DeepMicrobes: taxonomic classification for metagenomics with deep learning
Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assembl...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 2; no. 1; p. lqaa009 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species. |
---|---|
AbstractList | Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species. Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species. Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species. |
Author | Wei, Lai Liu, Yu Zou, Bin Liang, Qiaoxing Bible, Paul W |
AuthorAffiliation | 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou 510060, China 2 College of Arts and Sciences, Marian University , Indianapolis, IN 46222, USA |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou 510060, China – name: 2 College of Arts and Sciences, Marian University , Indianapolis, IN 46222, USA |
Author_xml | – sequence: 1 givenname: Qiaoxing orcidid: 0000-0002-2876-3013 surname: Liang fullname: Liang, Qiaoxing organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China – sequence: 2 givenname: Paul W orcidid: 0000-0001-9969-4492 surname: Bible fullname: Bible, Paul W organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China – sequence: 3 givenname: Yu surname: Liu fullname: Liu, Yu organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China – sequence: 4 givenname: Bin orcidid: 0000-0001-9243-9923 surname: Zou fullname: Zou, Bin organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China – sequence: 5 givenname: Lai surname: Wei fullname: Wei, Lai email: weil9@mail.sysu.edu.cn organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33575556$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlPHDEQhS1EBIRw5YhayoUcBry0txyQEFkRUS7J2arxlAejbnuwu7P8-zTMBBGkiJNLqu89V9V7SbZTTkjIIaMnjFpxmqAsYX7a3QJQarfIHleCzSxXZvtRvUsOar2hlHLZypayHbIrhNRSSrVHLt8hrr5EX_Ic69tmgF855T76xndQawzRwxBzakIuTY8DLPG-XZufcbhuFpO46RBKimn5irwI0FU82Lz75PuH998uPs2uvn78fHF-NfPC8GHmrdbBM8rBGG1CUAEFck0996JVKihEaBXCAqjFsJBMaQttAEM1SiGY2Cdna9_VOO9x4TENBTq3KrGH8ttliO7fTorXbpl_OK00E0ZPBscbg5JvR6yD62P12HWQMI_V8dZY3lqj1YS-foLe5LGkaT0nmKaWSU7vDI8eT_Qwyt8zT8DJGpjuXGvB8IAw6u6idOso3SbKSdA-Efg43CcxbRS7_8verGV5XD33xR9SMbUm |
CitedBy_id | crossref_primary_10_7250_itms_2020_0005 crossref_primary_10_1016_j_yamp_2023_01_002 crossref_primary_10_7717_peerj_13613 crossref_primary_10_1089_cmb_2022_0370 crossref_primary_10_1007_s12275_021_0632_8 crossref_primary_10_1016_j_bbrc_2024_151240 crossref_primary_10_1038_s41467_023_39149_2 crossref_primary_10_1016_j_jmb_2022_167586 crossref_primary_10_1128_spectrum_05237_22 crossref_primary_10_3390_metabo11010055 crossref_primary_10_1016_j_drudis_2020_10_002 crossref_primary_10_1093_nsr_nwae168 crossref_primary_10_1080_1040841X_2024_2306465 crossref_primary_10_1186_s12859_024_05760_3 crossref_primary_10_1371_journal_pone_0261531 crossref_primary_10_2991_jaims_d_201028_001 crossref_primary_10_1016_j_crbiot_2024_100211 crossref_primary_10_3389_fmicb_2022_851450 crossref_primary_10_1016_j_csbj_2022_12_007 crossref_primary_10_1093_bib_bbae157 crossref_primary_10_1093_bioadv_vbae016 crossref_primary_10_54644_jte_2024_1521 crossref_primary_10_3389_fnut_2022_933130 crossref_primary_10_1109_JBHI_2024_3358842 crossref_primary_10_1016_j_drudis_2024_103990 crossref_primary_10_3233_JIFS_231897 crossref_primary_10_1099_mgen_0_001231 crossref_primary_10_1007_s44196_023_00348_w crossref_primary_10_1093_bioinformatics_btae601 crossref_primary_10_1093_bioadv_vbad092 crossref_primary_10_1093_nargab_lqab071 crossref_primary_10_1111_jgh_15503 crossref_primary_10_1186_s12859_024_05634_8 crossref_primary_10_1101_gr_279339_124 crossref_primary_10_1021_acs_est_1c01026 crossref_primary_10_1101_gr_278623_123 crossref_primary_10_3390_plants12091852 crossref_primary_10_3390_cells11244089 crossref_primary_10_1007_s12275_021_0698_3 crossref_primary_10_1371_journal_pone_0267106 crossref_primary_10_1002_jobm_202300579 crossref_primary_10_1016_j_mmifmc_2024_09_004 crossref_primary_10_3390_microorganisms10040711 crossref_primary_10_1073_pnas_2122636119 crossref_primary_10_1093_nargab_lqad082 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_1093_gbe_evae102 crossref_primary_10_1128_mbio_02444_21 crossref_primary_10_1021_acsenvironau_3c00074 crossref_primary_10_1186_s12859_024_05955_8 crossref_primary_10_3389_fmicb_2023_1250806 crossref_primary_10_1038_s41467_024_52771_y crossref_primary_10_1016_j_csbj_2025_03_024 crossref_primary_10_1038_s42003_024_06161_1 crossref_primary_10_1093_bioinformatics_btac845 crossref_primary_10_1099_mgen_0_000886 crossref_primary_10_3390_v15102031 crossref_primary_10_1186_s40364_024_00557_1 crossref_primary_10_1038_s42003_022_03498_3 crossref_primary_10_3389_fmicb_2022_811495 crossref_primary_10_1038_s41598_023_42518_y crossref_primary_10_1093_bioinformatics_btab672 crossref_primary_10_1038_s41598_024_82840_7 crossref_primary_10_1111_1755_0998_14006 crossref_primary_10_1371_journal_pone_0283536 crossref_primary_10_1093_bioinformatics_btae150 crossref_primary_10_1109_ACCESS_2022_3176954 crossref_primary_10_1016_j_bspc_2021_102539 crossref_primary_10_3390_biom13040585 crossref_primary_10_3390_bioengineering10111293 |
Cites_doi | 10.18653/v1/D18-1094 10.1038/nmeth.2066 10.1038/s41587-018-0009-7 10.1038/ncomms11257 10.1093/bioinformatics/btw542 10.1016/j.cell.2019.07.010 10.1093/bioinformatics/btu170 10.1093/nar/gkw226 10.1145/2647868.2654926 10.1038/s41587-019-0202-3 10.1038/s41576-019-0122-6 10.1101/gr.186072.114 10.1038/s41588-018-0167-z 10.1038/s41586-019-0965-1 10.1016/j.cell.2019.01.001 10.1093/bioinformatics/btr708 10.1038/s41467-018-07641-9 10.1186/s13059-017-1299-7 10.1186/s40168-019-0633-6 10.1186/s12864-015-1419-2 10.1186/gb-2011-12-6-r60 10.1093/nar/gkv657 10.1093/bioinformatics/btr011 10.1038/nbt.3935 10.1093/bioinformatics/btq619 10.1101/537795 10.1093/bioinformatics/btv683 10.1038/s41564-017-0012-7 10.1186/gb-2004-5-2-r12 10.1371/journal.pcbi.1004957 10.1038/s41586-019-1237-9 10.1038/s41598-018-33321-1 10.1186/1471-2105-11-119 10.1186/s13059-016-0997-x 10.1186/gb-2014-15-3-r46 10.1101/gr.210641.116 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2020 The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2020 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. – notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/nargab/lqaa009 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-9268 |
ExternalDocumentID | PMC7671387 33575556 10_1093_nargab_lqaa009 10.1093/nargab/lqaa009 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81570828 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China grantid: 2015CB964601 funderid: 10.13039/501100012166 – fundername: ; ; grantid: 2015CB964601 – fundername: ; ; grantid: 81570828 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS AMNDL EBS EMOBN GROUPED_DOAJ IAO IGS IHR INH ITC KSI M~E ROX RPM TOX AAYXX AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY NPM PQGLB 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c382t-c977fc102a8878ff6fe3e270c2c3466f6eea46eada09efd51679a4fa807e53313 |
IEDL.DBID | BENPR |
ISSN | 2631-9268 |
IngestDate | Thu Aug 21 18:31:08 EDT 2025 Fri Jul 11 03:04:34 EDT 2025 Fri Jul 25 11:35:20 EDT 2025 Mon Jul 21 05:44:48 EDT 2025 Tue Jul 01 02:50:14 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Thu Jan 30 13:18:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c977fc102a8878ff6fe3e270c2c3466f6eea46eada09efd51679a4fa807e53313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9969-4492 0000-0002-2876-3013 0000-0001-9243-9923 |
OpenAccessLink | https://www.proquest.com/docview/3170915207?pq-origsite=%requestingapplication% |
PMID | 33575556 |
PQID | 3170915207 |
PQPubID | 7097362 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7671387 proquest_miscellaneous_2489249876 proquest_journals_3170915207 pubmed_primary_33575556 crossref_primary_10_1093_nargab_lqaa009 crossref_citationtrail_10_1093_nargab_lqaa009 oup_primary_10_1093_nargab_lqaa009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NAR genomics and bioinformatics |
PublicationTitleAlternate | NAR Genom Bioinform |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Busia (2020103008525681900_B24) 2019 Huang (2020103008525681900_B11) 2012; 28 Segata (2020103008525681900_B35) 2012; 9 Ondov (2020103008525681900_B13) 2016; 17 Kim (2020103008525681900_B22) 2016; 26 Menzel (2020103008525681900_B27) 2016; 7 Quang (2020103008525681900_B34) 2016; 44 Parks (2020103008525681900_B12) 2015; 25 Kurtz (2020103008525681900_B14) 2004; 5 Varghese (2020103008525681900_B15) 2015; 43 Xiao (2020103008525681900_B37) 2014 Pasolli (2020103008525681900_B4) 2019; 176 Vervier (2020103008525681900_B7) 2016; 32 Forster (2020103008525681900_B17) 2019; 37 Shen (2020103008525681900_B38) 2018; 8 Hyatt (2020103008525681900_B29) 2010; 11 Jain (2020103008525681900_B16) 2018; 9 Fritz (2020103008525681900_B18) 2019; 7 Bolger (2020103008525681900_B30) 2014; 30 Eraslan (2020103008525681900_B9) 2019; 20 Segata (2020103008525681900_B31) 2011; 12 McIntyre (2020103008525681900_B8) 2017; 18 Rojas-Carulla (2020103008525681900_B32) 2019 Sundaram (2020103008525681900_B33) 2018; 50 Sinha (2020103008525681900_B40) 2018 Ounit (2020103008525681900_B21) 2016; 32 Marçais (2020103008525681900_B25) 2011; 27 Wood (2020103008525681900_B5) 2014; 15 Castro (2020103008525681900_B36) 2018 Ounit (2020103008525681900_B20) 2015; 16 Huson (2020103008525681900_B28) 2016; 12 Brendel (2020103008525681900_B39) 2019 Quince (2020103008525681900_B1) 2017; 35 Almeida (2020103008525681900_B2) 2019; 568 Parks (2020103008525681900_B19) 2017; 2 Rosen (2020103008525681900_B6) 2011; 27 Lin (2020103008525681900_B26) 2017 Stewart (2020103008525681900_B3) 2019; 37 Ye (2020103008525681900_B23) 2019; 178 Lloyd-Price (2020103008525681900_B10) 2019; 569 Vaswani (2020103008525681900_B41) 2017 |
References_xml | – year: 2019 ident: 2020103008525681900_B39 article-title: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet – start-page: 817 volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing year: 2018 ident: 2020103008525681900_B40 article-title: A hierarchical neural attention-based text classifier doi: 10.18653/v1/D18-1094 – volume: 9 start-page: 811 year: 2012 ident: 2020103008525681900_B35 article-title: Metagenomic microbial community profiling using unique clade-specific marker genes publication-title: Nat. Methods doi: 10.1038/nmeth.2066 – volume: 37 start-page: 186 year: 2019 ident: 2020103008525681900_B17 article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses publication-title: Nat. Biotechnol. doi: 10.1038/s41587-018-0009-7 – year: 2017 ident: 2020103008525681900_B26 article-title: A structured self-attentive sentence embedding – volume: 7 start-page: 11257 year: 2016 ident: 2020103008525681900_B27 article-title: Fast and sensitive taxonomic classification for metagenomics with Kaiju publication-title: Nat. Commun. doi: 10.1038/ncomms11257 – volume: 32 start-page: 3823 year: 2016 ident: 2020103008525681900_B21 article-title: Higher classification sensitivity of short metagenomic reads with CLARK-S publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw542 – volume: 178 start-page: 779 year: 2019 ident: 2020103008525681900_B23 article-title: Benchmarking metagenomics tools for taxonomic classification publication-title: Cell doi: 10.1016/j.cell.2019.07.010 – volume: 30 start-page: 2114 year: 2014 ident: 2020103008525681900_B30 article-title: Trimmomatic: A flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 44 start-page: e107 year: 2016 ident: 2020103008525681900_B34 article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw226 – start-page: 177 volume-title: Proceedings of the 22nd ACM international conference on Multimedia year: 2014 ident: 2020103008525681900_B37 article-title: Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification doi: 10.1145/2647868.2654926 – volume: 37 start-page: 953 year: 2019 ident: 2020103008525681900_B3 article-title: Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0202-3 – volume: 20 start-page: 389 year: 2019 ident: 2020103008525681900_B9 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 – volume: 25 start-page: 1043 year: 2015 ident: 2020103008525681900_B12 article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes publication-title: Genome Res. doi: 10.1101/gr.186072.114 – volume: 50 start-page: 1161 year: 2018 ident: 2020103008525681900_B33 article-title: Predicting the clinical impact of human mutation with deep neural networks publication-title: Nat. Genet. doi: 10.1038/s41588-018-0167-z – volume: 568 start-page: 499 year: 2019 ident: 2020103008525681900_B2 article-title: A new genomic blueprint of the human gut microbiota publication-title: Nature doi: 10.1038/s41586-019-0965-1 – volume: 176 start-page: 649 year: 2019 ident: 2020103008525681900_B4 article-title: Extensive unexplored human microbiome diversity revealed by over 150, 000 genomes from metagenomes spanning age, Geography, and Lifestyle publication-title: Cell doi: 10.1016/j.cell.2019.01.001 – volume: 28 start-page: 593 year: 2012 ident: 2020103008525681900_B11 article-title: ART: a next-generation sequencing read simulator publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr708 – volume: 9 start-page: 5114 year: 2018 ident: 2020103008525681900_B16 article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries publication-title: Nat. Commun. doi: 10.1038/s41467-018-07641-9 – volume: 18 start-page: 182 year: 2017 ident: 2020103008525681900_B8 article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers publication-title: Genome Biol. doi: 10.1186/s13059-017-1299-7 – volume: 7 start-page: 17 year: 2019 ident: 2020103008525681900_B18 article-title: CAMISIM: Simulating metagenomes and microbial communities publication-title: Microbiome doi: 10.1186/s40168-019-0633-6 – volume: 16 start-page: 236 year: 2015 ident: 2020103008525681900_B20 article-title: CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers publication-title: BMC Genomics doi: 10.1186/s12864-015-1419-2 – volume: 12 start-page: R60 year: 2011 ident: 2020103008525681900_B31 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 43 start-page: 6761 year: 2015 ident: 2020103008525681900_B15 article-title: Microbial species delineation using whole genome sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv657 – year: 2019 ident: 2020103008525681900_B24 article-title: A deep learning approach to pattern recognition for short DNA sequences – start-page: 5998 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2020103008525681900_B41 article-title: Attention is all you need – volume: 27 start-page: 764 year: 2011 ident: 2020103008525681900_B25 article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr011 – volume: 35 start-page: 833 year: 2017 ident: 2020103008525681900_B1 article-title: Shotgun metagenomics, from sampling to analysis publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3935 – volume: 27 start-page: 127 year: 2011 ident: 2020103008525681900_B6 article-title: NBC: the naïve Bayes classification tool webserver for taxonomic classification of metagenomic reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq619 – year: 2019 ident: 2020103008525681900_B32 article-title: GeNet: Deep Representations for Metagenomics doi: 10.1101/537795 – start-page: 241 volume-title: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: 2020103008525681900_B36 article-title: End-to-End Incremental Learning – volume: 32 start-page: 1023 year: 2016 ident: 2020103008525681900_B7 article-title: Large-scale machine learning for metagenomics sequence classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv683 – volume: 2 start-page: 1533 year: 2017 ident: 2020103008525681900_B19 article-title: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0012-7 – volume: 5 start-page: R12 year: 2004 ident: 2020103008525681900_B14 article-title: Versatile and open software for comparing large genomes publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r12 – volume: 12 start-page: e1004957 year: 2016 ident: 2020103008525681900_B28 article-title: MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004957 – volume: 569 start-page: 655 year: 2019 ident: 2020103008525681900_B10 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 8 start-page: 15270 year: 2018 ident: 2020103008525681900_B38 article-title: Recurrent neural network for predicting transcription factor binding sites publication-title: Sci. Rep. doi: 10.1038/s41598-018-33321-1 – volume: 11 start-page: 119 year: 2010 ident: 2020103008525681900_B29 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 17 start-page: 132 year: 2016 ident: 2020103008525681900_B13 article-title: Mash: fast genome and metagenome distance estimation using MinHash publication-title: Genome Biol. doi: 10.1186/s13059-016-0997-x – volume: 15 start-page: R46 year: 2014 ident: 2020103008525681900_B5 article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r46 – volume: 26 start-page: 1721 year: 2016 ident: 2020103008525681900_B22 article-title: Centrifuge: rapid and sensitive classification of metagenomic sequences publication-title: Genome Res. doi: 10.1101/gr.210641.116 |
SSID | ssj0002545401 |
Score | 2.4260051 |
Snippet | Abstract
Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats.... Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | lqaa009 |
SubjectTerms | Algorithms Bioinformatics Classification Datasets Deep learning Genomes Genomics Inflammatory bowel diseases Intestinal microflora Machine learning Metagenomics Microbiomes New species Taxonomy |
Title | DeepMicrobes: taxonomic classification for metagenomics with deep learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33575556 https://www.proquest.com/docview/3170915207 https://www.proquest.com/docview/2489249876 https://pubmed.ncbi.nlm.nih.gov/PMC7671387 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9wwDI_G8bIXxDS2HbBThibxVF0uaZPAC9oHCCHB0ATSvVVumgwk6B20SPz52G2uu5u07aUvdtXKTuxfbMdm7HOpbQrSukSGIJIUjEgKuuzupJGh0OB0Owzm_EKfXqdn02waA251LKtc2MTWUJczRzHyMfo5dG2ZFOZo_pDQ1CjKrsYRGmtsHU2wtQO2_vX44vJnH2XB4w9CkknfrVGNK5ofW4zvHgAEVSEueaOVG25LQPPPesklB3SyyTYicuRfOlW_Ya989Zadffd-fk5FdYWvD3kDz909Y-4IFVMZUCt5jtCU3_sGqCUrkmtO8Vde4ss8zo34tcWuT46vvp0mcTxC4pSVTeIQugWHAAHQUNgQdPDKSyOcdCrVOmjvIdW4UkAc-FBmlHCBNIAVxiPIm6h3bFDNKv-B8Yk06KMMIPyxaZkB-FIJAeDc5MCAcEOWLMSUu9g7nEZY3OVdDlvlnVjzKNYh2-_5513XjL9y7qHU_8u0u1BKHrdYnf9eEEP2qSfj5qCMB1R-9lTnMrV0vkSLP2TvOx32n1IKkWqWIcWsaLdnoMbbq5Tq9qZtwG00Hu2t2f73b-2w15IO523B2i4bNI9P_iMimKYYxWU6aiMAozbEhM-rH9MXM0j5sg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V7QO8ICquhQIGgXiK1rETO62EUKGttseuEGqlvoWJYxekkt2SVIU_1d_YcS52kYCnPntyaA7PZ88F8DpXSYQiMYFwjgcRah5kvtjdCC1cptCoehjMZKrGx9H-SXyyAlddLYxPq-z2xHqjzmfG35GPyM-Ra4sF1-_n54GfGuWjq90IjUYtDuyvSzqyle_2tkm-b4TY3Tn6OA7aqQKBkYmoAkOIxxnyq0j2lTinnJVWaG6EkZFSTlmLkSIGI9-wLo99nAIjhwnXlrBRKOm9t2A1koqLAax-2Jl--tzf6tBxiyBQ2HeHlKPCz6vNRmfniNxnPS54v6WKugVg-2d-5oLD270Hd1ukyrYa1VqDFVvch_1ta-cTn8SX2XKTVfizqWtmxqNwn3ZUS5oRFGbfbYW-BSwtl8zf97KcHmbtnIrTB3B8I4x7CINiVtjHwEKhySdqJLiVRHmMaHPJOaIx4YZGboYQdGxKTdur3I_MOEubmLlMG7amLVuH8LannzddOv5K-Yq4_l-i9U4oaWvSZfpbAYfwsl8mY_QRFizs7KJMRZT48yx5mCE8amTYf0pKQsZxTCt6Sbo9gW_0vbxSfPtaN_zWSocy0U_-_Vsv4Pb4aHKYHu5ND57CHeEvBupkuXUYVD8u7DNCT1X2vFVZBl9u2kquAeiENDE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepMicrobes%3A+taxonomic+classification+for+metagenomics+with+deep+learning&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Liang%2C+Qiaoxing&rft.au=Bible%2C+Paul+W&rft.au=Liu%2C+Yu&rft.au=Zou%2C+Bin&rft.date=2020-03-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqaa009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nargab_lqaa009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |