07/062 10.1103/PhysRevD.74.066009 10.1007/JHEP06(2015)149 10.4310/ATMP.1998.v2.n2.a1 10.1088/0264-9381/31/22/225007 10.1088/0264-9381/29/23/235025 10.1103/PhysRevLett.96.181602 10.4310/ATMP.1998.v2.n2.a2 10.1007/JHEP07(2017)151 10.1088/0264-9381/29/15/155009 10.1007/JHEP12(2016)145 10.1007/JHEP06(2016)004 10.1007/BF01212345 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.9.031011 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_1e7b5047b0254a5fb1ea28e8cef71db0 10_1103_PhysRevX_9_031011 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c382t-e39fface233cc98a13801441f5b39f57136771259af04e89552aa7c7f9d10c623 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Fri Jul 25 11:51:51 EDT 2025 Tue Jul 01 01:33:19 EDT 2025 Thu Apr 24 22:50:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-e39fface233cc98a13801441f5b39f57136771259af04e89552aa7c7f9d10c623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3191-0325 |
OpenAccessLink | https://doaj.org/article/1e7b5047b0254a5fb1ea28e8cef71db0 |
PQID | 2550618929 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e7b5047b0254a5fb1ea28e8cef71db0 proquest_journals_2550618929 crossref_primary_10_1103_PhysRevX_9_031011 crossref_citationtrail_10_1103_PhysRevX_9_031011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 20190701 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2019 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.9.031011Cc17R1 PhysRevX.9.031011Cc16R1 PhysRevX.9.031011Cc15R1 PhysRevX.9.031011Cc36R1 PhysRevX.9.031011Cc37R1 PhysRevX.9.031011Cc19R1 PhysRevX.9.031011Cc18R1 PhysRevX.9.031011Cc23R1 A. Winter (PhysRevX.9.031011Cc24R1) 2012 PhysRevX.9.031011Cc21R1 M. Ohya (PhysRevX.9.031011Cc26R1) 2004 PhysRevX.9.031011Cc1R2 PhysRevX.9.031011Cc2R1 D. Petz (PhysRevX.9.031011Cc35R1) 2007 PhysRevX.9.031011Cc1R1 PhysRevX.9.031011Cc4R1 PhysRevX.9.031011Cc3R1 PhysRevX.9.031011Cc6R1 PhysRevX.9.031011Cc5R1 PhysRevX.9.031011Cc9R1 PhysRevX.9.031011Cc28R1 PhysRevX.9.031011Cc27R1 PhysRevX.9.031011Cc7R1 PhysRevX.9.031011Cc8R1 PhysRevX.9.031011Cc25R1 PhysRevX.9.031011Cc32R1 PhysRevX.9.031011Cc33R1 PhysRevX.9.031011Cc13R1 PhysRevX.9.031011Cc12R1 PhysRevX.9.031011Cc11R1 PhysRevX.9.031011Cc30R1 PhysRevX.9.031011Cc10R1 |
