Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks

Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 130; pp. 139 - 149
Main Authors Alshehhi, Rasha, Marpu, Prashanth Reddy, Woon, Wei Lee, Mura, Mauro Dalla
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Elsevier
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2017.05.002

Cover

Abstract Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas.
AbstractList Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas.
Author Alshehhi, Rasha
Mura, Mauro Dalla
Woon, Wei Lee
Marpu, Prashanth Reddy
Author_xml – sequence: 1
  givenname: Rasha
  surname: Alshehhi
  fullname: Alshehhi, Rasha
  email: ralshehhi@masdar.ac.ae
  organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
– sequence: 2
  givenname: Prashanth Reddy
  surname: Marpu
  fullname: Marpu, Prashanth Reddy
  email: pmarpu@masdar.ac.ae
  organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
– sequence: 3
  givenname: Wei Lee
  surname: Woon
  fullname: Woon, Wei Lee
  email: wwoon@masdar.ac.ae
  organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Mauro Dalla
  surname: Mura
  fullname: Mura, Mauro Dalla
  email: mauro.dalla-mura@gipsa-lab.grenoble-inp.fr
  organization: GIPSA-lab, Grenoble Institute of Technology, Grenoble, France
BackLink https://hal.science/hal-01672877$$DView record in HAL
BookMark eNqNkUFv1DAQhS1UJLaF34CPcEgYO3GSHjisKqCVVuIAnC3HnrTeeu3Fdrb03-M0qAcucBiNNHrvafS9c3Lmg0dC3jKoGbDuw7626RjTvkzNgfU1iBqAvyAbNvS8GngjzsgGLnlb8Z51r8h5SnsAYKIbNuT-mz3MLiuPYU4Uf-WodLbB0zDRGJRJVHlDx9k6Y_1totbTiIeQkSb0qZyoPahbjI_0weY7qoM_BTcvCcpRj3N8WvkhxPv0mryclEv45s--ID8-f_p-dV3tvn65udruKt0MPFdmUshADIqP3Ixcc-ynDlnLxAQDXIpmHLFjpoO2FUY3XdcAtnwCBVrwCaG5IO_X3Dvl5DGWB-OjDMrK6-1OLreCredD359Y0b5btccYfs6YsjzYpNG5lYjkhZRgnYC2SPtVqmNIKeL0nM1ALlXIvXyuQi5VSBCyVFGcH_9yapvVAqngtu4__NvVj4XayWKUSVv0Go2NqLM0wf4z4ze_gLAO
CitedBy_id crossref_primary_10_1061_JITSE4_ISENG_2351
crossref_primary_10_3390_rs13081429
crossref_primary_10_1109_TGRS_2020_3014312
crossref_primary_10_47164_ijngc_v15i1_1645
crossref_primary_10_3390_rs15010095
crossref_primary_10_1007_s42979_023_02111_6
crossref_primary_10_1016_j_jag_2022_102833
crossref_primary_10_1061_JTEPBS_0000517
crossref_primary_10_1109_TGRS_2019_2893310
crossref_primary_10_3390_rs11161922
crossref_primary_10_3390_rs14122949
crossref_primary_10_1016_j_prime_2023_100244
crossref_primary_10_3390_rs13193814
crossref_primary_10_3390_rs9111106
crossref_primary_10_3390_rs13173414
crossref_primary_10_1109_TGRS_2024_3495508
crossref_primary_10_14358_PERS_24_00100R2
crossref_primary_10_3390_en14237982
crossref_primary_10_3390_s18113921
crossref_primary_10_1109_TGRS_2021_3055950
crossref_primary_10_1080_15481603_2022_2076382
crossref_primary_10_3390_rs13122290
crossref_primary_10_3390_rs15041049
crossref_primary_10_3390_a13080195
crossref_primary_10_1109_ACCESS_2022_3164401
crossref_primary_10_1016_j_scitotenv_2024_176585
crossref_primary_10_1080_10106049_2020_1856199
crossref_primary_10_3390_s23125505
crossref_primary_10_1080_01431161_2023_2285740
crossref_primary_10_3390_rs10081287
crossref_primary_10_1109_TGRS_2024_3361211
crossref_primary_10_3390_s24113606
crossref_primary_10_5194_nhess_20_1149_2020
crossref_primary_10_1109_JSTARS_2021_3052495
crossref_primary_10_1016_j_rse_2024_114448
crossref_primary_10_1109_ACCESS_2020_3015701
crossref_primary_10_3390_app10207272
crossref_primary_10_1109_JSTARS_2021_3130038
crossref_primary_10_3390_infrastructures7100137
crossref_primary_10_3390_rs14020269
crossref_primary_10_3390_rs15051414
crossref_primary_10_1109_TGRS_2023_3327370
crossref_primary_10_3390_rs11101158
crossref_primary_10_3390_ijgi7090362
crossref_primary_10_3390_rs13132524
crossref_primary_10_1016_j_jag_2023_103420
crossref_primary_10_3390_s20010141
crossref_primary_10_1016_j_isprsjprs_2022_08_024
crossref_primary_10_1016_j_jag_2019_102031
crossref_primary_10_1109_ACCESS_2021_3097630
crossref_primary_10_1109_TGRS_2018_2839705
crossref_primary_10_3390_rs15133367
crossref_primary_10_1007_s41064_022_00194_z
crossref_primary_10_3390_app13074210
crossref_primary_10_3390_rs15092293
crossref_primary_10_1155_2022_2078191
crossref_primary_10_1155_2022_6181357
crossref_primary_10_3390_rs11060696
crossref_primary_10_3390_math12050765
crossref_primary_10_3390_rs15194686
crossref_primary_10_1109_TGRS_2024_3389110
crossref_primary_10_1016_j_isprsjprs_2020_08_004
crossref_primary_10_3390_rs11060690
crossref_primary_10_3390_rs14092061
crossref_primary_10_1088_1742_6596_2858_1_012008
crossref_primary_10_1109_TGRS_2022_3165209
crossref_primary_10_26833_ijeg_977032
crossref_primary_10_1080_01431161_2019_1594439
crossref_primary_10_1109_TGRS_2024_3460085
crossref_primary_10_1016_j_procs_2025_02_138
crossref_primary_10_3390_land12081573
crossref_primary_10_1142_S0218001419540272
crossref_primary_10_1109_ACCESS_2019_2952946
crossref_primary_10_1007_s13369_021_05412_1
crossref_primary_10_3233_MGS_220339
crossref_primary_10_1080_2150704X_2021_1980240
crossref_primary_10_1016_j_eswa_2020_114417
crossref_primary_10_3390_rs16050839
crossref_primary_10_3390_app122010605
crossref_primary_10_1016_j_bdr_2022_100334
crossref_primary_10_1109_JSTARS_2023_3337140
crossref_primary_10_1109_LGRS_2020_3010416
crossref_primary_10_1109_JSTARS_2021_3137450
crossref_primary_10_1109_TITS_2019_2939536
crossref_primary_10_3390_rs11070830
crossref_primary_10_3390_rs13142794
crossref_primary_10_3390_w15040676
crossref_primary_10_3390_ijgi10090606
crossref_primary_10_1016_j_isprsjprs_2019_12_014
crossref_primary_10_1007_s11042_022_12141_6
crossref_primary_10_1007_s40747_024_01735_2
crossref_primary_10_1109_TGRS_2020_2987338
crossref_primary_10_1016_j_isprsjprs_2019_12_010
crossref_primary_10_3390_rs10091429
crossref_primary_10_1109_LGRS_2021_3072589
crossref_primary_10_1088_1361_6501_abfbfd
crossref_primary_10_3390_rs11050552
crossref_primary_10_1109_JSTARS_2022_3188493
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_3390_rs14041011
crossref_primary_10_1080_20964471_2019_1657720
crossref_primary_10_1007_s11440_021_01266_x
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1080_15481603_2022_2036056
crossref_primary_10_1016_j_isprsjprs_2019_02_008
crossref_primary_10_1080_10106049_2020_1778100
crossref_primary_10_3390_rs10111768
crossref_primary_10_1109_ACCESS_2019_2956725
crossref_primary_10_1109_TGRS_2018_2870871
crossref_primary_10_3390_rs11242912
crossref_primary_10_3390_rs12091400
crossref_primary_10_3390_rs13040743
crossref_primary_10_1007_s12524_022_01568_x
crossref_primary_10_3390_rs13040742
crossref_primary_10_3390_drones6120414
crossref_primary_10_1016_j_suscom_2022_100692
crossref_primary_10_1016_j_isprsjprs_2018_11_011
crossref_primary_10_1007_s10980_021_01366_9
crossref_primary_10_1016_j_isprsjprs_2019_02_019
crossref_primary_10_3390_rs10071135
crossref_primary_10_1080_07038992_2021_1915756
crossref_primary_10_1109_ACCESS_2019_2907114
crossref_primary_10_3390_rs11040403
crossref_primary_10_1049_ipr2_12320
crossref_primary_10_1109_ACCESS_2020_3038225
crossref_primary_10_1016_j_compenvurbsys_2024_102174
crossref_primary_10_1007_s11633_020_1248_x
crossref_primary_10_1016_j_autcon_2020_103110
crossref_primary_10_1016_j_isprsjprs_2023_03_006
crossref_primary_10_1109_JSTARS_2021_3123398
crossref_primary_10_3390_rs12142240
crossref_primary_10_1109_TGRS_2023_3237561
crossref_primary_10_1109_LGRS_2018_2880986
crossref_primary_10_1109_JSTARS_2021_3055784
crossref_primary_10_1007_s12524_022_01532_9
crossref_primary_10_1016_j_isprsjprs_2021_09_014
crossref_primary_10_1080_15481603_2022_2101727
crossref_primary_10_1109_JSTARS_2023_3344210
crossref_primary_10_1016_j_jhydrol_2020_125092
crossref_primary_10_1080_01431161_2021_1982155
crossref_primary_10_1109_JSTARS_2020_2991391
crossref_primary_10_1109_ACCESS_2018_2856088
crossref_primary_10_3390_s24165205
crossref_primary_10_1109_JSTARS_2021_3053603
crossref_primary_10_3390_rs14081912
crossref_primary_10_1080_07038992_2021_1937087
crossref_primary_10_3390_rs16122056
crossref_primary_10_1080_01431161_2021_2018146
crossref_primary_10_3390_s19051164
crossref_primary_10_1109_ACCESS_2019_2940527
crossref_primary_10_1166_jno_2021_3051
crossref_primary_10_1016_j_isprsjprs_2018_05_005
crossref_primary_10_47164_ijngc_v14i3_1301
crossref_primary_10_3390_rs11242970
crossref_primary_10_1109_JSTARS_2023_3336924
crossref_primary_10_3390_s20082244
crossref_primary_10_3390_rs14143370
crossref_primary_10_1186_s43065_021_00019_0
crossref_primary_10_1016_j_eswa_2018_01_055
crossref_primary_10_3390_rs12152460
crossref_primary_10_3390_rs11232813
crossref_primary_10_1109_JSTARS_2018_2860989
crossref_primary_10_1080_10106049_2020_1753819
crossref_primary_10_3390_rs11161897
crossref_primary_10_1016_j_isprsjprs_2023_05_010
crossref_primary_10_1109_ACCESS_2024_3385540
crossref_primary_10_3390_rs10091350
crossref_primary_10_3390_rs12081294
crossref_primary_10_3390_ijgi8010028
crossref_primary_10_1007_s12518_023_00530_x
crossref_primary_10_3390_rs12101668
crossref_primary_10_3390_rs11202380
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_3390_s21062153
crossref_primary_10_1109_TGRS_2020_3009143
crossref_primary_10_1016_j_jag_2024_103665
crossref_primary_10_1109_JSTARS_2021_3102320
crossref_primary_10_1016_j_ifacol_2019_12_429
crossref_primary_10_3390_rs17060952
crossref_primary_10_1016_j_jag_2021_102379
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1016_j_rse_2023_113928
crossref_primary_10_1016_j_isprsjprs_2021_01_025
crossref_primary_10_3390_rs12091444
crossref_primary_10_1016_j_isprsjprs_2021_01_024
crossref_primary_10_36680_j_itcon_2022_010
crossref_primary_10_1080_17538947_2024_2432522
crossref_primary_10_1108_IR_05_2018_0112
crossref_primary_10_3390_s20174802
crossref_primary_10_3390_rs13091642
crossref_primary_10_3390_rs13030465
crossref_primary_10_1109_TGRS_2019_2926397
crossref_primary_10_1109_JSTARS_2022_3166927
crossref_primary_10_14358_PERS_21_00016R2
crossref_primary_10_1360_SST_2021_0193
crossref_primary_10_1109_JSTARS_2020_3023549
crossref_primary_10_1109_JSTARS_2022_3146430
crossref_primary_10_3390_rs11222672
crossref_primary_10_1016_j_isprsjprs_2018_01_004
crossref_primary_10_1016_j_buildenv_2020_107145
crossref_primary_10_3390_rs12050765
crossref_primary_10_3390_rs15082099
crossref_primary_10_3390_s20174938
crossref_primary_10_1117_1_JRS_16_046508
crossref_primary_10_1016_j_jag_2024_103794
crossref_primary_10_3390_ijgi11010009
crossref_primary_10_1016_j_isprsjprs_2020_10_008
crossref_primary_10_1109_TGRS_2023_3345867
crossref_primary_10_3390_rs15040927
crossref_primary_10_3390_rs12050758
crossref_primary_10_1080_01431161_2020_1775322
crossref_primary_10_3390_ijgi8090407
crossref_primary_10_3390_s24206672
crossref_primary_10_3390_rs13214235
crossref_primary_10_3390_rs12152350
crossref_primary_10_1109_TGRS_2022_3192614
crossref_primary_10_1016_j_jobe_2023_107682
crossref_primary_10_1080_1206212X_2023_2219117
crossref_primary_10_1109_JSTARS_2021_3073935
crossref_primary_10_1016_j_isprsjprs_2021_02_014
crossref_primary_10_1007_s12145_022_00840_5
crossref_primary_10_1109_TGRS_2023_3251659
crossref_primary_10_1155_2022_2684983
crossref_primary_10_1016_j_neucom_2019_12_098
crossref_primary_10_1109_JSTARS_2019_2955277
crossref_primary_10_1109_TIP_2021_3117076
crossref_primary_10_3390_rs14030647
crossref_primary_10_1016_j_isprsjprs_2017_12_007
crossref_primary_10_3390_ijgi9090527
crossref_primary_10_1109_MGRS_2024_3491014
crossref_primary_10_1080_15481603_2018_1426091
crossref_primary_10_3390_rs11091012
crossref_primary_10_3390_rs11091015
crossref_primary_10_1109_TITS_2021_3098855
crossref_primary_10_1016_j_image_2021_116329
crossref_primary_10_1016_j_isprsjprs_2021_07_003
crossref_primary_10_1016_j_jag_2021_102341
crossref_primary_10_1080_10095020_2021_1892459
crossref_primary_10_3390_rs14051118
crossref_primary_10_3390_buildings11070302
crossref_primary_10_3390_s22103784
crossref_primary_10_1016_j_geomat_2024_100007
crossref_primary_10_3390_rs14236015
crossref_primary_10_3390_rs12050862
crossref_primary_10_1016_j_ecoinf_2024_102588
crossref_primary_10_3390_rs14081786
crossref_primary_10_3389_fpls_2022_993961
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_3390_rs10030457
crossref_primary_10_3390_rs10030451
crossref_primary_10_1080_01431161_2023_2240518
crossref_primary_10_1109_JSTARS_2024_3361693
crossref_primary_10_1109_TGRS_2020_3026051
crossref_primary_10_1109_JSTARS_2024_3424831
crossref_primary_10_3390_rs13183710
crossref_primary_10_1109_JSTARS_2022_3181446
crossref_primary_10_1117_1_JRS_13_034510
crossref_primary_10_1109_JSTARS_2023_3261866
crossref_primary_10_2139_ssrn_3938635
crossref_primary_10_1007_s12145_019_00383_2
crossref_primary_10_1016_j_isprsjprs_2017_11_014
crossref_primary_10_1109_JSTARS_2022_3188515
crossref_primary_10_3390_rs13061049
crossref_primary_10_1109_TGRS_2024_3383057
crossref_primary_10_3390_rs14112532
crossref_primary_10_1111_phor_12431
crossref_primary_10_1109_ACCESS_2020_3026084
crossref_primary_10_1109_JSTARS_2021_3119286
crossref_primary_10_1109_JSTARS_2025_3525709
crossref_primary_10_1016_j_compenvurbsys_2018_06_005
crossref_primary_10_3390_buildings12122233
crossref_primary_10_3390_rs14143396
crossref_primary_10_1016_j_jag_2023_103578
crossref_primary_10_1007_s00521_022_07288_0
crossref_primary_10_1016_j_isprsjprs_2018_02_009
crossref_primary_10_1109_JSTARS_2024_3444773
crossref_primary_10_3390_rs12223794
crossref_primary_10_26833_ijeg_373152
crossref_primary_10_3390_rs12182985
crossref_primary_10_1080_10106049_2024_2375572
crossref_primary_10_1109_JSTARS_2018_2865187
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_3390_rs11030227
crossref_primary_10_1080_01431161_2022_2122892
crossref_primary_10_1109_TGRS_2021_3097148
crossref_primary_10_3390_rs11080917
crossref_primary_10_1007_s12524_018_0871_2
crossref_primary_10_1016_j_jag_2024_104160
crossref_primary_10_1016_j_autcon_2020_103509
crossref_primary_10_1109_TGRS_2022_3174636
crossref_primary_10_1155_2022_6230025
crossref_primary_10_3390_s19020333
crossref_primary_10_3233_JIFS_235150
Cites_doi 10.3390/rs8030259
10.1109/83.841950
10.1117/12.2083273
10.1023/B:VISI.0000022288.19776.77
10.1109/TPAMI.2012.120
10.3390/a6040762
10.1109/ICIIP.2011.6108839
10.2352/J.ImagingSci.Technol.2016.60.1.010402
10.14358/PERS.70.5.627
10.1561/2200000006
10.1109/CVPR.2016.182
10.3390/rs71114680
10.1371/journal.pone.0138071
10.1080/01431160500275762
10.1007/978-3-642-15567-3_16
10.1109/ICECTECH.2011.5941731
10.1109/CVPR.2016.319
10.3390/rs8040329
ContentType Journal Article
Copyright 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.isprsjprs.2017.05.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 149
ExternalDocumentID oai_HAL_hal_01672877v1
10_1016_j_isprsjprs_2017_05_002
S0924271617300096
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
1XC
ID FETCH-LOGICAL-c382t-dfae1058a2b2db2c2e7f6e1415f080953bbe61d60445dc36630e42f0a0c52fe03
IEDL.DBID AIKHN
ISSN 0924-2716
IngestDate Fri May 09 12:15:06 EDT 2025
Fri Sep 05 11:49:46 EDT 2025
Tue Jul 01 03:46:38 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Fri Feb 23 02:28:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extraction
Adjacent regions
Convolutional neural network
Low-level features
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-dfae1058a2b2db2c2e7f6e1415f080953bbe61d60445dc36630e42f0a0c52fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9656-9087
PQID 2000516504
PQPubID 24069
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01672877v1
proquest_miscellaneous_2000516504
crossref_primary_10_1016_j_isprsjprs_2017_05_002
crossref_citationtrail_10_1016_j_isprsjprs_2017_05_002
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2017_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
20170801
2017-08
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Visin, Kastner, Courville, Bengio, Matteucci, Cho (b0270) 2015
Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. Computing Research Repository (CRR) abs/1511.00561.
Brust, Sickert, Simon, Rodner, Denzler (b0030) 2015
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0245) 2014; 15
Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L., 2015. Land use classification in remote sensing images by convolutional neural networks. Computing Research Repository (CRR) abs/1508.00092.
Firat, Can, Vural (b0055) 2014
Rajeswari, M., Gurumurthy, K.S., Omkar, S.N., Senthilnath, J., Reddy, L.P., 2011. Automatic road extraction using high resolution satellite images based on level set and mean shift methods. In: 3rd International Conference on Electronics Computer Technology (ICECT), vol. 2, pp. 424–428.
Liu, Deng (b0125) 2015
Matinfar, Sarmadian, Panah, Heck (b0165) 2007; 2
Lin, Chen, Yan (b0115) 2014
Lin, Shen, Reid, van den Hengel (b0120) 2016
Saito, S., Aoki, Y., 2015. Building and road detection from large aerial imagery. In: Proceedings of Society of Photographic Instrumentation Engineers (SPIE) - The International Society of Optical Engineering, vol. 9405.
Nogueira, Penatti, dos Santos (b0195) 2016
Hu, Xia, Hu, Zhang (b0070) 2015; 7
Shu, Y., 2014. Deep Convolutional Neural Networks for Object Extraction from High Spatial Resolution Remotely Sensed Imagery, Ph.D. thesis, University of Waterloo.
Zhou, Lapedriza, Xiao, Torralba, Oliva (b0295) 2014
Nair, Hinton (b0185) 2010
Felzenszwalb, Huttenlocher (b0050) 2004; 59
Foody (b0060) 2004; 70
Sherrah (b0235) 2016
Zhao, Ouyang, Li, Wang (b0285) 2015
Papandreou, Chen, Murphy, Yuille (b0215) 2015
Leeuw, Jia, Yang, Liu, Schmidt, Skidmore (b0110) 2006; 27
Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations (ICLR).
Lngkvist, Kiselev, Alirezaie, Loutfi (b0140) 2016; 8
Yu, Yang, Xia, Liu (b0275) 2016; 8
Vakalopoulou, Karantzalos, Komodakis, Paragios (b0265) 2015
Chen, Papandreou, Kokkinos, Murphy, Yuille (b0040) 2015
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b0080) 2014
Liu, Wu, Wang, Liu (b0135) 2015; 10
Jiang, Cao, Cheng, Wang, Li (b0085) 2015
Jabari, Zhang (b0075) 2013; 6
Brust, Sickert, Simon, Rodner, Denzler (b0025) 2015
Krizhevsky, Sutskever, Hinton (b0105) 2012
Deng, Dong, Socher, Li, Li, Fei-Fei (b0045) 2009
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (b0290) 2015
Kampffmeyer Michael, Jenssen (b0090) 2015
Marcu, A., Leordeanu, M., Dual local-global contextual pathways for recognition in aerial imagery. Computing Research Repository (CRR) abs/1605.05462.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0255) 2015
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Fully convolutional neural networks for remote sensing image classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
Saito, Yamashita, Aoki (b0230) 2016; 60
Sujatha, Selvathi (b0250) 2015; 15
Bengio (b0015) 2009; 2
Achanta, Shaji, Smith, Lucchi, Fua, Susstrunk (b0005) 2012; 34
Bengio (b0020) 2012
Krähenbühl, Koltun (b0100) 2011
Tremeau, Colantoni (b0260) 2000; 9
Liu, Li, Luo, Loy, Tang (b0130) 2015
Zeiler, Fergus (b0280) 2014
Mnih, V., 2013. Machine Learning for Aerial Image Labeling, Ph.D. thesis, University of Toronto.
Hong, Noh, Han (b0065) 2015
Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: Proceedings of the 11th European Conference on Computer Vision (ECCV): Part VI, pp. 210–223.
Makantasis, Karantzalos, Doulamis, Doulamis (b0155) 2015
Long, Shelhamer, Darrell (b0145) 2015
Paisitkriangkrai, Sherrah, Janney, Hengel (b0210) 2015
Maurya, R., Gupta, P.R., Shukla, A.S., 2011. Road extraction using k-means clustering and morphological operations. In: International Conference on Image Information Processing (ICIIP), pp. 1–6.
Kim, J., Lee, J.K., Lee, K.M., 2015. Accurate image super-resolution using very deep convolutional networks. Computing Research Repository (CRR) abs/1511.04587.
Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Noh, Hong, Han (b0200) 2015
Oquab, Bottou, Laptev, Sivic (b0205) 2015
Nogueira (10.1016/j.isprsjprs.2017.05.002_b0195) 2016
Krizhevsky (10.1016/j.isprsjprs.2017.05.002_b0105) 2012
Brust (10.1016/j.isprsjprs.2017.05.002_b0030) 2015
Foody (10.1016/j.isprsjprs.2017.05.002_b0060) 2004; 70
Kampffmeyer Michael (10.1016/j.isprsjprs.2017.05.002_b0090) 2015
Jabari (10.1016/j.isprsjprs.2017.05.002_b0075) 2013; 6
Chen (10.1016/j.isprsjprs.2017.05.002_b0040) 2015
Oquab (10.1016/j.isprsjprs.2017.05.002_b0205) 2015
Visin (10.1016/j.isprsjprs.2017.05.002_b0270) 2015
Liu (10.1016/j.isprsjprs.2017.05.002_b0130) 2015
Srivastava (10.1016/j.isprsjprs.2017.05.002_b0245) 2014; 15
Bengio (10.1016/j.isprsjprs.2017.05.002_b0020) 2012
10.1016/j.isprsjprs.2017.05.002_b0160
Zhao (10.1016/j.isprsjprs.2017.05.002_b0285) 2015
10.1016/j.isprsjprs.2017.05.002_b0240
Lin (10.1016/j.isprsjprs.2017.05.002_b0120) 2016
Vakalopoulou (10.1016/j.isprsjprs.2017.05.002_b0265) 2015
Zheng (10.1016/j.isprsjprs.2017.05.002_b0290) 2015
Makantasis (10.1016/j.isprsjprs.2017.05.002_b0155) 2015
Lin (10.1016/j.isprsjprs.2017.05.002_b0115) 2014
10.1016/j.isprsjprs.2017.05.002_b0035
Sherrah (10.1016/j.isprsjprs.2017.05.002_b0235) 2016
10.1016/j.isprsjprs.2017.05.002_b0150
Sujatha (10.1016/j.isprsjprs.2017.05.002_b0250) 2015; 15
Brust (10.1016/j.isprsjprs.2017.05.002_b0025) 2015
Noh (10.1016/j.isprsjprs.2017.05.002_b0200) 2015
Papandreou (10.1016/j.isprsjprs.2017.05.002_b0215) 2015
Szegedy (10.1016/j.isprsjprs.2017.05.002_b0255) 2015
Nair (10.1016/j.isprsjprs.2017.05.002_b0185) 2010
Jiang (10.1016/j.isprsjprs.2017.05.002_b0085) 2015
10.1016/j.isprsjprs.2017.05.002_b0180
Liu (10.1016/j.isprsjprs.2017.05.002_b0125) 2015
Lngkvist (10.1016/j.isprsjprs.2017.05.002_b0140) 2016; 8
Leeuw (10.1016/j.isprsjprs.2017.05.002_b0110) 2006; 27
10.1016/j.isprsjprs.2017.05.002_b0300
Matinfar (10.1016/j.isprsjprs.2017.05.002_b0165) 2007; 2
10.1016/j.isprsjprs.2017.05.002_b0225
Liu (10.1016/j.isprsjprs.2017.05.002_b0135) 2015; 10
Krähenbühl (10.1016/j.isprsjprs.2017.05.002_b0100) 2011
10.1016/j.isprsjprs.2017.05.002_b0305
Felzenszwalb (10.1016/j.isprsjprs.2017.05.002_b0050) 2004; 59
Bengio (10.1016/j.isprsjprs.2017.05.002_b0015) 2009; 2
Deng (10.1016/j.isprsjprs.2017.05.002_b0045) 2009
Firat (10.1016/j.isprsjprs.2017.05.002_b0055) 2014
Zhou (10.1016/j.isprsjprs.2017.05.002_b0295) 2014
10.1016/j.isprsjprs.2017.05.002_b0220
Saito (10.1016/j.isprsjprs.2017.05.002_b0230) 2016; 60
Yu (10.1016/j.isprsjprs.2017.05.002_b0275) 2016; 8
Jia (10.1016/j.isprsjprs.2017.05.002_b0080) 2014
Long (10.1016/j.isprsjprs.2017.05.002_b0145) 2015
Hu (10.1016/j.isprsjprs.2017.05.002_b0070) 2015; 7
Paisitkriangkrai (10.1016/j.isprsjprs.2017.05.002_b0210) 2015
Tremeau (10.1016/j.isprsjprs.2017.05.002_b0260) 2000; 9
Zeiler (10.1016/j.isprsjprs.2017.05.002_b0280) 2014
10.1016/j.isprsjprs.2017.05.002_b0170
10.1016/j.isprsjprs.2017.05.002_b0095
10.1016/j.isprsjprs.2017.05.002_b0010
10.1016/j.isprsjprs.2017.05.002_b0175
Hong (10.1016/j.isprsjprs.2017.05.002_b0065) 2015
Achanta (10.1016/j.isprsjprs.2017.05.002_b0005) 2012; 34
References_xml – reference: Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. Computing Research Repository (CRR) abs/1511.00561.
– start-page: 184
  year: 2015
  end-page: 187
  ident: b0085
  article-title: Deep neural networks-based vehicle detection in satellite images
  publication-title: International Symposium on Bioelectronics and Bioinformatics (ISBB)
– reference: Rajeswari, M., Gurumurthy, K.S., Omkar, S.N., Senthilnath, J., Reddy, L.P., 2011. Automatic road extraction using high resolution satellite images based on level set and mean shift methods. In: 3rd International Conference on Electronics Computer Technology (ICECT), vol. 2, pp. 424–428.
– volume: 70
  start-page: 627
  year: 2004
  end-page: 633
  ident: b0060
  article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogram. Eng. Rem. Sens.
– volume: 27
  start-page: 223
  year: 2006
  end-page: 232
  ident: b0110
  article-title: Comparing accuracy assessments to infer superiority of image classification methods
  publication-title: Int. J. Rem. Sens.
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: b0050
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– start-page: 109
  year: 2011
  end-page: 117
  ident: b0100
  article-title: Efficient inference in fully connected crfs with gaussian edge potentials
  publication-title: Advances in Neural Information Processing Systems 24
– start-page: 36
  year: 2015
  end-page: 43
  ident: b0210
  article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– reference: Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: Proceedings of the 11th European Conference on Computer Vision (ECCV): Part VI, pp. 210–223.
– start-page: 1377
  year: 2015
  end-page: 1385
  ident: b0130
  article-title: Semantic image segmentation via deep parsing network
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– start-page: 4959
  year: 2015
  end-page: 4962
  ident: b0155
  article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– start-page: 675
  year: 2014
  end-page: 678
  ident: b0080
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14
– year: 2016
  ident: b0235
  article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2015
  ident: b0285
  article-title: Saliency detection by multi-context deep learning
  publication-title: IEEE conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: b0200
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– start-page: 685
  year: 2015
  end-page: 694
  ident: b0205
  article-title: Is object localization for free? - weakly-supervised learning with convolutional neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 807
  year: 2010
  end-page: 814
  ident: b0185
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: 60
  year: 2016
  ident: b0230
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: J. Imag. Sci. Technol.
– volume: 6
  start-page: 762
  year: 2013
  end-page: 781
  ident: b0075
  article-title: Very high resolution satellite image classification using fuzzy rule-based systems
  publication-title: Algorithms
– start-page: 730
  year: 2015
  end-page: 734
  ident: b0125
  article-title: Very deep convolutional neural network based image classification using small training sample size
  publication-title: 3rd IAPR Asian Conference on Pattern Recognition (ACPR)
– start-page: 1
  year: 2014
  end-page: 10
  ident: b0115
  article-title: Network in network
  publication-title: International Conference on Learning Representations
– reference: Maurya, R., Gupta, P.R., Shukla, A.S., 2011. Road extraction using k-means clustering and morphological operations. In: International Conference on Image Information Processing (ICIIP), pp. 1–6.
– reference: Mnih, V., 2013. Machine Learning for Aerial Image Labeling, Ph.D. thesis, University of Toronto.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b0015
  article-title: Learning deep architectures for ai
  publication-title: Found. Trend. Mach. Learn.
– year: 2015
  ident: b0030
  article-title: Efficient convolutional patch networks for scene understanding
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scene Understanding
– start-page: 818
  year: 2014
  end-page: 833
  ident: b0280
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 8
  start-page: 329
  year: 2016
  ident: b0140
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
– year: 2016
  ident: b0195
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recogn.
– volume: 15
  start-page: 1
  year: 2015
  end-page: 16
  ident: b0250
  article-title: Connected component-based technique for automatic extraction of road centerline in high resolution satellite images
  publication-title: EURASIP J. Image Video Process.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b0005
  article-title: Slic superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1873
  year: 2015
  end-page: 1876
  ident: b0265
  article-title: Building detection in very high resolution multispectral data with deep learning features
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 8
  start-page: 259
  year: 2016
  ident: b0275
  article-title: A color-texture-structure descriptor for high-resolution satellite image classification
  publication-title: Remote Sens.
– start-page: 3708
  year: 2014
  end-page: 3713
  ident: b0055
  article-title: Representation learning for contextual object and region detection in remote sensing
  publication-title: 22nd International Conference on Pattern Recognition (ICPR)
– reference: Saito, S., Aoki, Y., 2015. Building and road detection from large aerial imagery. In: Proceedings of Society of Photographic Instrumentation Engineers (SPIE) - The International Society of Optical Engineering, vol. 9405.
– start-page: 248
  year: 2009
  end-page: 255
  ident: b0045
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0090
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scene Understanding
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b0145
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2016
  ident: b0120
  article-title: Efficient piecewise training of deep structured models for semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0255
  article-title: Going deeper with convolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 487
  year: 2014
  end-page: 495
  ident: b0295
  article-title: Learning deep features for scene recognition using places database
  publication-title: Advances in Neural Information Processing Systems 27
– start-page: 1
  year: 2015
  end-page: 14
  ident: b0040
  article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs
  publication-title: International Conference on Learning Representations (ICLR)
– reference: Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Fully convolutional neural networks for remote sensing image classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
– reference: Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L., 2015. Land use classification in remote sensing images by convolutional neural networks. Computing Research Repository (CRR) abs/1508.00092.
– start-page: 437
  year: 2012
  end-page: 478
  ident: b0020
  article-title: Practical recommendations for gradient-based training of deep architectures
  publication-title: Neural Networks: Tricks of the Trade:
– start-page: 510
  year: 2015
  end-page: 517
  ident: b0025
  article-title: Convolutional patch networks with spatial prior for road detection and urban scene understanding
  publication-title: International Conference on Computer Vision Theory and Applications
– reference: Marcu, A., Leordeanu, M., Dual local-global contextual pathways for recognition in aerial imagery. Computing Research Repository (CRR) abs/1605.05462.
– reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations (ICLR).
– year: 2015
  ident: b0270
  article-title: Reseg: a recurrent neural network for object segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0245
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– reference: Shu, Y., 2014. Deep Convolutional Neural Networks for Object Extraction from High Spatial Resolution Remotely Sensed Imagery, Ph.D. thesis, University of Waterloo.
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: b0290
  article-title: Conditional random fields as recurrent neural networks
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 7
  start-page: 14680
  year: 2015
  ident: b0070
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– reference: Kim, J., Lee, J.K., Lee, K.M., 2015. Accurate image super-resolution using very deep convolutional networks. Computing Research Repository (CRR) abs/1511.04587.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25
– volume: 9
  start-page: 735
  year: 2000
  end-page: 744
  ident: b0260
  article-title: Regions adjacency graph applied to color image segmentation
  publication-title: IEEE Trans. Image Process.
– start-page: 1742
  year: 2015
  end-page: 1750
  ident: b0215
  article-title: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0065
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
  publication-title: Neural Information Processing Systems (NIPS)
– volume: 2
  start-page: 448
  year: 2007
  end-page: 456
  ident: b0165
  article-title: Comparisons of object-oriented and pixel-based classification of land use/land cover types based on lansadsat7, etm+ spectral bands (case study: arid region of iran)
  publication-title: Am. Eurasian J. Agric. Environ. Sci.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 16
  ident: b0135
  article-title: Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas
  publication-title: PLoS ONE
– year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0195
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recogn.
– start-page: 818
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0280
  article-title: Visualizing and understanding convolutional networks
– volume: 2
  start-page: 448
  issue: 4
  year: 2007
  ident: 10.1016/j.isprsjprs.2017.05.002_b0165
  article-title: Comparisons of object-oriented and pixel-based classification of land use/land cover types based on lansadsat7, etm+ spectral bands (case study: arid region of iran)
  publication-title: Am. Eurasian J. Agric. Environ. Sci.
– year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0285
  article-title: Saliency detection by multi-context deep learning
– start-page: 675
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0080
  article-title: Caffe: Convolutional architecture for fast feature embedding
– volume: 8
  start-page: 259
  issue: 3
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0275
  article-title: A color-texture-structure descriptor for high-resolution satellite image classification
  publication-title: Remote Sens.
  doi: 10.3390/rs8030259
– start-page: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0115
  article-title: Network in network
– volume: 9
  start-page: 735
  issue: 4
  year: 2000
  ident: 10.1016/j.isprsjprs.2017.05.002_b0260
  article-title: Regions adjacency graph applied to color image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841950
– start-page: 437
  year: 2012
  ident: 10.1016/j.isprsjprs.2017.05.002_b0020
  article-title: Practical recommendations for gradient-based training of deep architectures
– ident: 10.1016/j.isprsjprs.2017.05.002_b0225
  doi: 10.1117/12.2083273
– start-page: 3431
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0145
  article-title: Fully convolutional networks for semantic segmentation
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.isprsjprs.2017.05.002_b0050
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.isprsjprs.2017.05.002_b0005
  article-title: Slic superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 6
  start-page: 762
  issue: 4
  year: 2013
  ident: 10.1016/j.isprsjprs.2017.05.002_b0075
  article-title: Very high resolution satellite image classification using fuzzy rule-based systems
  publication-title: Algorithms
  doi: 10.3390/a6040762
– year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0235
  article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
– ident: 10.1016/j.isprsjprs.2017.05.002_b0300
– ident: 10.1016/j.isprsjprs.2017.05.002_b0170
  doi: 10.1109/ICIIP.2011.6108839
– start-page: 36
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0210
  article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields
– volume: 60
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0230
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: J. Imag. Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2016.60.1.010402
– start-page: 1520
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0200
  article-title: Learning deconvolution network for semantic segmentation
– start-page: 248
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.05.002_b0045
  article-title: ImageNet: a large-scale hierarchical image database
– ident: 10.1016/j.isprsjprs.2017.05.002_b0240
– year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0120
  article-title: Efficient piecewise training of deep structured models for semantic segmentation
– volume: 70
  start-page: 627
  issue: 5
  year: 2004
  ident: 10.1016/j.isprsjprs.2017.05.002_b0060
  article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogram. Eng. Rem. Sens.
  doi: 10.14358/PERS.70.5.627
– start-page: 3708
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0055
  article-title: Representation learning for contextual object and region detection in remote sensing
– year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0270
  article-title: Reseg: a recurrent neural network for object segmentation
– start-page: 1873
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0265
  article-title: Building detection in very high resolution multispectral data with deep learning features
– start-page: 4959
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0155
  article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.isprsjprs.2017.05.002_b0015
  article-title: Learning deep architectures for ai
  publication-title: Found. Trend. Mach. Learn.
  doi: 10.1561/2200000006
– ident: 10.1016/j.isprsjprs.2017.05.002_b0095
  doi: 10.1109/CVPR.2016.182
– start-page: 1742
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0215
  article-title: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0070
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 10
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0135
  article-title: Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138071
– ident: 10.1016/j.isprsjprs.2017.05.002_b0035
– start-page: 730
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0125
  article-title: Very deep convolutional neural network based image classification using small training sample size
– year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0030
  article-title: Efficient convolutional patch networks for scene understanding
– ident: 10.1016/j.isprsjprs.2017.05.002_b0010
– start-page: 184
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0085
  article-title: Deep neural networks-based vehicle detection in satellite images
– start-page: 807
  year: 2010
  ident: 10.1016/j.isprsjprs.2017.05.002_b0185
  article-title: Rectified linear units improve restricted boltzmann machines
– start-page: 1529
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0290
  article-title: Conditional random fields as recurrent neural networks
– volume: 27
  start-page: 223
  issue: 1
  year: 2006
  ident: 10.1016/j.isprsjprs.2017.05.002_b0110
  article-title: Comparing accuracy assessments to infer superiority of image classification methods
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431160500275762
– start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0255
  article-title: Going deeper with convolutions
– start-page: 510
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0025
  article-title: Convolutional patch networks with spatial prior for road detection and urban scene understanding
– start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0090
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0245
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 487
  year: 2014
  ident: 10.1016/j.isprsjprs.2017.05.002_b0295
  article-title: Learning deep features for scene recognition using places database
– ident: 10.1016/j.isprsjprs.2017.05.002_b0150
– ident: 10.1016/j.isprsjprs.2017.05.002_b0180
  doi: 10.1007/978-3-642-15567-3_16
– ident: 10.1016/j.isprsjprs.2017.05.002_b0220
  doi: 10.1109/ICECTECH.2011.5941731
– start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0065
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
– ident: 10.1016/j.isprsjprs.2017.05.002_b0175
– start-page: 109
  year: 2011
  ident: 10.1016/j.isprsjprs.2017.05.002_b0100
  article-title: Efficient inference in fully connected crfs with gaussian edge potentials
– ident: 10.1016/j.isprsjprs.2017.05.002_b0305
  doi: 10.1109/CVPR.2016.319
– volume: 8
  start-page: 329
  issue: 4
  year: 2016
  ident: 10.1016/j.isprsjprs.2017.05.002_b0140
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs8040329
– volume: 15
  start-page: 1
  issue: 2008
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0250
  article-title: Connected component-based technique for automatic extraction of road centerline in high resolution satellite images
  publication-title: EURASIP J. Image Video Process.
– ident: 10.1016/j.isprsjprs.2017.05.002_b0160
– start-page: 685
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0205
  article-title: Is object localization for free? - weakly-supervised learning with convolutional neural networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0040
  article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs
– start-page: 1097
  year: 2012
  ident: 10.1016/j.isprsjprs.2017.05.002_b0105
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1377
  year: 2015
  ident: 10.1016/j.isprsjprs.2017.05.002_b0130
  article-title: Semantic image segmentation via deep parsing network
SSID ssj0001568
Score 2.6271086
Snippet Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Adjacent regions
asymmetry
buildings
Convolutional neural network
data collection
Engineering Sciences
Extraction
image analysis
land use and land cover maps
Low-level features
neural networks
remote sensing
roads
Signal and Image processing
spatial data
urban areas
Title Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
URI https://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
https://www.proquest.com/docview/2000516504
https://hal.science/hal-01672877
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9RAEJ5wx4PyYAQ1HgpZja_1tvujLb5dCOQE5AVJeNt0u1spau_Snia8-Lc7024vQkh48KFp2nTSzc505tvtNzMAHzR6PYtxLVKIRiJVFDzKcmGjtJDKOx1bnlM28pfzZH6pTq701QYcDrkwRKsMvr_36Z23DnemYTany6qaXnBcOoiU8LnskPgINoU8SPQYNmefT-fna4cc9xlx9HxEAndoXlW7bNobPIjm1VfxDFssDwSp0TWxJe857S4SHT-HZwFCslk_ym3Y8PUObP1TWHAHnoTe5te3L-D7RUWswbz2uMhn6IubPpeBLUrWLHLXsrx2zIb22C2ratZ4VKBnLZHb62-s-kmFLm4Z7dkyoqkHc8VBUDnM7tSRyduXcHl89PVwHoUWC1EhM7GKXJl7RFikHuGsKIRPy8THGNVLhJIHWlrrk9glXCntConwhHslSp7zQovSc_kKxvWi9q-B8dTKWPlMK5Wq3GZZiUiMc5s465yUYgLJMKemCPXHqQ3GDzMQzW7MWhmGlGG4NqiMCfC14LIvwfG4yKdBaeaONRkMFI8Lv0c1r19F9bfnszND9yhnA5eY6e94Au8GKzD4QdJfll6P1NcTHR0CX7X7P6N4A0_pqucavoXxqvnl9xD_rOw-jD7-ifeDlf8FElwHww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9VAEJ4AHpADQdT4QHE1Xuvb7o-2eiME8tQHFyDhtul2t1DUvpf2acKFv52ZdvsEY8LBQ9Nku5tudqYz326_mQH4oNHqWfRrkUI0Eqmi4FGWCxulhVTe6djynKKRj0-Sybn6eqEvVuBgiIUhWmWw_b1N76x1aBmH1RzPq2p8ynHrIFLC57JD4qvwRGmZEq_v4-0fnkfcx8NR74i6PyB5Ve28aa_xIpJXn8MzHLD8w0WtXhFX8i-T3fmhoy3YDACS7fdzfAYrvt6GjXtpBbdhPVQ2v7p5Dt9PK-IM5rXHLT5DS9z0kQxsVrJmlruW5bVjNhTHbllVs8aj-DxridpeX7LqJ6W5uGF0YsuIpB6UFSdByTC7W0clb1_A-dHh2cEkCgUWokJmYhG5MveIr0g4wllRCJ-WiY_Rp5cIJD9paa1PYpdwpbQrJIIT7pUoec4LLUrP5UtYq2e1fwWMp1bGymdaqVTlNstKxGGc28RZ56QUI0iGNTVFyD5ORTB-mIFmdm2WwjAkDMO1QWGMgC8HzvsEHI8P-TwIzTzQJYNu4vHB71HMy1dR9u3J_tRQG0Vs4AYz_R2P4N2gBQY_R_rH0suRqnqimUPYq3b-ZxZvYX1ydjw10y8n33bhKT3pWYevYW3R_PJvEAkt7F6n6XdViwiO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+extraction+of+roads+and+buildings+in+remote+sensing+imagery+with+convolutional+neural+networks&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Alshehhi%2C+Rasha&rft.au=Marpu%2C+Prashanth+Reddy&rft.au=Woon%2C+Wei+Lee&rft.au=Mura%2C+Mauro+Dalla&rft.date=2017-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=130&rft.spage=139&rft.epage=149&rft_id=info:doi/10.1016%2Fj.isprsjprs.2017.05.002&rft.externalDocID=S0924271617300096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon