Experimental observations of bands of suspended colloidal particles subject to shear flow and steady electric field

Manipulating suspended colloidal particles flowing through a microchannel is of interest in microfluidics and nanotechnology. However, the flow itself can affect the dynamics of these suspended particles via wall-normal “lift” forces. The near-wall dynamics of particles suspended in shear flow and s...

Full description

Saved in:
Bibliographic Details
Published inMicrofluidics and nanofluidics Vol. 22; no. 10; pp. 1 - 12
Main Authors Yee, Andrew, Yoda, Minami
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1613-4982
1613-4990
DOI10.1007/s10404-018-2136-3

Cover

Loading…
Abstract Manipulating suspended colloidal particles flowing through a microchannel is of interest in microfluidics and nanotechnology. However, the flow itself can affect the dynamics of these suspended particles via wall-normal “lift” forces. The near-wall dynamics of particles suspended in shear flow and subject to a dc electric field was quantified in combined Poiseuille and EO flow through a ~ 30 μm deep channel. When the two flows are in opposite directions, the particles are attracted to the wall. They then assemble into very high aspect ratio structures, or concentrated streamwise “bands,” above a minimum electric field magnitude, and, it appears, a minimum near-wall shear rate. These bands only exist over the few micrometers next to the wall and are roughly periodic in the cross-stream direction, although there are no external forces along this direction. Experimental observations and dimensional analysis of the time for the first band to form and the number of bands over a field of view of ~ 200 μm are presented for dilute suspensions of polystyrene particles over a range of particle radii, concentrations, and zeta potentials. To our knowledge, there is no theoretical explanation for band assembly, but the results presented here demonstrate that it occurs over a wide range of different particle and flow parameters.
AbstractList Manipulating suspended colloidal particles flowing through a microchannel is of interest in microfluidics and nanotechnology. However, the flow itself can affect the dynamics of these suspended particles via wall-normal “lift” forces. The near-wall dynamics of particles suspended in shear flow and subject to a dc electric field was quantified in combined Poiseuille and EO flow through a ~ 30 μm deep channel. When the two flows are in opposite directions, the particles are attracted to the wall. They then assemble into very high aspect ratio structures, or concentrated streamwise “bands,” above a minimum electric field magnitude, and, it appears, a minimum near-wall shear rate. These bands only exist over the few micrometers next to the wall and are roughly periodic in the cross-stream direction, although there are no external forces along this direction. Experimental observations and dimensional analysis of the time for the first band to form and the number of bands over a field of view of ~ 200 μm are presented for dilute suspensions of polystyrene particles over a range of particle radii, concentrations, and zeta potentials. To our knowledge, there is no theoretical explanation for band assembly, but the results presented here demonstrate that it occurs over a wide range of different particle and flow parameters.
Manipulating suspended colloidal particles flowing through a microchannel is of interest in microfluidics and nanotechnology. However, the flow itself can affect the dynamics of these suspended particles via wall-normal “lift” forces. The near-wall dynamics of particles suspended in shear flow and subject to a dc electric field was quantified in combined Poiseuille and EO flow through a ~ 30 μm deep channel. When the two flows are in opposite directions, the particles are attracted to the wall. They then assemble into very high aspect ratio structures, or concentrated streamwise “bands,” above a minimum electric field magnitude, and, it appears, a minimum near-wall shear rate. These bands only exist over the few micrometers next to the wall and are roughly periodic in the cross-stream direction, although there are no external forces along this direction. Experimental observations and dimensional analysis of the time for the first band to form and the number of bands over a field of view of ~ 200 μm are presented for dilute suspensions of polystyrene particles over a range of particle radii, concentrations, and zeta potentials. To our knowledge, there is no theoretical explanation for band assembly, but the results presented here demonstrate that it occurs over a wide range of different particle and flow parameters.
ArticleNumber 113
Author Yee, Andrew
Yoda, Minami
Author_xml – sequence: 1
  givenname: Andrew
  surname: Yee
  fullname: Yee, Andrew
  organization: G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Minami
  orcidid: 0000-0003-2518-8911
  surname: Yoda
  fullname: Yoda, Minami
  email: minami@gatech.edu
  organization: G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
BookMark eNp9kE1LAzEQhoNUsFV_gLeA59V8bJrdo0j9AMGLnkM-ZnVL3KxJqvbfm7YiIuhpBuZ9ZoZnhiZDGAChE0rOKCHyPFFSk7oitKkY5fOK76EpnVNe1W1LJt99ww7QLKUlIbVklExRWnyMEPsXGLL2OJgE8U3nPgwJhw4bPbhtk1ZphMGBwzZ4H3pXwqOOubceUpmaJdiMc8DpGXTEnQ_vuLA4ZdBujcGXcewt7nrw7gjtd9onOP6qh-jxavFweVPd3V_fXl7cVZY3LFeOtdIRakTTMA2tNByEEVZoI0FIV1uQNTEa5Jx2TtRcyJZJUZKaG5iD5ofodLd3jOF1BSmrZVjFoZxUlFLGWyaYKCm6S9kYUorQqbH40HGtKFEbt2rnVhW3auNW8cLIX4zt81Zbjrr3_5JsR6ZyZXiC-OOnP6FPnd6R6Q
CitedBy_id crossref_primary_10_1002_elps_201900048
crossref_primary_10_1063_5_0162368
crossref_primary_10_1002_elps_202100151
crossref_primary_10_1103_PhysRevFluids_8_014103
crossref_primary_10_1002_elps_202100395
crossref_primary_10_1007_s10404_019_2227_9
crossref_primary_10_1039_D0SM01646B
crossref_primary_10_1039_D0SM01084G
crossref_primary_10_1063_1_5085186
crossref_primary_10_1063_5_0133871
crossref_primary_10_1039_D2SM01414A
crossref_primary_10_1017_jfm_2019_479
crossref_primary_10_1016_j_ces_2023_118754
crossref_primary_10_1007_s00348_020_02969_9
Cites_doi 10.1115/1.4029628
10.1017/jfm.2011.316
10.1006/jcis.1995.1471
10.1006/jcis.1995.1472
10.1017/jfm.2012.221
10.1006/jcis.1996.0273
10.1126/science.272.5262.706
10.1039/C3LC51341F
10.1002/elps.200800121
10.1146/annurev.fluid.36.050802.122124
10.1039/b815286a
10.1103/PhysRevLett.108.068301
10.1017/jfm.2015.647
10.3390/mi7110195
10.1007/s00216-010-3678-8
10.1016/j.cis.2017.04.003
10.1063/1.2185690
10.1007/BF01519887
10.1146/annurev.fl.09.010177.001541
10.1146/annurev.biophys.29.1.155
10.1038/srep10128
10.1039/B605052B
10.1103/PhysRevE.86.021503
10.1016/j.bios.2006.06.005
10.1007/s10404-013-1291-9
10.1021/la202056b
10.1103/PhysRevFluids.3.074202
10.1016/j.jcis.2006.04.047
10.1021/la5045464
10.1016/j.aca.2009.07.017
10.1002/smll.200500390
10.1016/j.jcis.2010.03.039
10.1080/00986449408936272
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7TB
7X7
7XB
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
GNUQQ
H96
HCIFZ
K9.
L.G
L6V
M0S
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
S0W
DOI 10.1007/s10404-018-2136-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-4990
EndPage 12
ExternalDocumentID 2790614371
10_1007_s10404_018_2136_3
GrantInformation_xml – fundername: U.S. Army Research Office
  grantid: W911NF-16-1-0278
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7X7
7XC
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PATMY
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z87
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
F1W
FR3
GNUQQ
H96
K9.
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-d297d01b5882ae97b3e5b5c5ab7e57d4ce740bae761fd543579275ae9a3be6ea3
IEDL.DBID U2A
ISSN 1613-4982
IngestDate Fri Jul 25 11:04:34 EDT 2025
Tue Jul 01 02:48:41 EDT 2025
Thu Apr 24 23:04:55 EDT 2025
Fri Feb 21 02:44:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Electroosmotic flow
Colloidal suspensions
Colloidal particle assembly
Poiseuille flow
Microfluidics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d297d01b5882ae97b3e5b5c5ab7e57d4ce740bae761fd543579275ae9a3be6ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2518-8911
PQID 1112392525
PQPubID 1496349
PageCount 12
ParticipantIDs proquest_journals_1112392525
crossref_primary_10_1007_s10404_018_2136_3
crossref_citationtrail_10_1007_s10404_018_2136_3
springer_journals_10_1007_s10404_018_2136_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181000
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Microfluidics and nanofluidics
PublicationTitleAbbrev Microfluid Nanofluid
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liang, Ai, Zhu, Qian, Xuan (CR10) 2010; 347
Stone, Stroock, Ajdari (CR25) 2004; 36
Lim, Zhang (CR11) 2007; 22
Schnitzer, Yariv (CR22) 2016; 786
Saville (CR20) 1977; 9
Velev, Bhatt (CR28) 2006; 2
Tabatabaei, van de Ven, Rey (CR26) 2006; 301
Schnitzer, Yariv (CR21) 2012; 86
Williams, Lee, Giddings (CR29) 1994; 130
Trau, Saville, Aksay (CR27) 1996; 272
Yariv, Schnitzer, Frankel (CR33) 2011; 685
Bike, Prieve (CR1) 1996; 175
Cevheri, Yoda (CR4) 2014; 5
Cevheri, Yoda (CR5) 2014; 14
Kazoe, Yoda (CR7) 2011; 27
Yang, Jang, Choi, Kim, Yu (CR31) 2006; 2
Yariv (CR32) 2006; 18
Probstein (CR17) 2003
Zurita-Gotor, Bławzdziewicz, Wajnryb (CR35) 2012; 108
Nilsson, Evander, Hammarström, Laurell (CR15) 2009; 649
Stauff (CR24) 1955; 143
Bike, Lazarro, Prieve (CR2) 1995; 175
Yuan, Pan, Zhang, Yan, Zhao, Alici, Li (CR34) 2016; 7
Wu, Warszynski, van de Ven (CR30) 1996; 180
Kim, Yoo (CR8) 2009; 9
Chang, Yeo (CR6) 2010
Bousse, Cohen, Nikiforov, Chow, Kopf-Sill, Dubrow, Parce (CR3) 2000; 29
Ohno, Tachikawa, Manz (CR16) 2008; 29
Sajeesh, Sen (CR19) 2014; 17
Lotito, Zambelli (CR12) 2017; 246
Schnitzer, Frankel, Yariv (CR23) 2012; 704
Li, Xuan (CR9) 2018; 3
Ng, Uddayasankar, Wheeler (CR14) 2010; 397
Ranchon, Picot, Bancaud (CR18) 2015; 5
Lu, Hsu, Xuan (CR13) 2015; 31
DA Saville (2136_CR20) 1977; 9
PS Williams (2136_CR29) 1994; 130
N Cevheri (2136_CR5) 2014; 14
J Nilsson (2136_CR15) 2009; 649
E Yariv (2136_CR32) 2006; 18
V Lotito (2136_CR12) 2017; 246
H Ranchon (2136_CR18) 2015; 5
O Schnitzer (2136_CR23) 2012; 704
M Zurita-Gotor (2136_CR35) 2012; 108
N Cevheri (2136_CR4) 2014; 5
L Bousse (2136_CR3) 2000; 29
K Ohno (2136_CR16) 2008; 29
RF Probstein (2136_CR17) 2003
D Li (2136_CR9) 2018; 3
HA Stone (2136_CR25) 2004; 36
J Stauff (2136_CR24) 1955; 143
SG Bike (2136_CR2) 1995; 175
L Liang (2136_CR10) 2010; 347
O Schnitzer (2136_CR22) 2016; 786
SG Bike (2136_CR1) 1996; 175
Y Kazoe (2136_CR7) 2011; 27
YW Kim (2136_CR8) 2009; 9
M Trau (2136_CR27) 1996; 272
SM Yang (2136_CR31) 2006; 2
X Lu (2136_CR13) 2015; 31
OD Velev (2136_CR28) 2006; 2
D Yuan (2136_CR34) 2016; 7
AHC Ng (2136_CR14) 2010; 397
HC Chang (2136_CR6) 2010
SM Tabatabaei (2136_CR26) 2006; 301
O Schnitzer (2136_CR21) 2012; 86
E Yariv (2136_CR33) 2011; 685
CT Lim (2136_CR11) 2007; 22
P Sajeesh (2136_CR19) 2014; 17
X Wu (2136_CR30) 1996; 180
References_xml – volume: 5
  start-page: 031009
  year: 2014
  ident: CR4
  article-title: Using shear and direct current electric fields to manipulate and self-assemble dielectric particles on microchannel walls
  publication-title: J Nanotechnol Eng Med
  doi: 10.1115/1.4029628
– volume: 685
  start-page: 306
  year: 2011
  end-page: 334
  ident: CR33
  article-title: Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2011.316
– volume: 175
  start-page: 411
  year: 1995
  end-page: 421
  ident: CR2
  article-title: Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall: I. Experiment
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1471
– volume: 175
  start-page: 422
  year: 1996
  end-page: 434
  ident: CR1
  article-title: Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall: II. Theory
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1472
– volume: 704
  start-page: 109
  year: 2012
  end-page: 136
  ident: CR23
  article-title: Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate Péclet numbers
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2012.221
– volume: 180
  start-page: 61
  year: 1996
  end-page: 69
  ident: CR30
  article-title: Electrokinetic lift: observations and comparisons with theories
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1996.0273
– volume: 272
  start-page: 706
  year: 1996
  end-page: 709
  ident: CR27
  article-title: Field-induced layering of colloidal crystals
  publication-title: Science
  doi: 10.1126/science.272.5262.706
– volume: 14
  start-page: 1391
  year: 2014
  end-page: 1394
  ident: CR5
  article-title: Electrokinetically driven reversible banding of colloidal particles near the wall
  publication-title: Lab Chip
  doi: 10.1039/C3LC51341F
– volume: 29
  start-page: 4443
  year: 2008
  end-page: 4453
  ident: CR16
  article-title: Microfluidics: applications for analytical purposes in chemistry and biochemistry
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800121
– year: 2003
  ident: CR17
  publication-title: Physicochemical hydrodynamics: an introduction
– volume: 36
  start-page: 381
  year: 2004
  end-page: 411
  ident: CR25
  article-title: Engineering flows in small devices: microfluidics toward a lab-on-a-chip
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.36.050802.122124
– volume: 9
  start-page: 1043
  year: 2009
  end-page: 1045
  ident: CR8
  article-title: Axisymmetric flow focusing of particles in a single microchannel
  publication-title: Lab Chip
  doi: 10.1039/b815286a
– year: 2010
  ident: CR6
  publication-title: Electrokinetically driven microfluidics and nanofluidics
– volume: 108
  start-page: 068301
  year: 2012
  ident: CR35
  article-title: Layering instability in a confined suspension flow
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.068301
– volume: 786
  start-page: 84
  year: 2016
  end-page: 109
  ident: CR22
  article-title: Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.647
– volume: 7
  start-page: 195
  year: 2016
  ident: CR34
  article-title: Tunable particle focusing in a straight channel with symmetric semicircular obstacle arrays using electrophoresis-modified inertial effects
  publication-title: Micromachines
  doi: 10.3390/mi7110195
– volume: 397
  start-page: 991
  year: 2010
  end-page: 1007
  ident: CR14
  article-title: Immunoassays in microfluidic systems
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-010-3678-8
– volume: 246
  start-page: 217
  year: 2017
  end-page: 274
  ident: CR12
  article-title: Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2017.04.003
– volume: 18
  start-page: 031702
  year: 2006
  ident: CR32
  article-title: ‘Force-free’ electrophoresis?
  publication-title: Phys Fluids
  doi: 10.1063/1.2185690
– volume: 143
  start-page: 162
  year: 1955
  end-page: 171
  ident: CR24
  article-title: Perlschnurbildung von Emulsionen im elecktrischen Wechselfeld als Relaxationseffekt [English translation: Pearl string formation of emulsions in alternating electric field as relaxation effect]
  publication-title: Kolloid Z
  doi: 10.1007/BF01519887
– volume: 9
  start-page: 321
  year: 1977
  end-page: 337
  ident: CR20
  article-title: Electrokinetic effects with small particles
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.09.010177.001541
– volume: 29
  start-page: 155
  year: 2000
  end-page: 181
  ident: CR3
  article-title: Electrokinetically controlled microfluidic analysis systems
  publication-title: Annu Rev Biophys Biomol Struct
  doi: 10.1146/annurev.biophys.29.1.155
– volume: 5
  start-page: 10128
  year: 2015
  ident: CR18
  article-title: Metrology of confined flows using wide field nanoparticle velocimetry
  publication-title: Sci Rep
  doi: 10.1038/srep10128
– volume: 2
  start-page: 738
  year: 2006
  end-page: 750
  ident: CR28
  article-title: On-chip micromanipulation and assembly of colloidal particles by electric fields
  publication-title: Soft Matter
  doi: 10.1039/B605052B
– volume: 86
  start-page: 021503
  year: 2012
  ident: CR21
  article-title: Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.021503
– volume: 22
  start-page: 1197
  year: 2007
  end-page: 1204
  ident: CR11
  article-title: Bead-based microfluidic immunoassays: the next generation
  publication-title: ‎Biosens Bioelectron
  doi: 10.1016/j.bios.2006.06.005
– volume: 17
  start-page: 1
  year: 2014
  end-page: 52
  ident: CR19
  article-title: Particle separation and sorting in microfluidic devices: a review
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-013-1291-9
– volume: 27
  start-page: 11481
  year: 2011
  end-page: 11488
  ident: CR7
  article-title: An experimental study of the effect of external electric fields on interfacial dynamics of colloidal particles
  publication-title: Langmuir
  doi: 10.1021/la202056b
– volume: 3
  start-page: 074202
  year: 2018
  ident: CR9
  article-title: Electrophoretic slip-tuned particle migration in microchannel viscoelastic fluid flows
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.3.074202
– volume: 301
  start-page: 291
  year: 2006
  end-page: 301
  ident: CR26
  article-title: Electroviscous sphere–wall interactions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.04.047
– volume: 31
  start-page: 620
  year: 2015
  end-page: 627
  ident: CR13
  article-title: Exploiting the wall-induced non-inertial lift in electrokinetic flow for a continuous particle separation by size
  publication-title: Langmuir
  doi: 10.1021/la5045464
– volume: 649
  start-page: 141
  year: 2009
  end-page: 157
  ident: CR15
  article-title: Review of cell and particle trapping in microfluidic systems
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2009.07.017
– volume: 2
  start-page: 458
  year: 2006
  end-page: 475
  ident: CR31
  article-title: Nanomachining by colloidal lithography
  publication-title: Small
  doi: 10.1002/smll.200500390
– volume: 347
  start-page: 142
  year: 2010
  end-page: 146
  ident: CR10
  article-title: Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2010.03.039
– volume: 130
  start-page: 143
  year: 1994
  end-page: 166
  ident: CR29
  article-title: Characterization of hydrodynamic lift forces by field-flow fractionation. Inertial and near-wall lift forces
  publication-title: Chem Eng Commun
  doi: 10.1080/00986449408936272
– volume: 9
  start-page: 1043
  year: 2009
  ident: 2136_CR8
  publication-title: Lab Chip
  doi: 10.1039/b815286a
– volume: 143
  start-page: 162
  year: 1955
  ident: 2136_CR24
  publication-title: Kolloid Z
  doi: 10.1007/BF01519887
– volume: 685
  start-page: 306
  year: 2011
  ident: 2136_CR33
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2011.316
– volume: 397
  start-page: 991
  year: 2010
  ident: 2136_CR14
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-010-3678-8
– volume: 649
  start-page: 141
  year: 2009
  ident: 2136_CR15
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2009.07.017
– volume: 17
  start-page: 1
  year: 2014
  ident: 2136_CR19
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-013-1291-9
– volume: 175
  start-page: 411
  year: 1995
  ident: 2136_CR2
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1471
– volume: 301
  start-page: 291
  year: 2006
  ident: 2136_CR26
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.04.047
– volume: 175
  start-page: 422
  year: 1996
  ident: 2136_CR1
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1995.1472
– volume: 86
  start-page: 021503
  year: 2012
  ident: 2136_CR21
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.86.021503
– volume: 22
  start-page: 1197
  year: 2007
  ident: 2136_CR11
  publication-title: ‎Biosens Bioelectron
  doi: 10.1016/j.bios.2006.06.005
– volume: 272
  start-page: 706
  year: 1996
  ident: 2136_CR27
  publication-title: Science
  doi: 10.1126/science.272.5262.706
– volume: 3
  start-page: 074202
  year: 2018
  ident: 2136_CR9
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.3.074202
– volume: 2
  start-page: 458
  year: 2006
  ident: 2136_CR31
  publication-title: Small
  doi: 10.1002/smll.200500390
– volume: 36
  start-page: 381
  year: 2004
  ident: 2136_CR25
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.36.050802.122124
– volume: 29
  start-page: 155
  year: 2000
  ident: 2136_CR3
  publication-title: Annu Rev Biophys Biomol Struct
  doi: 10.1146/annurev.biophys.29.1.155
– volume: 31
  start-page: 620
  year: 2015
  ident: 2136_CR13
  publication-title: Langmuir
  doi: 10.1021/la5045464
– volume: 347
  start-page: 142
  year: 2010
  ident: 2136_CR10
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2010.03.039
– volume: 14
  start-page: 1391
  year: 2014
  ident: 2136_CR5
  publication-title: Lab Chip
  doi: 10.1039/C3LC51341F
– volume-title: Electrokinetically driven microfluidics and nanofluidics
  year: 2010
  ident: 2136_CR6
– volume: 704
  start-page: 109
  year: 2012
  ident: 2136_CR23
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2012.221
– volume-title: Physicochemical hydrodynamics: an introduction
  year: 2003
  ident: 2136_CR17
– volume: 5
  start-page: 031009
  year: 2014
  ident: 2136_CR4
  publication-title: J Nanotechnol Eng Med
  doi: 10.1115/1.4029628
– volume: 786
  start-page: 84
  year: 2016
  ident: 2136_CR22
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2015.647
– volume: 29
  start-page: 4443
  year: 2008
  ident: 2136_CR16
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800121
– volume: 2
  start-page: 738
  year: 2006
  ident: 2136_CR28
  publication-title: Soft Matter
  doi: 10.1039/B605052B
– volume: 108
  start-page: 068301
  year: 2012
  ident: 2136_CR35
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.068301
– volume: 130
  start-page: 143
  year: 1994
  ident: 2136_CR29
  publication-title: Chem Eng Commun
  doi: 10.1080/00986449408936272
– volume: 18
  start-page: 031702
  year: 2006
  ident: 2136_CR32
  publication-title: Phys Fluids
  doi: 10.1063/1.2185690
– volume: 27
  start-page: 11481
  year: 2011
  ident: 2136_CR7
  publication-title: Langmuir
  doi: 10.1021/la202056b
– volume: 5
  start-page: 10128
  year: 2015
  ident: 2136_CR18
  publication-title: Sci Rep
  doi: 10.1038/srep10128
– volume: 7
  start-page: 195
  year: 2016
  ident: 2136_CR34
  publication-title: Micromachines
  doi: 10.3390/mi7110195
– volume: 9
  start-page: 321
  year: 1977
  ident: 2136_CR20
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.09.010177.001541
– volume: 246
  start-page: 217
  year: 2017
  ident: 2136_CR12
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2017.04.003
– volume: 180
  start-page: 61
  year: 1996
  ident: 2136_CR30
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1996.0273
SSID ssj0047210
Score 2.283182
Snippet Manipulating suspended colloidal particles flowing through a microchannel is of interest in microfluidics and nanotechnology. However, the flow itself can...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analytical Chemistry
Banded structure
Biomedical Engineering and Bioengineering
Dimensional analysis
Direction
Dynamics
Electric field
Electric fields
Engineering
Engineering Fluid Dynamics
Field of view
Forces (mechanics)
High aspect ratio
Mathematical analysis
Microchannels
Microfluidics
Micrometers
Nanotechnology
Nanotechnology and Microengineering
Polystyrene
Polystyrene resins
Research Paper
Shear flow
Shear rate
Wall shear rate
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqK85IEJZJHEdpxMCKFWFQMTlbpFvtiRKlVNIakQ_56zk7QFiW6R_Bjuzr7L3ef7CLmzoUkCLTmzuQFXZkzwzMmYgeYQF4AhsvEo37d4NBavEzlpE25VC6vs7kR_UZsydznyRzyTEfpyGcmnxQdzrFGuutpSaOySPde6zEG61GT1wyXw78Y_iESXxUSaRF1Vs3k6Jzz-Au0k5DHjv_3SOtj8Ux_1bmd4RA7beJE-Nwo-Jjt2fkIONroInpJqsNGln5awyrNWtCwouLe87qNaVp7v1lCn-3JqcPKiw8XhKLiMDK1LWjmSa1rMyi-Ka6k3g2_a8OVMc-oxb2dkPBy8v4xYy6XAcp5ENTNRqkwQgsSIWttUAbcSZC41KCuVEblVIgBtVRwWRmIMpdJISZyJOrOx1fyc9Obl3F4QyjU3MjWhFiYQVsSQFLES2gIGFxxC2ydBJ8ksbxuNO76LWbZukeyEn6HwMyf8jPfJ_WrJoumysW3ydaeerD1wVbY2jz556FS2MfzfZpfbN7si-5GzEY_euya9-nNpbzAKqeHWm9oPL1jZ4w
  priority: 102
  providerName: ProQuest
Title Experimental observations of bands of suspended colloidal particles subject to shear flow and steady electric field
URI https://link.springer.com/article/10.1007/s10404-018-2136-3
https://www.proquest.com/docview/1112392525
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64XPQgrjguQw6elELbJE17HKXjoCAiDoynkjQpDAxTsRXx3_uSaccqKnhpC3np4X1ZvuRtAGcm0LEvOfVMrpU1M8Y453jkKUlVVCikyNp5-d5FozG7mfBJE8ddtd7urUnSrdSdYDfmPCYQ2YBGHl2FdW6P7jiIx-GgXX4ZHmlcFCTuUx5L4rA1Zf70i6-b0SfD_GYUdXvNcBu2GpJIBgtUd2DFzHdhs5M6cA-qtJOan5RqeblakbIgygbw2o_qtXJFbjWxgJdTjcLPrTMctip7DUPqklS2sjUpZuUbwb7EYf9OFkVypjlxjm77MB6mj1cjrymg4OU0DmtPh4nQfqA40mhpEqGo4YrnXCphuNAsN4L5ShoRBYXmSJxEEgqOkgiUiYykB7A2L-fmEAiVVPNEB5JpnxkWqbiIBJNGIaOgKjA98FtNZnmTXdwWuZhln3mRrfIzVH5mlZ_RHpwvuzwvUmv8JXzSwpM1s6yyp5cQ-R0PeQ8uWsg6zb_97Ohf0sewEdoh4zz4TmCtfnk1p8hEatWHVTER-IyH131YH1w_3ab4vkzv7h_6blR-AGNK22E
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MT1mYNelGKbRx8HEVHX9XlS8FaTJgVBtqtdEf-Uv9FJunFXQW_eCnlQJt9kJpnJfADbJtJpKAULTKGVDTOmqHMiDpRkKi4VusjaZfnexJ07fnEv7sfgw7-FsWmVfk90G7WuCntHvo86SdGWCyoOe8-BZY2y0VVPodHA4tK8v-GRrT44P8H13aG0fXp73AkGrAJBwVLaDzTNEh1GSqBvKU2WKGaEEoWQKjEi0bwwCQ-VNHi-L7VAbyLJaCKwJ_69iY1kOO84THLGMqtRafvM7_wcT1PuASaayIBnKfVR1OapHnf5HojLiMUB-24Hh87tj3isM3PtOZgd-KfkqAHUPIyZ7gLMjFQtXIT6dIQVgFTq6163JlVJlH07bD_q19rx62pisVY9auzc83l42KrsDRDpV6S2pNqkfKreCI4lDnbvpOHneSyIy7Fbgrt_kfIyTHSrrlkBwiTTItOR5DrkhscqLeOES6PQmWEqMi0IvSTzYlDY3PJrPOXDksxW-DkKP7fCz1kLdr-G9JqqHn91XvfLkw8UvM6HcGzBnl-ykebfJlv9e7ItmOrcXl_lV-c3l2swTS1eXObgOkz0X17NBnpAfbXpYEfg4b9x_gma9hfY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB4cF0pyKGkexGkee2gvKSLSPrTSoYTQxDhNCD3E4Ju6q11BIFhO5BD81_LrOruSbKfQ3HwT7AM0-83OzM4L4KuNTBIqwQKbG-3cjAnynIgDrZiOC40qsvFRvrfxYMh_jcSoA69tLowLq2zvRH9RmzJ3b-SnyJMUZbmg4rRowiJ-X_TPJo-B6yDlPK1tO40aItd29oLmW_Xj6gLP-hul_cu7n4Og6TAQ5Cyh08DQVJow0gL1TGVTqZkVWuRCaWmFNDy3kodaWbT1CyNQs5AplQJn4p_Y2CqG-67BB8lE5HhMjubGHkfLyidjorgMeJrQ1qNap-1xH_uBGI1YHLC3MnGh6P7jm_Uir78JnxpdlZzX4PoMHTvego2lCobbUF0udQggpZ6_8VakLIh2ecTuo3qufK9dQxzuynuDkydtTB6OavcaRKYlqVyDbVI8lC8E1xIPwRmpe_Xc58TH2-3AcCVU3oXuuBzbPSBMMSNSEyluQm55rJMillxZjYoN05HtQdhSMsubIueu18ZDtijP7IifIfEzR_yM9eBkvmRSV_h4b_JBezxZw-xVtoBmD763R7Y0_L_N9t_f7Bg-IsKzm6vb6y-wTh1cfBDhAXSnT8_2EJWhqT7yqCPwZ9Uw_wthHhwF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+observations+of+bands+of+suspended+colloidal+particles+subject+to+shear+flow+and+steady+electric+field&rft.jtitle=Microfluidics+and+nanofluidics&rft.au=Yee%2C+Andrew&rft.au=Yoda%2C+Minami&rft.date=2018-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1613-4982&rft.eissn=1613-4990&rft.volume=22&rft.issue=10&rft_id=info:doi/10.1007%2Fs10404-018-2136-3&rft.externalDocID=10_1007_s10404_018_2136_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4982&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4982&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4982&client=summon