References_xml | – ident: PhysRevX.9.031011Cc3R1 doi: 10.1103/PhysRevD.73.086003 – ident: PhysRevX.9.031011Cc10R1 doi: 10.1007/JHEP12(2014)162 – ident: PhysRevX.9.031011Cc25R1 doi: 10.1007/s00023-018-0716-0 – ident: PhysRevX.9.031011Cc30R1 doi: 10.1007/JHEP04(2015)163 – ident: PhysRevX.9.031011Cc37R1 doi: 10.1016/0003-4916(61)90032-X – ident: PhysRevX.9.031011Cc36R1 doi: 10.1007/s00220-016-2778-5 – ident: PhysRevX.9.031011Cc5R1 doi: 10.1103/PhysRevD.83.106009 – ident: PhysRevX.9.031011Cc18R1 doi: 10.1007/s00220-007-0362-8 – ident: PhysRevX.9.031011Cc4R1 doi: 10.1103/PhysRevD.75.106001 – volume-title: Quantum Information Theory and Quantum Statistics year: 2007 ident: PhysRevX.9.031011Cc35R1 – ident: PhysRevX.9.031011Cc15R1 doi: 10.1103/PhysRevLett.117.021601 – ident: PhysRevX.9.031011Cc32R1 doi: 10.1109/18.761271 – ident: PhysRevX.9.031011Cc27R1 doi: 10.1016/S0370-2693(98)00377-3 – ident: PhysRevX.9.031011Cc21R1 doi: 10.1109/TIT.2012.2191695 – ident: PhysRevX.9.031011Cc1R1 doi: 10.1023/A:1026654312961 – ident: PhysRevX.9.031011Cc17R1 doi: 10.1007/s00220-004-1049-z – ident: PhysRevX.9.031011Cc13R1 doi: 10.1007/JHEP11(2016)009 – ident: PhysRevX.9.031011Cc9R1 doi: 10.1088/1126-6708/2007/07/062 – ident: PhysRevX.9.031011Cc2R1 doi: 10.1103/PhysRevD.74.066009 – volume-title: Quantum Entropy and Its Use year: 2004 ident: PhysRevX.9.031011Cc26R1 – ident: PhysRevX.9.031011Cc12R1 doi: 10.1007/JHEP06(2015)149 – ident: PhysRevX.9.031011Cc1R2 doi: 10.4310/ATMP.1998.v2.n2.a1 – ident: PhysRevX.9.031011Cc11R1 doi: 10.1088/0264-9381/31/22/225007 – ident: PhysRevX.9.031011Cc7R1 doi: 10.1088/0264-9381/29/23/235025 – ident: PhysRevX.9.031011Cc8R1 doi: 10.1103/PhysRevLett.96.181602 – ident: PhysRevX.9.031011Cc28R1 doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: PhysRevX.9.031011Cc33R1 doi: 10.1007/JHEP07(2017)151 – ident: PhysRevX.9.031011Cc6R1 doi: 10.1088/0264-9381/29/15/155009 – ident: PhysRevX.9.031011Cc19R1 doi: 10.1007/JHEP12(2016)145 – ident: PhysRevX.9.031011Cc16R1 doi: 10.1007/JHEP06(2016)004 – ident: PhysRevX.9.031011Cc23R1 doi: 10.1007/BF01212345 – volume-title: Proceedings of the BIRS Workshop year: 2012 ident: PhysRevX.9.031011Cc24R1 |
SSID | ssj0000601477 |
Score | 2.6204183 |
Snippet | In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 031011 |
SubjectTerms | Bayesian analysis Channels Equivalence Error correcting codes Error correction Field theory Gravity Mathematical analysis Mechanical systems Operators (mathematics) Perturbation Physicists Quantum entanglement Quantum gravity Quantum phenomena Reconstruction Recovery Relativity Robustness (mathematics) Spacetime Statistical inference |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRP3E6pQ8-CdX0I03yJJtsiKCIONxbSK6JCNKpG4L_vZc23RBhL6U0aSmX5O53l8vvCDkvJFDQQGMoChnnlsvYFAIvzLE8Lzl14OOQ9w_F7Ti_m7BJCLjNQlplqxNrRV1OwcfIrxD6oukRaM2vPz5jXzXK766GEhrrZANVsBAdsjEYPjw-LaIsnm0k5zxsZyY0u_KJlU_2e3LpyU1xPiZ_DFLN2_9PLde2ZrRDtgNIjPrNqO6SNVvtkc06WRNm-6Q_rBDSvTaJ39GLj4hF3o1cksFG3286CjkX-CHfiLc_kT9LUKE1PCDj0fD55jYOpRBiyEQ6j20mndNg0ywDkEInmahdIccMtjDuidc4YhWpHc2tkIylWnPgTpYJBYQ4h6RTTSt7RCKaaAMCP0JNmVMn0WERmYDCpNIh3ii7hLbyUBB4wn25indV-ws0U60IlVSNCLvkYvHKR0OSsarzwAt50dHzW9cPpl-vKiwXlVhuGM258Yf1NXMmsToVVoB1-IuGdkmvHSIVFt1MLafI8ermE7KFuEc2Wbc90sHBsaeILebmLEygX_n1z2w priority: 102 providerName: ProQuest |
Title | Entanglement Wedge Reconstruction via Universal Recovery Channels |
URI | https://www.proquest.com/docview/2550618929 https://doaj.org/article/1e7b5047b0254a5fb1ea28e8cef71db0 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46EbyIP3E6Rw-ehLqkaZrkuMnmEBwiiruFJE1EkCpsDPzvfWm6qQh68VJKk6blvTTv-9KXLwidFdJiqy1ObVHINHdcpqYQcGCe5XnJsbdhHvJmUowf8uspm37Z6ivkhEV54Gi4HnHcMJxzE5Zta-YNcToTTljnOSlNzdYh5n0hU3EMBujPefMbk2DaCwmVd24xvQiiptAPybdAVOv1_xiO6xgz2kHbDThM-vGldtGaq_bQZp2kaWf7qD-sAMo9xYTv5DHMhCWBPn6KwCaLZ500uRbQUCiE0_ckrCGoIAoeoIfR8P5ynDZbIKSWimyeOiq919ZllForhSZU1BTIMwMljAfBNQ4YRWqPcyckY5nW3HIvS4ItQJtD1KpeK3eEEky0sQIawabMsZdAVAQVtjCZ9IAzyjbCS3so2-iDh20qXlTNEzBVSxMqqaIJ2-h8dctbFMf4rfIgGHlVMeha1xfA26rxtvrL223UWbpINR_bTAErAlQiAOgd_8czTtAWoCIZc3I7qAUudKeAPOami9bF6KqLNgbDye1dt-5yH5Tz2bg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8QjNGLUcH4BGUPciFZ6W7bbXswBJXnQz4OBuK71bbbEhOzD3wEwz_l38jMfjxCTLhx2Wy23c1mOu1vZjr9DcD7ygQWXGB5qCqTi6hM7iuNF5mkELViKVAc8ui4mpyKb1M5XYJ_w1kYSqsc1sR2oa5ngWLk22j6IvRoRPOd84ucqkbR7upQQqNTi4N4_RddtvnH_S84vptlOd47-TzJ-6oCeeC6vMwjNym5EEvOQzDaFVy3XkWSHlukIg4zhbBvXGIiaiNl6ZwKKpm6YKEiogNc8h8JjkhOJ9PHXxcxHeI2EUr1m6cF49uUxvk9Xk0_EJUqan9xB_7aKgH_gUCLbOPn8Kw3SbPdTodewFJsXsLjNjU0zFdgd69BA_KsSzPPflD8LSOn9ZZ6Nrv65bI-wwM_RI14e53RyYUGsXcVTh9ERK9guZk18TVkrHA-aPwI87VgyaB7pLkOlS9NQuumHgEb5GFDz0pOxTF-29Y7YdwOIrTGdiIcwdbilfOOkuO-zp9IyIuOxKbdPpj9ObP95LRFVF4yoTxRAziZfBFdqaMOMeEvejaC9WGIbD_F5_ZWId_c37wBTyYnR4f2cP_4YA2eosVlunzfdVjGgYpv0aq59O9aVcrg50Pr7g3hTwm3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entanglement+Wedge+Reconstruction+via+Universal+Recovery+Channels&rft.jtitle=Physical+review.+X&rft.au=Cotler%2C+Jordan&rft.au=Hayden%2C+Patrick&rft.au=Penington%2C+Geoffrey&rft.au=Salton%2C+Grant&rft.date=2019-07-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=9&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevX.9.031011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_9_031011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |