DeepMicrobes: taxonomic classification for metagenomics with deep learning

Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assembl...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 2; no. 1; p. lqaa009
Main Authors Liang, Qiaoxing, Bible, Paul W, Liu, Yu, Zou, Bin, Wei, Lai
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.
AbstractList Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.
Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.
Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To investigate the roles of these uncultured species in human health or the environment, researchers need to incorporate their genome assemblies into a reference database for taxonomic classification. However, this procedure is hindered by the lack of a well-curated taxonomic tree for newly discovered species, which is required by current metagenomics tools. Here we report DeepMicrobes, a deep learning-based computational framework for taxonomic classification that allows researchers to bypass this limitation. We show the advantage of DeepMicrobes over state-of-the-art tools in species and genus identification and comparable accuracy in abundance estimation. We trained DeepMicrobes on genomes reconstructed from gut microbiomes and discovered potential novel signatures in inflammatory bowel diseases. DeepMicrobes facilitates effective investigations into the uncharacterized roles of metagenomic species.
Author Wei, Lai
Liu, Yu
Zou, Bin
Liang, Qiaoxing
Bible, Paul W
AuthorAffiliation 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou 510060, China
2 College of Arts and Sciences, Marian University , Indianapolis, IN 46222, USA
AuthorAffiliation_xml – name: 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou 510060, China
– name: 2 College of Arts and Sciences, Marian University , Indianapolis, IN 46222, USA
Author_xml – sequence: 1
  givenname: Qiaoxing
  orcidid: 0000-0002-2876-3013
  surname: Liang
  fullname: Liang, Qiaoxing
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
– sequence: 2
  givenname: Paul W
  orcidid: 0000-0001-9969-4492
  surname: Bible
  fullname: Bible, Paul W
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
– sequence: 3
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0001-9243-9923
  surname: Zou
  fullname: Zou, Bin
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
– sequence: 5
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  email: weil9@mail.sysu.edu.cn
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33575556$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPHDEQhS1EBIRw5YhayoUcBry0txyQEFkRUS7J2arxlAejbnuwu7P8-zTMBBGkiJNLqu89V9V7SbZTTkjIIaMnjFpxmqAsYX7a3QJQarfIHleCzSxXZvtRvUsOar2hlHLZypayHbIrhNRSSrVHLt8hrr5EX_Ic69tmgF855T76xndQawzRwxBzakIuTY8DLPG-XZufcbhuFpO46RBKimn5irwI0FU82Lz75PuH998uPs2uvn78fHF-NfPC8GHmrdbBM8rBGG1CUAEFck0996JVKihEaBXCAqjFsJBMaQttAEM1SiGY2Cdna9_VOO9x4TENBTq3KrGH8ttliO7fTorXbpl_OK00E0ZPBscbg5JvR6yD62P12HWQMI_V8dZY3lqj1YS-foLe5LGkaT0nmKaWSU7vDI8eT_Qwyt8zT8DJGpjuXGvB8IAw6u6idOso3SbKSdA-Efg43CcxbRS7_8verGV5XD33xR9SMbUm
CitedBy_id crossref_primary_10_7250_itms_2020_0005
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_7717_peerj_13613
crossref_primary_10_1089_cmb_2022_0370
crossref_primary_10_1007_s12275_021_0632_8
crossref_primary_10_1016_j_bbrc_2024_151240
crossref_primary_10_1038_s41467_023_39149_2
crossref_primary_10_1016_j_jmb_2022_167586
crossref_primary_10_1128_spectrum_05237_22
crossref_primary_10_3390_metabo11010055
crossref_primary_10_1016_j_drudis_2020_10_002
crossref_primary_10_1093_nsr_nwae168
crossref_primary_10_1080_1040841X_2024_2306465
crossref_primary_10_1186_s12859_024_05760_3
crossref_primary_10_1371_journal_pone_0261531
crossref_primary_10_2991_jaims_d_201028_001
crossref_primary_10_1016_j_crbiot_2024_100211
crossref_primary_10_3389_fmicb_2022_851450
crossref_primary_10_1016_j_csbj_2022_12_007
crossref_primary_10_1093_bib_bbae157
crossref_primary_10_1093_bioadv_vbae016
crossref_primary_10_54644_jte_2024_1521
crossref_primary_10_3389_fnut_2022_933130
crossref_primary_10_1109_JBHI_2024_3358842
crossref_primary_10_1016_j_drudis_2024_103990
crossref_primary_10_3233_JIFS_231897
crossref_primary_10_1099_mgen_0_001231
crossref_primary_10_1007_s44196_023_00348_w
crossref_primary_10_1093_bioinformatics_btae601
crossref_primary_10_1093_bioadv_vbad092
crossref_primary_10_1093_nargab_lqab071
crossref_primary_10_1111_jgh_15503
crossref_primary_10_1186_s12859_024_05634_8
crossref_primary_10_1101_gr_279339_124
crossref_primary_10_1021_acs_est_1c01026
crossref_primary_10_1101_gr_278623_123
crossref_primary_10_3390_plants12091852
crossref_primary_10_3390_cells11244089
crossref_primary_10_1007_s12275_021_0698_3
crossref_primary_10_1371_journal_pone_0267106
crossref_primary_10_1002_jobm_202300579
crossref_primary_10_1016_j_mmifmc_2024_09_004
crossref_primary_10_3390_microorganisms10040711
crossref_primary_10_1073_pnas_2122636119
crossref_primary_10_1093_nargab_lqad082
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_1093_gbe_evae102
crossref_primary_10_1128_mbio_02444_21
crossref_primary_10_1021_acsenvironau_3c00074
crossref_primary_10_1186_s12859_024_05955_8
crossref_primary_10_3389_fmicb_2023_1250806
crossref_primary_10_1038_s41467_024_52771_y
crossref_primary_10_1016_j_csbj_2025_03_024
crossref_primary_10_1038_s42003_024_06161_1
crossref_primary_10_1093_bioinformatics_btac845
crossref_primary_10_1099_mgen_0_000886
crossref_primary_10_3390_v15102031
crossref_primary_10_1186_s40364_024_00557_1
crossref_primary_10_1038_s42003_022_03498_3
crossref_primary_10_3389_fmicb_2022_811495
crossref_primary_10_1038_s41598_023_42518_y
crossref_primary_10_1093_bioinformatics_btab672
crossref_primary_10_1038_s41598_024_82840_7
crossref_primary_10_1111_1755_0998_14006
crossref_primary_10_1371_journal_pone_0283536
crossref_primary_10_1093_bioinformatics_btae150
crossref_primary_10_1109_ACCESS_2022_3176954
crossref_primary_10_1016_j_bspc_2021_102539
crossref_primary_10_3390_biom13040585
crossref_primary_10_3390_bioengineering10111293
Cites_doi 10.18653/v1/D18-1094
10.1038/nmeth.2066
10.1038/s41587-018-0009-7
10.1038/ncomms11257
10.1093/bioinformatics/btw542
10.1016/j.cell.2019.07.010
10.1093/bioinformatics/btu170
10.1093/nar/gkw226
10.1145/2647868.2654926
10.1038/s41587-019-0202-3
10.1038/s41576-019-0122-6
10.1101/gr.186072.114
10.1038/s41588-018-0167-z
10.1038/s41586-019-0965-1
10.1016/j.cell.2019.01.001
10.1093/bioinformatics/btr708
10.1038/s41467-018-07641-9
10.1186/s13059-017-1299-7
10.1186/s40168-019-0633-6
10.1186/s12864-015-1419-2
10.1186/gb-2011-12-6-r60
10.1093/nar/gkv657
10.1093/bioinformatics/btr011
10.1038/nbt.3935
10.1093/bioinformatics/btq619
10.1101/537795
10.1093/bioinformatics/btv683
10.1038/s41564-017-0012-7
10.1186/gb-2004-5-2-r12
10.1371/journal.pcbi.1004957
10.1038/s41586-019-1237-9
10.1038/s41598-018-33321-1
10.1186/1471-2105-11-119
10.1186/s13059-016-0997-x
10.1186/gb-2014-15-3-r46
10.1101/gr.210641.116
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2020
The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2020
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/nargab/lqaa009
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2631-9268
ExternalDocumentID PMC7671387
33575556
10_1093_nargab_lqaa009
10.1093/nargab/lqaa009
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81570828
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China
  grantid: 2015CB964601
  funderid: 10.13039/501100012166
– fundername: ; ;
  grantid: 2015CB964601
– fundername: ; ;
  grantid: 81570828
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
EMOBN
GROUPED_DOAJ
IAO
IGS
IHR
INH
ITC
KSI
M~E
ROX
RPM
TOX
AAYXX
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
NPM
PQGLB
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c382t-c977fc102a8878ff6fe3e270c2c3466f6eea46eada09efd51679a4fa807e53313
IEDL.DBID BENPR
ISSN 2631-9268
IngestDate Thu Aug 21 18:31:08 EDT 2025
Fri Jul 11 03:04:34 EDT 2025
Fri Jul 25 11:35:20 EDT 2025
Mon Jul 21 05:44:48 EDT 2025
Tue Jul 01 02:50:14 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Thu Jan 30 13:18:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c977fc102a8878ff6fe3e270c2c3466f6eea46eada09efd51679a4fa807e53313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9969-4492
0000-0002-2876-3013
0000-0001-9243-9923
OpenAccessLink https://www.proquest.com/docview/3170915207?pq-origsite=%requestingapplication%
PMID 33575556
PQID 3170915207
PQPubID 7097362
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7671387
proquest_miscellaneous_2489249876
proquest_journals_3170915207
pubmed_primary_33575556
crossref_primary_10_1093_nargab_lqaa009
crossref_citationtrail_10_1093_nargab_lqaa009
oup_primary_10_1093_nargab_lqaa009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Busia (2020103008525681900_B24) 2019
Huang (2020103008525681900_B11) 2012; 28
Segata (2020103008525681900_B35) 2012; 9
Ondov (2020103008525681900_B13) 2016; 17
Kim (2020103008525681900_B22) 2016; 26
Menzel (2020103008525681900_B27) 2016; 7
Quang (2020103008525681900_B34) 2016; 44
Parks (2020103008525681900_B12) 2015; 25
Kurtz (2020103008525681900_B14) 2004; 5
Varghese (2020103008525681900_B15) 2015; 43
Xiao (2020103008525681900_B37) 2014
Pasolli (2020103008525681900_B4) 2019; 176
Vervier (2020103008525681900_B7) 2016; 32
Forster (2020103008525681900_B17) 2019; 37
Shen (2020103008525681900_B38) 2018; 8
Hyatt (2020103008525681900_B29) 2010; 11
Jain (2020103008525681900_B16) 2018; 9
Fritz (2020103008525681900_B18) 2019; 7
Bolger (2020103008525681900_B30) 2014; 30
Eraslan (2020103008525681900_B9) 2019; 20
Segata (2020103008525681900_B31) 2011; 12
McIntyre (2020103008525681900_B8) 2017; 18
Rojas-Carulla (2020103008525681900_B32) 2019
Sundaram (2020103008525681900_B33) 2018; 50
Sinha (2020103008525681900_B40) 2018
Ounit (2020103008525681900_B21) 2016; 32
Marçais (2020103008525681900_B25) 2011; 27
Wood (2020103008525681900_B5) 2014; 15
Castro (2020103008525681900_B36) 2018
Ounit (2020103008525681900_B20) 2015; 16
Huson (2020103008525681900_B28) 2016; 12
Brendel (2020103008525681900_B39) 2019
Quince (2020103008525681900_B1) 2017; 35
Almeida (2020103008525681900_B2) 2019; 568
Parks (2020103008525681900_B19) 2017; 2
Rosen (2020103008525681900_B6) 2011; 27
Lin (2020103008525681900_B26) 2017
Stewart (2020103008525681900_B3) 2019; 37
Ye (2020103008525681900_B23) 2019; 178
Lloyd-Price (2020103008525681900_B10) 2019; 569
Vaswani (2020103008525681900_B41) 2017
References_xml – year: 2019
  ident: 2020103008525681900_B39
  article-title: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet
– start-page: 817
  volume-title: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
  year: 2018
  ident: 2020103008525681900_B40
  article-title: A hierarchical neural attention-based text classifier
  doi: 10.18653/v1/D18-1094
– volume: 9
  start-page: 811
  year: 2012
  ident: 2020103008525681900_B35
  article-title: Metagenomic microbial community profiling using unique clade-specific marker genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2066
– volume: 37
  start-page: 186
  year: 2019
  ident: 2020103008525681900_B17
  article-title: A human gut bacterial genome and culture collection for improved metagenomic analyses
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-018-0009-7
– year: 2017
  ident: 2020103008525681900_B26
  article-title: A structured self-attentive sentence embedding
– volume: 7
  start-page: 11257
  year: 2016
  ident: 2020103008525681900_B27
  article-title: Fast and sensitive taxonomic classification for metagenomics with Kaiju
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11257
– volume: 32
  start-page: 3823
  year: 2016
  ident: 2020103008525681900_B21
  article-title: Higher classification sensitivity of short metagenomic reads with CLARK-S
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw542
– volume: 178
  start-page: 779
  year: 2019
  ident: 2020103008525681900_B23
  article-title: Benchmarking metagenomics tools for taxonomic classification
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.010
– volume: 30
  start-page: 2114
  year: 2014
  ident: 2020103008525681900_B30
  article-title: Trimmomatic: A flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 44
  start-page: e107
  year: 2016
  ident: 2020103008525681900_B34
  article-title: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw226
– start-page: 177
  volume-title: Proceedings of the 22nd ACM international conference on Multimedia
  year: 2014
  ident: 2020103008525681900_B37
  article-title: Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification
  doi: 10.1145/2647868.2654926
– volume: 37
  start-page: 953
  year: 2019
  ident: 2020103008525681900_B3
  article-title: Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0202-3
– volume: 20
  start-page: 389
  year: 2019
  ident: 2020103008525681900_B9
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
– volume: 25
  start-page: 1043
  year: 2015
  ident: 2020103008525681900_B12
  article-title: CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
  publication-title: Genome Res.
  doi: 10.1101/gr.186072.114
– volume: 50
  start-page: 1161
  year: 2018
  ident: 2020103008525681900_B33
  article-title: Predicting the clinical impact of human mutation with deep neural networks
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0167-z
– volume: 568
  start-page: 499
  year: 2019
  ident: 2020103008525681900_B2
  article-title: A new genomic blueprint of the human gut microbiota
  publication-title: Nature
  doi: 10.1038/s41586-019-0965-1
– volume: 176
  start-page: 649
  year: 2019
  ident: 2020103008525681900_B4
  article-title: Extensive unexplored human microbiome diversity revealed by over 150, 000 genomes from metagenomes spanning age, Geography, and Lifestyle
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.001
– volume: 28
  start-page: 593
  year: 2012
  ident: 2020103008525681900_B11
  article-title: ART: a next-generation sequencing read simulator
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr708
– volume: 9
  start-page: 5114
  year: 2018
  ident: 2020103008525681900_B16
  article-title: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07641-9
– volume: 18
  start-page: 182
  year: 2017
  ident: 2020103008525681900_B8
  article-title: Comprehensive benchmarking and ensemble approaches for metagenomic classifiers
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1299-7
– volume: 7
  start-page: 17
  year: 2019
  ident: 2020103008525681900_B18
  article-title: CAMISIM: Simulating metagenomes and microbial communities
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0633-6
– volume: 16
  start-page: 236
  year: 2015
  ident: 2020103008525681900_B20
  article-title: CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1419-2
– volume: 12
  start-page: R60
  year: 2011
  ident: 2020103008525681900_B31
  article-title: Metagenomic biomarker discovery and explanation
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-6-r60
– volume: 43
  start-page: 6761
  year: 2015
  ident: 2020103008525681900_B15
  article-title: Microbial species delineation using whole genome sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv657
– year: 2019
  ident: 2020103008525681900_B24
  article-title: A deep learning approach to pattern recognition for short DNA sequences
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2020103008525681900_B41
  article-title: Attention is all you need
– volume: 27
  start-page: 764
  year: 2011
  ident: 2020103008525681900_B25
  article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr011
– volume: 35
  start-page: 833
  year: 2017
  ident: 2020103008525681900_B1
  article-title: Shotgun metagenomics, from sampling to analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3935
– volume: 27
  start-page: 127
  year: 2011
  ident: 2020103008525681900_B6
  article-title: NBC: the naïve Bayes classification tool webserver for taxonomic classification of metagenomic reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq619
– year: 2019
  ident: 2020103008525681900_B32
  article-title: GeNet: Deep Representations for Metagenomics
  doi: 10.1101/537795
– start-page: 241
  volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: 2020103008525681900_B36
  article-title: End-to-End Incremental Learning
– volume: 32
  start-page: 1023
  year: 2016
  ident: 2020103008525681900_B7
  article-title: Large-scale machine learning for metagenomics sequence classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv683
– volume: 2
  start-page: 1533
  year: 2017
  ident: 2020103008525681900_B19
  article-title: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0012-7
– volume: 5
  start-page: R12
  year: 2004
  ident: 2020103008525681900_B14
  article-title: Versatile and open software for comparing large genomes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-2-r12
– volume: 12
  start-page: e1004957
  year: 2016
  ident: 2020103008525681900_B28
  article-title: MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004957
– volume: 569
  start-page: 655
  year: 2019
  ident: 2020103008525681900_B10
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 8
  start-page: 15270
  year: 2018
  ident: 2020103008525681900_B38
  article-title: Recurrent neural network for predicting transcription factor binding sites
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33321-1
– volume: 11
  start-page: 119
  year: 2010
  ident: 2020103008525681900_B29
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 17
  start-page: 132
  year: 2016
  ident: 2020103008525681900_B13
  article-title: Mash: fast genome and metagenome distance estimation using MinHash
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0997-x
– volume: 15
  start-page: R46
  year: 2014
  ident: 2020103008525681900_B5
  article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-3-r46
– volume: 26
  start-page: 1721
  year: 2016
  ident: 2020103008525681900_B22
  article-title: Centrifuge: rapid and sensitive classification of metagenomic sequences
  publication-title: Genome Res.
  doi: 10.1101/gr.210641.116
SSID ssj0002545401
Score 2.4260051
Snippet Abstract Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats....
Large-scale metagenomic assemblies have uncovered thousands of new species greatly expanding the known diversity of microbiomes in specific habitats. To...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage lqaa009
SubjectTerms Algorithms
Bioinformatics
Classification
Datasets
Deep learning
Genomes
Genomics
Inflammatory bowel diseases
Intestinal microflora
Machine learning
Metagenomics
Microbiomes
New species
Taxonomy
Title DeepMicrobes: taxonomic classification for metagenomics with deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33575556
https://www.proquest.com/docview/3170915207
https://www.proquest.com/docview/2489249876
https://pubmed.ncbi.nlm.nih.gov/PMC7671387
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9wwDI_G8bIXxDS2HbBThibxVF0uaZPAC9oHCCHB0ATSvVVumgwk6B20SPz52G2uu5u07aUvdtXKTuxfbMdm7HOpbQrSukSGIJIUjEgKuuzupJGh0OB0Owzm_EKfXqdn02waA251LKtc2MTWUJczRzHyMfo5dG2ZFOZo_pDQ1CjKrsYRGmtsHU2wtQO2_vX44vJnH2XB4w9CkknfrVGNK5ofW4zvHgAEVSEueaOVG25LQPPPesklB3SyyTYicuRfOlW_Ya989Zadffd-fk5FdYWvD3kDz909Y-4IFVMZUCt5jtCU3_sGqCUrkmtO8Vde4ss8zo34tcWuT46vvp0mcTxC4pSVTeIQugWHAAHQUNgQdPDKSyOcdCrVOmjvIdW4UkAc-FBmlHCBNIAVxiPIm6h3bFDNKv-B8Yk06KMMIPyxaZkB-FIJAeDc5MCAcEOWLMSUu9g7nEZY3OVdDlvlnVjzKNYh2-_5513XjL9y7qHU_8u0u1BKHrdYnf9eEEP2qSfj5qCMB1R-9lTnMrV0vkSLP2TvOx32n1IKkWqWIcWsaLdnoMbbq5Tq9qZtwG00Hu2t2f73b-2w15IO523B2i4bNI9P_iMimKYYxWU6aiMAozbEhM-rH9MXM0j5sg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V7QO8ICquhQIGgXiK1rETO62EUKGttseuEGqlvoWJYxekkt2SVIU_1d_YcS52kYCnPntyaA7PZ88F8DpXSYQiMYFwjgcRah5kvtjdCC1cptCoehjMZKrGx9H-SXyyAlddLYxPq-z2xHqjzmfG35GPyM-Ra4sF1-_n54GfGuWjq90IjUYtDuyvSzqyle_2tkm-b4TY3Tn6OA7aqQKBkYmoAkOIxxnyq0j2lTinnJVWaG6EkZFSTlmLkSIGI9-wLo99nAIjhwnXlrBRKOm9t2A1koqLAax-2Jl--tzf6tBxiyBQ2HeHlKPCz6vNRmfniNxnPS54v6WKugVg-2d-5oLD270Hd1ukyrYa1VqDFVvch_1ta-cTn8SX2XKTVfizqWtmxqNwn3ZUS5oRFGbfbYW-BSwtl8zf97KcHmbtnIrTB3B8I4x7CINiVtjHwEKhySdqJLiVRHmMaHPJOaIx4YZGboYQdGxKTdur3I_MOEubmLlMG7amLVuH8LannzddOv5K-Yq4_l-i9U4oaWvSZfpbAYfwsl8mY_QRFizs7KJMRZT48yx5mCE8amTYf0pKQsZxTCt6Sbo9gW_0vbxSfPtaN_zWSocy0U_-_Vsv4Pb4aHKYHu5ND57CHeEvBupkuXUYVD8u7DNCT1X2vFVZBl9u2kquAeiENDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepMicrobes%3A+taxonomic+classification+for+metagenomics+with+deep+learning&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Liang%2C+Qiaoxing&rft.au=Bible%2C+Paul+W&rft.au=Liu%2C+Yu&rft.au=Zou%2C+Bin&rft.date=2020-03-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqaa009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nargab_lqaa009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon