Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells

Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-qu...

Full description

Saved in:
Bibliographic Details
Published inNational science review Vol. 11; no. 5; p. nwae055
Main Authors Jiang, Xianyuan, Zhou, Qilin, Lu, Yue, Liang, Hao, Li, Wenzhuo, Wei, Qi, Pan, Mengling, Wen, Xin, Wang, Xingzhi, Zhou, Wei, Yu, Danni, Wang, Hao, Yin, Ni, Chen, Hao, Li, Hansheng, Pan, Ting, Ma, Mingyu, Liu, Gaoqi, Zhou, Wenjia, Su, Zhenhuang, Chen, Qi, Fan, Fengjia, Zheng, Fan, Gao, Xingyu, Ji, Qingqing, Ning, Zhijun
Format Journal Article
LanguageEnglish
Published China Oxford University Press 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage ( ) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a of 2.12 V in a perovskite/perovskite tandem solar cell configuration.
AbstractList Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage ( ) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a of 2.12 V in a perovskite/perovskite tandem solar cell configuration.
Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage ( V OC ) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a V OC of 2.12 V in a perovskite/perovskite tandem solar cell configuration. Effective electrical doping of perovskite caused by remote molecular dopants are precisely characterized and clarified, based on which a 3D-2D heterojunction structure is fabricated to achieve a high efficiency wide bandgap perovskite solar cell, and an all perovskite tandem solar cell with efficiency over 27%.
Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage (VOC) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a VOC of 2.12 V in a perovskite/perovskite tandem solar cell configuration.
ABSTRACT Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal halide perovskite has emerged as the most promising next-generation material for optoelectronic devices. However, the construction of high-quality perovskite junctions, as well as characterization and understanding of their carrier polarity and density, remains a challenge. In this study, using combined electrical and spectroscopic characterization techniques, we investigate the doping characteristics of perovskite films by remote molecules, which is corroborated by our theoretical simulations indicating Schottky defects consisting of double ions as effective charge dopants. Through a post-treatment process involving a combination of biammonium and monoammonium molecules, we create a surface layer of n-type low-dimensional perovskite. This surface layer forms a heterojunction with the underlying 3D perovskite film, resulting in a favorable doping profile that enhances carrier extraction. The fabricated device exhibits an outstanding open-circuit voltage (VOC) up to 1.34 V and achieves a certified efficiency of 19.31% for single-junction wide-bandgap (1.77 eV) perovskite solar cells, together with significantly enhanced operational stability, thanks to the improved separation of carriers. Furthermore, we demonstrate the potential of this wide-bandgap device by achieving a certified efficiency of 27.04% and a VOC of 2.12 V in a perovskite/perovskite tandem solar cell configuration.
Author Gao, Xingyu
Ji, Qingqing
Wen, Xin
Zhou, Wenjia
Su, Zhenhuang
Pan, Mengling
Zheng, Fan
Lu, Yue
Wei, Qi
Zhou, Qilin
Yin, Ni
Liang, Hao
Ma, Mingyu
Wang, Xingzhi
Li, Wenzhuo
Pan, Ting
Fan, Fengjia
Jiang, Xianyuan
Li, Hansheng
Chen, Qi
Zhou, Wei
Liu, Gaoqi
Ning, Zhijun
Yu, Danni
Chen, Hao
Wang, Hao
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Jiang
  fullname: Jiang, Xianyuan
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 2
  givenname: Qilin
  orcidid: 0000-0003-3359-5963
  surname: Zhou
  fullname: Zhou, Qilin
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 3
  givenname: Yue
  surname: Lu
  fullname: Lu, Yue
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 4
  givenname: Hao
  surname: Liang
  fullname: Liang, Hao
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 5
  givenname: Wenzhuo
  surname: Li
  fullname: Li, Wenzhuo
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 6
  givenname: Qi
  surname: Wei
  fullname: Wei, Qi
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 7
  givenname: Mengling
  surname: Pan
  fullname: Pan, Mengling
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 8
  givenname: Xin
  surname: Wen
  fullname: Wen, Xin
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 9
  givenname: Xingzhi
  surname: Wang
  fullname: Wang, Xingzhi
  organization: Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
– sequence: 10
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 11
  givenname: Danni
  surname: Yu
  fullname: Yu, Danni
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 12
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 13
  givenname: Ni
  surname: Yin
  fullname: Yin, Ni
  organization: i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
– sequence: 14
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 15
  givenname: Hansheng
  surname: Li
  fullname: Li, Hansheng
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 16
  givenname: Ting
  surname: Pan
  fullname: Pan, Ting
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 17
  givenname: Mingyu
  surname: Ma
  fullname: Ma, Mingyu
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 18
  givenname: Gaoqi
  surname: Liu
  fullname: Liu, Gaoqi
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 19
  givenname: Wenjia
  surname: Zhou
  fullname: Zhou, Wenjia
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 20
  givenname: Zhenhuang
  surname: Su
  fullname: Su, Zhenhuang
  organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
– sequence: 21
  givenname: Qi
  orcidid: 0000-0001-7721-8452
  surname: Chen
  fullname: Chen, Qi
  organization: i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China
– sequence: 22
  givenname: Fengjia
  surname: Fan
  fullname: Fan, Fengjia
  organization: Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
– sequence: 23
  givenname: Fan
  surname: Zheng
  fullname: Zheng, Fan
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 24
  givenname: Xingyu
  surname: Gao
  fullname: Gao, Xingyu
  organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
– sequence: 25
  givenname: Qingqing
  surname: Ji
  fullname: Ji, Qingqing
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
– sequence: 26
  givenname: Zhijun
  surname: Ning
  fullname: Ning, Zhijun
  organization: School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38577668$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLxDAUhYMoPkZX7iVLQap5tNN0JTL4AsGFCu5Cmt440TQZk1aZf28GR9FVDrkf5z7OHtr0wQNCh5ScUtLwM5_imf9UQKpqA-0yUvGipuXz5ko3VVFRLnbQQUqvhBDKqrrmbBvtcJHVdCp20fJhjEZpwHMYIIbX0evBBo9blaDDWfhiWC4Au_BZdLYHn3JVObzI8Ed6swNgY12PTYh4bl_mbonBGKst-OEvNCjfQY9TcCpiDc6lfbRllEtwsH4n6Onq8nF2U9zdX9_OLu4KzQUbCg0tN1SxWkw7UrFSGdWJhpV5G91VpG1JY4RuS64p7cr8V9Npo0statHUjAo-Qeffvoux7aHTebConFxE26u4lEFZ-b_i7Vy-hA-Z75sbNSuH47VDDO8jpEH2Nq12UB7CmCQnvGSlIPm4E3TyjeoYUopgfvtQsjLkMgcm14Fl-ujvaL_sTzz8C8A9mHQ
CitedBy_id crossref_primary_10_1039_D3EE03638C
crossref_primary_10_1093_nsr_nwae170
Cites_doi 10.1126/sciadv.aaz4948
10.1002/advs.202203210
10.1038/s41467-020-20110-6
10.1126/science.aaz5074
10.1038/s41560-020-00749-7
10.1038/s41566-022-00985-1
10.1126/science.adk1633
10.1039/D2EE03355K
10.1002/adma.202110241
10.1038/s41586-019-1036-3
10.1038/s41586-023-05992-y
10.1002/admi.201800260
10.1038/s41560-020-00705-5
10.1038/s41586-023-06637-w
10.1038/s41524-021-00591-9
10.1038/s41586-023-06278-z
10.1038/s41566-023-01247-4
10.1016/j.solener.2021.09.066
10.1038/s41563-018-0154-x
10.1039/D2EE00288D
10.1038/s41586-022-05541-z
10.1002/adma.201902762
10.1038/s41560-023-01358-w
10.1021/acsnano.0c00037
10.1021/jacs.7b01815
10.1038/s41560-022-01076-9
10.1126/science.aap9282
10.1016/j.joule.2018.09.012
10.1038/natrevmats.2017.42
10.1038/s41560-020-0657-y
10.1126/science.ade9637
10.1126/sciadv.1601935
10.1038/s41566-021-00829-4
10.1038/s41578-018-0065-0
10.1021/jacs.9b11637
10.1038/s41586-023-05825-y
10.1038/s41586-022-05268-x
10.1016/j.joule.2020.12.009
10.1038/s41560-022-01046-1
10.1021/acsenergylett.0c02105
10.1002/aenm.201802595
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2024
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2024
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nsr/nwae055
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2053-714X
EndPage nwae055
ExternalDocumentID 10_1093_nsr_nwae055
38577668
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2021YFA0715502
– fundername: ;
  grantid: 20XD1402500
– fundername: ;
  grantid: 21ZR1442100
– fundername: ;
  grantid: 61935016; 92056119; 22175118; 22372193
– fundername: ;
  grantid: EM02161943
– fundername: ;
  grantid: SPST-AIC10112914
GroupedDBID -SA
-SC
-S~
0R~
4.4
5VR
AAFWJ
AAOGV
AAPXW
AAVAP
AAXDM
ABDBF
ABEJV
ABPTD
ABQLI
ABXVV
ACGFS
AENEX
AFUIB
AFULF
ALMA_UNASSIGNED_HOLDINGS
AVWKF
BAYMD
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
EBS
EJD
ESX
FA0
GROUPED_DOAJ
H13
KSI
NPM
O9-
OK1
Q--
ROX
RPM
RXO
TOX
U1G
U5K
U5M
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c382t-ceb3f1a2786d0524afad8924012cd50bb09f8cb43c11d42cd7169c4c878972183
IEDL.DBID RPM
ISSN 2095-5138
IngestDate Tue Sep 17 21:29:34 EDT 2024
Sat Oct 26 05:53:18 EDT 2024
Fri Aug 23 10:45:20 EDT 2024
Tue Oct 29 09:18:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords heterojunction
perovskite solar cells
field effect transistors
Language English
License The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-ceb3f1a2786d0524afad8924012cd50bb09f8cb43c11d42cd7169c4c878972183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equally contributed to this work.
ORCID 0000-0003-3359-5963
0000-0001-7721-8452
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989298/
PMID 38577668
PQID 3034248077
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10989298
proquest_miscellaneous_3034248077
crossref_primary_10_1093_nsr_nwae055
pubmed_primary_38577668
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle National science review
PublicationTitleAlternate Natl Sci Rev
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Huang (2024040313490796700_bib37) 2023; 16
Tong (2024040313490796700_bib14) 2022; 7
Senanayak (2024040313490796700_bib25) 2020; 6
Smucker (2024040313490796700_bib41) 2021; 228
Jang (2024040313490796700_bib28) 2021; 6
Quintero-Bermudez (2024040313490796700_bib35) 2018; 17
Chen (2024040313490796700_bib30) 2022; 16
Zhou (2024040313490796700_bib33) 2019; 9
Liang (2024040313490796700_bib36) 2022; 34
Xu (2024040313490796700_bib2) 2020; 367
Senanayak (2024040313490796700_bib26) 2017; 3
Lin (2024040313490796700_bib8) 2023; 620
Yang (2024040313490796700_bib29) 2021; 15
Liao (2024040313490796700_bib38) 2017; 139
Wang (2024040313490796700_bib12) 2018; 5
He (2024040313490796700_bib32) 2022; 9
Yu (2024040313490796700_bib7) 2020; 5
Luo (2024040313490796700_bib11) 2023; 17
Jiang (2024040313490796700_bib5) 2022; 611
Huang (2024040313490796700_bib1) 2017; 2
Wang (2024040313490796700_bib39) 2018; 2
Li (2024040313490796700_bib10) 2023; 382
Xiao (2024040313490796700_bib31) 2020; 5
Park (2024040313490796700_bib4) 2023; 616
Lin (2024040313490796700_bib16) 2021; 12
Grancini (2024040313490796700_bib24) 2019; 4
He (2024040313490796700_bib9) 2023; 618
Wang (2024040313490796700_bib15) 2022; 7
Jung (2024040313490796700_bib27) 2019; 567
Tong (2024040313490796700_bib20) 2021; 6
Wolff (2024040313490796700_bib13) 2019; 31
Phung (2024040313490796700_bib18) 2020; 142
Yan (2024040313490796700_bib17) 2023; 8
Jung (2024040313490796700_bib40) 2021; 7
Chen (2024040313490796700_bib23) 2023; 613
Huang (2024040313490796700_bib3) 2023; 623
Xiong (2024040313490796700_bib19) 2021; 5
Luo (2024040313490796700_bib21) 2018; 360
Hu (2024040313490796700_bib22) 2022; 15
Straus (2024040313490796700_bib34) 2020; 14
Liu (2024040313490796700_bib6) 2023; 382
References_xml – volume: 6
  start-page: eaaz4948
  year: 2020
  ident: 2024040313490796700_bib25
  article-title: A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz4948
  contributor:
    fullname: Senanayak
– volume: 9
  start-page: 2203210
  year: 2022
  ident: 2024040313490796700_bib32
  article-title: Pure 2d perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 v for 1.77-ev wide-bandgap perovskite solar cells
  publication-title: Adv Sci
  doi: 10.1002/advs.202203210
  contributor:
    fullname: He
– volume: 12
  start-page: 7
  year: 2021
  ident: 2024040313490796700_bib16
  article-title: Metallic surface doping of metal halide perovskites
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20110-6
  contributor:
    fullname: Lin
– volume: 367
  start-page: 1097
  year: 2020
  ident: 2024040313490796700_bib2
  article-title: Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems
  publication-title: Science
  doi: 10.1126/science.aaz5074
  contributor:
    fullname: Xu
– volume: 6
  start-page: 63
  year: 2021
  ident: 2024040313490796700_bib28
  article-title: Intact 2d/3d halide junction perovskite solar cells via solid-phase in-plane growth
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-00749-7
  contributor:
    fullname: Jang
– volume: 16
  start-page: 352
  year: 2022
  ident: 2024040313490796700_bib30
  article-title: Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells
  publication-title: Nat Photon
  doi: 10.1038/s41566-022-00985-1
  contributor:
    fullname: Chen
– volume: 382
  start-page: 810
  year: 2023
  ident: 2024040313490796700_bib6
  article-title: Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.adk1633
  contributor:
    fullname: Liu
– volume: 16
  start-page: 557
  year: 2023
  ident: 2024040313490796700_bib37
  article-title: Finite perovskite hierarchical structures via ligand confinement leading to efficient inverted perovskite solar cells
  publication-title: Energy Environ Sci
  doi: 10.1039/D2EE03355K
  contributor:
    fullname: Huang
– volume: 34
  start-page: 2110241
  year: 2022
  ident: 2024040313490796700_bib36
  article-title: A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells
  publication-title: Adv Mater
  doi: 10.1002/adma.202110241
  contributor:
    fullname: Liang
– volume: 567
  start-page: 511
  year: 2019
  ident: 2024040313490796700_bib27
  article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
  publication-title: Nature
  doi: 10.1038/s41586-019-1036-3
  contributor:
    fullname: Jung
– volume: 618
  start-page: 80
  year: 2023
  ident: 2024040313490796700_bib9
  article-title: Improving interface quality for 1-cm2 all-perovskite tandem solar cells
  publication-title: Nature
  doi: 10.1038/s41586-023-05992-y
  contributor:
    fullname: He
– volume: 5
  start-page: 1800260
  year: 2018
  ident: 2024040313490796700_bib12
  article-title: Energy level alignment at interfaces in metal halide perovskite solar cells
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201800260
  contributor:
    fullname: Wang
– volume: 5
  start-page: 870
  year: 2020
  ident: 2024040313490796700_bib31
  article-title: All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-00705-5
  contributor:
    fullname: Xiao
– volume: 623
  start-page: 531
  year: 2023
  ident: 2024040313490796700_bib3
  article-title: Anion–π interactions suppress phase impurities in FAPbI3 solar cells
  publication-title: Nature
  doi: 10.1038/s41586-023-06637-w
  contributor:
    fullname: Huang
– volume: 7
  start-page: 122
  year: 2021
  ident: 2024040313490796700_bib40
  article-title: Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-021-00591-9
  contributor:
    fullname: Jung
– volume: 620
  start-page: 994
  year: 2023
  ident: 2024040313490796700_bib8
  article-title: All-perovskite tandem solar cells with 3d/3d bilayer perovskite heterojunction
  publication-title: Nature
  doi: 10.1038/s41586-023-06278-z
  contributor:
    fullname: Lin
– volume: 17
  start-page: 856
  year: 2023
  ident: 2024040313490796700_bib11
  article-title: Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer
  publication-title: Nat Photon
  doi: 10.1038/s41566-023-01247-4
  contributor:
    fullname: Luo
– volume: 228
  start-page: 187
  year: 2021
  ident: 2024040313490796700_bib41
  article-title: A comparative study on the band diagrams and efficiencies of silicon and perovskite solar cells using wxAMPS and AMPS-1D
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.09.066
  contributor:
    fullname: Smucker
– volume: 17
  start-page: 900
  year: 2018
  ident: 2024040313490796700_bib35
  article-title: Compositional and orientational control in metal halide perovskites of reduced dimensionality
  publication-title: Nature Mater
  doi: 10.1038/s41563-018-0154-x
  contributor:
    fullname: Quintero-Bermudez
– volume: 15
  start-page: 2096
  year: 2022
  ident: 2024040313490796700_bib22
  article-title: Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells
  publication-title: Energy Environ Sci
  doi: 10.1039/D2EE00288D
  contributor:
    fullname: Hu
– volume: 613
  start-page: 676
  year: 2023
  ident: 2024040313490796700_bib23
  article-title: Regulating surface potential maximizes voltage in all-perovskite tandems
  publication-title: Nature
  doi: 10.1038/s41586-022-05541-z
  contributor:
    fullname: Chen
– volume: 31
  start-page: 1902762
  year: 2019
  ident: 2024040313490796700_bib13
  article-title: Nonradiative recombination in perovskite solar cells: the role of interfaces
  publication-title: Adv Mater
  doi: 10.1002/adma.201902762
  contributor:
    fullname: Wolff
– volume: 8
  start-page: 1158
  year: 2023
  ident: 2024040313490796700_bib17
  article-title: Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt
  publication-title: Nat Energy
  doi: 10.1038/s41560-023-01358-w
  contributor:
    fullname: Yan
– volume: 14
  start-page: 3621
  year: 2020
  ident: 2024040313490796700_bib34
  article-title: Tailoring hot exciton dynamics in 2d hybrid perovskites through cation modification
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00037
  contributor:
    fullname: Straus
– volume: 139
  start-page: 6693
  year: 2017
  ident: 2024040313490796700_bib38
  article-title: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b01815
  contributor:
    fullname: Liao
– volume: 7
  start-page: 744
  year: 2022
  ident: 2024040313490796700_bib15
  article-title: A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells
  publication-title: Nat Energy
  doi: 10.1038/s41560-022-01076-9
  contributor:
    fullname: Wang
– volume: 360
  start-page: 1442
  year: 2018
  ident: 2024040313490796700_bib21
  article-title: Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aap9282
  contributor:
    fullname: Luo
– volume: 2
  start-page: 2732
  year: 2018
  ident: 2024040313490796700_bib39
  article-title: 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.012
  contributor:
    fullname: Wang
– volume: 2
  start-page: 17042
  year: 2017
  ident: 2024040313490796700_bib1
  article-title: Understanding the physical properties of hybrid perovskites for photovoltaic applications
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2017.42
  contributor:
    fullname: Huang
– volume: 5
  start-page: 657
  year: 2020
  ident: 2024040313490796700_bib7
  article-title: Simplified interconnection structure based on C60/SnO(2-x) for all-perovskite tandem solar cells
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-0657-y
  contributor:
    fullname: Yu
– volume: 382
  start-page: 284
  year: 2023
  ident: 2024040313490796700_bib10
  article-title: Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.ade9637
  contributor:
    fullname: Li
– volume: 3
  start-page: e1601935
  year: 2017
  ident: 2024040313490796700_bib26
  article-title: Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1601935
  contributor:
    fullname: Senanayak
– volume: 15
  start-page: 681
  year: 2021
  ident: 2024040313490796700_bib29
  article-title: Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation
  publication-title: Nat Photon
  doi: 10.1038/s41566-021-00829-4
  contributor:
    fullname: Yang
– volume: 4
  start-page: 4
  year: 2019
  ident: 2024040313490796700_bib24
  article-title: Dimensional tailoring of hybrid perovskites for photovoltaics
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-018-0065-0
  contributor:
    fullname: Grancini
– volume: 142
  start-page: 2364
  year: 2020
  ident: 2024040313490796700_bib18
  article-title: The doping mechanism of halide perovskite unveiled by alkaline earth metals
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b11637
  contributor:
    fullname: Phung
– volume: 616
  start-page: 724
  year: 2023
  ident: 2024040313490796700_bib4
  article-title: Controlled growth of perovskite layers with volatile alkylammonium chlorides
  publication-title: Nature
  doi: 10.1038/s41586-023-05825-y
  contributor:
    fullname: Park
– volume: 611
  start-page: 278
  year: 2022
  ident: 2024040313490796700_bib5
  article-title: Surface reaction for efficient and stable inverted perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
  contributor:
    fullname: Jiang
– volume: 5
  start-page: 467
  year: 2021
  ident: 2024040313490796700_bib19
  article-title: Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.009
  contributor:
    fullname: Xiong
– volume: 7
  start-page: 642
  year: 2022
  ident: 2024040313490796700_bib14
  article-title: Carrier control in Sn–Pb perovskites via 2d cation engineering for all-perovskite tandem solar cells with improved efficiency and stability
  publication-title: Nat Energy
  doi: 10.1038/s41560-022-01046-1
  contributor:
    fullname: Tong
– volume: 6
  start-page: 232
  year: 2021
  ident: 2024040313490796700_bib20
  article-title: Wide-bandgap metal halide perovskites for tandem solar cells
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02105
  contributor:
    fullname: Tong
– volume: 9
  start-page: 1802595
  year: 2019
  ident: 2024040313490796700_bib33
  article-title: High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4N3)2[PbI4] capping layer
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802595
  contributor:
    fullname: Zhou
SSID ssj0001257732
ssib051367741
ssib050735980
Score 2.3642583
Snippet Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent years, metal...
ABSTRACT Enhancing the quality of junctions is crucial for optimizing carrier extraction and suppressing recombination in semiconductor devices. In recent...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage nwae055
Title Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
URI https://www.ncbi.nlm.nih.gov/pubmed/38577668
https://search.proquest.com/docview/3034248077
https://pubmed.ncbi.nlm.nih.gov/PMC10989298
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7anryI4qu-WKHXbd7J5ihFEUERtNBbyL5opd2WprX04m93JmlKqzcvIWSTsMwOzDez831LSEeHWsSejplC7keYKo_lxlcs0hzCU5Lmri7VPl_jp374PIgGDRLXXJiyaV-KUdeOJ107Gpa9lbOJdOo-Meftpee5KYewzp0maYKH7ufoAHBQlW7rhRGKktXny1SVlyhJypPLfMAXDMb5hrgH2b1ji7ljV7l2kfy3G6r-4M_fbZQ7cenxiBxuACW9ryZ-TBranpD1-3JucqnpELtdpp8QvHABKMYsReHGMqy90vF0xRTq-1faHBRVw78KLOhSMxpPKCBaioLG4zXVpdYEzGH3JaxD6AktMD-muAdQnJL-48NH74ltDllgMuD-gknIpo2X-wmPlRv5YW5yBcaFtMuXKnKFcFPDpQgD6XkqhGcoryNDyROOwj88OCMtO7X6glAkNHAhEuMbAIomQNZuqkNXchUpwb026dT2zGaVlkZW7YEHGZg925i9Te5qW2fg6zj53OrpssgC1CtEDnzSJueV7bc_CjisahzzNuF7q7J9AXW090fAvUo97dqdLv__6RU58AHtVJ2Q16S1mC_1DaCVhbgts3y4vnw_3JaO-gMoC-8K
link.rule.ids 230,315,730,783,787,867,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0BPZRLoaLQQGkXievG3_b6WCFQaAFVAgQ3y_slAskGxQmI_vrO2HGUwIneLO_a8uh5NW92Z94AHJrYyDQwKddU-xHnOuClDTVPjED3lOWlb2q1z4u0dx3_uk1uVyBta2HqpH0l-103GHZd_67OrXwcKq_NE_P-nB8Ffi7QrQtvFT7ggvXT5SgdKQ7p0s3_w4RkydoOM83eS5Jlde-yEBkGx3ExK93D-N5z1dhzz6Xxqfxv0Vm9YaCvEykXPNPJBty0NjUJKQ_d6UR21d9Xco_vN3oTPs3IKvvZjH-GFeO24OVyOralMuyOMmlG9-gYCVxG_lAzvHCc9nXZYPTMNfUOaHQ_GCmSP1W0WcxsfzBkyJYZiSUPXpipdSzQusVJtMdhhqyi2JvR-UL1Ba5Pjq-OenzWwIGrSIQTrjBSt0EZZiLVfhLGpS012oAhXah04kvp51YoGUcqCHSM90i6R8VKZIJEhUS0DWtu5MxXYFQsIaTMbGiRhNqIKoJzE_tK6ERLEXTgsEWqeGx0OormfD0qENBiBmgHDloUC1xH9PGlM6NpVUSkhUj19VkHdhpU5y-KBP4vaSo6IJbwnk8gje7lEUSx1upuUdv9_0d_wMfe1flZcXZ68XsP1kNkVU3G5TdYm4ynZh9Z0UR-r5fAP95IDyo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB7aFEpfetDLPbeQ17VuafRY0pr0CoE2EOiD0F7Erb02lt2Q_vrO6DB2-pY3Ia2Ehm-X-WZ35huAQ5talUc2l4ZrP9LSRLJ2sZGZRXJPRVmHtlX7PMmPz9LP59l5n1XZ9GmVXqvp2M_mYz-9aHMrl3MdDHliwem3oygskdw6BkvjgttwhxZtiPuROtEc1qbbzsWMpcmGLjPd_ktWFG3_sphYhqTn2JfvUYwf-GYV-MvahlwCuOuw_mOh15Mpd7zT5AH8HOzqklJ-jzdrNdZ_r0k-3szwh3C_J63ifTfmEdyy_jFcfd-sXK2tuOCMmsUvcpAMsmC_aARdeMn7u2K2uJSGewh0-h-Clcn_NLxpLNx0NhfEmgWLJs-uhG31LMjC3UG812HnouEYXPA5Q_MEziYffxwdy76Rg9QJxmupKWJ3UR0XmJswi9Pa1YbsoNAu1iYLlQpLh1qliY4ik9I9lvDRqcYCWVwIk6dw4BfePgfBRROoVOFiR2TUJVwZXNo01GgyozAaweGAVrXs9Dqq7pw9qQjUqgd1BO8GJCtaT_zztbeLTVMlrInIdfbFCJ51yG4_lCDNmTzHEeAe5tsBrNW9_4SQbDW7B-Re3PzVt3D39MOk-vrp5MtLuBcTueoSL1_BwXq1sa-JHK3Vm3YV_ANAgRGq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+heterojunction+based+on+n-type+low-dimensional+perovskite+film+for+highly+efficient+perovskite+tandem+solar+cells&rft.jtitle=National+science+review&rft.au=Jiang%2C+Xianyuan&rft.au=Zhou%2C+Qilin&rft.au=Lu%2C+Yue&rft.au=Liang%2C+Hao&rft.date=2024-05-01&rft.eissn=2053-714X&rft.volume=11&rft.issue=5&rft.spage=nwae055&rft.epage=nwae055&rft_id=info:doi/10.1093%2Fnsr%2Fnwae055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-5138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-5138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-5138&client=summon