Multi-parameter molecular MRI quantification using physics-informed self-supervised learning
Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present...
Saved in:
Published in | Communications physics Vol. 8; no. 1; pp. 164 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results.
Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels. |
---|---|
AbstractList | Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results.
Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels. Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results.Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels. Abstract Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results. |
ArticleNumber | 164 |
Author | Vladimirov, Nikita Perlman, Or Finkelstein, Alex Zaiss, Moritz |
Author_xml | – sequence: 1 givenname: Alex orcidid: 0009-0008-7878-8842 surname: Finkelstein fullname: Finkelstein, Alex organization: Department of Biomedical Engineering, Tel Aviv University – sequence: 2 givenname: Nikita orcidid: 0000-0003-1943-9139 surname: Vladimirov fullname: Vladimirov, Nikita organization: Department of Biomedical Engineering, Tel Aviv University – sequence: 3 givenname: Moritz surname: Zaiss fullname: Zaiss, Moritz organization: Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – sequence: 4 givenname: Or orcidid: 0000-0002-3566-569X surname: Perlman fullname: Perlman, Or email: orperlman@tauex.tau.ac.il organization: Department of Biomedical Engineering, Tel Aviv University, Sagol School of Neuroscience, Tel Aviv University |
BookMark | eNp9UU1r3TAQFCWFpEn-QE6GntWuJEu2jyW0zYOEQGhuBSFLq1c9_CRHsgv591Xi0vZUlmU_mJldmHfkJKaIhFwx-MBA9B9LywEkBf6SoATt35AzLoaBCiXh5J_-lFyWcgAAzlrohDoj3-_WaQl0NtkcccHcHNOEdp1Mbu4eds3TauISfLBmCSk2awlx38w_nkuwhYboUz6iawpOnpZ1xvwzlDpPaHKsyAvy1pup4OXvek4ev3z-dn1Db--_7q4_3VIrer5QJxnr2471Qg6dl52Rg_LjyLpBMlQwOJSGc8a58aDGzgtmOUNpnfCjGRkT52S36bpkDnrO4Wjys04m6NdFyntt8hLshNpZ5ZzxlcaHtlfdiI4pbzqwgjPVt1Xr_aY15_S0Yln0Ia051ve1YAO0AmpUFN9QNqdSMvo_VxnoF1P0ZoqupuhXU3RfSWIjlQqOe8x_pf_D-gVBUpFv |
Cites_doi | 10.1002/mrm.27363 10.1145/3450439.3451866 10.1002/nbm.4710 10.1002/mrm.30241 10.1038/s41596-025-01152-w 10.1109/TMI.2009.2035616 10.1002/nbm.3237 10.1038/s42254-021-00326-1 10.1002/nbm.3362 10.1002/nbm.3257 10.1002/mrm.27221 10.1007/s10409-021-01148-1 10.1002/mrm.29574 10.1038/s41598-023-45548-8 10.1016/j.cma.2021.113741 10.1002/mrm.29876 10.1016/j.neuroimage.2019.01.034 10.1002/mrm.29448 10.1002/mrm.28825 10.1016/j.physrep.2008.11.001 10.1371/journal.pone.0297244 10.1109/TPWRS.2022.3162473 10.1038/nature11971 10.1016/j.addr.2013.03.005 10.1098/rsta.2020.0093 10.1016/j.cobme.2017.11.001 10.1002/mrm.26133 10.1002/jmrs.413 10.1002/mrm.20605 10.1109/CVPR.2018.00329 10.1002/mrm.29241 10.1002/mrm.26235 10.1002/mrm.24560 10.1002/ijch.201700025 10.1016/j.jmr.2022.107237 10.1038/s42254-021-00314-5 10.1002/mrm.24560 10.1002/nbm.3192 10.1002/mrm.28573 10.1093/toxsci/kfac101 10.1016/j.neuroimage.2020.117165 10.1002/mrm.27937 10.1038/s41598-022-19157-w 10.1007/s11263-020-01303-4 10.1126/sciadv.1602614 10.1021/acs.iecr.1c00552 10.1177/09622802211070257 10.1038/s41551-021-00809-7 10.1002/mrm.27832 10.1007/978-3-031-43993-3-44 10.1016/j.jcp.2018.10.045 10.1002/mrm.27198 10.1002/mrm.20818 10.1002/jmri.26645 10.1016/j.jmr.2011.05.001 10.1038/s41598-020-66985-9 10.1002/nbm.4906 10.1186/s40658-016-0155-2 10.1002/mrm.28298 10.1007/s10915-022-01939-z 10.3390/ijms24043151 10.1002/nbm.4662 10.1002/mrm.26813 10.1016/j.jcmg.2015.11.005 10.1109/TMI.2021.3083104 10.1016/j.cma.2019.112623 10.1002/jmri.25838 10.1002/mrm.29173 10.1002/nbm.5001 10.1002/mrm.28727 10.1021/acssynbio.2c00648 10.1115/1.4050542 10.1002/mrm.27866 10.1038/s41598-023-48515-5 10.1016/j.neuroimage.2005.02.018 10.1002/mrm.20408 10.1002/mrm.28117 10.1002/jmri.26836 10.1016/j.isci.2024.111209 10.1016/B978-012092861-3/50021-2 10.1371/journal.pcbi.0030204 10.1016/j.jsv.2021.116196 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1038/s42005-025-02063-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2399-3650 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_dc6ddafab1294867bed16fa70c321684 10_1038_s42005_025_02063_8 |
GrantInformation_xml | – fundername: MOONSHOT-MED The Ministry of Innovation, Science and Technology, Israel The Blavatnik Artificial Intelligence and Data Science Fund, Tel Aviv University Center for AI and Data Science (TAD) This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639) |
GroupedDBID | 0R~ 88I AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFS ACUHS ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR BGLVJ C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ M2P M7S M~E NAO O9- OK1 PHGZM PHGZT PIMPY PTHSS RNT SNYQT AAYXX CITATION 3V. 7XB 8FE 8FG 8FK AARCD COVID L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c382t-d511847183597f57a596fbb17951e609de5a22122af06b7f31c21e5cd3fbab113 |
IEDL.DBID | DOA |
ISSN | 2399-3650 |
IngestDate | Wed Aug 27 01:01:02 EDT 2025 Wed Aug 13 02:46:49 EDT 2025 Tue Jul 01 05:04:30 EDT 2025 Thu May 22 04:28:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-d511847183597f57a596fbb17951e609de5a22122af06b7f31c21e5cd3fbab113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1943-9139 0009-0008-7878-8842 0000-0002-3566-569X |
OpenAccessLink | https://doaj.org/article/dc6ddafab1294867bed16fa70c321684 |
PQID | 3190430303 |
PQPubID | 4669724 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc6ddafab1294867bed16fa70c321684 proquest_journals_3190430303 crossref_primary_10_1038_s42005_025_02063_8 springer_journals_10_1038_s42005_025_02063_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-15 |
PublicationDateYYYYMMDD | 2025-04-15 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications physics |
PublicationTitleAbbrev | Commun Phys |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | O Cohen (2063_CR37) 2023; 89 S Akbey (2063_CR83) 2019; 82 2063_CR90 2063_CR91 2063_CR92 D Radunsky (2063_CR3) 2024; 19 JJ Hsieh (2063_CR9) 2020; 67 2063_CR51 2063_CR16 D Ma (2063_CR5) 2013; 495 S Cai (2063_CR71) 2021; 37 2063_CR1 P Schuenke (2063_CR84) 2017; 77 2063_CR2 2063_CR53 2063_CR10 2063_CR54 AB Gumel (2063_CR63) 2021; 6 2063_CR11 2063_CR55 2063_CR12 2063_CR13 2063_CR57 2063_CR58 2063_CR15 M Rivlin (2063_CR21) 2023; 13 2063_CR60 PK Lee (2063_CR56) 2019; 82 H-Y Heo (2063_CR7) 2019; 189 Y Ji (2063_CR24) 2017; 57 2063_CR28 2063_CR29 AJ Taylor (2063_CR4) 2016; 9 I Power (2063_CR87) 2024; 27 B Kang (2063_CR52) 2022; 35 W-C Chou (2063_CR62) 2023; 191 2063_CR65 2063_CR22 2063_CR66 2063_CR23 2063_CR67 ME Poorman (2063_CR8) 2020; 51 2063_CR68 2063_CR25 DE Woessner (2063_CR27) 2005; 53 2063_CR69 K Kashinath (2063_CR74) 2021; 379 AR Bricco (2063_CR18) 2023; 12 J-E Meissner (2063_CR26) 2015; 28 D Nagar (2063_CR50) 2023; 13 O Perlman (2063_CR14) 2020; 83 2063_CR72 S Donnet (2063_CR61) 2013; 65 2063_CR73 2063_CR38 2063_CR39 2063_CR30 KJ Layton (2063_CR80) 2017; 77 2063_CR31 S Zenker (2063_CR59) 2007; 3 2063_CR75 E Vinogradov (2063_CR17) 2023; 36 2063_CR32 2063_CR76 2063_CR33 2063_CR34 2063_CR78 2063_CR35 2063_CR79 2063_CR36 E Haghighat (2063_CR70) 2021; 379 2063_CR81 2063_CR40 S Mueller (2063_CR82) 2020; 84 A Panda (2063_CR6) 2017; 3 2063_CR49 MJ Keeling (2063_CR64) 2022; 31 W Bradley (2063_CR77) 2021; 60 N Vladimirov (2063_CR19) 2023; 24 2063_CR41 2063_CR85 K Wang (2063_CR20) 2024; 91 2063_CR42 2063_CR86 2063_CR43 O Cohen (2063_CR44) 2018; 80 2063_CR88 2063_CR45 2063_CR89 2063_CR46 2063_CR47 2063_CR48 |
References_xml | – ident: 2063_CR35 doi: 10.1002/mrm.27363 – ident: 2063_CR60 doi: 10.1145/3450439.3451866 – ident: 2063_CR28 doi: 10.1002/nbm.4710 – ident: 2063_CR36 doi: 10.1002/mrm.30241 – ident: 2063_CR49 doi: 10.1038/s41596-025-01152-w – ident: 2063_CR85 doi: 10.1109/TMI.2009.2035616 – ident: 2063_CR32 doi: 10.1002/nbm.3237 – ident: 2063_CR2 doi: 10.1038/s42254-021-00326-1 – ident: 2063_CR30 doi: 10.1002/nbm.3362 – ident: 2063_CR46 – ident: 2063_CR42 – ident: 2063_CR31 doi: 10.1002/nbm.3257 – volume: 80 start-page: 2449 year: 2018 ident: 2063_CR44 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27221 – volume: 37 start-page: 1727 year: 2021 ident: 2063_CR71 publication-title: Acta Mech. Sin. doi: 10.1007/s10409-021-01148-1 – ident: 2063_CR43 doi: 10.1002/mrm.29574 – volume: 13 year: 2023 ident: 2063_CR50 publication-title: Sci. Rep. doi: 10.1038/s41598-023-45548-8 – volume: 379 start-page: 113741 year: 2021 ident: 2063_CR70 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113741 – volume: 91 start-page: 51 year: 2024 ident: 2063_CR20 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29876 – ident: 2063_CR45 doi: 10.1016/j.neuroimage.2019.01.034 – ident: 2063_CR39 – ident: 2063_CR13 doi: 10.1002/mrm.29448 – ident: 2063_CR81 doi: 10.1002/mrm.28825 – ident: 2063_CR88 doi: 10.1016/j.physrep.2008.11.001 – volume: 19 start-page: e0297244 year: 2024 ident: 2063_CR3 publication-title: PloS ONE doi: 10.1371/journal.pone.0297244 – ident: 2063_CR73 doi: 10.1109/TPWRS.2022.3162473 – volume: 495 start-page: 187 year: 2013 ident: 2063_CR5 publication-title: Nature doi: 10.1038/nature11971 – volume: 189 start-page: 202 year: 2019 ident: 2063_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.034 – volume: 65 start-page: 929 year: 2013 ident: 2063_CR61 publication-title: Adv. drug Deliv. Rev. doi: 10.1016/j.addr.2013.03.005 – volume: 379 start-page: 20200093 year: 2021 ident: 2063_CR74 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2020.0093 – volume: 3 start-page: 56 year: 2017 ident: 2063_CR6 publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.11.001 – volume: 77 start-page: 571 year: 2017 ident: 2063_CR84 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26133 – volume: 67 start-page: 333 year: 2020 ident: 2063_CR9 publication-title: J. Med. Radiat. Sci. doi: 10.1002/jmrs.413 – ident: 2063_CR90 doi: 10.1002/mrm.20605 – ident: 2063_CR40 doi: 10.1109/CVPR.2018.00329 – ident: 2063_CR22 doi: 10.1002/mrm.29241 – volume: 77 start-page: 1544 year: 2017 ident: 2063_CR80 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26235 – ident: 2063_CR91 doi: 10.1002/mrm.24560 – volume: 57 start-page: 809 year: 2017 ident: 2063_CR24 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201700025 – ident: 2063_CR53 doi: 10.1016/j.jmr.2022.107237 – ident: 2063_CR66 doi: 10.1038/s42254-021-00314-5 – ident: 2063_CR33 doi: 10.1002/mrm.24560 10.1002/nbm.3192 – ident: 2063_CR48 doi: 10.1002/mrm.28573 – volume: 191 start-page: 1 year: 2023 ident: 2063_CR62 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfac101 – ident: 2063_CR11 doi: 10.1016/j.neuroimage.2020.117165 – volume: 83 start-page: 462 year: 2020 ident: 2063_CR14 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27937 – ident: 2063_CR75 doi: 10.1038/s41598-022-19157-w – ident: 2063_CR41 doi: 10.1007/s11263-020-01303-4 – ident: 2063_CR79 doi: 10.1126/sciadv.1602614 – volume: 60 start-page: 16330 year: 2021 ident: 2063_CR77 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00552 – volume: 31 start-page: 1716 year: 2022 ident: 2063_CR64 publication-title: Stat. Methods Med. Res. doi: 10.1177/09622802211070257 – ident: 2063_CR12 doi: 10.1038/s41551-021-00809-7 – volume: 82 start-page: 1438 year: 2019 ident: 2063_CR56 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27832 – ident: 2063_CR68 doi: 10.1007/978-3-031-43993-3-44 – ident: 2063_CR65 doi: 10.1016/j.jcp.2018.10.045 – ident: 2063_CR10 doi: 10.1002/mrm.27198 – ident: 2063_CR29 doi: 10.1002/mrm.20818 – ident: 2063_CR16 doi: 10.1002/jmri.26645 – ident: 2063_CR54 doi: 10.1016/j.jmr.2011.05.001 – ident: 2063_CR58 doi: 10.1038/s41598-020-66985-9 – volume: 36 start-page: e4906 year: 2023 ident: 2063_CR17 publication-title: NMR Biomed. doi: 10.1002/nbm.4906 – ident: 2063_CR23 doi: 10.1186/s40658-016-0155-2 – volume: 84 start-page: 2469 year: 2020 ident: 2063_CR82 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28298 – ident: 2063_CR67 doi: 10.1007/s10915-022-01939-z – volume: 24 start-page: 3151 year: 2023 ident: 2063_CR19 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24043151 – volume: 6 start-page: 148 year: 2021 ident: 2063_CR63 publication-title: Infect. Dis. Model. – volume: 35 start-page: e4662 year: 2022 ident: 2063_CR52 publication-title: NMR Biomed. doi: 10.1002/nbm.4662 – ident: 2063_CR25 doi: 10.1002/mrm.26813 – volume: 9 start-page: 67 year: 2016 ident: 2063_CR4 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2015.11.005 – ident: 2063_CR57 doi: 10.1109/TMI.2021.3083104 – ident: 2063_CR69 doi: 10.1016/j.cma.2019.112623 – ident: 2063_CR15 doi: 10.1002/jmri.25838 – ident: 2063_CR47 doi: 10.1002/mrm.29173 – ident: 2063_CR92 doi: 10.1002/nbm.5001 – ident: 2063_CR51 doi: 10.1002/mrm.28727 – volume: 12 start-page: 1154 year: 2023 ident: 2063_CR18 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.2c00648 – ident: 2063_CR72 doi: 10.1115/1.4050542 – volume: 82 start-page: 1741 year: 2019 ident: 2063_CR83 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27866 – volume: 13 year: 2023 ident: 2063_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-023-48515-5 – ident: 2063_CR86 doi: 10.1016/j.neuroimage.2005.02.018 – volume: 53 start-page: 790 year: 2005 ident: 2063_CR27 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20408 – ident: 2063_CR89 doi: 10.1002/mrm.28117 – volume: 28 start-page: 1196 year: 2015 ident: 2063_CR26 publication-title: NMR Biomed. doi: 10.1002/nbm.3362 – ident: 2063_CR76 – volume: 51 start-page: 675 year: 2020 ident: 2063_CR8 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26836 – volume: 27 start-page: 111209 year: 2024 ident: 2063_CR87 publication-title: iScience doi: 10.1016/j.isci.2024.111209 – ident: 2063_CR1 doi: 10.1016/B978-012092861-3/50021-2 – ident: 2063_CR55 – volume: 3 start-page: e204 year: 2007 ident: 2063_CR59 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030204 – ident: 2063_CR78 doi: 10.1016/j.jsv.2021.116196 – ident: 2063_CR38 – volume: 89 start-page: 233 year: 2023 ident: 2063_CR37 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29448 – ident: 2063_CR34 doi: 10.1002/mrm.27221 |
SSID | ssj0002140736 |
Score | 2.2957616 |
Snippet | Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for... Abstract Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 164 |
SubjectTerms | 631/57/2266 639/766/930/2735 Brain Differential equations Inverse problems Machine learning Magnetic resonance imaging Medical imaging Neural networks Ordinary differential equations Parameter estimation Physics Physics and Astronomy Self-supervised learning Semisolids System dynamics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XryIouKuD3rwpsHm2fQkKisqKLK44EEIee5Fd1e7-_9N0lRR0PbUtJTwZTKZzEy-AeCYGGQocw4qhwykQTdCYbSDyAdzoOS1ciZGdO8f-M2Y3j2z5-xwa3JaZacTk6K2MxN95GdBVCI9VbjP5-8wVo2K0dVcQmMVrAUVLEQPrF0OHx5HX14WHPYPVYxPDtrz5eKsoYl8M1ZxDZYSD137sSIl4v4f1uavAGlad643wUY2GIuLdoS3wIqbboOXdG4WRt7ut5jPUrx1VW6L-9Ft8b5UbQ5Qgr2Iue2TovVhNLClSnW2aNyrh81yHrVFE55zAYnJDhhfD5-ubmCukwANEXgBbdwlxEWGhN2BZ5ViNfdah6nGkONlbR1TOOCDlS-5rjxBBiPHjCVeK40Q2QW96Wzq9kDBlSYVq7Gm4SqdUKwynFBOa4uRVagPTjqs5Lylw5ApjE2EbJGVAVmZkJWiDy4jnF9fRirr1DD7mMg8M6Q13FrlQ0dwHen_tLOIe1WVhmDEBe2Dg24wZJ5fjfyWhj447Qbo-_XfXRr8_7d9sI6TaFCI2AHoLT6W7jBYHQt9lEXrE2JQ1WA priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfAiPnF90YM3DTbPtsdVlHVBDz7AgxDy3Ivuqt39_yZpqyh6sD21TUOYSWYmmZlvAI6owYZx55By2CAWZCMqjXYI-2AO5KJSzkSP7vWNGD6w0SN_XADS5cKkoP0EaZnEdBcddlqzhJkZi68GA0eEHhdhKUK1h7m9NBiM7kafJysk7BmK6JPcbXLKy19-_qaFElj_Nwvzh1M06ZrLNVhtjcRs0AxrHRbcZAOWU7CmqTfhKWXNooja_RKjWbKXrsZtdn17lb3NVRMBlIiexcj2cdacYNSoAUp1Nqvds0f1_DXKijo8t-UjxlvwcHlxfz5EbZUEZGhJZsjGPUJUMTTsDTwvFK-E1zosNI6dyCvruCJBQRHlc6ELT7Eh2HFjqddKY0y3oTeZTtwOZEJpWvCKaBau3JWKF0ZQJlhlCbYK9-G4o5p8bcAwZHJi01I2NJaBxjLRWJZ9OIuE_WwZgazTi-n7WLaMldYIa5UPAyFVBP_TzmLhVZEbSrAoWR_2O7bIdnXVMoiNCFUW7j6cdKz6-vz3kHb_13wPVkiaNAxhvg-92fvcHQQbZKYP20n3AbRW1iA priority: 102 providerName: Springer Nature |
Title | Multi-parameter molecular MRI quantification using physics-informed self-supervised learning |
URI | https://link.springer.com/article/10.1038/s42005-025-02063-8 https://www.proquest.com/docview/3190430303 https://doaj.org/article/dc6ddafab1294867bed16fa70c321684 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCwIBIjyqDKwgUVsx04ylooClYoQD4kByfKTBcoj7f_nbKe8JMRCMkRxMpy-c3x3ufN3CO0zQ0zBncPKEYMLWBtxZbTDxIM7kItaORMyuuMLcXZbjO743ZdWX6EmLNEDJ-COrBHWKq80GKbADqedJcKrMjeMElFFJlCweV-CqbAGU4gbypCX3E77yqujpoikm6F7K3hIAkT6ZokiYf83L_NHYjTam-EqWmkdxayfBFxDC26yju7jflkc-LqfQh1L9jTvbpuNr86z15lKtT8R7izUtD9k6d9FgxNFqrNZ4x49bmYvYZVo4L5tHPGwgW6HJzeDM9z2R8CGVXSKbYgOgnFhEBV4XipeC681fGKcOJHX1nFFwTRR5XOhS8-IocRxY5nXgCdhm6gzeZ64LZQJpVnJa6oLOHJXKV4awQpR1JYSq0gXHcyxki-JBkPG9DWrZEJWArIyIiurLjoOcH68GSis4wAoVraKlX8ptot258qQ7XfVSFgwAkkZnF10OFfQ5-PfRdr-D5F20DKNE6jAhO-izvRt5vbAJ5nqHlqshqc9tNTvj65HcD0-ubi8gtGBGPTi1HwHejjiVQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAgFiS4Ec4ARW42eSA0K8ll3a7QG1Ug9Ixs-9tLvbZleIP8VvZOwkrYoEtyanPGRZM5_H43kCvOSOOiFDICZQRwTKRlI7GwiNqA6UqjHBJY_u7FBNjsXXE3myBb-HXJgUVjnIxCyo_dIlG_keQiWVp8L73eqcpK5Rybs6tNDoYLEffv3EI1v7dvoJ-fuKsfHno48T0ncVII7XbE180qmTSOaoS0dZGdmoaC0CU9KgysYHaRgKdGZiqWwVOXWMBuk8j9ZYSjmOewtuC447ecpMH3-5tOkwPK1UyRu602Wz13utyKU-U89Y1MsUEuLa_pfbBFzTbf9yx-Zdbnwf7vXqafG-w9MD2AqLh_A9Z-mSVCX8LEXPFGdDT91i9m1anG9MF3GUmVykSPp50VlMWtIVZg2-aMNpJO1mlWRTi899u4r5Izi-Efo9hu3FchGeQKGM5ZVsmBV4laE2snKKCyUaz6g3dASvB1rpVVd8Q2enOa91R1mNlNWZsroewYdEzss_U-Hs_GJ5Mdf9OtTeKe9NxImwJhUbtMFTFU1VOs6oqsUIdgdm6H41t_oKeyN4MzDo6vO_p7Tz_9FewJ3J0exAH0wP95_CXZZhIgiVu7C9vtiEZ6jvrO3zDLICftw0qv8AEG4P4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BoiIuqIVWLNCSAzdwiZ9JjkvbFWwBVS1IHJAsP_fCLgvZ_f_YTgIC0QPJKY5lWTP2zNgz8w3APjXYMO4cUg4bxIJsRKXRDmEfzIFcVMqZ6NE9vxAnV2x0za-XQHS5MCloP0FaJjHdRYcd1SxhZsbiq8HAEWHE7zPrl2El2NuY9WBlMBj9Gz3drpBwbiiiX3K7ySsv3xjghSZKgP0vrMxXjtGkb4YfYb01FLNBM7VPsOSmG_AhBWyaehNuUuYsisjdkxjRkk26OrfZ-d_T7H6hmiigRPgsRrePs-YWo0YNWKqzWe1uPaoXsygv6vDdlpAYf4ar4a_LHyeorZSADC3JHNl4TohqhobzgeeF4pXwWofNxrETeWUdVyQoKaJ8LnThKTYEO24s9VppjOkX6E3vpm4LMqE0LXhFNAtP7krFCyMoE6yyBFuF-3DQUU3OGkAMmRzZtJQNjWWgsUw0lmUfjiNhn3pGMOvUcPcwli1zpTXCWuXDREgVAQC1s1h4VeSGEixK1ofdji2y3WG1DKIjwpWFtw-HHauef_9_Stvv674Hq39-DuXZ6cXvHVgjaf0whPku9OYPC_c1mCRz_a1df48WudoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+molecular+MRI+quantification+using+physics-informed+self-supervised+learning&rft.jtitle=Communications+physics&rft.au=Finkelstein%2C+Alex&rft.au=Vladimirov%2C+Nikita&rft.au=Zaiss%2C+Moritz&rft.au=Perlman%2C+Or&rft.date=2025-04-15&rft.issn=2399-3650&rft.eissn=2399-3650&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs42005-025-02063-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42005_025_02063_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon |