Multi-parameter molecular MRI quantification using physics-informed self-supervised learning

Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present...

Full description

Saved in:
Bibliographic Details
Published inCommunications physics Vol. 8; no. 1; pp. 164 - 11
Main Authors Finkelstein, Alex, Vladimirov, Nikita, Zaiss, Moritz, Perlman, Or
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results. Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels.
AbstractList Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results. Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels.
Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results.Quantitative molecular imaging extracts biophysical parameter maps by solving physics-based inverse problems. This work develops AI-driven methods to accelerate and stabilize multi-parameter estimation across millions of brain pixels.
Abstract Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for molecular magnetic resonance imaging (MRI) often translates into excessive computation time, which makes clinical use impractical. Here, we present a generic computational approach for solving the parameter extraction inverse problem posed by ordinary differential equation (ODE) modeling coupled with experimental measurement of the system dynamics. This is achieved by formulating a numerical ODE solver to function as a step-wise analytical one, thereby making it compatible with automatic differentiation-based optimization. This enables efficient gradient-based model fitting, and provides a new approach to parameter quantification based on self-supervised learning from a single data observation. The neural-network-based train-by-fit pipeline was used to quantify semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) amide proton exchange parameters in the human brain, in an in-vivo molecular MRI study (n = 4). The entire pipeline of the first whole brain quantification was completed in 18.3 ± 8.3 minutes. Reusing the single-subject-trained network for inference in new subjects took 1.0 ± 0.2 s, to provide results in agreement with literature values and scan-specific fit results.
ArticleNumber 164
Author Vladimirov, Nikita
Perlman, Or
Finkelstein, Alex
Zaiss, Moritz
Author_xml – sequence: 1
  givenname: Alex
  orcidid: 0009-0008-7878-8842
  surname: Finkelstein
  fullname: Finkelstein, Alex
  organization: Department of Biomedical Engineering, Tel Aviv University
– sequence: 2
  givenname: Nikita
  orcidid: 0000-0003-1943-9139
  surname: Vladimirov
  fullname: Vladimirov, Nikita
  organization: Department of Biomedical Engineering, Tel Aviv University
– sequence: 3
  givenname: Moritz
  surname: Zaiss
  fullname: Zaiss, Moritz
  organization: Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
– sequence: 4
  givenname: Or
  orcidid: 0000-0002-3566-569X
  surname: Perlman
  fullname: Perlman, Or
  email: orperlman@tauex.tau.ac.il
  organization: Department of Biomedical Engineering, Tel Aviv University, Sagol School of Neuroscience, Tel Aviv University
BookMark eNp9UU1r3TAQFCWFpEn-QE6GntWuJEu2jyW0zYOEQGhuBSFLq1c9_CRHsgv591Xi0vZUlmU_mJldmHfkJKaIhFwx-MBA9B9LywEkBf6SoATt35AzLoaBCiXh5J_-lFyWcgAAzlrohDoj3-_WaQl0NtkcccHcHNOEdp1Mbu4eds3TauISfLBmCSk2awlx38w_nkuwhYboUz6iawpOnpZ1xvwzlDpPaHKsyAvy1pup4OXvek4ev3z-dn1Db--_7q4_3VIrer5QJxnr2471Qg6dl52Rg_LjyLpBMlQwOJSGc8a58aDGzgtmOUNpnfCjGRkT52S36bpkDnrO4Wjys04m6NdFyntt8hLshNpZ5ZzxlcaHtlfdiI4pbzqwgjPVt1Xr_aY15_S0Yln0Ia051ve1YAO0AmpUFN9QNqdSMvo_VxnoF1P0ZoqupuhXU3RfSWIjlQqOe8x_pf_D-gVBUpFv
Cites_doi 10.1002/mrm.27363
10.1145/3450439.3451866
10.1002/nbm.4710
10.1002/mrm.30241
10.1038/s41596-025-01152-w
10.1109/TMI.2009.2035616
10.1002/nbm.3237
10.1038/s42254-021-00326-1
10.1002/nbm.3362
10.1002/nbm.3257
10.1002/mrm.27221
10.1007/s10409-021-01148-1
10.1002/mrm.29574
10.1038/s41598-023-45548-8
10.1016/j.cma.2021.113741
10.1002/mrm.29876
10.1016/j.neuroimage.2019.01.034
10.1002/mrm.29448
10.1002/mrm.28825
10.1016/j.physrep.2008.11.001
10.1371/journal.pone.0297244
10.1109/TPWRS.2022.3162473
10.1038/nature11971
10.1016/j.addr.2013.03.005
10.1098/rsta.2020.0093
10.1016/j.cobme.2017.11.001
10.1002/mrm.26133
10.1002/jmrs.413
10.1002/mrm.20605
10.1109/CVPR.2018.00329
10.1002/mrm.29241
10.1002/mrm.26235
10.1002/mrm.24560
10.1002/ijch.201700025
10.1016/j.jmr.2022.107237
10.1038/s42254-021-00314-5
10.1002/mrm.24560 10.1002/nbm.3192
10.1002/mrm.28573
10.1093/toxsci/kfac101
10.1016/j.neuroimage.2020.117165
10.1002/mrm.27937
10.1038/s41598-022-19157-w
10.1007/s11263-020-01303-4
10.1126/sciadv.1602614
10.1021/acs.iecr.1c00552
10.1177/09622802211070257
10.1038/s41551-021-00809-7
10.1002/mrm.27832
10.1007/978-3-031-43993-3-44
10.1016/j.jcp.2018.10.045
10.1002/mrm.27198
10.1002/mrm.20818
10.1002/jmri.26645
10.1016/j.jmr.2011.05.001
10.1038/s41598-020-66985-9
10.1002/nbm.4906
10.1186/s40658-016-0155-2
10.1002/mrm.28298
10.1007/s10915-022-01939-z
10.3390/ijms24043151
10.1002/nbm.4662
10.1002/mrm.26813
10.1016/j.jcmg.2015.11.005
10.1109/TMI.2021.3083104
10.1016/j.cma.2019.112623
10.1002/jmri.25838
10.1002/mrm.29173
10.1002/nbm.5001
10.1002/mrm.28727
10.1021/acssynbio.2c00648
10.1115/1.4050542
10.1002/mrm.27866
10.1038/s41598-023-48515-5
10.1016/j.neuroimage.2005.02.018
10.1002/mrm.20408
10.1002/mrm.28117
10.1002/jmri.26836
10.1016/j.isci.2024.111209
10.1016/B978-012092861-3/50021-2
10.1371/journal.pcbi.0030204
10.1016/j.jsv.2021.116196
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1038/s42005-025-02063-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
EndPage 11
ExternalDocumentID oai_doaj_org_article_dc6ddafab1294867bed16fa70c321684
10_1038_s42005_025_02063_8
GrantInformation_xml – fundername: MOONSHOT-MED The Ministry of Innovation, Science and Technology, Israel The Blavatnik Artificial Intelligence and Data Science Fund, Tel Aviv University Center for AI and Data Science (TAD) This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639)
GroupedDBID 0R~
88I
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFS
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
RNT
SNYQT
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
AARCD
COVID
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c382t-d511847183597f57a596fbb17951e609de5a22122af06b7f31c21e5cd3fbab113
IEDL.DBID DOA
ISSN 2399-3650
IngestDate Wed Aug 27 01:01:02 EDT 2025
Wed Aug 13 02:46:49 EDT 2025
Tue Jul 01 05:04:30 EDT 2025
Thu May 22 04:28:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d511847183597f57a596fbb17951e609de5a22122af06b7f31c21e5cd3fbab113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1943-9139
0009-0008-7878-8842
0000-0002-3566-569X
OpenAccessLink https://doaj.org/article/dc6ddafab1294867bed16fa70c321684
PQID 3190430303
PQPubID 4669724
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_dc6ddafab1294867bed16fa70c321684
proquest_journals_3190430303
crossref_primary_10_1038_s42005_025_02063_8
springer_journals_10_1038_s42005_025_02063_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References O Cohen (2063_CR37) 2023; 89
S Akbey (2063_CR83) 2019; 82
2063_CR90
2063_CR91
2063_CR92
D Radunsky (2063_CR3) 2024; 19
JJ Hsieh (2063_CR9) 2020; 67
2063_CR51
2063_CR16
D Ma (2063_CR5) 2013; 495
S Cai (2063_CR71) 2021; 37
2063_CR1
P Schuenke (2063_CR84) 2017; 77
2063_CR2
2063_CR53
2063_CR10
2063_CR54
AB Gumel (2063_CR63) 2021; 6
2063_CR11
2063_CR55
2063_CR12
2063_CR13
2063_CR57
2063_CR58
2063_CR15
M Rivlin (2063_CR21) 2023; 13
2063_CR60
PK Lee (2063_CR56) 2019; 82
H-Y Heo (2063_CR7) 2019; 189
Y Ji (2063_CR24) 2017; 57
2063_CR28
2063_CR29
AJ Taylor (2063_CR4) 2016; 9
I Power (2063_CR87) 2024; 27
B Kang (2063_CR52) 2022; 35
W-C Chou (2063_CR62) 2023; 191
2063_CR65
2063_CR22
2063_CR66
2063_CR23
2063_CR67
ME Poorman (2063_CR8) 2020; 51
2063_CR68
2063_CR25
DE Woessner (2063_CR27) 2005; 53
2063_CR69
K Kashinath (2063_CR74) 2021; 379
AR Bricco (2063_CR18) 2023; 12
J-E Meissner (2063_CR26) 2015; 28
D Nagar (2063_CR50) 2023; 13
O Perlman (2063_CR14) 2020; 83
2063_CR72
S Donnet (2063_CR61) 2013; 65
2063_CR73
2063_CR38
2063_CR39
2063_CR30
KJ Layton (2063_CR80) 2017; 77
2063_CR31
S Zenker (2063_CR59) 2007; 3
2063_CR75
E Vinogradov (2063_CR17) 2023; 36
2063_CR32
2063_CR76
2063_CR33
2063_CR34
2063_CR78
2063_CR35
2063_CR79
2063_CR36
E Haghighat (2063_CR70) 2021; 379
2063_CR81
2063_CR40
S Mueller (2063_CR82) 2020; 84
A Panda (2063_CR6) 2017; 3
2063_CR49
MJ Keeling (2063_CR64) 2022; 31
W Bradley (2063_CR77) 2021; 60
N Vladimirov (2063_CR19) 2023; 24
2063_CR41
2063_CR85
K Wang (2063_CR20) 2024; 91
2063_CR42
2063_CR86
2063_CR43
O Cohen (2063_CR44) 2018; 80
2063_CR88
2063_CR45
2063_CR89
2063_CR46
2063_CR47
2063_CR48
References_xml – ident: 2063_CR35
  doi: 10.1002/mrm.27363
– ident: 2063_CR60
  doi: 10.1145/3450439.3451866
– ident: 2063_CR28
  doi: 10.1002/nbm.4710
– ident: 2063_CR36
  doi: 10.1002/mrm.30241
– ident: 2063_CR49
  doi: 10.1038/s41596-025-01152-w
– ident: 2063_CR85
  doi: 10.1109/TMI.2009.2035616
– ident: 2063_CR32
  doi: 10.1002/nbm.3237
– ident: 2063_CR2
  doi: 10.1038/s42254-021-00326-1
– ident: 2063_CR30
  doi: 10.1002/nbm.3362
– ident: 2063_CR46
– ident: 2063_CR42
– ident: 2063_CR31
  doi: 10.1002/nbm.3257
– volume: 80
  start-page: 2449
  year: 2018
  ident: 2063_CR44
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27221
– volume: 37
  start-page: 1727
  year: 2021
  ident: 2063_CR71
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-021-01148-1
– ident: 2063_CR43
  doi: 10.1002/mrm.29574
– volume: 13
  year: 2023
  ident: 2063_CR50
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-45548-8
– volume: 379
  start-page: 113741
  year: 2021
  ident: 2063_CR70
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– volume: 91
  start-page: 51
  year: 2024
  ident: 2063_CR20
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29876
– ident: 2063_CR45
  doi: 10.1016/j.neuroimage.2019.01.034
– ident: 2063_CR39
– ident: 2063_CR13
  doi: 10.1002/mrm.29448
– ident: 2063_CR81
  doi: 10.1002/mrm.28825
– ident: 2063_CR88
  doi: 10.1016/j.physrep.2008.11.001
– volume: 19
  start-page: e0297244
  year: 2024
  ident: 2063_CR3
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0297244
– ident: 2063_CR73
  doi: 10.1109/TPWRS.2022.3162473
– volume: 495
  start-page: 187
  year: 2013
  ident: 2063_CR5
  publication-title: Nature
  doi: 10.1038/nature11971
– volume: 189
  start-page: 202
  year: 2019
  ident: 2063_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.034
– volume: 65
  start-page: 929
  year: 2013
  ident: 2063_CR61
  publication-title: Adv. drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.03.005
– volume: 379
  start-page: 20200093
  year: 2021
  ident: 2063_CR74
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0093
– volume: 3
  start-page: 56
  year: 2017
  ident: 2063_CR6
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.11.001
– volume: 77
  start-page: 571
  year: 2017
  ident: 2063_CR84
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26133
– volume: 67
  start-page: 333
  year: 2020
  ident: 2063_CR9
  publication-title: J. Med. Radiat. Sci.
  doi: 10.1002/jmrs.413
– ident: 2063_CR90
  doi: 10.1002/mrm.20605
– ident: 2063_CR40
  doi: 10.1109/CVPR.2018.00329
– ident: 2063_CR22
  doi: 10.1002/mrm.29241
– volume: 77
  start-page: 1544
  year: 2017
  ident: 2063_CR80
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26235
– ident: 2063_CR91
  doi: 10.1002/mrm.24560
– volume: 57
  start-page: 809
  year: 2017
  ident: 2063_CR24
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201700025
– ident: 2063_CR53
  doi: 10.1016/j.jmr.2022.107237
– ident: 2063_CR66
  doi: 10.1038/s42254-021-00314-5
– ident: 2063_CR33
  doi: 10.1002/mrm.24560 10.1002/nbm.3192
– ident: 2063_CR48
  doi: 10.1002/mrm.28573
– volume: 191
  start-page: 1
  year: 2023
  ident: 2063_CR62
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfac101
– ident: 2063_CR11
  doi: 10.1016/j.neuroimage.2020.117165
– volume: 83
  start-page: 462
  year: 2020
  ident: 2063_CR14
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27937
– ident: 2063_CR75
  doi: 10.1038/s41598-022-19157-w
– ident: 2063_CR41
  doi: 10.1007/s11263-020-01303-4
– ident: 2063_CR79
  doi: 10.1126/sciadv.1602614
– volume: 60
  start-page: 16330
  year: 2021
  ident: 2063_CR77
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c00552
– volume: 31
  start-page: 1716
  year: 2022
  ident: 2063_CR64
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/09622802211070257
– ident: 2063_CR12
  doi: 10.1038/s41551-021-00809-7
– volume: 82
  start-page: 1438
  year: 2019
  ident: 2063_CR56
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27832
– ident: 2063_CR68
  doi: 10.1007/978-3-031-43993-3-44
– ident: 2063_CR65
  doi: 10.1016/j.jcp.2018.10.045
– ident: 2063_CR10
  doi: 10.1002/mrm.27198
– ident: 2063_CR29
  doi: 10.1002/mrm.20818
– ident: 2063_CR16
  doi: 10.1002/jmri.26645
– ident: 2063_CR54
  doi: 10.1016/j.jmr.2011.05.001
– ident: 2063_CR58
  doi: 10.1038/s41598-020-66985-9
– volume: 36
  start-page: e4906
  year: 2023
  ident: 2063_CR17
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4906
– ident: 2063_CR23
  doi: 10.1186/s40658-016-0155-2
– volume: 84
  start-page: 2469
  year: 2020
  ident: 2063_CR82
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28298
– ident: 2063_CR67
  doi: 10.1007/s10915-022-01939-z
– volume: 24
  start-page: 3151
  year: 2023
  ident: 2063_CR19
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24043151
– volume: 6
  start-page: 148
  year: 2021
  ident: 2063_CR63
  publication-title: Infect. Dis. Model.
– volume: 35
  start-page: e4662
  year: 2022
  ident: 2063_CR52
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4662
– ident: 2063_CR25
  doi: 10.1002/mrm.26813
– volume: 9
  start-page: 67
  year: 2016
  ident: 2063_CR4
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2015.11.005
– ident: 2063_CR57
  doi: 10.1109/TMI.2021.3083104
– ident: 2063_CR69
  doi: 10.1016/j.cma.2019.112623
– ident: 2063_CR15
  doi: 10.1002/jmri.25838
– ident: 2063_CR47
  doi: 10.1002/mrm.29173
– ident: 2063_CR92
  doi: 10.1002/nbm.5001
– ident: 2063_CR51
  doi: 10.1002/mrm.28727
– volume: 12
  start-page: 1154
  year: 2023
  ident: 2063_CR18
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.2c00648
– ident: 2063_CR72
  doi: 10.1115/1.4050542
– volume: 82
  start-page: 1741
  year: 2019
  ident: 2063_CR83
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27866
– volume: 13
  year: 2023
  ident: 2063_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48515-5
– ident: 2063_CR86
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 53
  start-page: 790
  year: 2005
  ident: 2063_CR27
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20408
– ident: 2063_CR89
  doi: 10.1002/mrm.28117
– volume: 28
  start-page: 1196
  year: 2015
  ident: 2063_CR26
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3362
– ident: 2063_CR76
– volume: 51
  start-page: 675
  year: 2020
  ident: 2063_CR8
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26836
– volume: 27
  start-page: 111209
  year: 2024
  ident: 2063_CR87
  publication-title: iScience
  doi: 10.1016/j.isci.2024.111209
– ident: 2063_CR1
  doi: 10.1016/B978-012092861-3/50021-2
– ident: 2063_CR55
– volume: 3
  start-page: e204
  year: 2007
  ident: 2063_CR59
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030204
– ident: 2063_CR78
  doi: 10.1016/j.jsv.2021.116196
– ident: 2063_CR38
– volume: 89
  start-page: 233
  year: 2023
  ident: 2063_CR37
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29448
– ident: 2063_CR34
  doi: 10.1002/mrm.27221
SSID ssj0002140736
Score 2.2957616
Snippet Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity for...
Abstract Biophysical model fitting plays a key role in obtaining quantitative parameters from physiological signals and images. However, the model complexity...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 164
SubjectTerms 631/57/2266
639/766/930/2735
Brain
Differential equations
Inverse problems
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Ordinary differential equations
Parameter estimation
Physics
Physics and Astronomy
Self-supervised learning
Semisolids
System dynamics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XryIouKuD3rwpsHm2fQkKisqKLK44EEIee5Fd1e7-_9N0lRR0PbUtJTwZTKZzEy-AeCYGGQocw4qhwykQTdCYbSDyAdzoOS1ciZGdO8f-M2Y3j2z5-xwa3JaZacTk6K2MxN95GdBVCI9VbjP5-8wVo2K0dVcQmMVrAUVLEQPrF0OHx5HX14WHPYPVYxPDtrz5eKsoYl8M1ZxDZYSD137sSIl4v4f1uavAGlad643wUY2GIuLdoS3wIqbboOXdG4WRt7ut5jPUrx1VW6L-9Ft8b5UbQ5Qgr2Iue2TovVhNLClSnW2aNyrh81yHrVFE55zAYnJDhhfD5-ubmCukwANEXgBbdwlxEWGhN2BZ5ViNfdah6nGkONlbR1TOOCDlS-5rjxBBiPHjCVeK40Q2QW96Wzq9kDBlSYVq7Gm4SqdUKwynFBOa4uRVagPTjqs5Lylw5ApjE2EbJGVAVmZkJWiDy4jnF9fRirr1DD7mMg8M6Q13FrlQ0dwHen_tLOIe1WVhmDEBe2Dg24wZJ5fjfyWhj447Qbo-_XfXRr8_7d9sI6TaFCI2AHoLT6W7jBYHQt9lEXrE2JQ1WA
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfAiPnF90YM3DTbPtsdVlHVBDz7AgxDy3Ivuqt39_yZpqyh6sD21TUOYSWYmmZlvAI6owYZx55By2CAWZCMqjXYI-2AO5KJSzkSP7vWNGD6w0SN_XADS5cKkoP0EaZnEdBcddlqzhJkZi68GA0eEHhdhKUK1h7m9NBiM7kafJysk7BmK6JPcbXLKy19-_qaFElj_Nwvzh1M06ZrLNVhtjcRs0AxrHRbcZAOWU7CmqTfhKWXNooja_RKjWbKXrsZtdn17lb3NVRMBlIiexcj2cdacYNSoAUp1Nqvds0f1_DXKijo8t-UjxlvwcHlxfz5EbZUEZGhJZsjGPUJUMTTsDTwvFK-E1zosNI6dyCvruCJBQRHlc6ELT7Eh2HFjqddKY0y3oTeZTtwOZEJpWvCKaBau3JWKF0ZQJlhlCbYK9-G4o5p8bcAwZHJi01I2NJaBxjLRWJZ9OIuE_WwZgazTi-n7WLaMldYIa5UPAyFVBP_TzmLhVZEbSrAoWR_2O7bIdnXVMoiNCFUW7j6cdKz6-vz3kHb_13wPVkiaNAxhvg-92fvcHQQbZKYP20n3AbRW1iA
  priority: 102
  providerName: Springer Nature
Title Multi-parameter molecular MRI quantification using physics-informed self-supervised learning
URI https://link.springer.com/article/10.1038/s42005-025-02063-8
https://www.proquest.com/docview/3190430303
https://doaj.org/article/dc6ddafab1294867bed16fa70c321684
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCwIBIjyqDKwgUVsx04ylooClYoQD4kByfKTBcoj7f_nbKe8JMRCMkRxMpy-c3x3ufN3CO0zQ0zBncPKEYMLWBtxZbTDxIM7kItaORMyuuMLcXZbjO743ZdWX6EmLNEDJ-COrBHWKq80GKbADqedJcKrMjeMElFFJlCweV-CqbAGU4gbypCX3E77yqujpoikm6F7K3hIAkT6ZokiYf83L_NHYjTam-EqWmkdxayfBFxDC26yju7jflkc-LqfQh1L9jTvbpuNr86z15lKtT8R7izUtD9k6d9FgxNFqrNZ4x49bmYvYZVo4L5tHPGwgW6HJzeDM9z2R8CGVXSKbYgOgnFhEBV4XipeC681fGKcOJHX1nFFwTRR5XOhS8-IocRxY5nXgCdhm6gzeZ64LZQJpVnJa6oLOHJXKV4awQpR1JYSq0gXHcyxki-JBkPG9DWrZEJWArIyIiurLjoOcH68GSis4wAoVraKlX8ptot258qQ7XfVSFgwAkkZnF10OFfQ5-PfRdr-D5F20DKNE6jAhO-izvRt5vbAJ5nqHlqshqc9tNTvj65HcD0-ubi8gtGBGPTi1HwHejjiVQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAgFiS4Ec4ARW42eSA0K8ll3a7QG1Ug9Ixs-9tLvbZleIP8VvZOwkrYoEtyanPGRZM5_H43kCvOSOOiFDICZQRwTKRlI7GwiNqA6UqjHBJY_u7FBNjsXXE3myBb-HXJgUVjnIxCyo_dIlG_keQiWVp8L73eqcpK5Rybs6tNDoYLEffv3EI1v7dvoJ-fuKsfHno48T0ncVII7XbE180qmTSOaoS0dZGdmoaC0CU9KgysYHaRgKdGZiqWwVOXWMBuk8j9ZYSjmOewtuC447ecpMH3-5tOkwPK1UyRu602Wz13utyKU-U89Y1MsUEuLa_pfbBFzTbf9yx-Zdbnwf7vXqafG-w9MD2AqLh_A9Z-mSVCX8LEXPFGdDT91i9m1anG9MF3GUmVykSPp50VlMWtIVZg2-aMNpJO1mlWRTi899u4r5Izi-Efo9hu3FchGeQKGM5ZVsmBV4laE2snKKCyUaz6g3dASvB1rpVVd8Q2enOa91R1mNlNWZsroewYdEzss_U-Hs_GJ5Mdf9OtTeKe9NxImwJhUbtMFTFU1VOs6oqsUIdgdm6H41t_oKeyN4MzDo6vO_p7Tz_9FewJ3J0exAH0wP95_CXZZhIgiVu7C9vtiEZ6jvrO3zDLICftw0qv8AEG4P4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BoiIuqIVWLNCSAzdwiZ9JjkvbFWwBVS1IHJAsP_fCLgvZ_f_YTgIC0QPJKY5lWTP2zNgz8w3APjXYMO4cUg4bxIJsRKXRDmEfzIFcVMqZ6NE9vxAnV2x0za-XQHS5MCloP0FaJjHdRYcd1SxhZsbiq8HAEWHE7zPrl2El2NuY9WBlMBj9Gz3drpBwbiiiX3K7ySsv3xjghSZKgP0vrMxXjtGkb4YfYb01FLNBM7VPsOSmG_AhBWyaehNuUuYsisjdkxjRkk26OrfZ-d_T7H6hmiigRPgsRrePs-YWo0YNWKqzWe1uPaoXsygv6vDdlpAYf4ar4a_LHyeorZSADC3JHNl4TohqhobzgeeF4pXwWofNxrETeWUdVyQoKaJ8LnThKTYEO24s9VppjOkX6E3vpm4LMqE0LXhFNAtP7krFCyMoE6yyBFuF-3DQUU3OGkAMmRzZtJQNjWWgsUw0lmUfjiNhn3pGMOvUcPcwli1zpTXCWuXDREgVAQC1s1h4VeSGEixK1ofdji2y3WG1DKIjwpWFtw-HHauef_9_Stvv674Hq39-DuXZ6cXvHVgjaf0whPku9OYPC_c1mCRz_a1df48WudoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+molecular+MRI+quantification+using+physics-informed+self-supervised+learning&rft.jtitle=Communications+physics&rft.au=Finkelstein%2C+Alex&rft.au=Vladimirov%2C+Nikita&rft.au=Zaiss%2C+Moritz&rft.au=Perlman%2C+Or&rft.date=2025-04-15&rft.issn=2399-3650&rft.eissn=2399-3650&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs42005-025-02063-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42005_025_02063_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon