Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 130; pp. 139 - 149 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2017.05.002 |
Cover
Abstract | Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas. |
---|---|
AbstractList | Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas. |
Author | Alshehhi, Rasha Mura, Mauro Dalla Woon, Wei Lee Marpu, Prashanth Reddy |
Author_xml | – sequence: 1 givenname: Rasha surname: Alshehhi fullname: Alshehhi, Rasha email: ralshehhi@masdar.ac.ae organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates – sequence: 2 givenname: Prashanth Reddy surname: Marpu fullname: Marpu, Prashanth Reddy email: pmarpu@masdar.ac.ae organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Wei Lee surname: Woon fullname: Woon, Wei Lee email: wwoon@masdar.ac.ae organization: Institute Center for Smart and Sustainable Systems, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Mauro Dalla surname: Mura fullname: Mura, Mauro Dalla email: mauro.dalla-mura@gipsa-lab.grenoble-inp.fr organization: GIPSA-lab, Grenoble Institute of Technology, Grenoble, France |
BackLink | https://hal.science/hal-01672877$$DView record in HAL |
BookMark | eNqNkUFv1DAQhS1UJLaF34CPcEgYO3GSHjisKqCVVuIAnC3HnrTeeu3Fdrb03-M0qAcucBiNNHrvafS9c3Lmg0dC3jKoGbDuw7626RjTvkzNgfU1iBqAvyAbNvS8GngjzsgGLnlb8Z51r8h5SnsAYKIbNuT-mz3MLiuPYU4Uf-WodLbB0zDRGJRJVHlDx9k6Y_1totbTiIeQkSb0qZyoPahbjI_0weY7qoM_BTcvCcpRj3N8WvkhxPv0mryclEv45s--ID8-f_p-dV3tvn65udruKt0MPFdmUshADIqP3Ixcc-ynDlnLxAQDXIpmHLFjpoO2FUY3XdcAtnwCBVrwCaG5IO_X3Dvl5DGWB-OjDMrK6-1OLreCredD359Y0b5btccYfs6YsjzYpNG5lYjkhZRgnYC2SPtVqmNIKeL0nM1ALlXIvXyuQi5VSBCyVFGcH_9yapvVAqngtu4__NvVj4XayWKUSVv0Go2NqLM0wf4z4ze_gLAO |
CitedBy_id | crossref_primary_10_1061_JITSE4_ISENG_2351 crossref_primary_10_3390_rs13081429 crossref_primary_10_1109_TGRS_2020_3014312 crossref_primary_10_47164_ijngc_v15i1_1645 crossref_primary_10_3390_rs15010095 crossref_primary_10_1007_s42979_023_02111_6 crossref_primary_10_1016_j_jag_2022_102833 crossref_primary_10_1061_JTEPBS_0000517 crossref_primary_10_1109_TGRS_2019_2893310 crossref_primary_10_3390_rs11161922 crossref_primary_10_3390_rs14122949 crossref_primary_10_1016_j_prime_2023_100244 crossref_primary_10_3390_rs13193814 crossref_primary_10_3390_rs9111106 crossref_primary_10_3390_rs13173414 crossref_primary_10_1109_TGRS_2024_3495508 crossref_primary_10_14358_PERS_24_00100R2 crossref_primary_10_3390_en14237982 crossref_primary_10_3390_s18113921 crossref_primary_10_1109_TGRS_2021_3055950 crossref_primary_10_1080_15481603_2022_2076382 crossref_primary_10_3390_rs13122290 crossref_primary_10_3390_rs15041049 crossref_primary_10_3390_a13080195 crossref_primary_10_1109_ACCESS_2022_3164401 crossref_primary_10_1016_j_scitotenv_2024_176585 crossref_primary_10_1080_10106049_2020_1856199 crossref_primary_10_3390_s23125505 crossref_primary_10_1080_01431161_2023_2285740 crossref_primary_10_3390_rs10081287 crossref_primary_10_1109_TGRS_2024_3361211 crossref_primary_10_3390_s24113606 crossref_primary_10_5194_nhess_20_1149_2020 crossref_primary_10_1109_JSTARS_2021_3052495 crossref_primary_10_1016_j_rse_2024_114448 crossref_primary_10_1109_ACCESS_2020_3015701 crossref_primary_10_3390_app10207272 crossref_primary_10_1109_JSTARS_2021_3130038 crossref_primary_10_3390_infrastructures7100137 crossref_primary_10_3390_rs14020269 crossref_primary_10_3390_rs15051414 crossref_primary_10_1109_TGRS_2023_3327370 crossref_primary_10_3390_rs11101158 crossref_primary_10_3390_ijgi7090362 crossref_primary_10_3390_rs13132524 crossref_primary_10_1016_j_jag_2023_103420 crossref_primary_10_3390_s20010141 crossref_primary_10_1016_j_isprsjprs_2022_08_024 crossref_primary_10_1016_j_jag_2019_102031 crossref_primary_10_1109_ACCESS_2021_3097630 crossref_primary_10_1109_TGRS_2018_2839705 crossref_primary_10_3390_rs15133367 crossref_primary_10_1007_s41064_022_00194_z crossref_primary_10_3390_app13074210 crossref_primary_10_3390_rs15092293 crossref_primary_10_1155_2022_2078191 crossref_primary_10_1155_2022_6181357 crossref_primary_10_3390_rs11060696 crossref_primary_10_3390_math12050765 crossref_primary_10_3390_rs15194686 crossref_primary_10_1109_TGRS_2024_3389110 crossref_primary_10_1016_j_isprsjprs_2020_08_004 crossref_primary_10_3390_rs11060690 crossref_primary_10_3390_rs14092061 crossref_primary_10_1088_1742_6596_2858_1_012008 crossref_primary_10_1109_TGRS_2022_3165209 crossref_primary_10_26833_ijeg_977032 crossref_primary_10_1080_01431161_2019_1594439 crossref_primary_10_1109_TGRS_2024_3460085 crossref_primary_10_1016_j_procs_2025_02_138 crossref_primary_10_3390_land12081573 crossref_primary_10_1142_S0218001419540272 crossref_primary_10_1109_ACCESS_2019_2952946 crossref_primary_10_1007_s13369_021_05412_1 crossref_primary_10_3233_MGS_220339 crossref_primary_10_1080_2150704X_2021_1980240 crossref_primary_10_1016_j_eswa_2020_114417 crossref_primary_10_3390_rs16050839 crossref_primary_10_3390_app122010605 crossref_primary_10_1016_j_bdr_2022_100334 crossref_primary_10_1109_JSTARS_2023_3337140 crossref_primary_10_1109_LGRS_2020_3010416 crossref_primary_10_1109_JSTARS_2021_3137450 crossref_primary_10_1109_TITS_2019_2939536 crossref_primary_10_3390_rs11070830 crossref_primary_10_3390_rs13142794 crossref_primary_10_3390_w15040676 crossref_primary_10_3390_ijgi10090606 crossref_primary_10_1016_j_isprsjprs_2019_12_014 crossref_primary_10_1007_s11042_022_12141_6 crossref_primary_10_1007_s40747_024_01735_2 crossref_primary_10_1109_TGRS_2020_2987338 crossref_primary_10_1016_j_isprsjprs_2019_12_010 crossref_primary_10_3390_rs10091429 crossref_primary_10_1109_LGRS_2021_3072589 crossref_primary_10_1088_1361_6501_abfbfd crossref_primary_10_3390_rs11050552 crossref_primary_10_1109_JSTARS_2022_3188493 crossref_primary_10_1016_j_isprsjprs_2021_10_001 crossref_primary_10_3390_rs14041011 crossref_primary_10_1080_20964471_2019_1657720 crossref_primary_10_1007_s11440_021_01266_x crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_1080_15481603_2022_2036056 crossref_primary_10_1016_j_isprsjprs_2019_02_008 crossref_primary_10_1080_10106049_2020_1778100 crossref_primary_10_3390_rs10111768 crossref_primary_10_1109_ACCESS_2019_2956725 crossref_primary_10_1109_TGRS_2018_2870871 crossref_primary_10_3390_rs11242912 crossref_primary_10_3390_rs12091400 crossref_primary_10_3390_rs13040743 crossref_primary_10_1007_s12524_022_01568_x crossref_primary_10_3390_rs13040742 crossref_primary_10_3390_drones6120414 crossref_primary_10_1016_j_suscom_2022_100692 crossref_primary_10_1016_j_isprsjprs_2018_11_011 crossref_primary_10_1007_s10980_021_01366_9 crossref_primary_10_1016_j_isprsjprs_2019_02_019 crossref_primary_10_3390_rs10071135 crossref_primary_10_1080_07038992_2021_1915756 crossref_primary_10_1109_ACCESS_2019_2907114 crossref_primary_10_3390_rs11040403 crossref_primary_10_1049_ipr2_12320 crossref_primary_10_1109_ACCESS_2020_3038225 crossref_primary_10_1016_j_compenvurbsys_2024_102174 crossref_primary_10_1007_s11633_020_1248_x crossref_primary_10_1016_j_autcon_2020_103110 crossref_primary_10_1016_j_isprsjprs_2023_03_006 crossref_primary_10_1109_JSTARS_2021_3123398 crossref_primary_10_3390_rs12142240 crossref_primary_10_1109_TGRS_2023_3237561 crossref_primary_10_1109_LGRS_2018_2880986 crossref_primary_10_1109_JSTARS_2021_3055784 crossref_primary_10_1007_s12524_022_01532_9 crossref_primary_10_1016_j_isprsjprs_2021_09_014 crossref_primary_10_1080_15481603_2022_2101727 crossref_primary_10_1109_JSTARS_2023_3344210 crossref_primary_10_1016_j_jhydrol_2020_125092 crossref_primary_10_1080_01431161_2021_1982155 crossref_primary_10_1109_JSTARS_2020_2991391 crossref_primary_10_1109_ACCESS_2018_2856088 crossref_primary_10_3390_s24165205 crossref_primary_10_1109_JSTARS_2021_3053603 crossref_primary_10_3390_rs14081912 crossref_primary_10_1080_07038992_2021_1937087 crossref_primary_10_3390_rs16122056 crossref_primary_10_1080_01431161_2021_2018146 crossref_primary_10_3390_s19051164 crossref_primary_10_1109_ACCESS_2019_2940527 crossref_primary_10_1166_jno_2021_3051 crossref_primary_10_1016_j_isprsjprs_2018_05_005 crossref_primary_10_47164_ijngc_v14i3_1301 crossref_primary_10_3390_rs11242970 crossref_primary_10_1109_JSTARS_2023_3336924 crossref_primary_10_3390_s20082244 crossref_primary_10_3390_rs14143370 crossref_primary_10_1186_s43065_021_00019_0 crossref_primary_10_1016_j_eswa_2018_01_055 crossref_primary_10_3390_rs12152460 crossref_primary_10_3390_rs11232813 crossref_primary_10_1109_JSTARS_2018_2860989 crossref_primary_10_1080_10106049_2020_1753819 crossref_primary_10_3390_rs11161897 crossref_primary_10_1016_j_isprsjprs_2023_05_010 crossref_primary_10_1109_ACCESS_2024_3385540 crossref_primary_10_3390_rs10091350 crossref_primary_10_3390_rs12081294 crossref_primary_10_3390_ijgi8010028 crossref_primary_10_1007_s12518_023_00530_x crossref_primary_10_3390_rs12101668 crossref_primary_10_3390_rs11202380 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_3390_s21062153 crossref_primary_10_1109_TGRS_2020_3009143 crossref_primary_10_1016_j_jag_2024_103665 crossref_primary_10_1109_JSTARS_2021_3102320 crossref_primary_10_1016_j_ifacol_2019_12_429 crossref_primary_10_3390_rs17060952 crossref_primary_10_1016_j_jag_2021_102379 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1016_j_rse_2023_113928 crossref_primary_10_1016_j_isprsjprs_2021_01_025 crossref_primary_10_3390_rs12091444 crossref_primary_10_1016_j_isprsjprs_2021_01_024 crossref_primary_10_36680_j_itcon_2022_010 crossref_primary_10_1080_17538947_2024_2432522 crossref_primary_10_1108_IR_05_2018_0112 crossref_primary_10_3390_s20174802 crossref_primary_10_3390_rs13091642 crossref_primary_10_3390_rs13030465 crossref_primary_10_1109_TGRS_2019_2926397 crossref_primary_10_1109_JSTARS_2022_3166927 crossref_primary_10_14358_PERS_21_00016R2 crossref_primary_10_1360_SST_2021_0193 crossref_primary_10_1109_JSTARS_2020_3023549 crossref_primary_10_1109_JSTARS_2022_3146430 crossref_primary_10_3390_rs11222672 crossref_primary_10_1016_j_isprsjprs_2018_01_004 crossref_primary_10_1016_j_buildenv_2020_107145 crossref_primary_10_3390_rs12050765 crossref_primary_10_3390_rs15082099 crossref_primary_10_3390_s20174938 crossref_primary_10_1117_1_JRS_16_046508 crossref_primary_10_1016_j_jag_2024_103794 crossref_primary_10_3390_ijgi11010009 crossref_primary_10_1016_j_isprsjprs_2020_10_008 crossref_primary_10_1109_TGRS_2023_3345867 crossref_primary_10_3390_rs15040927 crossref_primary_10_3390_rs12050758 crossref_primary_10_1080_01431161_2020_1775322 crossref_primary_10_3390_ijgi8090407 crossref_primary_10_3390_s24206672 crossref_primary_10_3390_rs13214235 crossref_primary_10_3390_rs12152350 crossref_primary_10_1109_TGRS_2022_3192614 crossref_primary_10_1016_j_jobe_2023_107682 crossref_primary_10_1080_1206212X_2023_2219117 crossref_primary_10_1109_JSTARS_2021_3073935 crossref_primary_10_1016_j_isprsjprs_2021_02_014 crossref_primary_10_1007_s12145_022_00840_5 crossref_primary_10_1109_TGRS_2023_3251659 crossref_primary_10_1155_2022_2684983 crossref_primary_10_1016_j_neucom_2019_12_098 crossref_primary_10_1109_JSTARS_2019_2955277 crossref_primary_10_1109_TIP_2021_3117076 crossref_primary_10_3390_rs14030647 crossref_primary_10_1016_j_isprsjprs_2017_12_007 crossref_primary_10_3390_ijgi9090527 crossref_primary_10_1109_MGRS_2024_3491014 crossref_primary_10_1080_15481603_2018_1426091 crossref_primary_10_3390_rs11091012 crossref_primary_10_3390_rs11091015 crossref_primary_10_1109_TITS_2021_3098855 crossref_primary_10_1016_j_image_2021_116329 crossref_primary_10_1016_j_isprsjprs_2021_07_003 crossref_primary_10_1016_j_jag_2021_102341 crossref_primary_10_1080_10095020_2021_1892459 crossref_primary_10_3390_rs14051118 crossref_primary_10_3390_buildings11070302 crossref_primary_10_3390_s22103784 crossref_primary_10_1016_j_geomat_2024_100007 crossref_primary_10_3390_rs14236015 crossref_primary_10_3390_rs12050862 crossref_primary_10_1016_j_ecoinf_2024_102588 crossref_primary_10_3390_rs14081786 crossref_primary_10_3389_fpls_2022_993961 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_3390_rs10030457 crossref_primary_10_3390_rs10030451 crossref_primary_10_1080_01431161_2023_2240518 crossref_primary_10_1109_JSTARS_2024_3361693 crossref_primary_10_1109_TGRS_2020_3026051 crossref_primary_10_1109_JSTARS_2024_3424831 crossref_primary_10_3390_rs13183710 crossref_primary_10_1109_JSTARS_2022_3181446 crossref_primary_10_1117_1_JRS_13_034510 crossref_primary_10_1109_JSTARS_2023_3261866 crossref_primary_10_2139_ssrn_3938635 crossref_primary_10_1007_s12145_019_00383_2 crossref_primary_10_1016_j_isprsjprs_2017_11_014 crossref_primary_10_1109_JSTARS_2022_3188515 crossref_primary_10_3390_rs13061049 crossref_primary_10_1109_TGRS_2024_3383057 crossref_primary_10_3390_rs14112532 crossref_primary_10_1111_phor_12431 crossref_primary_10_1109_ACCESS_2020_3026084 crossref_primary_10_1109_JSTARS_2021_3119286 crossref_primary_10_1109_JSTARS_2025_3525709 crossref_primary_10_1016_j_compenvurbsys_2018_06_005 crossref_primary_10_3390_buildings12122233 crossref_primary_10_3390_rs14143396 crossref_primary_10_1016_j_jag_2023_103578 crossref_primary_10_1007_s00521_022_07288_0 crossref_primary_10_1016_j_isprsjprs_2018_02_009 crossref_primary_10_1109_JSTARS_2024_3444773 crossref_primary_10_3390_rs12223794 crossref_primary_10_26833_ijeg_373152 crossref_primary_10_3390_rs12182985 crossref_primary_10_1080_10106049_2024_2375572 crossref_primary_10_1109_JSTARS_2018_2865187 crossref_primary_10_1016_j_cviu_2024_104253 crossref_primary_10_3390_rs11030227 crossref_primary_10_1080_01431161_2022_2122892 crossref_primary_10_1109_TGRS_2021_3097148 crossref_primary_10_3390_rs11080917 crossref_primary_10_1007_s12524_018_0871_2 crossref_primary_10_1016_j_jag_2024_104160 crossref_primary_10_1016_j_autcon_2020_103509 crossref_primary_10_1109_TGRS_2022_3174636 crossref_primary_10_1155_2022_6230025 crossref_primary_10_3390_s19020333 crossref_primary_10_3233_JIFS_235150 |
Cites_doi | 10.3390/rs8030259 10.1109/83.841950 10.1117/12.2083273 10.1023/B:VISI.0000022288.19776.77 10.1109/TPAMI.2012.120 10.3390/a6040762 10.1109/ICIIP.2011.6108839 10.2352/J.ImagingSci.Technol.2016.60.1.010402 10.14358/PERS.70.5.627 10.1561/2200000006 10.1109/CVPR.2016.182 10.3390/rs71114680 10.1371/journal.pone.0138071 10.1080/01431160500275762 10.1007/978-3-642-15567-3_16 10.1109/ICECTECH.2011.5941731 10.1109/CVPR.2016.319 10.3390/rs8040329 |
ContentType | Journal Article |
Copyright | 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.isprsjprs.2017.05.002 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 149 |
ExternalDocumentID | oai_HAL_hal_01672877v1 10_1016_j_isprsjprs_2017_05_002 S0924271617300096 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 1XC |
ID | FETCH-LOGICAL-c382t-dfae1058a2b2db2c2e7f6e1415f080953bbe61d60445dc36630e42f0a0c52fe03 |
IEDL.DBID | AIKHN |
ISSN | 0924-2716 |
IngestDate | Fri May 09 12:15:06 EDT 2025 Fri Sep 05 11:49:46 EDT 2025 Tue Jul 01 03:46:38 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Fri Feb 23 02:28:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extraction Adjacent regions Convolutional neural network Low-level features |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-dfae1058a2b2db2c2e7f6e1415f080953bbe61d60445dc36630e42f0a0c52fe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9656-9087 |
PQID | 2000516504 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_01672877v1 proquest_miscellaneous_2000516504 crossref_primary_10_1016_j_isprsjprs_2017_05_002 crossref_citationtrail_10_1016_j_isprsjprs_2017_05_002 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2017_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 2017-08-00 20170801 2017-08 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Visin, Kastner, Courville, Bengio, Matteucci, Cho (b0270) 2015 Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. Computing Research Repository (CRR) abs/1511.00561. Brust, Sickert, Simon, Rodner, Denzler (b0030) 2015 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0245) 2014; 15 Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L., 2015. Land use classification in remote sensing images by convolutional neural networks. Computing Research Repository (CRR) abs/1508.00092. Firat, Can, Vural (b0055) 2014 Rajeswari, M., Gurumurthy, K.S., Omkar, S.N., Senthilnath, J., Reddy, L.P., 2011. Automatic road extraction using high resolution satellite images based on level set and mean shift methods. In: 3rd International Conference on Electronics Computer Technology (ICECT), vol. 2, pp. 424–428. Liu, Deng (b0125) 2015 Matinfar, Sarmadian, Panah, Heck (b0165) 2007; 2 Lin, Chen, Yan (b0115) 2014 Lin, Shen, Reid, van den Hengel (b0120) 2016 Saito, S., Aoki, Y., 2015. Building and road detection from large aerial imagery. In: Proceedings of Society of Photographic Instrumentation Engineers (SPIE) - The International Society of Optical Engineering, vol. 9405. Nogueira, Penatti, dos Santos (b0195) 2016 Hu, Xia, Hu, Zhang (b0070) 2015; 7 Shu, Y., 2014. Deep Convolutional Neural Networks for Object Extraction from High Spatial Resolution Remotely Sensed Imagery, Ph.D. thesis, University of Waterloo. Zhou, Lapedriza, Xiao, Torralba, Oliva (b0295) 2014 Nair, Hinton (b0185) 2010 Felzenszwalb, Huttenlocher (b0050) 2004; 59 Foody (b0060) 2004; 70 Sherrah (b0235) 2016 Zhao, Ouyang, Li, Wang (b0285) 2015 Papandreou, Chen, Murphy, Yuille (b0215) 2015 Leeuw, Jia, Yang, Liu, Schmidt, Skidmore (b0110) 2006; 27 Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations (ICLR). Lngkvist, Kiselev, Alirezaie, Loutfi (b0140) 2016; 8 Yu, Yang, Xia, Liu (b0275) 2016; 8 Vakalopoulou, Karantzalos, Komodakis, Paragios (b0265) 2015 Chen, Papandreou, Kokkinos, Murphy, Yuille (b0040) 2015 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (b0080) 2014 Liu, Wu, Wang, Liu (b0135) 2015; 10 Jiang, Cao, Cheng, Wang, Li (b0085) 2015 Jabari, Zhang (b0075) 2013; 6 Brust, Sickert, Simon, Rodner, Denzler (b0025) 2015 Krizhevsky, Sutskever, Hinton (b0105) 2012 Deng, Dong, Socher, Li, Li, Fei-Fei (b0045) 2009 Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (b0290) 2015 Kampffmeyer Michael, Jenssen (b0090) 2015 Marcu, A., Leordeanu, M., Dual local-global contextual pathways for recognition in aerial imagery. Computing Research Repository (CRR) abs/1605.05462. Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0255) 2015 Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Fully convolutional neural networks for remote sensing image classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Saito, Yamashita, Aoki (b0230) 2016; 60 Sujatha, Selvathi (b0250) 2015; 15 Bengio (b0015) 2009; 2 Achanta, Shaji, Smith, Lucchi, Fua, Susstrunk (b0005) 2012; 34 Bengio (b0020) 2012 Krähenbühl, Koltun (b0100) 2011 Tremeau, Colantoni (b0260) 2000; 9 Liu, Li, Luo, Loy, Tang (b0130) 2015 Zeiler, Fergus (b0280) 2014 Mnih, V., 2013. Machine Learning for Aerial Image Labeling, Ph.D. thesis, University of Toronto. Hong, Noh, Han (b0065) 2015 Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: Proceedings of the 11th European Conference on Computer Vision (ECCV): Part VI, pp. 210–223. Makantasis, Karantzalos, Doulamis, Doulamis (b0155) 2015 Long, Shelhamer, Darrell (b0145) 2015 Paisitkriangkrai, Sherrah, Janney, Hengel (b0210) 2015 Maurya, R., Gupta, P.R., Shukla, A.S., 2011. Road extraction using k-means clustering and morphological operations. In: International Conference on Image Information Processing (ICIIP), pp. 1–6. Kim, J., Lee, J.K., Lee, K.M., 2015. Accurate image super-resolution using very deep convolutional networks. Computing Research Repository (CRR) abs/1511.04587. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Noh, Hong, Han (b0200) 2015 Oquab, Bottou, Laptev, Sivic (b0205) 2015 Nogueira (10.1016/j.isprsjprs.2017.05.002_b0195) 2016 Krizhevsky (10.1016/j.isprsjprs.2017.05.002_b0105) 2012 Brust (10.1016/j.isprsjprs.2017.05.002_b0030) 2015 Foody (10.1016/j.isprsjprs.2017.05.002_b0060) 2004; 70 Kampffmeyer Michael (10.1016/j.isprsjprs.2017.05.002_b0090) 2015 Jabari (10.1016/j.isprsjprs.2017.05.002_b0075) 2013; 6 Chen (10.1016/j.isprsjprs.2017.05.002_b0040) 2015 Oquab (10.1016/j.isprsjprs.2017.05.002_b0205) 2015 Visin (10.1016/j.isprsjprs.2017.05.002_b0270) 2015 Liu (10.1016/j.isprsjprs.2017.05.002_b0130) 2015 Srivastava (10.1016/j.isprsjprs.2017.05.002_b0245) 2014; 15 Bengio (10.1016/j.isprsjprs.2017.05.002_b0020) 2012 10.1016/j.isprsjprs.2017.05.002_b0160 Zhao (10.1016/j.isprsjprs.2017.05.002_b0285) 2015 10.1016/j.isprsjprs.2017.05.002_b0240 Lin (10.1016/j.isprsjprs.2017.05.002_b0120) 2016 Vakalopoulou (10.1016/j.isprsjprs.2017.05.002_b0265) 2015 Zheng (10.1016/j.isprsjprs.2017.05.002_b0290) 2015 Makantasis (10.1016/j.isprsjprs.2017.05.002_b0155) 2015 Lin (10.1016/j.isprsjprs.2017.05.002_b0115) 2014 10.1016/j.isprsjprs.2017.05.002_b0035 Sherrah (10.1016/j.isprsjprs.2017.05.002_b0235) 2016 10.1016/j.isprsjprs.2017.05.002_b0150 Sujatha (10.1016/j.isprsjprs.2017.05.002_b0250) 2015; 15 Brust (10.1016/j.isprsjprs.2017.05.002_b0025) 2015 Noh (10.1016/j.isprsjprs.2017.05.002_b0200) 2015 Papandreou (10.1016/j.isprsjprs.2017.05.002_b0215) 2015 Szegedy (10.1016/j.isprsjprs.2017.05.002_b0255) 2015 Nair (10.1016/j.isprsjprs.2017.05.002_b0185) 2010 Jiang (10.1016/j.isprsjprs.2017.05.002_b0085) 2015 10.1016/j.isprsjprs.2017.05.002_b0180 Liu (10.1016/j.isprsjprs.2017.05.002_b0125) 2015 Lngkvist (10.1016/j.isprsjprs.2017.05.002_b0140) 2016; 8 Leeuw (10.1016/j.isprsjprs.2017.05.002_b0110) 2006; 27 10.1016/j.isprsjprs.2017.05.002_b0300 Matinfar (10.1016/j.isprsjprs.2017.05.002_b0165) 2007; 2 10.1016/j.isprsjprs.2017.05.002_b0225 Liu (10.1016/j.isprsjprs.2017.05.002_b0135) 2015; 10 Krähenbühl (10.1016/j.isprsjprs.2017.05.002_b0100) 2011 10.1016/j.isprsjprs.2017.05.002_b0305 Felzenszwalb (10.1016/j.isprsjprs.2017.05.002_b0050) 2004; 59 Bengio (10.1016/j.isprsjprs.2017.05.002_b0015) 2009; 2 Deng (10.1016/j.isprsjprs.2017.05.002_b0045) 2009 Firat (10.1016/j.isprsjprs.2017.05.002_b0055) 2014 Zhou (10.1016/j.isprsjprs.2017.05.002_b0295) 2014 10.1016/j.isprsjprs.2017.05.002_b0220 Saito (10.1016/j.isprsjprs.2017.05.002_b0230) 2016; 60 Yu (10.1016/j.isprsjprs.2017.05.002_b0275) 2016; 8 Jia (10.1016/j.isprsjprs.2017.05.002_b0080) 2014 Long (10.1016/j.isprsjprs.2017.05.002_b0145) 2015 Hu (10.1016/j.isprsjprs.2017.05.002_b0070) 2015; 7 Paisitkriangkrai (10.1016/j.isprsjprs.2017.05.002_b0210) 2015 Tremeau (10.1016/j.isprsjprs.2017.05.002_b0260) 2000; 9 Zeiler (10.1016/j.isprsjprs.2017.05.002_b0280) 2014 10.1016/j.isprsjprs.2017.05.002_b0170 10.1016/j.isprsjprs.2017.05.002_b0095 10.1016/j.isprsjprs.2017.05.002_b0010 10.1016/j.isprsjprs.2017.05.002_b0175 Hong (10.1016/j.isprsjprs.2017.05.002_b0065) 2015 Achanta (10.1016/j.isprsjprs.2017.05.002_b0005) 2012; 34 |
References_xml | – reference: Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. Computing Research Repository (CRR) abs/1511.00561. – start-page: 184 year: 2015 end-page: 187 ident: b0085 article-title: Deep neural networks-based vehicle detection in satellite images publication-title: International Symposium on Bioelectronics and Bioinformatics (ISBB) – reference: Rajeswari, M., Gurumurthy, K.S., Omkar, S.N., Senthilnath, J., Reddy, L.P., 2011. Automatic road extraction using high resolution satellite images based on level set and mean shift methods. In: 3rd International Conference on Electronics Computer Technology (ICECT), vol. 2, pp. 424–428. – volume: 70 start-page: 627 year: 2004 end-page: 633 ident: b0060 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogram. Eng. Rem. Sens. – volume: 27 start-page: 223 year: 2006 end-page: 232 ident: b0110 article-title: Comparing accuracy assessments to infer superiority of image classification methods publication-title: Int. J. Rem. Sens. – volume: 59 start-page: 167 year: 2004 end-page: 181 ident: b0050 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. – start-page: 109 year: 2011 end-page: 117 ident: b0100 article-title: Efficient inference in fully connected crfs with gaussian edge potentials publication-title: Advances in Neural Information Processing Systems 24 – start-page: 36 year: 2015 end-page: 43 ident: b0210 article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops – reference: Mnih, V., Hinton, G.E., 2010. Learning to detect roads in high-resolution aerial images. In: Proceedings of the 11th European Conference on Computer Vision (ECCV): Part VI, pp. 210–223. – start-page: 1377 year: 2015 end-page: 1385 ident: b0130 article-title: Semantic image segmentation via deep parsing network publication-title: IEEE International Conference on Computer Vision (ICCV) – start-page: 4959 year: 2015 end-page: 4962 ident: b0155 article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – start-page: 675 year: 2014 end-page: 678 ident: b0080 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14 – year: 2016 ident: b0235 article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2015 ident: b0285 article-title: Saliency detection by multi-context deep learning publication-title: IEEE conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1520 year: 2015 end-page: 1528 ident: b0200 article-title: Learning deconvolution network for semantic segmentation publication-title: IEEE International Conference on Computer Vision (ICCV) – start-page: 685 year: 2015 end-page: 694 ident: b0205 article-title: Is object localization for free? - weakly-supervised learning with convolutional neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 807 year: 2010 end-page: 814 ident: b0185 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 60 year: 2016 ident: b0230 article-title: Multiple object extraction from aerial imagery with convolutional neural networks publication-title: J. Imag. Sci. Technol. – volume: 6 start-page: 762 year: 2013 end-page: 781 ident: b0075 article-title: Very high resolution satellite image classification using fuzzy rule-based systems publication-title: Algorithms – start-page: 730 year: 2015 end-page: 734 ident: b0125 article-title: Very deep convolutional neural network based image classification using small training sample size publication-title: 3rd IAPR Asian Conference on Pattern Recognition (ACPR) – start-page: 1 year: 2014 end-page: 10 ident: b0115 article-title: Network in network publication-title: International Conference on Learning Representations – reference: Maurya, R., Gupta, P.R., Shukla, A.S., 2011. Road extraction using k-means clustering and morphological operations. In: International Conference on Image Information Processing (ICIIP), pp. 1–6. – reference: Mnih, V., 2013. Machine Learning for Aerial Image Labeling, Ph.D. thesis, University of Toronto. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: b0015 article-title: Learning deep architectures for ai publication-title: Found. Trend. Mach. Learn. – year: 2015 ident: b0030 article-title: Efficient convolutional patch networks for scene understanding publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scene Understanding – start-page: 818 year: 2014 end-page: 833 ident: b0280 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision (ECCV) – volume: 8 start-page: 329 year: 2016 ident: b0140 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sens. – year: 2016 ident: b0195 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recogn. – volume: 15 start-page: 1 year: 2015 end-page: 16 ident: b0250 article-title: Connected component-based technique for automatic extraction of road centerline in high resolution satellite images publication-title: EURASIP J. Image Video Process. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b0005 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1873 year: 2015 end-page: 1876 ident: b0265 article-title: Building detection in very high resolution multispectral data with deep learning features publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 8 start-page: 259 year: 2016 ident: b0275 article-title: A color-texture-structure descriptor for high-resolution satellite image classification publication-title: Remote Sens. – start-page: 3708 year: 2014 end-page: 3713 ident: b0055 article-title: Representation learning for contextual object and region detection in remote sensing publication-title: 22nd International Conference on Pattern Recognition (ICPR) – reference: Saito, S., Aoki, Y., 2015. Building and road detection from large aerial imagery. In: Proceedings of Society of Photographic Instrumentation Engineers (SPIE) - The International Society of Optical Engineering, vol. 9405. – start-page: 248 year: 2009 end-page: 255 ident: b0045 article-title: ImageNet: a large-scale hierarchical image database publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2015 end-page: 9 ident: b0090 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scene Understanding – start-page: 3431 year: 2015 end-page: 3440 ident: b0145 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2016 ident: b0120 article-title: Efficient piecewise training of deep structured models for semantic segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – start-page: 1 year: 2015 end-page: 9 ident: b0255 article-title: Going deeper with convolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 487 year: 2014 end-page: 495 ident: b0295 article-title: Learning deep features for scene recognition using places database publication-title: Advances in Neural Information Processing Systems 27 – start-page: 1 year: 2015 end-page: 14 ident: b0040 article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs publication-title: International Conference on Learning Representations (ICLR) – reference: Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Fully convolutional neural networks for remote sensing image classification. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). – reference: Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L., 2015. Land use classification in remote sensing images by convolutional neural networks. Computing Research Repository (CRR) abs/1508.00092. – start-page: 437 year: 2012 end-page: 478 ident: b0020 article-title: Practical recommendations for gradient-based training of deep architectures publication-title: Neural Networks: Tricks of the Trade: – start-page: 510 year: 2015 end-page: 517 ident: b0025 article-title: Convolutional patch networks with spatial prior for road detection and urban scene understanding publication-title: International Conference on Computer Vision Theory and Applications – reference: Marcu, A., Leordeanu, M., Dual local-global contextual pathways for recognition in aerial imagery. Computing Research Repository (CRR) abs/1605.05462. – reference: Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A., 2015. Object detectors emerge in deep scene cnns. In: International Conference on Learning Representations (ICLR). – year: 2015 ident: b0270 article-title: Reseg: a recurrent neural network for object segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0245 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – reference: Shu, Y., 2014. Deep Convolutional Neural Networks for Object Extraction from High Spatial Resolution Remotely Sensed Imagery, Ph.D. thesis, University of Waterloo. – start-page: 1529 year: 2015 end-page: 1537 ident: b0290 article-title: Conditional random fields as recurrent neural networks publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 7 start-page: 14680 year: 2015 ident: b0070 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. – reference: Kim, J., Lee, J.K., Lee, K.M., 2015. Accurate image super-resolution using very deep convolutional networks. Computing Research Repository (CRR) abs/1511.04587. – start-page: 1097 year: 2012 end-page: 1105 ident: b0105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems 25 – volume: 9 start-page: 735 year: 2000 end-page: 744 ident: b0260 article-title: Regions adjacency graph applied to color image segmentation publication-title: IEEE Trans. Image Process. – start-page: 1742 year: 2015 end-page: 1750 ident: b0215 article-title: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation publication-title: IEEE International Conference on Computer Vision (ICCV) – start-page: 1 year: 2015 end-page: 9 ident: b0065 article-title: Decoupled deep neural network for semi-supervised semantic segmentation publication-title: Neural Information Processing Systems (NIPS) – volume: 2 start-page: 448 year: 2007 end-page: 456 ident: b0165 article-title: Comparisons of object-oriented and pixel-based classification of land use/land cover types based on lansadsat7, etm+ spectral bands (case study: arid region of iran) publication-title: Am. Eurasian J. Agric. Environ. Sci. – volume: 10 start-page: 1 year: 2015 end-page: 16 ident: b0135 article-title: Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas publication-title: PLoS ONE – year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0195 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recogn. – start-page: 818 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0280 article-title: Visualizing and understanding convolutional networks – volume: 2 start-page: 448 issue: 4 year: 2007 ident: 10.1016/j.isprsjprs.2017.05.002_b0165 article-title: Comparisons of object-oriented and pixel-based classification of land use/land cover types based on lansadsat7, etm+ spectral bands (case study: arid region of iran) publication-title: Am. Eurasian J. Agric. Environ. Sci. – year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0285 article-title: Saliency detection by multi-context deep learning – start-page: 675 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0080 article-title: Caffe: Convolutional architecture for fast feature embedding – volume: 8 start-page: 259 issue: 3 year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0275 article-title: A color-texture-structure descriptor for high-resolution satellite image classification publication-title: Remote Sens. doi: 10.3390/rs8030259 – start-page: 1 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0115 article-title: Network in network – volume: 9 start-page: 735 issue: 4 year: 2000 ident: 10.1016/j.isprsjprs.2017.05.002_b0260 article-title: Regions adjacency graph applied to color image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841950 – start-page: 437 year: 2012 ident: 10.1016/j.isprsjprs.2017.05.002_b0020 article-title: Practical recommendations for gradient-based training of deep architectures – ident: 10.1016/j.isprsjprs.2017.05.002_b0225 doi: 10.1117/12.2083273 – start-page: 3431 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0145 article-title: Fully convolutional networks for semantic segmentation – volume: 59 start-page: 167 issue: 2 year: 2004 ident: 10.1016/j.isprsjprs.2017.05.002_b0050 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.1016/j.isprsjprs.2017.05.002_b0005 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 6 start-page: 762 issue: 4 year: 2013 ident: 10.1016/j.isprsjprs.2017.05.002_b0075 article-title: Very high resolution satellite image classification using fuzzy rule-based systems publication-title: Algorithms doi: 10.3390/a6040762 – year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0235 article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery – ident: 10.1016/j.isprsjprs.2017.05.002_b0300 – ident: 10.1016/j.isprsjprs.2017.05.002_b0170 doi: 10.1109/ICIIP.2011.6108839 – start-page: 36 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0210 article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields – volume: 60 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0230 article-title: Multiple object extraction from aerial imagery with convolutional neural networks publication-title: J. Imag. Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2016.60.1.010402 – start-page: 1520 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0200 article-title: Learning deconvolution network for semantic segmentation – start-page: 248 year: 2009 ident: 10.1016/j.isprsjprs.2017.05.002_b0045 article-title: ImageNet: a large-scale hierarchical image database – ident: 10.1016/j.isprsjprs.2017.05.002_b0240 – year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0120 article-title: Efficient piecewise training of deep structured models for semantic segmentation – volume: 70 start-page: 627 issue: 5 year: 2004 ident: 10.1016/j.isprsjprs.2017.05.002_b0060 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogram. Eng. Rem. Sens. doi: 10.14358/PERS.70.5.627 – start-page: 3708 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0055 article-title: Representation learning for contextual object and region detection in remote sensing – year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0270 article-title: Reseg: a recurrent neural network for object segmentation – start-page: 1873 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0265 article-title: Building detection in very high resolution multispectral data with deep learning features – start-page: 4959 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0155 article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.isprsjprs.2017.05.002_b0015 article-title: Learning deep architectures for ai publication-title: Found. Trend. Mach. Learn. doi: 10.1561/2200000006 – ident: 10.1016/j.isprsjprs.2017.05.002_b0095 doi: 10.1109/CVPR.2016.182 – start-page: 1742 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0215 article-title: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation – volume: 7 start-page: 14680 issue: 11 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0070 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 10 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0135 article-title: Main road extraction from zy-3 grayscale imagery based on directional mathematical morphology and vgi prior knowledge in urban areas publication-title: PLoS ONE doi: 10.1371/journal.pone.0138071 – ident: 10.1016/j.isprsjprs.2017.05.002_b0035 – start-page: 730 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0125 article-title: Very deep convolutional neural network based image classification using small training sample size – year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0030 article-title: Efficient convolutional patch networks for scene understanding – ident: 10.1016/j.isprsjprs.2017.05.002_b0010 – start-page: 184 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0085 article-title: Deep neural networks-based vehicle detection in satellite images – start-page: 807 year: 2010 ident: 10.1016/j.isprsjprs.2017.05.002_b0185 article-title: Rectified linear units improve restricted boltzmann machines – start-page: 1529 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0290 article-title: Conditional random fields as recurrent neural networks – volume: 27 start-page: 223 issue: 1 year: 2006 ident: 10.1016/j.isprsjprs.2017.05.002_b0110 article-title: Comparing accuracy assessments to infer superiority of image classification methods publication-title: Int. J. Rem. Sens. doi: 10.1080/01431160500275762 – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0255 article-title: Going deeper with convolutions – start-page: 510 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0025 article-title: Convolutional patch networks with spatial prior for road detection and urban scene understanding – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0090 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0245 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 487 year: 2014 ident: 10.1016/j.isprsjprs.2017.05.002_b0295 article-title: Learning deep features for scene recognition using places database – ident: 10.1016/j.isprsjprs.2017.05.002_b0150 – ident: 10.1016/j.isprsjprs.2017.05.002_b0180 doi: 10.1007/978-3-642-15567-3_16 – ident: 10.1016/j.isprsjprs.2017.05.002_b0220 doi: 10.1109/ICECTECH.2011.5941731 – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0065 article-title: Decoupled deep neural network for semi-supervised semantic segmentation – ident: 10.1016/j.isprsjprs.2017.05.002_b0175 – start-page: 109 year: 2011 ident: 10.1016/j.isprsjprs.2017.05.002_b0100 article-title: Efficient inference in fully connected crfs with gaussian edge potentials – ident: 10.1016/j.isprsjprs.2017.05.002_b0305 doi: 10.1109/CVPR.2016.319 – volume: 8 start-page: 329 issue: 4 year: 2016 ident: 10.1016/j.isprsjprs.2017.05.002_b0140 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs8040329 – volume: 15 start-page: 1 issue: 2008 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0250 article-title: Connected component-based technique for automatic extraction of road centerline in high resolution satellite images publication-title: EURASIP J. Image Video Process. – ident: 10.1016/j.isprsjprs.2017.05.002_b0160 – start-page: 685 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0205 article-title: Is object localization for free? - weakly-supervised learning with convolutional neural networks – start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0040 article-title: Semantic image segmentation with deep convolutional nets and fully connected crfs – start-page: 1097 year: 2012 ident: 10.1016/j.isprsjprs.2017.05.002_b0105 article-title: Imagenet classification with deep convolutional neural networks – start-page: 1377 year: 2015 ident: 10.1016/j.isprsjprs.2017.05.002_b0130 article-title: Semantic image segmentation via deep parsing network |
SSID | ssj0001568 |
Score | 2.6271086 |
Snippet | Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139 |
SubjectTerms | Adjacent regions asymmetry buildings Convolutional neural network data collection Engineering Sciences Extraction image analysis land use and land cover maps Low-level features neural networks remote sensing roads Signal and Image processing spatial data urban areas |
Title | Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2017.05.002 https://www.proquest.com/docview/2000516504 https://hal.science/hal-01672877 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9RAEJ5wx4PyYAQ1HgpZja_1tvujLb5dCOQE5AVJeNt0u1spau_Snia8-Lc7024vQkh48KFp2nTSzc505tvtNzMAHzR6PYtxLVKIRiJVFDzKcmGjtJDKOx1bnlM28pfzZH6pTq701QYcDrkwRKsMvr_36Z23DnemYTany6qaXnBcOoiU8LnskPgINoU8SPQYNmefT-fna4cc9xlx9HxEAndoXlW7bNobPIjm1VfxDFssDwSp0TWxJe857S4SHT-HZwFCslk_ym3Y8PUObP1TWHAHnoTe5te3L-D7RUWswbz2uMhn6IubPpeBLUrWLHLXsrx2zIb22C2ratZ4VKBnLZHb62-s-kmFLm4Z7dkyoqkHc8VBUDnM7tSRyduXcHl89PVwHoUWC1EhM7GKXJl7RFikHuGsKIRPy8THGNVLhJIHWlrrk9glXCntConwhHslSp7zQovSc_kKxvWi9q-B8dTKWPlMK5Wq3GZZiUiMc5s465yUYgLJMKemCPXHqQ3GDzMQzW7MWhmGlGG4NqiMCfC14LIvwfG4yKdBaeaONRkMFI8Lv0c1r19F9bfnszND9yhnA5eY6e94Au8GKzD4QdJfll6P1NcTHR0CX7X7P6N4A0_pqucavoXxqvnl9xD_rOw-jD7-ifeDlf8FElwHww |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9VAEJ4AHpADQdT4QHE1Xuvb7o-2eiME8tQHFyDhtul2t1DUvpf2acKFv52ZdvsEY8LBQ9Nku5tudqYz326_mQH4oNHqWfRrkUI0Eqmi4FGWCxulhVTe6djynKKRj0-Sybn6eqEvVuBgiIUhWmWw_b1N76x1aBmH1RzPq2p8ynHrIFLC57JD4qvwRGmZEq_v4-0fnkfcx8NR74i6PyB5Ve28aa_xIpJXn8MzHLD8w0WtXhFX8i-T3fmhoy3YDACS7fdzfAYrvt6GjXtpBbdhPVQ2v7p5Dt9PK-IM5rXHLT5DS9z0kQxsVrJmlruW5bVjNhTHbllVs8aj-DxridpeX7LqJ6W5uGF0YsuIpB6UFSdByTC7W0clb1_A-dHh2cEkCgUWokJmYhG5MveIr0g4wllRCJ-WiY_Rp5cIJD9paa1PYpdwpbQrJIIT7pUoec4LLUrP5UtYq2e1fwWMp1bGymdaqVTlNstKxGGc28RZ56QUI0iGNTVFyD5ORTB-mIFmdm2WwjAkDMO1QWGMgC8HzvsEHI8P-TwIzTzQJYNu4vHB71HMy1dR9u3J_tRQG0Vs4AYz_R2P4N2gBQY_R_rH0suRqnqimUPYq3b-ZxZvYX1ydjw10y8n33bhKT3pWYevYW3R_PJvEAkt7F6n6XdViwiO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+extraction+of+roads+and+buildings+in+remote+sensing+imagery+with+convolutional+neural+networks&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Alshehhi%2C+Rasha&rft.au=Marpu%2C+Prashanth+Reddy&rft.au=Woon%2C+Wei+Lee&rft.au=Mura%2C+Mauro+Dalla&rft.date=2017-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=130&rft.spage=139&rft.epage=149&rft_id=info:doi/10.1016%2Fj.isprsjprs.2017.05.002&rft.externalDocID=S0924271617300096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |