Network Traffic Classification Using Correlation Information

Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 24; no. 1; pp. 104 - 117
Main Authors Zhang, Jun, Xiang, Yang, Wang, Yu, Zhou, Wanlei, Xiang, Yong, Guan, Yong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples.
AbstractList Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples.
Author Jun Zhang
Yu Wang
Wanlei Zhou
Yong Xiang
Yong Guan
Yang Xiang
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 2
  givenname: Yang
  surname: Xiang
  fullname: Xiang, Yang
– sequence: 3
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
– sequence: 4
  givenname: Wanlei
  surname: Zhou
  fullname: Zhou, Wanlei
– sequence: 5
  givenname: Yong
  surname: Xiang
  fullname: Xiang, Yong
– sequence: 6
  givenname: Yong
  surname: Guan
  fullname: Guan, Yong
BookMark eNp1kM1Lw0AQxRepYFu9efMS8OLB1JndTXcXvEj8hKKC7Tmkm41sTbN1N0X8700a8VDwNI_h9x4zb0QGtasNIacIE0RQV_PX27cJBaQTJQ_IEJNExhQlG7QaeBIriuqIjEJYASBPgA_J9bNpvpz_iOY-L0uro7TKQ7Ctyhvr6mgRbP0epc57U_Wbp7p0fr3Tx-SwzKtgTn7nmCzu7-bpYzx7eXhKb2axZpI2caGQUckE1ygFlFNmlkoWVGmgyoil4GXBVTsBBJdcL6EQhgqGoBMjJC3ZmFz0uRvvPrcmNNnaBm2qKq-N24YMu3QKHGSLnu-hK7f1dXtdS1EUCpB1FO0p7V0I3pSZts3upcbntsoQsq7QrCs06wrNVGe63DNtvF3n_vs__KzHrTHmD52iQBRT9gOxun_Q
CODEN ITDSEO
CitedBy_id crossref_primary_10_1016_j_jcss_2014_02_008
crossref_primary_10_1109_TNSM_2023_3322861
crossref_primary_10_1109_ACCESS_2019_2923227
crossref_primary_10_5351_KJAS_2015_28_1_001
crossref_primary_10_1016_j_comnet_2022_109368
crossref_primary_10_1016_j_future_2017_10_024
crossref_primary_10_2298_CSIS200424038K
crossref_primary_10_1145_3417978
crossref_primary_10_1016_j_comnet_2021_108716
crossref_primary_10_1109_LCOMM_2016_2521837
crossref_primary_10_1109_TBDATA_2017_2735996
crossref_primary_10_2139_ssrn_4090379
crossref_primary_10_1016_j_patcog_2017_12_009
crossref_primary_10_3390_app10124307
crossref_primary_10_1016_j_comnet_2024_110403
crossref_primary_10_1016_j_neucom_2015_05_089
crossref_primary_10_1016_j_comnet_2022_109258
crossref_primary_10_1016_j_comnet_2019_04_004
crossref_primary_10_1016_j_comnet_2021_108267
crossref_primary_10_1016_j_comnet_2015_08_021
crossref_primary_10_1109_ACCESS_2019_2894267
crossref_primary_10_1109_TDSC_2020_3029845
crossref_primary_10_1007_s00521_022_07993_w
crossref_primary_10_1016_j_future_2017_03_003
crossref_primary_10_1109_ACCESS_2019_2918785
crossref_primary_10_1002_cpe_4181
crossref_primary_10_1002_cpe_4908
crossref_primary_10_1016_j_comnet_2017_03_019
crossref_primary_10_31590_ejosat_1112866
crossref_primary_10_1109_ACCESS_2019_2916648
crossref_primary_10_1109_TSUSC_2017_2702589
crossref_primary_10_1109_ACCESS_2019_2907149
crossref_primary_10_1002_cpe_5716
crossref_primary_10_1016_j_compeleceng_2018_03_005
crossref_primary_10_1016_j_future_2018_10_049
crossref_primary_10_1109_ACCESS_2016_2570021
crossref_primary_10_1002_cpe_5103
crossref_primary_10_1109_TNET_2018_2868816
crossref_primary_10_1109_TNSM_2020_3024225
crossref_primary_10_1109_JAS_2021_1004261
crossref_primary_10_1109_ACCESS_2018_2833107
crossref_primary_10_1109_ACCESS_2022_3227073
crossref_primary_10_1016_j_comnet_2014_03_007
crossref_primary_10_1109_TII_2020_2975227
crossref_primary_10_1007_s11277_021_08208_6
crossref_primary_10_1109_TDSC_2020_2984505
crossref_primary_10_12720_jcm_10_10_828_835
crossref_primary_10_1109_ACCESS_2019_2957055
crossref_primary_10_1088_1742_6596_1299_1_012044
crossref_primary_10_1109_JIOT_2019_2949407
crossref_primary_10_1016_j_comcom_2015_06_012
crossref_primary_10_1109_TGCN_2022_3165221
crossref_primary_10_1109_TNET_2022_3216603
crossref_primary_10_1007_s11554_019_00887_6
crossref_primary_10_32604_cmc_2022_030575
crossref_primary_10_1109_TNSM_2019_2927867
crossref_primary_10_1016_j_sysarc_2017_10_011
crossref_primary_10_1007_s10489_021_03032_8
crossref_primary_10_1016_j_future_2018_05_079
crossref_primary_10_3390_s18061696
crossref_primary_10_1007_s13278_014_0207_3
crossref_primary_10_1016_j_neucom_2022_06_055
crossref_primary_10_1109_ACCESS_2020_3000481
crossref_primary_10_1016_j_comcom_2019_06_010
crossref_primary_10_1016_j_comnet_2020_107372
crossref_primary_10_1016_j_compeleceng_2020_106691
crossref_primary_10_1007_s12083_021_01262_8
crossref_primary_10_1007_s11042_018_6965_6
crossref_primary_10_1109_JPROC_2020_2993293
crossref_primary_10_1145_3465171
crossref_primary_10_1002_cpe_3340
crossref_primary_10_3390_s25010178
crossref_primary_10_1109_TDSC_2019_2954088
crossref_primary_10_1016_j_knosys_2020_106192
crossref_primary_10_1007_s12083_020_00912_7
crossref_primary_10_1109_TNSM_2013_022713_120250
crossref_primary_10_1186_s40537_017_0074_7
crossref_primary_10_1145_3372136
crossref_primary_10_1016_j_comcom_2020_09_012
crossref_primary_10_1109_ACCESS_2019_2914311
crossref_primary_10_1007_s11042_019_7183_6
crossref_primary_10_1109_TDSC_2022_3186665
crossref_primary_10_1109_TNSM_2020_2999856
crossref_primary_10_1109_ACCESS_2019_2958089
crossref_primary_10_3390_math11071619
crossref_primary_10_1063_1_5110223
crossref_primary_10_1109_TNSM_2021_3071441
crossref_primary_10_1016_j_comnet_2024_110445
crossref_primary_10_1002_dac_4178
crossref_primary_10_1016_j_comnet_2017_09_015
crossref_primary_10_1016_j_comnet_2015_09_011
crossref_primary_10_1007_s11036_018_0999_x
crossref_primary_10_1016_j_jpdc_2020_06_013
crossref_primary_10_1016_j_jpdc_2019_08_007
crossref_primary_10_1109_TSMCB_2012_2231411
crossref_primary_10_1002_cpe_5234
crossref_primary_10_1142_S1793962324500119
crossref_primary_10_1109_ACCESS_2019_2946392
crossref_primary_10_1109_ACCESS_2023_3311889
crossref_primary_10_1109_TNET_2014_2320577
crossref_primary_10_1109_TIFS_2014_2368363
crossref_primary_10_1007_s00500_015_1994_9
crossref_primary_10_1177_1550147719840173
crossref_primary_10_1109_TMC_2016_2516020
crossref_primary_10_1109_TNSM_2020_2971213
crossref_primary_10_1109_TMC_2018_2811481
crossref_primary_10_1002_nem_2198
crossref_primary_10_1186_s42400_023_00170_z
crossref_primary_10_1109_TDSC_2020_3025288
crossref_primary_10_1109_ACCESS_2020_3034766
crossref_primary_10_1109_TNSM_2022_3201095
crossref_primary_10_1109_TIFS_2017_2692682
crossref_primary_10_1007_s11042_017_5495_y
crossref_primary_10_1109_TCSS_2016_2516039
crossref_primary_10_1142_S021800141650021X
crossref_primary_10_1016_j_comcom_2022_02_003
crossref_primary_10_1155_2016_6180527
crossref_primary_10_1145_3633777
crossref_primary_10_1109_TNSM_2019_2934133
crossref_primary_10_1016_j_inffus_2021_02_009
crossref_primary_10_1016_j_dcan_2022_06_011
crossref_primary_10_1016_j_jisa_2023_103467
crossref_primary_10_1109_JIOT_2020_2985324
crossref_primary_10_1007_s11277_016_3433_3
crossref_primary_10_1016_j_engappai_2022_105736
crossref_primary_10_1016_j_jpdc_2019_04_007
crossref_primary_10_1016_j_dcan_2020_11_001
crossref_primary_10_1109_TCYB_2019_2940940
crossref_primary_10_1016_j_ins_2018_10_039
crossref_primary_10_1016_j_jpdc_2018_07_013
crossref_primary_10_1016_j_future_2019_10_009
crossref_primary_10_1007_s11276_016_1314_z
crossref_primary_10_1016_j_comnet_2020_107213
crossref_primary_10_3390_app9122550
crossref_primary_10_1109_TDSC_2019_2956035
crossref_primary_10_4218_etrij_2019_0190
crossref_primary_10_1364_JOCN_9_001202
crossref_primary_10_1109_COMST_2018_2800740
crossref_primary_10_1109_ACCESS_2020_3037492
crossref_primary_10_1155_2021_6665984
crossref_primary_10_1002_nem_1962
crossref_primary_10_1109_TMECH_2022_3188680
crossref_primary_10_1016_j_engappai_2021_104216
crossref_primary_10_1016_j_dcan_2022_12_017
crossref_primary_10_1109_COMST_2018_2883147
crossref_primary_10_1109_TMM_2019_2958764
crossref_primary_10_1007_s13198_023_01998_x
crossref_primary_10_1016_j_jnca_2014_01_012
crossref_primary_10_1109_TFUZZ_2019_2958558
crossref_primary_10_1109_COMST_2018_2885561
crossref_primary_10_1109_ACCESS_2020_3024198
crossref_primary_10_1016_j_jnca_2016_09_013
crossref_primary_10_1109_JIOT_2019_2947659
crossref_primary_10_1016_j_comcom_2020_12_004
crossref_primary_10_1109_TPDS_2013_307
crossref_primary_10_1002_cpe_5816
crossref_primary_10_1109_TBDATA_2017_2736555
crossref_primary_10_1109_TNSE_2020_3031347
Cites_doi 10.1007/978-3-642-01645-5_10
10.1145/1815396.1815570
10.1109/CVPR.2008.4587598
10.1109/LCN.2006.322122
10.1145/1129582.1129589
10.1145/1177080.1177123
10.1145/1882486.1882539
10.1145/1330107.1330110
10.1016/j.comnet.2009.05.003
10.1109/LCN.2005.35
10.1145/1282380.1282386
10.1145/1198255.1198257
10.1145/1071690.1064220
10.1145/1644893.1644908
10.1145/1090191.1080119
10.1145/1162678.1162679
10.1109/ICIP.2009.5413602
10.1109/TNN.2006.883010
10.1007/978-3-642-20305-3_13
10.1109/ICNSS.2011.6059997
10.1145/1544012.1544023
10.1109/TNET.2010.2044046
10.1145/1163593.1163596
10.1145/1028788.1028805
10.1109/SURV.2008.080406
10.1145/1921168.1921180
10.1007/978-3-540-24668-8_21
10.1002/cpe.1603
10.1145/1080173.1080183
10.1016/j.peva.2007.06.014
10.1002/0470854774
10.1109/tpds.2011.198
10.1007/978-3-540-71617-4_17
10.1109/TPDS.2008.132
10.1145/1242572.1242692
10.1109/GLOCOM.2006.443
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TPDS.2012.98
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 117
ExternalDocumentID 2831752761
10_1109_TPDS_2012_98
6171176
Genre orig-research
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c382t-d91328374c1870f63eb98d29c029e7b74fd497b7007484cb0d7e27310c5e782f3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Fri Jul 11 06:35:48 EDT 2025
Mon Jun 30 03:33:58 EDT 2025
Sun Jul 06 05:04:01 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Wed Aug 27 02:52:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d91328374c1870f63eb98d29c029e7b74fd497b7007484cb0d7e27310c5e782f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1221790138
PQPubID 85437
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2012_98
proquest_journals_1221790138
proquest_miscellaneous_1283720408
ieee_primary_6171176
crossref_primary_10_1109_TPDS_2012_98
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
(ref39) 2012
ref12
ref34
ref15
ref36
ref30
Hall (ref42) 1999
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Guyon (ref41) 2003; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref31) 2012
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Duda (ref14) 2001
ref40
(ref37) 2012
References_xml – ident: ref22
  doi: 10.1007/978-3-642-01645-5_10
– ident: ref20
  doi: 10.1145/1815396.1815570
– ident: ref33
  doi: 10.1109/CVPR.2008.4587598
– ident: ref15
  doi: 10.1109/LCN.2006.322122
– ident: ref9
  doi: 10.1145/1129582.1129589
– volume-title: Weka 3: Data Mining Software in Java.
  year: 2012
  ident: ref31
– ident: ref34
  doi: 10.1145/1177080.1177123
– ident: ref35
  doi: 10.1145/1882486.1882539
– ident: ref38
  doi: 10.1145/1330107.1330110
– year: 1999
  ident: ref42
  article-title: Correlation-Based Feature Selection for Machine Learning
– ident: ref21
  doi: 10.1016/j.comnet.2009.05.003
– ident: ref26
  doi: 10.1109/LCN.2005.35
– volume-title: Network Traffic Tracing at SIGCOMM 2008
  year: 2012
  ident: ref37
– ident: ref18
  doi: 10.1145/1282380.1282386
– ident: ref19
  doi: 10.1145/1198255.1198257
– ident: ref7
  doi: 10.1145/1071690.1064220
– ident: ref23
  doi: 10.1145/1644893.1644908
– ident: ref1
  doi: 10.1145/1090191.1080119
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref41
  article-title: An Introduction to Variable and Feature Selection
  publication-title: J. Machine Learning Research
– ident: ref27
  doi: 10.1145/1162678.1162679
– ident: ref32
  doi: 10.1109/ICIP.2009.5413602
– ident: ref12
  doi: 10.1109/TNN.2006.883010
– volume-title: Pattern Classification
  year: 2001
  ident: ref14
– ident: ref30
  doi: 10.1007/978-3-642-20305-3_13
– ident: ref36
  doi: 10.1109/ICNSS.2011.6059997
– ident: ref3
  doi: 10.1145/1544012.1544023
– ident: ref24
  doi: 10.1109/TNET.2010.2044046
– ident: ref11
  doi: 10.1145/1163593.1163596
– ident: ref13
  doi: 10.1145/1028788.1028805
– ident: ref2
  doi: 10.1109/SURV.2008.080406
– volume-title: MAWI Working Group Traffic Archive
  year: 2012
  ident: ref39
– ident: ref5
  doi: 10.1145/1921168.1921180
– ident: ref25
  doi: 10.1007/978-3-540-24668-8_21
– ident: ref29
  doi: 10.1002/cpe.1603
– ident: ref8
  doi: 10.1145/1080173.1080183
– ident: ref10
  doi: 10.1016/j.peva.2007.06.014
– ident: ref40
  doi: 10.1002/0470854774
– ident: ref4
  doi: 10.1109/tpds.2011.198
– ident: ref17
  doi: 10.1007/978-3-540-71617-4_17
– ident: ref6
  doi: 10.1109/TPDS.2008.132
– ident: ref16
  doi: 10.1145/1242572.1242692
– ident: ref28
  doi: 10.1109/GLOCOM.2006.443
SSID ssj0014504
Score 2.523692
Snippet Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Accuracy
Artificial neural networks
Classification
Correlation
network operations
Networks
Neural networks
Performance enhancement
Robustness
security
Studies
Support vector machines
Traffic classification
Traffic engineering
Traffic flow
Training
Training data
Title Network Traffic Classification Using Correlation Information
URI https://ieeexplore.ieee.org/document/6171176
https://www.proquest.com/docview/1221790138
https://www.proquest.com/docview/1283720408
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2PemD001xOqWCPmm7Ns3WBHyR6RjChuAGeyttmrwonej24l_vXdoVP8GnBnoNIZfr3eU-fgDnwmQJY1K5gqXG5YExbkqQYWg6yEAJrplP9c6T6WA85_eL_qIGV1UtjNbaJp9pj4Y2lp8t1ZquynqobYMgGtShjo5bUatVRQx430IFonfRdyWKYZXkLnuzh9tHSuJinhRf1I_FU_nxE7aaZdSEyWZNRULJk7depZ56_9au8b-L3oWd0sR0boozsQc1nbeguYFvcEppbsH2p16EbbieFgnhDmovaivhWLhMSiSyvHNsboEzJDCPIn3OKSuZaLwP89HdbDh2S2gFV4WCrdxMoheKvilXAQqsGYQ6lSJDnvlM6iiNuMm4xCdZGIKr1M8ijYZO4Ku-RpvChAfQyJe5PgSH8SxKfEUBTJ-niUlsyzWcT2uZZAPRgcvNjseq7DtO8BfPsfU_fBkTf2LiTyyR-qKifin6bfxB16atrmjKXe5Ad8PMuBTGtzhgjPqQBSF-dVa9RjGi2EiS6-WaaITF6_HF0e8zH8MWs0gYdPvShcbqda1P0B5Zpaf2IH4ACOjcRQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gPqgPoqARRZ2JPunGVjrWJr4YlKACMRES3pat6140YBRe_Ou968biZ-LTmuzWNL3e7q738QM4FWkSMSaVLVic2txLUzsmyDA0HaSnBNfMpXrnwbDdG_O7iT8pwUVRC6O1Nsln2qGhieUnM7Wgq7ImalvPC9orsIp632dZtVYRM-C-AQtE_8K3JQpikeYum6OH60dK42KOFF8UkEFU-fEbNrqlW4HBclVZSsmTs5jHjnr_1rDxv8vegs3cyLSuslOxDSU9rUJlCeBg5fJchY1P3QhrcDnMUsIt1F_UWMIygJmUSmS4Z5nsAqtDcB5ZAp2V1zLReAfG3ZtRp2fn4Aq2agk2txOJfih6p1x5KLJpu6VjKRLkmsukDuKApwmX-CQbQ3AVu0mg0dTxXOVrtCrS1i6Up7Op3gOL8SSIXEUhTJfHURqZpms4n9YyStqiDufLHQ9V3nmcADCeQ-OBuDIk_oTEn1Ai9VlB_ZJ13PiDrkZbXdDku1yHxpKZYS6Ob6HHGHUi81r41UnxGgWJoiPRVM8WRCMMYo8r9n-f-RjWeqNBP-zfDu8PYJ0ZXAy6i2lAef660IdonczjI3MoPwCx3N-P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Traffic+Classification+Using+Correlation+Information&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Zhang%2C+Jun&rft.au=Xiang%2C+Yang&rft.au=Wang%2C+Yu&rft.au=Zhou%2C+Wanlei&rft.date=2013-01-01&rft.issn=1045-9219&rft.volume=24&rft.issue=1&rft.spage=104&rft.epage=117&rft_id=info:doi/10.1109%2FTPDS.2012.98&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2012_98
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon