Selection of the best fit probability distribution in rainfall frequency analysis for Qatar

Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards (Dordrecht) Vol. 86; no. 1; pp. 281 - 296
Main Authors Mamoon, Abdullah Al, Rahman, Ataur
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24–49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov–Smirnov, Anderson–Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar.
AbstractList Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24-49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov-Smirnov, Anderson-Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar.
Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of the primary steps is the selection of a suitable probability distribution that fits the observed rainfall data adequately. This study examines the selection of the best fit probability distribution in design rainfall estimation. The annual maximum (AM) rainfall data from 29 rainfall stations in Qatar are used in this study. The rainfall record lengths of these stations are in the range of 24–49 years (average of 36 years). Fourteen different distributions and three goodness-of-fit tests (Kolmogorov–Smirnov, Anderson–Darling and Chi-squared) are considered. Based on a relative scoring method, the GEV distribution is found to be the best fit distribution. Results from bootstrapping and simulation analyses show that sample estimates of skewness of the AM rainfall series are subject to a higher degree of sensitivity to data length compared with standard deviation and mean as expected. Since the rainfall quantile estimates of higher return periods are greatly influenced by skewness, a longer data length is needed in reducing the uncertainty in rainfall quantile estimates for higher return periods, which is currently unavailable in Qatar.
Author Mamoon, Abdullah Al
Rahman, Ataur
Author_xml – sequence: 1
  givenname: Abdullah Al
  surname: Mamoon
  fullname: Mamoon, Abdullah Al
  organization: Ministry of Municipality and Environment, School of Computing, Engineering and Mathematics, Western Sydney University
– sequence: 2
  givenname: Ataur
  surname: Rahman
  fullname: Rahman, Ataur
  email: a.rahman@westernsydney.edu.au
  organization: School of Computing, Engineering and Mathematics, Western Sydney University
BookMark eNqNkU1LHTEUhkNR6FX7A7oLdNPN2HNmJh-zLNKqIEiphUIXIZM50ciYsUnu4v57M70uitDi6mye5_Ce8x6xg7hEYuw9wikCqE8ZEeTQAMqmlVo18IZtUKiuAd3DAdvA0GIDHfx8y45yvgdAlO2wYb--00yuhCXyxfNyR3ykXLgPhT-mZbRjmEPZ8SnkksK4_QOGyJMN0dt55j7R7y1Ft-M22nmXQ-Z-SfybLTadsMPKZHr3PI_Zj69fbs4umqvr88uzz1eN63RbmqkjSaTUMCk7iMkPZLX1Fp1E53vbqtZpYXs3iVH02hMqGNXQCer60UpP3TH7uN9bE9cwuZiHkB3Ns420bLNBrXsEIVr9ClQpLUBJrOiHF-j9sk31yJWSSutO4EqpPeXSknMib1wodn1TqT-aDYJZ-zH7fkztx6z9GKgmvjAfU3iwafdfp907ubLxltJfmf4pPQHw86U9
CitedBy_id crossref_primary_10_1007_s40030_021_00544_x
crossref_primary_10_1007_s00704_023_04525_x
crossref_primary_10_1007_s44288_024_00072_8
crossref_primary_10_1007_s00704_021_03683_0
crossref_primary_10_3390_rs14020261
crossref_primary_10_3390_w16182621
crossref_primary_10_1007_s40808_022_01668_0
crossref_primary_10_1016_j_jenvman_2020_110494
crossref_primary_10_1016_j_ejrh_2022_101291
crossref_primary_10_1007_s10661_022_10781_7
crossref_primary_10_1088_1755_1315_1374_1_012071
crossref_primary_10_5004_dwt_2021_26904
crossref_primary_10_1007_s43621_024_00262_x
crossref_primary_10_1002_met_1793
crossref_primary_10_1016_j_heliyon_2023_e21578
crossref_primary_10_1016_j_jhydrol_2025_132959
crossref_primary_10_1016_j_ref_2022_03_006
crossref_primary_10_1590_0102_77863710069
crossref_primary_10_1016_j_ecolind_2022_109676
crossref_primary_10_1016_j_atmosres_2020_105221
crossref_primary_10_1016_j_scitotenv_2023_163528
crossref_primary_10_1016_j_ejrh_2022_101267
crossref_primary_10_1007_s00704_021_03594_0
crossref_primary_10_5004_dwt_2021_26397
crossref_primary_10_5004_dwt_2021_26556
crossref_primary_10_1007_s00704_022_04121_5
crossref_primary_10_3390_su151813647
crossref_primary_10_1007_s13571_024_00324_0
crossref_primary_10_1007_s12517_018_3553_z
Cites_doi 10.1016/0022-1694(93)90008-W
10.1007/s11069-016-2576-6
10.1146/annurev.es.04.110173.000325
10.1214/aos/1176343282
10.1007/978-1-4899-4541-9
10.1137/1021092
10.1007/s00704-008-0044-2
10.1016/j.jhydrol.2015.04.043
10.1007/s00477-013-0774-2
10.1016/j.jhydrol.2012.12.005
10.2166/wst.2002.0028
10.1016/j.jhydrol.2015.11.052
10.1016/j.ijsbe.2014.07.001
10.1007/s12517-015-1999-9
10.1007/s00477-010-0412-1
10.1002/2015WR017663
10.1080/02626669909492266
10.1016/0022-1694(84)90008-8
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2016
Natural Hazards is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2016
– notice: Natural Hazards is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s11069-016-2687-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1573-0840
EndPage 296
ExternalDocumentID 4313541191
10_1007_s11069_016_2687_0
Genre Feature
GeographicLocations Qatar
GeographicLocations_xml – name: Qatar
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6KP
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDH
EIOEI
EIS
EJD
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7TG
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c382t-d3e6ee779d7a95df9ea8afa1c61cf4a272c85a4cd5b548fe170b7935e34ba6fe3
IEDL.DBID U2A
ISSN 0921-030X
IngestDate Fri Jul 11 06:41:05 EDT 2025
Fri Jul 11 08:30:20 EDT 2025
Fri Jul 25 18:58:13 EDT 2025
Tue Jul 01 02:43:14 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 21 02:32:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rainfall
Boot strapping
GEV
Goodness-of-fit tests
IDF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d3e6ee779d7a95df9ea8afa1c61cf4a272c85a4cd5b548fe170b7935e34ba6fe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1867883511
PQPubID 54179
PageCount 16
ParticipantIDs proquest_miscellaneous_1884105528
proquest_miscellaneous_1877850761
proquest_journals_1867883511
crossref_citationtrail_10_1007_s11069_016_2687_0
crossref_primary_10_1007_s11069_016_2687_0
springer_journals_10_1007_s11069_016_2687_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Journal of the International Society for the Prevention and Mitigation of Natural Hazards
PublicationTitle Natural hazards (Dordrecht)
PublicationTitleAbbrev Nat Hazards
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References TungYWongCAssessment of design rainfall uncertainty for hydrologic engineering applications in Hong KongStoch Environ Res Risk Assess20142858359210.1007/s00477-013-0774-2
QiWZhangCFuGZhouHImprecise probabilistic estimation of design floods with epistemic uncertaintiesWater Resour Res201610.1002/2015WR017663
BatanounyKHEcology and Flora of Qatar1981QatarUniversity of Qatar
PhienHNAjirajahTJApplications of the log-Pearson type-3 distributions in hydrologyJ Hydrol19847335937210.1016/0022-1694(84)90008-8
ZalinaMDDesaMNMNguyenV-T-VKassimAHMSelecting a probability distribution for extreme rainfall series in MalaysiaWater Sci Technol2002452636810.2166/wst.2002.0028
EfronBBootstrap methods: another look at the jackknifeAnn Stat197931189124210.1214/aos/1176343282
KwakuSSDukeOCharacterization and frequency analysis of one day annual maximum and two to five consecutive days maximum rainfall of Accra, Ghana, ARPN J Eng Appl Sci2007252731
OlofintoyeOOSuleBFSalamiAWPhienHNAjirajahTJBest–fit probability distribution model for peak daily rainfall of selected cities in NigeriaN Y Sci J200923312
Tao DQ, Nguyen VT, Bourque A (2002). On selection of probability distributions for representing extreme precipitations in Southern Quebec. In: Annual conference of the Canadian Society for Civil Engineering, 5–8th June, p 1–8
SharmaMASinghJBUse of probability distribution in rainfall analysisN Y Sci J2010394049
OgunlelaAOStochastic analysis of rainfall events in Ilorin,NigeriaJ Agric Res Dev200113950
LeeCApplication of rainfall frequency analysis on studying rainfall distribution characteristics of Chia-nan plain in Southern TaiwanJ Crop Environ Bioinform200523138
Wan ZinWJemainAAIbrahimKThe best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-momentTheor Appl Climatol20089633734410.1007/s00704-008-0044-2
SubyaniAMAl-AmriNSIDF curves and daily rainfall generation for Al-Madinah city, western Saudi ArabiaArab J Geosci201510.1007/s12517-015-1999-9
MamoonAAJeorgensenNERahmanAQasemHDerivation of new design rainfall in Qatar using L-moments based index frequency approachInt J Sustain Built Environ2014311111810.1016/j.ijsbe.2014.07.001
BobeeBCavidasGAshkarFBernierJRasmussenPTowards a systematic approach to comparing distributions used in flood frequency analysisJ Hydrol199314212113610.1016/0022-1694(93)90008-W
Noy-MeirIDesert ecosystems: environment and producersAnnu Rev Ecol Syst19734255110.1146/annurev.es.04.110173.000325
SenZEljadidAGRainfall distribution functions for libya and rainfall predictionHydrol Sci J19994566568010.1080/02626669909492266
MamoonAARahmanARainfall in Qatar: is it changing?Nat Hazards201610.1007/s11069-016-2576-6
FadhilahYZalinaMDNguyenV-T-VSuhailaSZulkifliYFitting the best fit distribution for the hourly rainfall amount in the Wilayah PersekutuanJ Teknol200746C4958
ZhangCChuJFuGSobols sensitivity analysis for a distributed hydrological model of Yichun River BasinChina J Hydrol20134801–4586810.1016/j.jhydrol.2012.12.005
HaddadKJohnsonFRahmanAKuczeraGGreenJComparing three methods to form regions for design rainfall statistics: two case studies in AustraliaJ Hydrol2015527627610.1016/j.jhydrol.2015.04.043
QiWZhangCFuGZhouHQuantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibrationJ Hydrol201653321322310.1016/j.jhydrol.2015.11.052
Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational hydrological report, No. 5/33, World Meteorological Organization (WMO), Geneva.
EfronBComputers and theory of statistics: thinking the unthinkableSIAM Rev19792146048010.1137/1021092
Green J, Xuereb K, Johnson F, Moore G. (2012). The revised intensity–frequency–duration (IFD) design rainfall estimates for Australia—an overview. In: Proceeding of 34th hydrology and water resources symposium 19–22 November 2012, Sydney, Australia
JohnsonFHaddadKRahmanAGreenJApplication of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 20122012SydneyAustralia
HaddadKRahmanASelection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in AustraliaStoch Environ Res Risk Assess201010.1007/s00477-010-0412-1
EfronBTibshiraniRAn introduction to the bootstrap1993Boca RatonChapman & Hall/CRC10.1007/978-1-4899-4541-9
Tortorelli RL, Alan R, Asquith WH (1999). Depth-duration frequency of precipitation for Oklahoma, US geological survey. Water resources investigation report 99–4232
SS Kwaku (2687_CR13) 2007; 2
AO Ogunlela (2687_CR19) 2001; 1
Y Fadhilah (2687_CR7) 2007; 46
W Qi (2687_CR23) 2016
AA Mamoon (2687_CR15) 2016
K Haddad (2687_CR11) 2015; 527
C Zhang (2687_CR33) 2013; 480
AA Mamoon (2687_CR16) 2014; 3
W Qi (2687_CR22) 2016; 533
HN Phien (2687_CR21) 1984; 73
AM Subyani (2687_CR27) 2015
2687_CR29
2687_CR28
B Efron (2687_CR4) 1979; 3
Y Tung (2687_CR30) 2014; 28
2687_CR8
2687_CR3
OO Olofintoye (2687_CR20) 2009; 2
B Efron (2687_CR6) 1993
W Wan Zin (2687_CR31) 2008; 96
K Haddad (2687_CR9) 2010
B Bobee (2687_CR2) 1993; 142
MD Zalina (2687_CR32) 2002; 45
F Johnson (2687_CR12) 2012
B Efron (2687_CR5) 1979; 21
I Noy-Meir (2687_CR18) 1973; 4
C Lee (2687_CR14) 2005; 2
KH Batanouny (2687_CR1) 1981
Z Sen (2687_CR24) 1999; 4
MA Sharma (2687_CR25) 2010; 3
References_xml – reference: MamoonAARahmanARainfall in Qatar: is it changing?Nat Hazards201610.1007/s11069-016-2576-6
– reference: MamoonAAJeorgensenNERahmanAQasemHDerivation of new design rainfall in Qatar using L-moments based index frequency approachInt J Sustain Built Environ2014311111810.1016/j.ijsbe.2014.07.001
– reference: HaddadKRahmanASelection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in AustraliaStoch Environ Res Risk Assess201010.1007/s00477-010-0412-1
– reference: EfronBBootstrap methods: another look at the jackknifeAnn Stat197931189124210.1214/aos/1176343282
– reference: OlofintoyeOOSuleBFSalamiAWPhienHNAjirajahTJBest–fit probability distribution model for peak daily rainfall of selected cities in NigeriaN Y Sci J200923312
– reference: TungYWongCAssessment of design rainfall uncertainty for hydrologic engineering applications in Hong KongStoch Environ Res Risk Assess20142858359210.1007/s00477-013-0774-2
– reference: JohnsonFHaddadKRahmanAGreenJApplication of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 20122012SydneyAustralia
– reference: Wan ZinWJemainAAIbrahimKThe best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-momentTheor Appl Climatol20089633734410.1007/s00704-008-0044-2
– reference: OgunlelaAOStochastic analysis of rainfall events in Ilorin,NigeriaJ Agric Res Dev200113950
– reference: EfronBTibshiraniRAn introduction to the bootstrap1993Boca RatonChapman & Hall/CRC10.1007/978-1-4899-4541-9
– reference: Noy-MeirIDesert ecosystems: environment and producersAnnu Rev Ecol Syst19734255110.1146/annurev.es.04.110173.000325
– reference: SenZEljadidAGRainfall distribution functions for libya and rainfall predictionHydrol Sci J19994566568010.1080/02626669909492266
– reference: Tortorelli RL, Alan R, Asquith WH (1999). Depth-duration frequency of precipitation for Oklahoma, US geological survey. Water resources investigation report 99–4232
– reference: EfronBComputers and theory of statistics: thinking the unthinkableSIAM Rev19792146048010.1137/1021092
– reference: BatanounyKHEcology and Flora of Qatar1981QatarUniversity of Qatar
– reference: SharmaMASinghJBUse of probability distribution in rainfall analysisN Y Sci J2010394049
– reference: ZhangCChuJFuGSobols sensitivity analysis for a distributed hydrological model of Yichun River BasinChina J Hydrol20134801–4586810.1016/j.jhydrol.2012.12.005
– reference: Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational hydrological report, No. 5/33, World Meteorological Organization (WMO), Geneva.
– reference: Green J, Xuereb K, Johnson F, Moore G. (2012). The revised intensity–frequency–duration (IFD) design rainfall estimates for Australia—an overview. In: Proceeding of 34th hydrology and water resources symposium 19–22 November 2012, Sydney, Australia
– reference: BobeeBCavidasGAshkarFBernierJRasmussenPTowards a systematic approach to comparing distributions used in flood frequency analysisJ Hydrol199314212113610.1016/0022-1694(93)90008-W
– reference: SubyaniAMAl-AmriNSIDF curves and daily rainfall generation for Al-Madinah city, western Saudi ArabiaArab J Geosci201510.1007/s12517-015-1999-9
– reference: PhienHNAjirajahTJApplications of the log-Pearson type-3 distributions in hydrologyJ Hydrol19847335937210.1016/0022-1694(84)90008-8
– reference: ZalinaMDDesaMNMNguyenV-T-VKassimAHMSelecting a probability distribution for extreme rainfall series in MalaysiaWater Sci Technol2002452636810.2166/wst.2002.0028
– reference: HaddadKJohnsonFRahmanAKuczeraGGreenJComparing three methods to form regions for design rainfall statistics: two case studies in AustraliaJ Hydrol2015527627610.1016/j.jhydrol.2015.04.043
– reference: QiWZhangCFuGZhouHQuantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibrationJ Hydrol201653321322310.1016/j.jhydrol.2015.11.052
– reference: Tao DQ, Nguyen VT, Bourque A (2002). On selection of probability distributions for representing extreme precipitations in Southern Quebec. In: Annual conference of the Canadian Society for Civil Engineering, 5–8th June, p 1–8
– reference: FadhilahYZalinaMDNguyenV-T-VSuhailaSZulkifliYFitting the best fit distribution for the hourly rainfall amount in the Wilayah PersekutuanJ Teknol200746C4958
– reference: LeeCApplication of rainfall frequency analysis on studying rainfall distribution characteristics of Chia-nan plain in Southern TaiwanJ Crop Environ Bioinform200523138
– reference: KwakuSSDukeOCharacterization and frequency analysis of one day annual maximum and two to five consecutive days maximum rainfall of Accra, Ghana, ARPN J Eng Appl Sci2007252731
– reference: QiWZhangCFuGZhouHImprecise probabilistic estimation of design floods with epistemic uncertaintiesWater Resour Res201610.1002/2015WR017663
– volume: 142
  start-page: 121
  year: 1993
  ident: 2687_CR2
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(93)90008-W
– year: 2016
  ident: 2687_CR15
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2576-6
– volume: 4
  start-page: 25
  year: 1973
  ident: 2687_CR18
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.es.04.110173.000325
– volume: 2
  start-page: 3
  issue: 3
  year: 2009
  ident: 2687_CR20
  publication-title: N Y Sci J
– ident: 2687_CR8
– ident: 2687_CR29
– volume: 3
  start-page: 1189
  year: 1979
  ident: 2687_CR4
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343282
– volume-title: An introduction to the bootstrap
  year: 1993
  ident: 2687_CR6
  doi: 10.1007/978-1-4899-4541-9
– volume: 21
  start-page: 460
  year: 1979
  ident: 2687_CR5
  publication-title: SIAM Rev
  doi: 10.1137/1021092
– volume: 96
  start-page: 337
  year: 2008
  ident: 2687_CR31
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-008-0044-2
– volume-title: Ecology and Flora of Qatar
  year: 1981
  ident: 2687_CR1
– volume: 527
  start-page: 62
  year: 2015
  ident: 2687_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.04.043
– volume: 1
  start-page: 39
  year: 2001
  ident: 2687_CR19
  publication-title: J Agric Res Dev
– volume: 28
  start-page: 583
  year: 2014
  ident: 2687_CR30
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-013-0774-2
– volume: 480
  start-page: 58
  issue: 1–4
  year: 2013
  ident: 2687_CR33
  publication-title: China J Hydrol
  doi: 10.1016/j.jhydrol.2012.12.005
– volume: 45
  start-page: 63
  issue: 2
  year: 2002
  ident: 2687_CR32
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2002.0028
– volume: 46
  start-page: 49
  issue: C
  year: 2007
  ident: 2687_CR7
  publication-title: J Teknol
– volume: 533
  start-page: 213
  year: 2016
  ident: 2687_CR22
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.11.052
– volume: 3
  start-page: 40
  issue: 9
  year: 2010
  ident: 2687_CR25
  publication-title: N Y Sci J
– ident: 2687_CR3
– volume: 2
  start-page: 27
  issue: 5
  year: 2007
  ident: 2687_CR13
  publication-title: J Eng Appl Sci
– volume: 3
  start-page: 111
  year: 2014
  ident: 2687_CR16
  publication-title: Int J Sustain Built Environ
  doi: 10.1016/j.ijsbe.2014.07.001
– volume: 2
  start-page: 31
  year: 2005
  ident: 2687_CR14
  publication-title: J Crop Environ Bioinform
– year: 2015
  ident: 2687_CR27
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1999-9
– ident: 2687_CR28
– year: 2010
  ident: 2687_CR9
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-010-0412-1
– volume-title: Application of Bayesian GLSR to estimate sub-daily rainfall parameters for the IDF revision project, hydrology and water resources symposium, 19–22 Nov 2012
  year: 2012
  ident: 2687_CR12
– year: 2016
  ident: 2687_CR23
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017663
– volume: 4
  start-page: 665
  issue: 5
  year: 1999
  ident: 2687_CR24
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669909492266
– volume: 73
  start-page: 359
  year: 1984
  ident: 2687_CR21
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(84)90008-8
SSID ssj0011629
Score 2.2951095
Snippet Design rainfall is widely used in urban infrastructure planning and design such as culverts and urban drainage systems. In design rainfall estimation, one of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Bootstrap method
Civil Engineering
Design
Design analysis
Design engineering
Drainage systems
Earth and Environmental Science
Earth Sciences
Environmental Management
Estimates
Frequency analysis
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Natural Hazards
Original Paper
Probability distribution
Quantiles
Rain
Rainfall
Sensitivity analysis
Skewness
Stations
Urban drainage
Urban planning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS-QwFA7u-OC-yHpZdtxRIvikFNu0ufRpUVFEULzCgA_lJE1QGDo61of595vTpjMqOM9N23BOTnJu-T5C9iToPDZSRxlIHmWlFhEYzIgZURoXm5Q3Cf3LK3H-kF0M-TAk3N5CW2W3JzYbdTk2mCM_ROA1pbDs9e_lNULWKKyuBgqNH2TZb8HKB1_Lx6dX17ezOkIiWIu2x7BxKB52dc3m8pyPhrBXSERMeEuLP59Mc3fzS4W0OXjOfpHV4DHSo1bFa2TJVutkJZCXP003yONdw2XjBUzHjnqHjmr_Reqea4p0MS0Q95SWCJEb2K3oc0WRG8LBaETdpG2nnlIICCXUe7L0BmqYbJKHs9P7k_MocCZEJlWsjsrUCmulzEsJOS9dbkGBg8SIxLgMmGRGcchMybWPVZxNZKy9iXKbZhqEs-lv0qvGlf1DKBdZIhNrcsNNllsNHJwPjrzWhXVM6D6JO3kVJgCKI6_FqJhDIaOIC2wiQxEXcZ_sz155adE0Fg0edEoogmG9FfNl0Ce7s8feJLDOAZUdv-MYKRXHBM2iMQobXDlTfXLQKfjDb76b1NbiSf0lPxme-02T2oD06sm73fZeS613wtL8D_TH6vg
  priority: 102
  providerName: ProQuest
Title Selection of the best fit probability distribution in rainfall frequency analysis for Qatar
URI https://link.springer.com/article/10.1007/s11069-016-2687-0
https://www.proquest.com/docview/1867883511
https://www.proquest.com/docview/1877850761
https://www.proquest.com/docview/1884105528
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7S5NBeQpuk1E1qttBTgkBaaR862sVOaKnpy-DSg5hd7ZKAkYujHPzvu6OH3ZYmkJMOGq3EzI52Zmf2-wDeKTR5bJWJMlQiykojI7S0I2ZlaX1sU9Fs6H-ayat59mEhFt057tu-270vSTZ_6t1ht5C9UG-PjLgMnhHy9ANBqXuYxHM-2pYOEslbgD1OvULxoi9l_m-IvxejXYT5T1G0WWumz-GwCxLZqLXqC9hz1RE87fjKrzfH8PNbQ18TdMpWnoUYjpkwIvM3NSOGmBZ7e8NKQsXtCK3YTcWIDsLjcsn8uu2g3jDsQElYCF7ZF6xxfQLz6eT7-6uoo0mIbKp5HZWpk84plZcKc1H63KFGj4mVifUZcsWtFpjZUpiQnniXqNgErxQuzQxK79KXsF-tKvcKmJBZohJncytsljuDAn3Ih4KhpfNcmgHEvb4K22GIE5XFstihH5OKC-obIxUX8QDOt4_8agE0HhI-641QdL50WxDkntZU8BzA2-3t4AVU2sDKre5IRiktaE_mIRlNPa2C6wFc9Ab-4zX3fdTrR0mfwjNOK3_TpnYG-_X6zr0JcUtthvBETy-HcDCajsczul7--DgJ1_Fk9vnrsJnFvwFaqeuj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDASXEARieNXDgghYNnSh4RopZU4hLFjq5VW2bJNhfZP8Rvx5LELSOyt5zhONA97PDP-PoDnGm2ROm0TgVomorIqQUcZMacqF1KXyzahf3ikJifi81ROt-DXcBeG2iqHNbFdqKu5oxz5awJeM4bKXm_PfyTEGkXV1YFCozOLfb_8GY9sF2_2PkT9vuB8_PH4_STpWQUSlxveJFXulfdaF5XGQlah8GgwYOZU5oJArrkzEoWrpI3RfPCZTm00YulzYVEFn8d5r8F1kecFeZQZf1pVLTLFO2w_Tm1K6XSoorZX9eLZizqTVMJV9Ov0731wHdz-U49tt7nxLbjZx6fsXWdQt2HL13dgp6dKP13ehW9fW-acqE42DyyGj8zGGVk4axiR03Sw30tWESBvz6XFzmpGTBQBZzMWFl3z9pJhj4fCYtzMvmCDi3twciWyvA_b9bz2D4BJJTKdeVc46UThLUoM8SgWbUz5wJUdQTrIq3Q9fDmxaMzKNfAyibikljUScZmO4OXqlfMOu2PT4N1BCWXvxhfl2uhG8Gz1ODogVVWw9vNLGqO1kZQO2jTGUDut5GYErwYF__GZ__3Uw80_9RR2JseHB-XB3tH-I7jBKeJo2-N2YbtZXPrHMV5q7JPWSBl8v2qv-A1VBii7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xpYCR4AKKmjixnRwQAtpVS2FVHpVW6iHYji0qrbLtNhXav8avYyZxdgGJvfUcx4k8M_a8_H0Az5U2RWyViTKtRJRVRkbaUkbMysr62KaiTeh_Gsv94-zDREw24Fd_F4baKvs9sd2oq5mlHPkOAa_lOZW9dnxoizjaHb05O4-IQYoqrT2dRqcih27xE8O3i9cHuyjrF5yP9r69348Cw0Bk05w3UZU66ZxSRaV0ISpfOJ1rrxMrE-szzRW3udCZrYRBz967RMUGFVq4NDNaepfivNdgU2FUFA9g893e-OjLsoaRSN4h_XFqWoonfU21vbiHkRj1KcmIS7Ty-O9TceXq_lOdbQ-90W24FbxV9rZTrzuw4eq7cCMQp_9Y3IOTry2PDgqXzTxDZ5IZnJH504YRVU0HAr5gFcHzBmYtdloz4qXwejplft61ci-YDugoDL1o9lk3en4fjq9kNR_AoJ7V7iEwIbNEJc4WVtiscEYL7TEwQ42TznNphhD361XaAGZOnBrTcgXDTEtcUgMbLXEZD-Hl8pWzDslj3eDtXghlMOqLcqWCQ3i2fIzmSDUWXbvZJY1RKheUHFo3JqfmWsHzIbzqBfzHZ_73U1vrf-opXEeLKD8ejA8fwU1O7kfbK7cNg2Z-6R6j89SYJ0FLGXy_asP4DfpYLk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+the+best+fit+probability+distribution+in+rainfall+frequency+analysis+for+Qatar&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Mamoon%2C+Abdullah+Al&rft.au=Rahman%2C+Ataur&rft.date=2017-03-01&rft.pub=Springer+Netherlands&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=86&rft.issue=1&rft.spage=281&rft.epage=296&rft_id=info:doi/10.1007%2Fs11069-016-2687-0&rft.externalDocID=10_1007_s11069_016_2687_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon