Network Traffic Classification Using Correlation Information
Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited s...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 24; no. 1; pp. 104 - 117 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples. |
---|---|
AbstractList | Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples. |
Author | Jun Zhang Yu Wang Wanlei Zhou Yong Xiang Yong Guan Yang Xiang |
Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 2 givenname: Yang surname: Xiang fullname: Xiang, Yang – sequence: 3 givenname: Yu surname: Wang fullname: Wang, Yu – sequence: 4 givenname: Wanlei surname: Zhou fullname: Zhou, Wanlei – sequence: 5 givenname: Yong surname: Xiang fullname: Xiang, Yong – sequence: 6 givenname: Yong surname: Guan fullname: Guan, Yong |
BookMark | eNp1kM1Lw0AQxRepYFu9efMS8OLB1JndTXcXvEj8hKKC7Tmkm41sTbN1N0X8700a8VDwNI_h9x4zb0QGtasNIacIE0RQV_PX27cJBaQTJQ_IEJNExhQlG7QaeBIriuqIjEJYASBPgA_J9bNpvpz_iOY-L0uro7TKQ7Ctyhvr6mgRbP0epc57U_Wbp7p0fr3Tx-SwzKtgTn7nmCzu7-bpYzx7eXhKb2axZpI2caGQUckE1ygFlFNmlkoWVGmgyoil4GXBVTsBBJdcL6EQhgqGoBMjJC3ZmFz0uRvvPrcmNNnaBm2qKq-N24YMu3QKHGSLnu-hK7f1dXtdS1EUCpB1FO0p7V0I3pSZts3upcbntsoQsq7QrCs06wrNVGe63DNtvF3n_vs__KzHrTHmD52iQBRT9gOxun_Q |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1016_j_jcss_2014_02_008 crossref_primary_10_1109_TNSM_2023_3322861 crossref_primary_10_1109_ACCESS_2019_2923227 crossref_primary_10_5351_KJAS_2015_28_1_001 crossref_primary_10_1016_j_comnet_2022_109368 crossref_primary_10_1016_j_future_2017_10_024 crossref_primary_10_2298_CSIS200424038K crossref_primary_10_1145_3417978 crossref_primary_10_1016_j_comnet_2021_108716 crossref_primary_10_1109_LCOMM_2016_2521837 crossref_primary_10_1109_TBDATA_2017_2735996 crossref_primary_10_2139_ssrn_4090379 crossref_primary_10_1016_j_patcog_2017_12_009 crossref_primary_10_3390_app10124307 crossref_primary_10_1016_j_comnet_2024_110403 crossref_primary_10_1016_j_neucom_2015_05_089 crossref_primary_10_1016_j_comnet_2022_109258 crossref_primary_10_1016_j_comnet_2019_04_004 crossref_primary_10_1016_j_comnet_2021_108267 crossref_primary_10_1016_j_comnet_2015_08_021 crossref_primary_10_1109_ACCESS_2019_2894267 crossref_primary_10_1109_TDSC_2020_3029845 crossref_primary_10_1007_s00521_022_07993_w crossref_primary_10_1016_j_future_2017_03_003 crossref_primary_10_1109_ACCESS_2019_2918785 crossref_primary_10_1002_cpe_4181 crossref_primary_10_1002_cpe_4908 crossref_primary_10_1016_j_comnet_2017_03_019 crossref_primary_10_31590_ejosat_1112866 crossref_primary_10_1109_ACCESS_2019_2916648 crossref_primary_10_1109_TSUSC_2017_2702589 crossref_primary_10_1109_ACCESS_2019_2907149 crossref_primary_10_1002_cpe_5716 crossref_primary_10_1016_j_compeleceng_2018_03_005 crossref_primary_10_1016_j_future_2018_10_049 crossref_primary_10_1109_ACCESS_2016_2570021 crossref_primary_10_1002_cpe_5103 crossref_primary_10_1109_TNET_2018_2868816 crossref_primary_10_1109_TNSM_2020_3024225 crossref_primary_10_1109_JAS_2021_1004261 crossref_primary_10_1109_ACCESS_2018_2833107 crossref_primary_10_1109_ACCESS_2022_3227073 crossref_primary_10_1016_j_comnet_2014_03_007 crossref_primary_10_1109_TII_2020_2975227 crossref_primary_10_1007_s11277_021_08208_6 crossref_primary_10_1109_TDSC_2020_2984505 crossref_primary_10_12720_jcm_10_10_828_835 crossref_primary_10_1109_ACCESS_2019_2957055 crossref_primary_10_1088_1742_6596_1299_1_012044 crossref_primary_10_1109_JIOT_2019_2949407 crossref_primary_10_1016_j_comcom_2015_06_012 crossref_primary_10_1109_TGCN_2022_3165221 crossref_primary_10_1109_TNET_2022_3216603 crossref_primary_10_1007_s11554_019_00887_6 crossref_primary_10_32604_cmc_2022_030575 crossref_primary_10_1109_TNSM_2019_2927867 crossref_primary_10_1016_j_sysarc_2017_10_011 crossref_primary_10_1007_s10489_021_03032_8 crossref_primary_10_1016_j_future_2018_05_079 crossref_primary_10_3390_s18061696 crossref_primary_10_1007_s13278_014_0207_3 crossref_primary_10_1016_j_neucom_2022_06_055 crossref_primary_10_1109_ACCESS_2020_3000481 crossref_primary_10_1016_j_comcom_2019_06_010 crossref_primary_10_1016_j_comnet_2020_107372 crossref_primary_10_1016_j_compeleceng_2020_106691 crossref_primary_10_1007_s12083_021_01262_8 crossref_primary_10_1007_s11042_018_6965_6 crossref_primary_10_1109_JPROC_2020_2993293 crossref_primary_10_1145_3465171 crossref_primary_10_1002_cpe_3340 crossref_primary_10_3390_s25010178 crossref_primary_10_1109_TDSC_2019_2954088 crossref_primary_10_1016_j_knosys_2020_106192 crossref_primary_10_1007_s12083_020_00912_7 crossref_primary_10_1109_TNSM_2013_022713_120250 crossref_primary_10_1186_s40537_017_0074_7 crossref_primary_10_1145_3372136 crossref_primary_10_1016_j_comcom_2020_09_012 crossref_primary_10_1109_ACCESS_2019_2914311 crossref_primary_10_1007_s11042_019_7183_6 crossref_primary_10_1109_TDSC_2022_3186665 crossref_primary_10_1109_TNSM_2020_2999856 crossref_primary_10_1109_ACCESS_2019_2958089 crossref_primary_10_3390_math11071619 crossref_primary_10_1063_1_5110223 crossref_primary_10_1109_TNSM_2021_3071441 crossref_primary_10_1016_j_comnet_2024_110445 crossref_primary_10_1002_dac_4178 crossref_primary_10_1016_j_comnet_2017_09_015 crossref_primary_10_1016_j_comnet_2015_09_011 crossref_primary_10_1007_s11036_018_0999_x crossref_primary_10_1016_j_jpdc_2020_06_013 crossref_primary_10_1016_j_jpdc_2019_08_007 crossref_primary_10_1109_TSMCB_2012_2231411 crossref_primary_10_1002_cpe_5234 crossref_primary_10_1142_S1793962324500119 crossref_primary_10_1109_ACCESS_2019_2946392 crossref_primary_10_1109_ACCESS_2023_3311889 crossref_primary_10_1109_TNET_2014_2320577 crossref_primary_10_1109_TIFS_2014_2368363 crossref_primary_10_1007_s00500_015_1994_9 crossref_primary_10_1177_1550147719840173 crossref_primary_10_1109_TMC_2016_2516020 crossref_primary_10_1109_TNSM_2020_2971213 crossref_primary_10_1109_TMC_2018_2811481 crossref_primary_10_1002_nem_2198 crossref_primary_10_1186_s42400_023_00170_z crossref_primary_10_1109_TDSC_2020_3025288 crossref_primary_10_1109_ACCESS_2020_3034766 crossref_primary_10_1109_TNSM_2022_3201095 crossref_primary_10_1109_TIFS_2017_2692682 crossref_primary_10_1007_s11042_017_5495_y crossref_primary_10_1109_TCSS_2016_2516039 crossref_primary_10_1142_S021800141650021X crossref_primary_10_1016_j_comcom_2022_02_003 crossref_primary_10_1155_2016_6180527 crossref_primary_10_1145_3633777 crossref_primary_10_1109_TNSM_2019_2934133 crossref_primary_10_1016_j_inffus_2021_02_009 crossref_primary_10_1016_j_dcan_2022_06_011 crossref_primary_10_1016_j_jisa_2023_103467 crossref_primary_10_1109_JIOT_2020_2985324 crossref_primary_10_1007_s11277_016_3433_3 crossref_primary_10_1016_j_engappai_2022_105736 crossref_primary_10_1016_j_jpdc_2019_04_007 crossref_primary_10_1016_j_dcan_2020_11_001 crossref_primary_10_1109_TCYB_2019_2940940 crossref_primary_10_1016_j_ins_2018_10_039 crossref_primary_10_1016_j_jpdc_2018_07_013 crossref_primary_10_1016_j_future_2019_10_009 crossref_primary_10_1007_s11276_016_1314_z crossref_primary_10_1016_j_comnet_2020_107213 crossref_primary_10_3390_app9122550 crossref_primary_10_1109_TDSC_2019_2956035 crossref_primary_10_4218_etrij_2019_0190 crossref_primary_10_1364_JOCN_9_001202 crossref_primary_10_1109_COMST_2018_2800740 crossref_primary_10_1109_ACCESS_2020_3037492 crossref_primary_10_1155_2021_6665984 crossref_primary_10_1002_nem_1962 crossref_primary_10_1109_TMECH_2022_3188680 crossref_primary_10_1016_j_engappai_2021_104216 crossref_primary_10_1016_j_dcan_2022_12_017 crossref_primary_10_1109_COMST_2018_2883147 crossref_primary_10_1109_TMM_2019_2958764 crossref_primary_10_1007_s13198_023_01998_x crossref_primary_10_1016_j_jnca_2014_01_012 crossref_primary_10_1109_TFUZZ_2019_2958558 crossref_primary_10_1109_COMST_2018_2885561 crossref_primary_10_1109_ACCESS_2020_3024198 crossref_primary_10_1016_j_jnca_2016_09_013 crossref_primary_10_1109_JIOT_2019_2947659 crossref_primary_10_1016_j_comcom_2020_12_004 crossref_primary_10_1109_TPDS_2013_307 crossref_primary_10_1002_cpe_5816 crossref_primary_10_1109_TBDATA_2017_2736555 crossref_primary_10_1109_TNSE_2020_3031347 |
Cites_doi | 10.1007/978-3-642-01645-5_10 10.1145/1815396.1815570 10.1109/CVPR.2008.4587598 10.1109/LCN.2006.322122 10.1145/1129582.1129589 10.1145/1177080.1177123 10.1145/1882486.1882539 10.1145/1330107.1330110 10.1016/j.comnet.2009.05.003 10.1109/LCN.2005.35 10.1145/1282380.1282386 10.1145/1198255.1198257 10.1145/1071690.1064220 10.1145/1644893.1644908 10.1145/1090191.1080119 10.1145/1162678.1162679 10.1109/ICIP.2009.5413602 10.1109/TNN.2006.883010 10.1007/978-3-642-20305-3_13 10.1109/ICNSS.2011.6059997 10.1145/1544012.1544023 10.1109/TNET.2010.2044046 10.1145/1163593.1163596 10.1145/1028788.1028805 10.1109/SURV.2008.080406 10.1145/1921168.1921180 10.1007/978-3-540-24668-8_21 10.1002/cpe.1603 10.1145/1080173.1080183 10.1016/j.peva.2007.06.014 10.1002/0470854774 10.1109/tpds.2011.198 10.1007/978-3-540-71617-4_17 10.1109/TPDS.2008.132 10.1145/1242572.1242692 10.1109/GLOCOM.2006.443 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TPDS.2012.98 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 117 |
ExternalDocumentID | 2831752761 10_1109_TPDS_2012_98 6171176 |
Genre | orig-research |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c382t-d91328374c1870f63eb98d29c029e7b74fd497b7007484cb0d7e27310c5e782f3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Fri Jul 11 06:35:48 EDT 2025 Mon Jun 30 03:33:58 EDT 2025 Sun Jul 06 05:04:01 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Aug 27 02:52:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-d91328374c1870f63eb98d29c029e7b74fd497b7007484cb0d7e27310c5e782f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1221790138 |
PQPubID | 85437 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2012_98 proquest_journals_1221790138 proquest_miscellaneous_1283720408 ieee_primary_6171176 crossref_primary_10_1109_TPDS_2012_98 |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan. 2013-01-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 (ref39) 2012 ref12 ref34 ref15 ref36 ref30 Hall (ref42) 1999 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Guyon (ref41) 2003; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref31) 2012 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Duda (ref14) 2001 ref40 (ref37) 2012 |
References_xml | – ident: ref22 doi: 10.1007/978-3-642-01645-5_10 – ident: ref20 doi: 10.1145/1815396.1815570 – ident: ref33 doi: 10.1109/CVPR.2008.4587598 – ident: ref15 doi: 10.1109/LCN.2006.322122 – ident: ref9 doi: 10.1145/1129582.1129589 – volume-title: Weka 3: Data Mining Software in Java. year: 2012 ident: ref31 – ident: ref34 doi: 10.1145/1177080.1177123 – ident: ref35 doi: 10.1145/1882486.1882539 – ident: ref38 doi: 10.1145/1330107.1330110 – year: 1999 ident: ref42 article-title: Correlation-Based Feature Selection for Machine Learning – ident: ref21 doi: 10.1016/j.comnet.2009.05.003 – ident: ref26 doi: 10.1109/LCN.2005.35 – volume-title: Network Traffic Tracing at SIGCOMM 2008 year: 2012 ident: ref37 – ident: ref18 doi: 10.1145/1282380.1282386 – ident: ref19 doi: 10.1145/1198255.1198257 – ident: ref7 doi: 10.1145/1071690.1064220 – ident: ref23 doi: 10.1145/1644893.1644908 – ident: ref1 doi: 10.1145/1090191.1080119 – volume: 3 start-page: 1157 year: 2003 ident: ref41 article-title: An Introduction to Variable and Feature Selection publication-title: J. Machine Learning Research – ident: ref27 doi: 10.1145/1162678.1162679 – ident: ref32 doi: 10.1109/ICIP.2009.5413602 – ident: ref12 doi: 10.1109/TNN.2006.883010 – volume-title: Pattern Classification year: 2001 ident: ref14 – ident: ref30 doi: 10.1007/978-3-642-20305-3_13 – ident: ref36 doi: 10.1109/ICNSS.2011.6059997 – ident: ref3 doi: 10.1145/1544012.1544023 – ident: ref24 doi: 10.1109/TNET.2010.2044046 – ident: ref11 doi: 10.1145/1163593.1163596 – ident: ref13 doi: 10.1145/1028788.1028805 – ident: ref2 doi: 10.1109/SURV.2008.080406 – volume-title: MAWI Working Group Traffic Archive year: 2012 ident: ref39 – ident: ref5 doi: 10.1145/1921168.1921180 – ident: ref25 doi: 10.1007/978-3-540-24668-8_21 – ident: ref29 doi: 10.1002/cpe.1603 – ident: ref8 doi: 10.1145/1080173.1080183 – ident: ref10 doi: 10.1016/j.peva.2007.06.014 – ident: ref40 doi: 10.1002/0470854774 – ident: ref4 doi: 10.1109/tpds.2011.198 – ident: ref17 doi: 10.1007/978-3-540-71617-4_17 – ident: ref6 doi: 10.1109/TPDS.2008.132 – ident: ref16 doi: 10.1145/1242572.1242692 – ident: ref28 doi: 10.1109/GLOCOM.2006.443 |
SSID | ssj0014504 |
Score | 2.523692 |
Snippet | Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104 |
SubjectTerms | Accuracy Artificial neural networks Classification Correlation network operations Networks Neural networks Performance enhancement Robustness security Studies Support vector machines Traffic classification Traffic engineering Traffic flow Training Training data |
Title | Network Traffic Classification Using Correlation Information |
URI | https://ieeexplore.ieee.org/document/6171176 https://www.proquest.com/docview/1221790138 https://www.proquest.com/docview/1283720408 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2PemD001xOqWCPmm7Ns3WBHyR6RjChuAGeyttmrwonej24l_vXdoVP8GnBnoNIZfr3eU-fgDnwmQJY1K5gqXG5YExbkqQYWg6yEAJrplP9c6T6WA85_eL_qIGV1UtjNbaJp9pj4Y2lp8t1ZquynqobYMgGtShjo5bUatVRQx430IFonfRdyWKYZXkLnuzh9tHSuJinhRf1I_FU_nxE7aaZdSEyWZNRULJk7depZ56_9au8b-L3oWd0sR0boozsQc1nbeguYFvcEppbsH2p16EbbieFgnhDmovaivhWLhMSiSyvHNsboEzJDCPIn3OKSuZaLwP89HdbDh2S2gFV4WCrdxMoheKvilXAQqsGYQ6lSJDnvlM6iiNuMm4xCdZGIKr1M8ijYZO4Ku-RpvChAfQyJe5PgSH8SxKfEUBTJ-niUlsyzWcT2uZZAPRgcvNjseq7DtO8BfPsfU_fBkTf2LiTyyR-qKifin6bfxB16atrmjKXe5Ad8PMuBTGtzhgjPqQBSF-dVa9RjGi2EiS6-WaaITF6_HF0e8zH8MWs0gYdPvShcbqda1P0B5Zpaf2IH4ACOjcRQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gPqgPoqARRZ2JPunGVjrWJr4YlKACMRES3pat6140YBRe_Ou968biZ-LTmuzWNL3e7q738QM4FWkSMSaVLVic2txLUzsmyDA0HaSnBNfMpXrnwbDdG_O7iT8pwUVRC6O1Nsln2qGhieUnM7Wgq7ImalvPC9orsIp632dZtVYRM-C-AQtE_8K3JQpikeYum6OH60dK42KOFF8UkEFU-fEbNrqlW4HBclVZSsmTs5jHjnr_1rDxv8vegs3cyLSuslOxDSU9rUJlCeBg5fJchY1P3QhrcDnMUsIt1F_UWMIygJmUSmS4Z5nsAqtDcB5ZAp2V1zLReAfG3ZtRp2fn4Aq2agk2txOJfih6p1x5KLJpu6VjKRLkmsukDuKApwmX-CQbQ3AVu0mg0dTxXOVrtCrS1i6Up7Op3gOL8SSIXEUhTJfHURqZpms4n9YyStqiDufLHQ9V3nmcADCeQ-OBuDIk_oTEn1Ai9VlB_ZJ13PiDrkZbXdDku1yHxpKZYS6Ob6HHGHUi81r41UnxGgWJoiPRVM8WRCMMYo8r9n-f-RjWeqNBP-zfDu8PYJ0ZXAy6i2lAef660IdonczjI3MoPwCx3N-P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Traffic+Classification+Using+Correlation+Information&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Zhang%2C+Jun&rft.au=Xiang%2C+Yang&rft.au=Wang%2C+Yu&rft.au=Zhou%2C+Wanlei&rft.date=2013-01-01&rft.issn=1045-9219&rft.volume=24&rft.issue=1&rft.spage=104&rft.epage=117&rft_id=info:doi/10.1109%2FTPDS.2012.98&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2012_98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |