Selection of the best fit probability distribution in rainfall frequency analysis for Qatar
Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines...
Saved in:
Published in | Natural hazards (Dordrecht) Vol. 86; no. 1; pp. 281 - 296 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24–49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov–Smirnov, Anderson–Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar. |
---|---|
AbstractList | Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24-49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov-Smirnov, Anderson-Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar. Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24–49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov–Smirnov, Anderson–Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar. |
Author | Mamoon, Abdullah Al Rahman, Ataur |
Author_xml | – sequence: 1 givenname: Abdullah Al surname: Mamoon fullname: Mamoon, Abdullah Al organization: Ministry of Municipality and Environment, School of Computing, Engineering and Mathematics, Western Sydney University – sequence: 2 givenname: Ataur surname: Rahman fullname: Rahman, Ataur email: a.rahman@westernsydney.edu.au organization: School of Computing, Engineering and Mathematics, Western Sydney University |
BookMark | eNqNkU1LHTEUhkNR6FX7A7oLdNPN2HNmJh-zLNKqIEiphUIXIZM50ciYsUnu4v57M70uitDi6mye5_Ce8x6xg7hEYuw9wikCqE8ZEeTQAMqmlVo18IZtUKiuAd3DAdvA0GIDHfx8y45yvgdAlO2wYb--00yuhCXyxfNyR3ykXLgPhT-mZbRjmEPZ8SnkksK4_QOGyJMN0dt55j7R7y1Ft-M22nmXQ-Z-SfybLTadsMPKZHr3PI_Zj69fbs4umqvr88uzz1eN63RbmqkjSaTUMCk7iMkPZLX1Fp1E53vbqtZpYXs3iVH02hMqGNXQCer60UpP3TH7uN9bE9cwuZiHkB3Ns420bLNBrXsEIVr9ClQpLUBJrOiHF-j9sk31yJWSSutO4EqpPeXSknMib1wodn1TqT-aDYJZ-zH7fkztx6z9GKgmvjAfU3iwafdfp907ubLxltJfmf4pPQHw86U9 |
CitedBy_id | crossref_primary_10_1007_s40030_021_00544_x crossref_primary_10_1007_s00704_023_04525_x crossref_primary_10_1007_s44288_024_00072_8 crossref_primary_10_1007_s00704_021_03683_0 crossref_primary_10_3390_rs14020261 crossref_primary_10_3390_w16182621 crossref_primary_10_1007_s40808_022_01668_0 crossref_primary_10_1016_j_jenvman_2020_110494 crossref_primary_10_1016_j_ejrh_2022_101291 crossref_primary_10_1007_s10661_022_10781_7 crossref_primary_10_1088_1755_1315_1374_1_012071 crossref_primary_10_5004_dwt_2021_26904 crossref_primary_10_1007_s43621_024_00262_x crossref_primary_10_1002_met_1793 crossref_primary_10_1016_j_heliyon_2023_e21578 crossref_primary_10_1016_j_jhydrol_2025_132959 crossref_primary_10_1016_j_ref_2022_03_006 crossref_primary_10_1590_0102_77863710069 crossref_primary_10_1016_j_ecolind_2022_109676 crossref_primary_10_1016_j_atmosres_2020_105221 crossref_primary_10_1016_j_scitotenv_2023_163528 crossref_primary_10_1016_j_ejrh_2022_101267 crossref_primary_10_1007_s00704_021_03594_0 crossref_primary_10_5004_dwt_2021_26397 crossref_primary_10_5004_dwt_2021_26556 crossref_primary_10_1007_s00704_022_04121_5 crossref_primary_10_3390_su151813647 crossref_primary_10_1007_s13571_024_00324_0 crossref_primary_10_1007_s12517_018_3553_z |
Cites_doi | 10.1016/0022-1694(93)90008-W 10.1007/s11069-016-2576-6 10.1146/annurev.es.04.110173.000325 10.1214/aos/1176343282 10.1007/978-1-4899-4541-9 10.1137/1021092 10.1007/s00704-008-0044-2 10.1016/j.jhydrol.2015.04.043 10.1007/s00477-013-0774-2 10.1016/j.jhydrol.2012.12.005 10.2166/wst.2002.0028 10.1016/j.jhydrol.2015.11.052 10.1016/j.ijsbe.2014.07.001 10.1007/s12517-015-1999-9 10.1007/s00477-010-0412-1 10.1002/2015WR017663 10.1080/02626669909492266 10.1016/0022-1694(84)90008-8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2016 Natural Hazards is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2016 – notice: Natural Hazards is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s11069-016-2687-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1573-0840 |
EndPage | 296 |
ExternalDocumentID | 4313541191 10_1007_s11069_016_2687_0 |
Genre | Feature |
GeographicLocations | Qatar |
GeographicLocations_xml | – name: Qatar |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6KP 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EIS EJD EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U SOI |
ID | FETCH-LOGICAL-c382t-d3e6ee779d7a95df9ea8afa1c61cf4a272c85a4cd5b548fe170b7935e34ba6fe3 |
IEDL.DBID | U2A |
ISSN | 0921-030X |
IngestDate | Fri Jul 11 06:41:05 EDT 2025 Fri Jul 11 08:30:20 EDT 2025 Fri Jul 25 18:58:13 EDT 2025 Tue Jul 01 02:43:14 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 21 02:32:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rainfall Boot strapping GEV Goodness-of-fit tests IDF |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-d3e6ee779d7a95df9ea8afa1c61cf4a272c85a4cd5b548fe170b7935e34ba6fe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1867883511 |
PQPubID | 54179 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1884105528 proquest_miscellaneous_1877850761 proquest_journals_1867883511 crossref_citationtrail_10_1007_s11069_016_2687_0 crossref_primary_10_1007_s11069_016_2687_0 springer_journals_10_1007_s11069_016_2687_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170300 2017-3-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | Journal of the International Society for the Prevention and Mitigation of Natural Hazards |
PublicationTitle | Natural hazards (Dordrecht) |
PublicationTitleAbbrev | Nat Hazards |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | TungYWongCAssessment of design rainfall uncertainty for hydrologic engineering applications in Hong KongStoch Environ Res Risk Assess20142858359210.1007/s00477-013-0774-2 QiWZhangCFuGZhouHImprecise probabilistic estimation of design floods with epistemic uncertaintiesWater Resour Res201610.1002/2015WR017663 BatanounyKHEcology and Flora of Qatar1981QatarUniversity of Qatar PhienHNAjirajahTJApplications of the log-Pearson type-3 distributions in hydrologyJ Hydrol19847335937210.1016/0022-1694(84)90008-8 ZalinaMDDesaMNMNguyenV-T-VKassimAHMSelecting a probability distribution for extreme rainfall series in MalaysiaWater Sci Technol2002452636810.2166/wst.2002.0028 EfronBBootstrap methods: another look at the jackknifeAnn Stat197931189124210.1214/aos/1176343282 KwakuSSDukeOCharacterization and frequency analysis of one day annual maximum and two to five consecutive days maximum rainfall of Accra, Ghana, ARPN J Eng Appl Sci2007252731 OlofintoyeOOSuleBFSalamiAWPhienHNAjirajahTJBest–fit probability distribution model for peak daily rainfall of selected cities in NigeriaN Y Sci J200923312 Tao DQ, Nguyen VT, Bourque A (2002). On selection of probability distributions for representing extreme precipitations in Southern Quebec. In: Annual conference of the Canadian Society for Civil Engineering, 5–8th June, p 1–8 SharmaMASinghJBUse of probability distribution in rainfall analysisN Y Sci J2010394049 OgunlelaAOStochastic analysis of rainfall events in Ilorin,NigeriaJ Agric Res Dev200113950 LeeCApplication of rainfall frequency analysis on studying rainfall distribution characteristics of Chia-nan plain in Southern TaiwanJ Crop Environ Bioinform200523138 Wan ZinWJemainAAIbrahimKThe best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-momentTheor Appl Climatol20089633734410.1007/s00704-008-0044-2 SubyaniAMAl-AmriNSIDF curves and daily rainfall generation for Al-Madinah city, western Saudi ArabiaArab J Geosci201510.1007/s12517-015-1999-9 MamoonAAJeorgensenNERahmanAQasemHDerivation of new design rainfall in Qatar using L-moments based index frequency approachInt J Sustain Built Environ2014311111810.1016/j.ijsbe.2014.07.001 BobeeBCavidasGAshkarFBernierJRasmussenPTowards a systematic approach to comparing distributions used in flood frequency analysisJ Hydrol199314212113610.1016/0022-1694(93)90008-W Noy-MeirIDesert ecosystems: environment and producersAnnu Rev Ecol Syst19734255110.1146/annurev.es.04.110173.000325 SenZEljadidAGRainfall distribution functions for libya and rainfall predictionHydrol Sci J19994566568010.1080/02626669909492266 MamoonAARahmanARainfall in Qatar: is it changing?Nat Hazards201610.1007/s11069-016-2576-6 FadhilahYZalinaMDNguyenV-T-VSuhailaSZulkifliYFitting the best fit distribution for the hourly rainfall amount in the Wilayah PersekutuanJ Teknol200746C4958 ZhangCChuJFuGSobols sensitivity analysis for a distributed hydrological model of Yichun River BasinChina J Hydrol20134801–4586810.1016/j.jhydrol.2012.12.005 HaddadKJohnsonFRahmanAKuczeraGGreenJComparing three methods to form regions for design rainfall statistics: two case studies in AustraliaJ Hydrol2015527627610.1016/j.jhydrol.2015.04.043 QiWZhangCFuGZhouHQuantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibrationJ Hydrol201653321322310.1016/j.jhydrol.2015.11.052 Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational hydrological report, No. 5/33, World Meteorological Organization (WMO), Geneva. EfronBComputers and theory of statistics: thinking the unthinkableSIAM Rev19792146048010.1137/1021092 Green J, Xuereb K, Johnson F, Moore G. (2012). The revised intensity–frequency–duration (IFD) design rainfall estimates for Australia—an overview. In: Proceeding of 34th hydrology and water resources symposium 19–22 November 2012, Sydney, Australia JohnsonFHaddadKRahmanAGreenJApplication of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 20122012SydneyAustralia HaddadKRahmanASelection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in AustraliaStoch Environ Res Risk Assess201010.1007/s00477-010-0412-1 EfronBTibshiraniRAn introduction to the bootstrap1993Boca RatonChapman & Hall/CRC10.1007/978-1-4899-4541-9 Tortorelli RL, Alan R, Asquith WH (1999). Depth-duration frequency of precipitation for Oklahoma, US geological survey. Water resources investigation report 99–4232 SS Kwaku (2687_CR13) 2007; 2 AO Ogunlela (2687_CR19) 2001; 1 Y Fadhilah (2687_CR7) 2007; 46 W Qi (2687_CR23) 2016 AA Mamoon (2687_CR15) 2016 K Haddad (2687_CR11) 2015; 527 C Zhang (2687_CR33) 2013; 480 AA Mamoon (2687_CR16) 2014; 3 W Qi (2687_CR22) 2016; 533 HN Phien (2687_CR21) 1984; 73 AM Subyani (2687_CR27) 2015 2687_CR29 2687_CR28 B Efron (2687_CR4) 1979; 3 Y Tung (2687_CR30) 2014; 28 2687_CR8 2687_CR3 OO Olofintoye (2687_CR20) 2009; 2 B Efron (2687_CR6) 1993 W Wan Zin (2687_CR31) 2008; 96 K Haddad (2687_CR9) 2010 B Bobee (2687_CR2) 1993; 142 MD Zalina (2687_CR32) 2002; 45 F Johnson (2687_CR12) 2012 B Efron (2687_CR5) 1979; 21 I Noy-Meir (2687_CR18) 1973; 4 C Lee (2687_CR14) 2005; 2 KH Batanouny (2687_CR1) 1981 Z Sen (2687_CR24) 1999; 4 MA Sharma (2687_CR25) 2010; 3 |
References_xml | – reference: MamoonAARahmanARainfall in Qatar: is it changing?Nat Hazards201610.1007/s11069-016-2576-6 – reference: MamoonAAJeorgensenNERahmanAQasemHDerivation of new design rainfall in Qatar using L-moments based index frequency approachInt J Sustain Built Environ2014311111810.1016/j.ijsbe.2014.07.001 – reference: HaddadKRahmanASelection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in AustraliaStoch Environ Res Risk Assess201010.1007/s00477-010-0412-1 – reference: EfronBBootstrap methods: another look at the jackknifeAnn Stat197931189124210.1214/aos/1176343282 – reference: OlofintoyeOOSuleBFSalamiAWPhienHNAjirajahTJBest–fit probability distribution model for peak daily rainfall of selected cities in NigeriaN Y Sci J200923312 – reference: TungYWongCAssessment of design rainfall uncertainty for hydrologic engineering applications in Hong KongStoch Environ Res Risk Assess20142858359210.1007/s00477-013-0774-2 – reference: JohnsonFHaddadKRahmanAGreenJApplication of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 20122012SydneyAustralia – reference: Wan ZinWJemainAAIbrahimKThe best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-momentTheor Appl Climatol20089633734410.1007/s00704-008-0044-2 – reference: OgunlelaAOStochastic analysis of rainfall events in Ilorin,NigeriaJ Agric Res Dev200113950 – reference: EfronBTibshiraniRAn introduction to the bootstrap1993Boca RatonChapman & Hall/CRC10.1007/978-1-4899-4541-9 – reference: Noy-MeirIDesert ecosystems: environment and producersAnnu Rev Ecol Syst19734255110.1146/annurev.es.04.110173.000325 – reference: SenZEljadidAGRainfall distribution functions for libya and rainfall predictionHydrol Sci J19994566568010.1080/02626669909492266 – reference: Tortorelli RL, Alan R, Asquith WH (1999). Depth-duration frequency of precipitation for Oklahoma, US geological survey. Water resources investigation report 99–4232 – reference: EfronBComputers and theory of statistics: thinking the unthinkableSIAM Rev19792146048010.1137/1021092 – reference: BatanounyKHEcology and Flora of Qatar1981QatarUniversity of Qatar – reference: SharmaMASinghJBUse of probability distribution in rainfall analysisN Y Sci J2010394049 – reference: ZhangCChuJFuGSobols sensitivity analysis for a distributed hydrological model of Yichun River BasinChina J Hydrol20134801–4586810.1016/j.jhydrol.2012.12.005 – reference: Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational hydrological report, No. 5/33, World Meteorological Organization (WMO), Geneva. – reference: Green J, Xuereb K, Johnson F, Moore G. (2012). The revised intensity–frequency–duration (IFD) design rainfall estimates for Australia—an overview. In: Proceeding of 34th hydrology and water resources symposium 19–22 November 2012, Sydney, Australia – reference: BobeeBCavidasGAshkarFBernierJRasmussenPTowards a systematic approach to comparing distributions used in flood frequency analysisJ Hydrol199314212113610.1016/0022-1694(93)90008-W – reference: SubyaniAMAl-AmriNSIDF curves and daily rainfall generation for Al-Madinah city, western Saudi ArabiaArab J Geosci201510.1007/s12517-015-1999-9 – reference: PhienHNAjirajahTJApplications of the log-Pearson type-3 distributions in hydrologyJ Hydrol19847335937210.1016/0022-1694(84)90008-8 – reference: ZalinaMDDesaMNMNguyenV-T-VKassimAHMSelecting a probability distribution for extreme rainfall series in MalaysiaWater Sci Technol2002452636810.2166/wst.2002.0028 – reference: HaddadKJohnsonFRahmanAKuczeraGGreenJComparing three methods to form regions for design rainfall statistics: two case studies in AustraliaJ Hydrol2015527627610.1016/j.jhydrol.2015.04.043 – reference: QiWZhangCFuGZhouHQuantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibrationJ Hydrol201653321322310.1016/j.jhydrol.2015.11.052 – reference: Tao DQ, Nguyen VT, Bourque A (2002). On selection of probability distributions for representing extreme precipitations in Southern Quebec. In: Annual conference of the Canadian Society for Civil Engineering, 5–8th June, p 1–8 – reference: FadhilahYZalinaMDNguyenV-T-VSuhailaSZulkifliYFitting the best fit distribution for the hourly rainfall amount in the Wilayah PersekutuanJ Teknol200746C4958 – reference: LeeCApplication of rainfall frequency analysis on studying rainfall distribution characteristics of Chia-nan plain in Southern TaiwanJ Crop Environ Bioinform200523138 – reference: KwakuSSDukeOCharacterization and frequency analysis of one day annual maximum and two to five consecutive days maximum rainfall of Accra, Ghana, ARPN J Eng Appl Sci2007252731 – reference: QiWZhangCFuGZhouHImprecise probabilistic estimation of design floods with epistemic uncertaintiesWater Resour Res201610.1002/2015WR017663 – volume: 142 start-page: 121 year: 1993 ident: 2687_CR2 publication-title: J Hydrol doi: 10.1016/0022-1694(93)90008-W – year: 2016 ident: 2687_CR15 publication-title: Nat Hazards doi: 10.1007/s11069-016-2576-6 – volume: 4 start-page: 25 year: 1973 ident: 2687_CR18 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.04.110173.000325 – volume: 2 start-page: 3 issue: 3 year: 2009 ident: 2687_CR20 publication-title: N Y Sci J – ident: 2687_CR8 – ident: 2687_CR29 – volume: 3 start-page: 1189 year: 1979 ident: 2687_CR4 publication-title: Ann Stat doi: 10.1214/aos/1176343282 – volume-title: An introduction to the bootstrap year: 1993 ident: 2687_CR6 doi: 10.1007/978-1-4899-4541-9 – volume: 21 start-page: 460 year: 1979 ident: 2687_CR5 publication-title: SIAM Rev doi: 10.1137/1021092 – volume: 96 start-page: 337 year: 2008 ident: 2687_CR31 publication-title: Theor Appl Climatol doi: 10.1007/s00704-008-0044-2 – volume-title: Ecology and Flora of Qatar year: 1981 ident: 2687_CR1 – volume: 527 start-page: 62 year: 2015 ident: 2687_CR11 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.04.043 – volume: 1 start-page: 39 year: 2001 ident: 2687_CR19 publication-title: J Agric Res Dev – volume: 28 start-page: 583 year: 2014 ident: 2687_CR30 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-013-0774-2 – volume: 480 start-page: 58 issue: 1–4 year: 2013 ident: 2687_CR33 publication-title: China J Hydrol doi: 10.1016/j.jhydrol.2012.12.005 – volume: 45 start-page: 63 issue: 2 year: 2002 ident: 2687_CR32 publication-title: Water Sci Technol doi: 10.2166/wst.2002.0028 – volume: 46 start-page: 49 issue: C year: 2007 ident: 2687_CR7 publication-title: J Teknol – volume: 533 start-page: 213 year: 2016 ident: 2687_CR22 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.11.052 – volume: 3 start-page: 40 issue: 9 year: 2010 ident: 2687_CR25 publication-title: N Y Sci J – ident: 2687_CR3 – volume: 2 start-page: 27 issue: 5 year: 2007 ident: 2687_CR13 publication-title: J Eng Appl Sci – volume: 3 start-page: 111 year: 2014 ident: 2687_CR16 publication-title: Int J Sustain Built Environ doi: 10.1016/j.ijsbe.2014.07.001 – volume: 2 start-page: 31 year: 2005 ident: 2687_CR14 publication-title: J Crop Environ Bioinform – year: 2015 ident: 2687_CR27 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1999-9 – ident: 2687_CR28 – year: 2010 ident: 2687_CR9 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-010-0412-1 – volume-title: Application of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 2012 year: 2012 ident: 2687_CR12 – year: 2016 ident: 2687_CR23 publication-title: Water Resour Res doi: 10.1002/2015WR017663 – volume: 4 start-page: 665 issue: 5 year: 1999 ident: 2687_CR24 publication-title: Hydrol Sci J doi: 10.1080/02626669909492266 – volume: 73 start-page: 359 year: 1984 ident: 2687_CR21 publication-title: J Hydrol doi: 10.1016/0022-1694(84)90008-8 |
SSID | ssj0011629 |
Score | 2.2951095 |
Snippet | Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 281 |
SubjectTerms | Bootstrap method Civil Engineering Design Design analysis Design engineering Drainage systems Earth and Environmental Science Earth Sciences Environmental Management Estimates Frequency analysis Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrologic data Natural Hazards Original Paper Probability distribution Quantiles Rain Rainfall Sensitivity analysis Skewness Stations Urban drainage Urban planning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS-QwFA7u-OC-yHpZdtxRIvikFNu0ufRpUVFEULzCgA_lJE1QGDo61of595vTpjMqOM9N23BOTnJu-T5C9iToPDZSRxlIHmWlFhEYzIgZURoXm5Q3Cf3LK3H-kF0M-TAk3N5CW2W3JzYbdTk2mCM_ROA1pbDs9e_lNULWKKyuBgqNH2TZb8HKB1_Lx6dX17ezOkIiWIu2x7BxKB52dc3m8pyPhrBXSERMeEuLP59Mc3fzS4W0OXjOfpHV4DHSo1bFa2TJVutkJZCXP003yONdw2XjBUzHjnqHjmr_Reqea4p0MS0Q95SWCJEb2K3oc0WRG8LBaETdpG2nnlIICCXUe7L0BmqYbJKHs9P7k_MocCZEJlWsjsrUCmulzEsJOS9dbkGBg8SIxLgMmGRGcchMybWPVZxNZKy9iXKbZhqEs-lv0qvGlf1DKBdZIhNrcsNNllsNHJwPjrzWhXVM6D6JO3kVJgCKI6_FqJhDIaOIC2wiQxEXcZ_sz155adE0Fg0edEoogmG9FfNl0Ce7s8feJLDOAZUdv-MYKRXHBM2iMQobXDlTfXLQKfjDb76b1NbiSf0lPxme-02T2oD06sm73fZeS613wtL8D_TH6vg priority: 102 providerName: ProQuest |
Title | Selection of the best fit probability distribution in rainfall frequency analysis for Qatar |
URI | https://link.springer.com/article/10.1007/s11069-016-2687-0 https://www.proquest.com/docview/1867883511 https://www.proquest.com/docview/1877850761 https://www.proquest.com/docview/1884105528 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7S5NBeQpuk1E1qttBTgkBaaR862sVOaKnpy-DSg5hd7ZKAkYujHPzvu6OH3ZYmkJMOGq3EzI52Zmf2-wDeKTR5bJWJMlQiykojI7S0I2ZlaX1sU9Fs6H-ayat59mEhFt057tu-270vSTZ_6t1ht5C9UG-PjLgMnhHy9ANBqXuYxHM-2pYOEslbgD1OvULxoi9l_m-IvxejXYT5T1G0WWumz-GwCxLZqLXqC9hz1RE87fjKrzfH8PNbQ18TdMpWnoUYjpkwIvM3NSOGmBZ7e8NKQsXtCK3YTcWIDsLjcsn8uu2g3jDsQElYCF7ZF6xxfQLz6eT7-6uoo0mIbKp5HZWpk84plZcKc1H63KFGj4mVifUZcsWtFpjZUpiQnniXqNgErxQuzQxK79KXsF-tKvcKmJBZohJncytsljuDAn3Ih4KhpfNcmgHEvb4K22GIE5XFstihH5OKC-obIxUX8QDOt4_8agE0HhI-641QdL50WxDkntZU8BzA2-3t4AVU2sDKre5IRiktaE_mIRlNPa2C6wFc9Ab-4zX3fdTrR0mfwjNOK3_TpnYG-_X6zr0JcUtthvBETy-HcDCajsczul7--DgJ1_Fk9vnrsJnFvwFaqeuj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDASXEARieNXDgghYNnSh4RopZU4hLFjq5VW2bJNhfZP8Rvx5LELSOyt5zhONA97PDP-PoDnGm2ROm0TgVomorIqQUcZMacqF1KXyzahf3ikJifi81ROt-DXcBeG2iqHNbFdqKu5oxz5awJeM4bKXm_PfyTEGkXV1YFCozOLfb_8GY9sF2_2PkT9vuB8_PH4_STpWQUSlxveJFXulfdaF5XGQlah8GgwYOZU5oJArrkzEoWrpI3RfPCZTm00YulzYVEFn8d5r8F1kecFeZQZf1pVLTLFO2w_Tm1K6XSoorZX9eLZizqTVMJV9Ov0731wHdz-U49tt7nxLbjZx6fsXWdQt2HL13dgp6dKP13ehW9fW-acqE42DyyGj8zGGVk4axiR03Sw30tWESBvz6XFzmpGTBQBZzMWFl3z9pJhj4fCYtzMvmCDi3twciWyvA_b9bz2D4BJJTKdeVc46UThLUoM8SgWbUz5wJUdQTrIq3Q9fDmxaMzKNfAyibikljUScZmO4OXqlfMOu2PT4N1BCWXvxhfl2uhG8Gz1ODogVVWw9vNLGqO1kZQO2jTGUDut5GYErwYF__GZ__3Uw80_9RR2JseHB-XB3tH-I7jBKeJo2-N2YbtZXPrHMV5q7JPWSBl8v2qv-A1VBii7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xpYCR4AKKmjixnRwQAtpVS2FVHpVW6iHYji0qrbLtNhXav8avYyZxdgGJvfUcx4k8M_a8_H0Az5U2RWyViTKtRJRVRkbaUkbMysr62KaiTeh_Gsv94-zDREw24Fd_F4baKvs9sd2oq5mlHPkOAa_lOZW9dnxoizjaHb05O4-IQYoqrT2dRqcih27xE8O3i9cHuyjrF5yP9r69348Cw0Bk05w3UZU66ZxSRaV0ISpfOJ1rrxMrE-szzRW3udCZrYRBz967RMUGFVq4NDNaepfivNdgU2FUFA9g893e-OjLsoaRSN4h_XFqWoonfU21vbiHkRj1KcmIS7Ty-O9TceXq_lOdbQ-90W24FbxV9rZTrzuw4eq7cCMQp_9Y3IOTry2PDgqXzTxDZ5IZnJH504YRVU0HAr5gFcHzBmYtdloz4qXwejplft61ci-YDugoDL1o9lk3en4fjq9kNR_AoJ7V7iEwIbNEJc4WVtiscEYL7TEwQ42TznNphhD361XaAGZOnBrTcgXDTEtcUgMbLXEZD-Hl8pWzDslj3eDtXghlMOqLcqWCQ3i2fIzmSDUWXbvZJY1RKheUHFo3JqfmWsHzIbzqBfzHZ_73U1vrf-opXEeLKD8ejA8fwU1O7kfbK7cNg2Z-6R6j89SYJ0FLGXy_asP4DfpYLk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+the+best+fit+probability+distribution+in+rainfall+frequency+analysis+for+Qatar&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Mamoon%2C+Abdullah+Al&rft.au=Rahman%2C+Ataur&rft.date=2017-03-01&rft.pub=Springer+Netherlands&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=86&rft.issue=1&rft.spage=281&rft.epage=296&rft_id=info:doi/10.1007%2Fs11069-016-2687-0&rft.externalDocID=10_1007_s11069_016_2687_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon |