Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties
Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of mater...
Saved in:
Published in | Carbon Letters Vol. 33; no. 5; pp. 1321 - 1331 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.08.2023
한국탄소학회 Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications. |
---|---|
AbstractList | Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications. Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications. KCI Citation Count: 0 |
Author | Anjarsari, Yulianti Li, Fangyi Wang, Jiamei Arramel Zou, Jing Xiang, Kun Azzahiidah, Rifda Ma, Huijuan Jiang, Jizhou |
Author_xml | – sequence: 1 givenname: Fangyi surname: Li fullname: Li, Fangyi organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology – sequence: 2 givenname: Yulianti surname: Anjarsari fullname: Anjarsari, Yulianti organization: Nano Center Indonesia – sequence: 3 givenname: Jiamei surname: Wang fullname: Wang, Jiamei organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology – sequence: 4 givenname: Rifda surname: Azzahiidah fullname: Azzahiidah, Rifda organization: Nano Center Indonesia – sequence: 5 givenname: Jizhou orcidid: 0000-0003-1439-6512 surname: Jiang fullname: Jiang, Jizhou email: 027wit@163.com organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology – sequence: 6 givenname: Jing surname: Zou fullname: Zou, Jing organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology – sequence: 7 givenname: Kun surname: Xiang fullname: Xiang, Kun organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology – sequence: 8 givenname: Huijuan surname: Ma fullname: Ma, Huijuan organization: Hubei Three Gorges Laboratory – sequence: 9 orcidid: 0000-0003-4125-6099 surname: Arramel fullname: Arramel email: arramel@nano.or.id organization: Nano Center Indonesia |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003046607$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kV1rHCEUhqWkkG2SP5AroXeFafTojHoZ0o8EUgohvRbHdXbtzo7bo1Pov6_ZCaT0IlcHPc_jOfi-IydTmgIhl5x95IypqyxBg2gYQMOY0KyRb8gKQIhGGqNPyIob1TUSWn5KLnKOPROmbZU2akW239J6Hl2JaaJpoGUbaD2V6APNBWdfZgxPDfhEvcM-TU3vcljTvSsBoxszHRLSuD9g-h2nDT1sU0lXYQy-YPS0Xh8ClhjyOXk7VDxcPNcz8uPL58eb2-b--9e7m-v7xgsNpfGtCdBL0UPbiUExZ9waWvBD65xWXnaiAzloJTvTM-a5CkwqYUAbr41xIM7Ih-XdCQe789EmF491k-wO7fXD453lTHSmShV-v8B1z19zyMX-TDNOdT8LBrjkWkP3Qu0SBpf9No0OX8j6-7zllYKF8phyxjDYA8a9wz91nH3KyS452ZqTPeZkZZX0f5KP5ZhGQRfH11WxqLnOmTbhn41esf4CzRyoVQ |
CitedBy_id | crossref_primary_10_1007_s42823_024_00697_2 crossref_primary_10_1016_j_mtcomm_2024_110223 crossref_primary_10_1007_s42823_023_00483_6 crossref_primary_10_1016_j_apmt_2023_102002 crossref_primary_10_1007_s42823_023_00466_7 crossref_primary_10_1007_s42823_024_00816_z crossref_primary_10_1007_s42823_023_00590_4 crossref_primary_10_1039_D4TA01361A crossref_primary_10_1007_s42823_024_00853_8 crossref_primary_10_1007_s42823_023_00647_4 crossref_primary_10_1039_D4CE01263A crossref_primary_10_1007_s42823_023_00666_1 crossref_primary_10_1016_j_cis_2023_103077 crossref_primary_10_1016_j_jmst_2024_05_080 crossref_primary_10_1007_s42823_022_00456_1 crossref_primary_10_1007_s42823_024_00755_9 crossref_primary_10_1007_s12274_023_6302_x crossref_primary_10_1016_j_diamond_2024_111389 crossref_primary_10_1016_j_ccr_2024_216226 crossref_primary_10_1007_s42823_023_00497_0 crossref_primary_10_1007_s10800_024_02202_z crossref_primary_10_1016_j_carbon_2024_119732 crossref_primary_10_1016_j_jmst_2024_08_028 crossref_primary_10_1016_j_mtphys_2024_101444 crossref_primary_10_1016_j_mssp_2024_109099 crossref_primary_10_1007_s42823_023_00578_0 crossref_primary_10_1007_s42823_024_00741_1 crossref_primary_10_1007_s42823_023_00557_5 crossref_primary_10_3866_PKU_WHXB202308052 crossref_primary_10_1007_s42823_022_00446_3 crossref_primary_10_1016_j_jiec_2024_10_033 crossref_primary_10_1016_j_mattod_2024_05_003 crossref_primary_10_1016_j_cclet_2024_110288 crossref_primary_10_1016_j_ccr_2024_215722 crossref_primary_10_1007_s42823_025_00860_3 crossref_primary_10_1007_s42823_023_00500_8 crossref_primary_10_1007_s42823_024_00739_9 crossref_primary_10_1016_j_diamond_2024_111131 crossref_primary_10_1016_j_enrev_2024_100070 crossref_primary_10_1016_j_mssp_2025_109384 crossref_primary_10_1007_s11581_024_05642_x crossref_primary_10_1007_s42823_024_00790_6 crossref_primary_10_1007_s42823_022_00419_6 crossref_primary_10_1007_s42823_023_00582_4 crossref_primary_10_1002_advs_202412214 crossref_primary_10_1016_j_jmst_2024_12_010 crossref_primary_10_1021_acsomega_4c00749 crossref_primary_10_1007_s42823_023_00561_9 crossref_primary_10_1016_j_jiec_2024_10_048 crossref_primary_10_1007_s42823_022_00455_2 crossref_primary_10_1016_S1872_2067_24_60183_X crossref_primary_10_1016_j_cis_2024_103332 crossref_primary_10_1016_j_flatc_2024_100631 crossref_primary_10_1007_s42823_023_00470_x crossref_primary_10_1007_s42823_023_00510_6 crossref_primary_10_1007_s42823_023_00514_2 crossref_primary_10_1016_j_est_2025_115341 crossref_primary_10_1016_j_jiec_2025_02_048 crossref_primary_10_1016_j_ccr_2025_216462 crossref_primary_10_1007_s42823_023_00635_8 crossref_primary_10_1007_s42823_023_00637_6 crossref_primary_10_1016_j_cjsc_2024_100469 crossref_primary_10_1016_j_mtphys_2024_101382 crossref_primary_10_1007_s42823_023_00573_5 crossref_primary_10_1016_j_jiec_2024_10_016 crossref_primary_10_1039_D4CP04277H crossref_primary_10_1016_j_jallcom_2025_178846 crossref_primary_10_1007_s42823_023_00554_8 crossref_primary_10_1007_s42823_023_00558_4 crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1007_s42823_022_00445_4 crossref_primary_10_1007_s42823_023_00612_1 crossref_primary_10_1007_s42823_024_00743_z crossref_primary_10_1007_s42823_024_00702_8 |
Cites_doi | 10.1088/0953-8984/25/14/143201 10.1016/j.jmst.2017.11.050 10.1038/s41560-019-0463-6 10.1038/s41467-021-22428-1 10.1007/s00170-020-05394-8 10.1103/PhysRevLett.76.4825 10.1021/acsami.0c02806 10.1016/j.trac.2017.05.015 10.1016/j.carbon.2018.01.008 10.1016/j.jcat.2019.08.018 10.1016/S0169-409X(01)00097-7 10.1002/admi.201900948 10.1021/jp2121609 10.1016/j.jmst.2021.04.021 10.1039/C9NJ06028F 10.1007/s42823-020-00200-7 10.1038/s41467-020-15993-4 10.1038/nature09718 10.1039/C5CP02014J 10.1038/s41467-018-06074-8 10.1016/j.jmst.2021.12.018 10.1021/jacs.0c06960 10.1088/1748-9326/11/1/014012 10.1016/j.nanoen.2018.08.058 10.1021/acs.jpcc.9b07216 10.1002/aenm.202100497 10.1002/anie.201811938 10.1021/acscatal.8b03734 10.1007/s42823-021-00246-1 10.1038/ncomms4631 10.1103/PhysRevLett.109.025504 10.1021/jp403976d 10.1021/acsami.9b20552 10.1002/adfm.201500891 10.1126/science.aac9439 10.1557/mrs.2015.120 10.1016/j.apcatb.2021.119913 10.1021/cm050299q 10.1016/j.scib.2019.02.015 10.1016/j.carbon.2016.09.031 10.1016/j.electacta.2016.11.009 10.1021/acsami.7b01833 10.1039/D0QM01124J 10.1002/aelm.201800789 10.1063/5.0021093 10.1007/s42823-020-00161-x 10.1016/j.carbon.2015.02.025 10.1007/s13280-019-01244-4 10.1111/jfb.14599 10.1038/s41699-021-00259-4 10.1063/1.4823854 10.1039/D0CS01487G 10.1007/s42823-022-00353-7 10.1007/s42823-020-00156-8 10.3390/ma10070814 10.1016/j.jcis.2020.08.101 10.1021/acscatal.9b03814 10.1149/1.1837843 10.1038/nature12385 10.1021/nl802810g 10.1039/C9CS00348G 10.1016/j.carbon.2012.02.016 10.1039/D0NR08345C 10.1038/s41560-018-0308-8 10.1016/j.carbon.2011.03.031 10.1021/cm504618r 10.1016/j.jallcom.2022.165020 10.1002/cssc.201801003 10.1007/s12274-020-3252-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION KROLR 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U ACYCR |
DOI | 10.1007/s42823-022-00380-4 |
DatabaseName | CrossRef Korea Scholar ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2233-4998 |
EndPage | 1331 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10369392 428151 10_1007_s42823_022_00380_4 |
GrantInformation_xml | – fundername: Central Government Guided Local Science and Technology Development Special Fund Project grantid: 2020ZYYD033 – fundername: National Natural Science Foundation of China grantid: 62004143 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | .UV 0R~ 406 88I 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABECU ABFTV ABJCF ABKCH ABMQK ABTEG ABTKH ABTMW ABUWG ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADMLS ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AEUYN AFKRA AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW ATCPS AXYYD AZQEC BENPR BGLVJ BGNMA BHPHI CCPQU CSCUP DPUIP DWQXO EBLON EBS EJD FIGPU FNLPD GNUQQ H13 HCIFZ IKXTQ IWAJR JDI JZLTJ KB. KOV KROLR LLZTM M2P M4Y M7S NPVJJ NQJWS NU0 OK1 P5Y PATMY PDBOC PT4 PTHSS PYCSY ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX VEKWB VFIZW VP7 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK ABRTQ D1I L6V PKEHL PQEST PQGLB PQQKQ PQUKI Q9U ACYCR |
ID | FETCH-LOGICAL-c382t-c59e2b43b2563f70a9ad252cf5aa87c463624f87469b00c17e04739289c899a23 |
IEDL.DBID | BENPR |
ISSN | 1976-4251 |
IngestDate | Wed Jan 31 06:58:19 EST 2024 Fri Jul 25 11:39:21 EDT 2025 Sat Dec 09 04:14:54 EST 2023 Thu Apr 24 23:03:10 EDT 2025 Tue Jul 01 01:14:46 EDT 2025 Fri Feb 21 02:44:06 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Improving performance 2D carbon materials Lattice structure Energy conversion Energy storage Lattice structure · 2D carbon materials · Improving performance · Energy conversion · Energy storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c59e2b43b2563f70a9ad252cf5aa87c463624f87469b00c17e04739289c899a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4125-6099 0000-0003-1439-6512 |
PQID | 2921418826 |
PQPubID | 6587174 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10369392 proquest_journals_2921418826 koreascholar_journals_428151 crossref_primary_10_1007_s42823_022_00380_4 crossref_citationtrail_10_1007_s42823_022_00380_4 springer_journals_10_1007_s42823_022_00380_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Incheon |
PublicationTitle | Carbon Letters |
PublicationTitleAbbrev | Carbon Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore 한국탄소학회 Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: 한국탄소학회 – name: Springer Nature B.V |
References | Sun, Wu, Liang, Xiang (CR53) 2021; 5 Hsieh, Yang, Lin (CR25) 2011; 49 Čížek (CR28) 2018; 34 Zhang, Sun, Ruan, Zhang, Li, Zhang, Cheng, Wang, Wang (CR57) 2020; 128 Li, Josep, Ghorbani-Asl, Kolekar, Krasheninnikov, Batzill (CR41) 2021; 13 Zhang, Li, Heil, Zafeiratos, Lai, Savateev, Antonietti, Wang (CR67) 2019; 58 Miao, Cai, Zhang, Nah, Yeom, Wang (CR21) 2017; 9 Dang, Lin, Meng, Zhang, FanSufeng, Cao, Yang, Zhou, Fan, Kai, Lu (CR37) 2021; 95 Zhou, Zhou, Zhang, Lv, Liu, Qi, Wang, Shen, Yu, Bazan, Wang (CR6) 2019; 5 Tang, Kvashnin, Najmaei, Bando, Kimoto, Koskinen, Ajayan, Yakobson, Sorokin, Lou, Golberg (CR39) 2014; 5 Jiang, Zhu, Zou, Ou-yang, Zheng, Tang (CR24) 2015; 87 Zhang, Xu, Niu, Xia (CR65) 2015; 17 Grennfelt, Engleryd, Forsius, Øystein, Rodhe, Cowling (CR3) 2020; 49 Yuan, Zhao, Li, Liu (CR13) 2021; 31 Costa, Friedrichs, Sloan, Green (CR56) 2005; 17 Allen, Bullock, Yang, Javey, Wolf (CR34) 2019; 4 Han, Sun, Li, Cheng, Halbig, Feicht, Hübner, Strasser, Eigler (CR69) 2019; 9 Alghamdi, Maconachie, Downing, Brandt, Qian, Leary (CR27) 2020; 108 Kumar, Sharma, Dixit (CR14) 2021; 31 Geim, Grigorieva (CR31) 2013; 499 Ahsan, Santiago, Hong, Zhang, Cano, Rodriguez-Castellon, Echegoyen, Sreenivasan, Noveron (CR54) 2020; 142 Yang, Jiang, Huang, He, Yang, Li (CR42) 2020; 12 Yang, Chen, Wang, Zou, Wu, Jiang (CR4) 2022 Zhang, Li, Wang, Luo, Sun, Zhao, Yu, Wang, Chen (CR66) 2021; 11 Nikiforov, Tang, Wei, DumitricǎT (CR38) 2012; 109 Kalantar-zadeh, Ou, Daeneke, Strano, Pumera, Gras (CR18) 2015; 25 Pirrotta, Larcher, Lanza, Padovani, Porti, Nafría, Bersuker (CR30) 2013; 114 Huang, Zhang, Yu, Yang, Wang, Li, Su (CR44) 2016; 222 Zhang, Xia, Li, Yu, Wang, Sun (CR49) 2020; 44 Yan, Shin, Chen, Lee, Manickam, Hanson, Zhao, Lester, Wu, Pang (CR15) 2021; 31 Tian, Yu, Shi, Wang (CR16) 2017; 10 Bai, Zhang, Gao, Xiong (CR46) 2018; 53 Chen, Kim, Rajendiran, Prabakar, Li, Shi, Jeong, Kang, Li (CR55) 2021; 582 Tang, Shi, Bai, Hu, Xuan, Yue, Ye, Liu, Li, Zhuang, Shen, Liu, Sun (CR35) 2020; 10 Jiang, Xiong, Wang, Liao, Bai, Zou, Wu, Zhang (CR5) 2022; 118 Hu, Ordomsky, Khodakov (CR7) 2021; 286 Wang, Huang, Song, Zhang, Ma, Liang, Chen (CR63) 2009; 9 Tiwari, Yoon, Novak, Azam, Lee, Lee, Lee, Srolovitz, An, Jeon (CR48) 2019; 6 Solovyev, Hamada, Terakura (CR50) 1996; 76 Zou, Wu, Liu, Sun, Cao, Hsu, Wee, Jiang (CR10) 2018; 130 Huang, Jiang, Zou, Zhao, Liao (CR20) 2019; 64 Zou, Liao, Wang, Ding, Wu, Hsu, Jiang (CR22) 2022; 911 Liang, Liu, Zhong, Han, Zhong, Chen, Song, Deng, Lin (CR45) 2021; 14 Li, Wu, Li, Chen, Zeng, Arramel, Jiang (CR8) 2020; 12 Vippagunta, Brittain, Grant (CR33) 2001; 48 Huang, Ruiz-Vargas, Zande, Whitney, Levendorf, Kevek, Garg, Alden, Hustedt, Zhu, Park, McEuen, Muller (CR61) 2011; 469 Zou, Wu, Wang, Deng, Jiang, Zhang, Liu, Li, Zhang, Jiaguo, Zhai, Alshareef (CR11) 2022; 51 Zhang, Lu, Zhang, Ho, Wang (CR52) 2016; 110 Cheng, Yang, Zhang, Shi, Yang, Wang, Xie, Shi, Zhang (CR64) 2012; 50 Silva, Moura, Coutinho, Dražić, Teixeira, Sobolev, Silva Cláudia, Neves, Prieto, Faria (CR68) 2018; 11 Cheng, Zhao, Su, Tang, Che, Zhang, Liu (CR47) 2019; 4 Ansari (CR26) 2017; 93 Enyashin, Bar-Sadan, Houben, Seifert (CR58) 2013; 117 Rooney, Li, Zhao, Gholinia, Kozikov, Auton, Ding, Gorbachev, Young, Haigh (CR40) 2018; 9 Yule, Shkirskiy, Aarons, West, Bentley, Shollock, Unwin (CR43) 2019; 123 Tang, Gong, Xiao, Sun (CR36) 2021; 12 Kattel, Atanassov, Kiefer (CR59) 2012; 116 Morimoto, Jinno, Hirai, Ogata, Yamada, Yoneda (CR29) 1997; 144 Li, Liu, Gao, Goldsmith, Cong, Zhai, Miao, Jiang, Dou, Wang, Shi, Guo, Wang, Yu, Li, Song (CR60) 2019; 378 Huang, Wang, Wang, Zhang, Lu, Wang (CR62) 2015; 27 Hohenadler, Assaad (CR17) 2013; 25 Bai, Yang, Jiang, Xi, Zou, Xiong, Liao, Liu (CR23) 2021; 5 Jiang, Li, Zou, Zhou, Eda, Zhang, Zhang, Li, Zhai, Wee (CR12) 2019; 48 Hu, Pan, Wang, Lin, Gao, Luo, Hu, Fan, Liu, Wang (CR51) 2020; 11 Novoselov, Mishchenko, Carvalho, Neto (CR32) 2016; 353 Singh, Chatterjee, Palecha, Sen, Ateeq, Verma (CR9) 2021; 31 Alfonso, Gesto, Sadoul (CR2) 2021; 98 Berrill, Arvesen, Scholz, Hans, Edgar (CR1) 2016; 11 Vogel, Robinson (CR19) 2015; 40 D Hu (380_CR7) 2021; 286 Y Yan (380_CR15) 2021; 31 S Bai (380_CR46) 2018; 53 L Han (380_CR69) 2019; 9 Y Wang (380_CR63) 2009; 9 L Zhang (380_CR65) 2015; 17 W Tian (380_CR16) 2017; 10 DM Tang (380_CR39) 2014; 5 S Kattel (380_CR59) 2012; 116 Y Morimoto (380_CR29) 1997; 144 AK Geim (380_CR31) 2013; 499 I Nikiforov (380_CR38) 2012; 109 AP Rooney (380_CR40) 2018; 9 J Li (380_CR41) 2021; 13 SZ Huang (380_CR44) 2016; 222 MA Ahsan (380_CR54) 2020; 142 KS Novoselov (380_CR32) 2016; 353 SR Vippagunta (380_CR33) 2001; 48 C Tang (380_CR36) 2021; 12 EM Vogel (380_CR19) 2015; 40 J Miao (380_CR21) 2017; 9 PY Huang (380_CR61) 2011; 469 H Huang (380_CR20) 2019; 64 J Zou (380_CR10) 2018; 130 J Jiang (380_CR12) 2019; 48 C Dang (380_CR37) 2021; 95 AP Tiwari (380_CR48) 2019; 6 I Solovyev (380_CR50) 1996; 76 TG Allen (380_CR34) 2019; 4 P Grennfelt (380_CR3) 2020; 49 ESD Silva (380_CR68) 2018; 11 V Singh (380_CR9) 2021; 31 K Chen (380_CR55) 2021; 582 J Li (380_CR60) 2019; 378 Y Sun (380_CR53) 2021; 5 K Kalantar-zadeh (380_CR18) 2015; 25 A Alghamdi (380_CR27) 2020; 108 W Zhang (380_CR52) 2016; 110 J Zhang (380_CR57) 2020; 128 S Liang (380_CR45) 2021; 14 Y Hu (380_CR51) 2020; 11 C Yang (380_CR42) 2020; 12 LC Yule (380_CR43) 2019; 123 S Ansari (380_CR26) 2017; 93 J Huang (380_CR62) 2015; 27 P-J Costa (380_CR56) 2005; 17 J Zou (380_CR11) 2022; 51 K Yuan (380_CR13) 2021; 31 J Jiang (380_CR24) 2015; 87 CT Hsieh (380_CR25) 2011; 49 J Jiang (380_CR5) 2022; 118 M Cheng (380_CR64) 2012; 50 S Alfonso (380_CR2) 2021; 98 O Pirrotta (380_CR30) 2013; 114 M Hohenadler (380_CR17) 2013; 25 Y Zhang (380_CR66) 2021; 11 J Čížek (380_CR28) 2018; 34 AN Enyashin (380_CR58) 2013; 117 P Berrill (380_CR1) 2016; 11 S Bai (380_CR23) 2021; 5 J Zou (380_CR22) 2022; 911 M Yang (380_CR4) 2022 X Zhang (380_CR49) 2020; 44 A Kumar (380_CR14) 2021; 31 W Cheng (380_CR47) 2019; 4 X Zhou (380_CR6) 2019; 5 C Tang (380_CR35) 2020; 10 G Zhang (380_CR67) 2019; 58 B Li (380_CR8) 2020; 12 |
References_xml | – volume: 25 year: 2013 ident: CR17 article-title: Correlation effects in two-dimensional topological insulators publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/25/14/143201 – volume: 34 start-page: 577 year: 2018 end-page: 598 ident: CR28 article-title: Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2017.11.050 – volume: 4 start-page: 914 year: 2019 end-page: 928 ident: CR34 article-title: Passivating contacts for crystalline silicon solar cells publication-title: Nat Energy doi: 10.1038/s41560-019-0463-6 – volume: 12 start-page: 2139 year: 2021 ident: CR36 article-title: Direct electrosynthesis of 52% concentrated CO on silver’s twin boundary publication-title: Nat Commun doi: 10.1038/s41467-021-22428-1 – volume: 108 start-page: 957 year: 2020 end-page: 971 ident: CR27 article-title: Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05394-8 – volume: 76 start-page: 4825 year: 1996 ident: CR50 article-title: Crucial role of the lattice distortion in the magnetism of LaMnO publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.76.4825 – volume: 12 start-page: 23822 year: 2020 end-page: 23830 ident: CR42 article-title: Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti C T MXene nanosheets for efficient methanol oxidation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c02806 – volume: 93 start-page: 134 year: 2017 end-page: 151 ident: CR26 article-title: Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: recent applications and challenges publication-title: Trends Analyt Chem doi: 10.1016/j.trac.2017.05.015 – volume: 130 start-page: 652 year: 2018 end-page: 663 ident: CR10 article-title: An ultra-sensitive electrochemical sensor based on 2D g-C N /CuO nanocomposites for dopamine detection publication-title: Carbon doi: 10.1016/j.carbon.2018.01.008 – volume: 378 start-page: 113 year: 2019 end-page: 120 ident: CR60 article-title: Nitrogen-doped graphene layers for electrochemical oxygen reduction reaction boosted by lattice strain publication-title: J Catal doi: 10.1016/j.jcat.2019.08.018 – volume: 48 start-page: 3 year: 2001 end-page: 26 ident: CR33 article-title: Crystalline solids publication-title: Adv Drug Deliv doi: 10.1016/S0169-409X(01)00097-7 – volume: 6 start-page: 1900948 year: 2019 ident: CR48 article-title: Lattice strain formation through spin-coupled shells of MoS on Mo C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts publication-title: Adv Mater Interfaces doi: 10.1002/admi.201900948 – volume: 116 start-page: 8161 year: 2012 end-page: 8166 ident: CR59 article-title: Stability, electronic and magnetic properties of in-plane defects in Graphene: a first-principles study publication-title: J Phys Chem C doi: 10.1021/jp2121609 – volume: 95 start-page: 193 year: 2021 end-page: 202 ident: CR37 article-title: Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.04.021 – volume: 44 start-page: 6818 year: 2020 end-page: 6824 ident: CR49 article-title: Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst publication-title: New J Chem doi: 10.1039/C9NJ06028F – volume: 31 start-page: 177 year: 2021 end-page: 199 ident: CR15 article-title: A recent trend: application of graphene in catalysis publication-title: Carbon Lett doi: 10.1007/s42823-020-00200-7 – volume: 11 start-page: 2129 year: 2020 ident: CR51 article-title: Lattice distortion induced internal electric field in TiO photoelectrode for efficient charge separation and transfer publication-title: Nat Commun doi: 10.1038/s41467-020-15993-4 – volume: 469 start-page: 389 year: 2011 end-page: 392 ident: CR61 article-title: Grains and grain boundaries in single-layer graphene atomic patchwork quilts publication-title: Nature doi: 10.1038/nature09718 – volume: 17 start-page: 16733 year: 2015 end-page: 16743 ident: CR65 article-title: Role of lattice defects in catalytic activities of graphene clusters for fuel cells publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP02014J – volume: 9 start-page: 3597 year: 2018 ident: CR40 article-title: Anomalous twin boundaries in two dimensional materials publication-title: Nat Commun doi: 10.1038/s41467-018-06074-8 – volume: 118 start-page: 15 year: 2022 end-page: 24 ident: CR5 article-title: Sulfur-doped g-C N /g-C N isotype step-scheme heterojunction for photocatalytic H evolution publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.12.018 – volume: 142 start-page: 14688 year: 2020 end-page: 14701 ident: CR54 article-title: Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions publication-title: J Am Chem Soc doi: 10.1021/jacs.0c06960 – volume: 11 year: 2016 ident: CR1 article-title: Environmental impacts of high penetration renewable energy scenarios for Europe publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/1/014012 – volume: 53 start-page: 296 year: 2018 end-page: 336 ident: CR46 article-title: Defect engineering in photocatalytic materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.058 – volume: 123 start-page: 24146 year: 2019 end-page: 24155 ident: CR43 article-title: Nanoscale active sites for the hydrogen evolution reaction on low carbon steel publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b07216 – volume: 11 start-page: 2100497 year: 2021 ident: CR66 article-title: “Sauna” activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium-sulfur batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.202100497 – volume: 58 start-page: 3433 year: 2019 end-page: 3437 ident: CR67 article-title: Tailoring grain boundary chemistry of polymeric carbon nitride for enhanced solar H production and CO reduction publication-title: Angew Chem Int Ed doi: 10.1002/anie.201811938 – volume: 9 start-page: 1283 year: 2019 end-page: 1288 ident: CR69 article-title: In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene publication-title: ACS Catal doi: 10.1021/acscatal.8b03734 – volume: 31 start-page: 1227 year: 2021 end-page: 1235 ident: CR13 article-title: Predicting an ideal 2D carbon nanostructure with negative Poisson's ratio from first principles: implications for nanomechanical devices publication-title: Carbon Lett doi: 10.1007/s42823-021-00246-1 – volume: 5 start-page: 3631 year: 2014 ident: CR39 article-title: Nanomechanical cleavage of molybdenum disulphide atomic layers publication-title: Nat Commun doi: 10.1038/ncomms4631 – volume: 109 year: 2012 ident: CR38 article-title: Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.025504 – volume: 117 start-page: 10842 year: 2013 end-page: 10848 ident: CR58 article-title: Line defects in molybdenum disulfide layers publication-title: J Phys Chem C doi: 10.1021/jp403976d – volume: 12 start-page: 9261 year: 2020 end-page: 9267 ident: CR8 article-title: Single metal atoms supported on MBenes for robust electrochemical hydrogen evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b20552 – volume: 25 start-page: 5086 year: 2015 end-page: 5099 ident: CR18 article-title: Two-dimensional transition metal dichalcogenides in biosystems publication-title: Adv Funct Mater doi: 10.1002/adfm.201500891 – volume: 353 start-page: 6298 year: 2016 ident: CR32 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 40 start-page: 558 year: 2015 end-page: 563 ident: CR19 article-title: Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications publication-title: MRS Bull doi: 10.1557/mrs.2015.120 – volume: 286 year: 2021 ident: CR7 article-title: Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2021.119913 – volume: 17 start-page: 3122 year: 2005 end-page: 3129 ident: CR56 article-title: Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes publication-title: Chem Mater doi: 10.1021/cm050299q – volume: 64 start-page: 1067 year: 2019 end-page: 1079 ident: CR20 article-title: Black phosphorus electronics publication-title: Sci Bull doi: 10.1016/j.scib.2019.02.015 – volume: 110 start-page: 330 year: 2016 end-page: 335 ident: CR52 article-title: Lattice distortion and electron charge redistribution induced by defects in graphene publication-title: Carbon doi: 10.1016/j.carbon.2016.09.031 – volume: 222 start-page: 561 year: 2016 end-page: 569 ident: CR44 article-title: Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.11.009 – volume: 9 start-page: 10019 year: 2017 end-page: 10026 ident: CR21 article-title: Air-stable humidity sensor using few-layer black phosphorus publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b01833 – volume: 5 start-page: 4089 year: 2021 end-page: 4106 ident: CR53 article-title: Recent developments in carbon-based materials as high-rate anode for sodium ion batteries publication-title: Mater Chem Front doi: 10.1039/D0QM01124J – volume: 5 start-page: 1800789 year: 2019 ident: CR6 article-title: Conducting polymers-thylakoid hybrid materials for water oxidation and photoelectric conversion publication-title: Adv Electron Mater doi: 10.1002/aelm.201800789 – volume: 128 year: 2020 ident: CR57 article-title: Point defects in two-dimensional hexagonal boron nitride: a perspective publication-title: J Appl Phys doi: 10.1063/5.0021093 – volume: 31 start-page: 149 year: 2021 end-page: 165 ident: CR14 article-title: A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene publication-title: Carbon Lett doi: 10.1007/s42823-020-00161-x – volume: 87 start-page: 193 year: 2015 end-page: 205 ident: CR24 article-title: Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability publication-title: Carbon doi: 10.1016/j.carbon.2015.02.025 – volume: 49 start-page: 849 year: 2020 end-page: 864 ident: CR3 article-title: Acid rain and air pollution: 50 years of progress in environmental science and policy publication-title: Ambio doi: 10.1007/s13280-019-01244-4 – volume: 98 start-page: 1496 year: 2021 end-page: 1508 ident: CR2 article-title: Temperature increase and its effects on fish stress physiology in the context of global warming publication-title: J Fish Biol doi: 10.1111/jfb.14599 – volume: 5 start-page: 78 year: 2021 ident: CR23 article-title: Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction publication-title: npj 2D Mater Appl doi: 10.1038/s41699-021-00259-4 – volume: 114 year: 2013 ident: CR30 article-title: Leakage current through the poly-crystalline HfO : trap densities at grains and grain boundaries publication-title: J Appl Phys doi: 10.1063/1.4823854 – volume: 51 start-page: 2972 year: 2022 end-page: 2990 ident: CR11 article-title: Additive-mediated intercalation and surface modification of MXenes publication-title: Chem Soc Rev doi: 10.1039/D0CS01487G – year: 2022 ident: CR4 article-title: Solvothermal preparation of CeO nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol publication-title: Carbon Lett doi: 10.1007/s42823-022-00353-7 – volume: 31 start-page: 117 year: 2021 end-page: 123 ident: CR9 article-title: Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application publication-title: Carbon Lett doi: 10.1007/s42823-020-00156-8 – volume: 10 start-page: 814 year: 2017 ident: CR16 article-title: The property, preparation and application of topological insulators: a review publication-title: Materials doi: 10.3390/ma10070814 – volume: 582 start-page: 977 year: 2021 end-page: 990 ident: CR55 article-title: Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2020.08.101 – volume: 10 start-page: 2026 year: 2020 end-page: 2032 ident: CR35 article-title: Sun Z (2020) CO reduction on copper’s twin boundary publication-title: ACS Catal doi: 10.1021/acscatal.9b03814 – volume: 144 start-page: 2495 year: 1997 ident: CR29 article-title: Influence of the grain boundaries and intragrain defects on the performance of poly-Si thin film transistors publication-title: J Electrochem Soc doi: 10.1149/1.1837843 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR31 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 9 start-page: 220 year: 2009 end-page: 224 ident: CR63 article-title: Room-temperature ferromagnetism of graphene publication-title: Nano Lett doi: 10.1021/nl802810g – volume: 48 start-page: 4639 year: 2019 end-page: 4654 ident: CR12 article-title: Synergistic additive-mediated CVD growth and chemical modification of 2D materials publication-title: Chem Soc Rev doi: 10.1039/C9CS00348G – volume: 50 start-page: 2581 year: 2012 end-page: 2587 ident: CR64 article-title: Restoration of graphene from graphene oxide by defect repair publication-title: Carbon doi: 10.1016/j.carbon.2012.02.016 – volume: 13 start-page: 1038 year: 2021 end-page: 1047 ident: CR41 article-title: Mirror twin boundaries in MoSe monolayers as one dimensional nanotemplates for selective water adsorption publication-title: Nanoscale doi: 10.1039/D0NR08345C – volume: 4 start-page: 115 year: 2019 end-page: 122 ident: CR47 article-title: Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis publication-title: Nat Energy doi: 10.1038/s41560-018-0308-8 – volume: 49 start-page: 3092 year: 2011 end-page: 3097 ident: CR25 article-title: One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells publication-title: Carbon doi: 10.1016/j.carbon.2011.03.031 – volume: 27 start-page: 2107 year: 2015 end-page: 2113 ident: CR62 article-title: Hierarchical porous graphene carbon-based supercapacitors publication-title: Chem Mater doi: 10.1021/cm504618r – volume: 911 year: 2022 ident: CR22 article-title: Controllable interface engineering of g-C N /CuS nanocomposite photocatalysts publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.165020 – volume: 11 start-page: 2681 year: 2018 end-page: 2694 ident: CR68 article-title: β-Cyclodextrin as a precursor to holey C-doped g-C N nanosheets for photocatalytic hydrogen generation publication-title: Chemsuschem doi: 10.1002/cssc.201801003 – volume: 14 start-page: 2558 year: 2021 end-page: 2567 ident: CR45 article-title: Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO photoreduction publication-title: Nano Res doi: 10.1007/s12274-020-3252-4 – volume: 144 start-page: 2495 year: 1997 ident: 380_CR29 publication-title: J Electrochem Soc doi: 10.1149/1.1837843 – volume: 9 start-page: 1283 year: 2019 ident: 380_CR69 publication-title: ACS Catal doi: 10.1021/acscatal.8b03734 – volume: 50 start-page: 2581 year: 2012 ident: 380_CR64 publication-title: Carbon doi: 10.1016/j.carbon.2012.02.016 – volume: 48 start-page: 3 year: 2001 ident: 380_CR33 publication-title: Adv Drug Deliv doi: 10.1016/S0169-409X(01)00097-7 – volume: 14 start-page: 2558 year: 2021 ident: 380_CR45 publication-title: Nano Res doi: 10.1007/s12274-020-3252-4 – volume: 10 start-page: 814 year: 2017 ident: 380_CR16 publication-title: Materials doi: 10.3390/ma10070814 – volume: 95 start-page: 193 year: 2021 ident: 380_CR37 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.04.021 – volume: 222 start-page: 561 year: 2016 ident: 380_CR44 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.11.009 – volume: 25 start-page: 5086 year: 2015 ident: 380_CR18 publication-title: Adv Funct Mater doi: 10.1002/adfm.201500891 – volume: 11 year: 2016 ident: 380_CR1 publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/1/014012 – volume: 64 start-page: 1067 year: 2019 ident: 380_CR20 publication-title: Sci Bull doi: 10.1016/j.scib.2019.02.015 – volume: 12 start-page: 23822 year: 2020 ident: 380_CR42 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c02806 – volume: 911 year: 2022 ident: 380_CR22 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.165020 – volume: 5 start-page: 1800789 year: 2019 ident: 380_CR6 publication-title: Adv Electron Mater doi: 10.1002/aelm.201800789 – volume: 110 start-page: 330 year: 2016 ident: 380_CR52 publication-title: Carbon doi: 10.1016/j.carbon.2016.09.031 – volume: 469 start-page: 389 year: 2011 ident: 380_CR61 publication-title: Nature doi: 10.1038/nature09718 – volume: 12 start-page: 2139 year: 2021 ident: 380_CR36 publication-title: Nat Commun doi: 10.1038/s41467-021-22428-1 – volume: 13 start-page: 1038 year: 2021 ident: 380_CR41 publication-title: Nanoscale doi: 10.1039/D0NR08345C – volume: 109 year: 2012 ident: 380_CR38 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.025504 – volume: 11 start-page: 2681 year: 2018 ident: 380_CR68 publication-title: Chemsuschem doi: 10.1002/cssc.201801003 – volume: 93 start-page: 134 year: 2017 ident: 380_CR26 publication-title: Trends Analyt Chem doi: 10.1016/j.trac.2017.05.015 – volume: 4 start-page: 115 year: 2019 ident: 380_CR47 publication-title: Nat Energy doi: 10.1038/s41560-018-0308-8 – volume: 4 start-page: 914 year: 2019 ident: 380_CR34 publication-title: Nat Energy doi: 10.1038/s41560-019-0463-6 – volume: 123 start-page: 24146 year: 2019 ident: 380_CR43 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b07216 – volume: 5 start-page: 3631 year: 2014 ident: 380_CR39 publication-title: Nat Commun doi: 10.1038/ncomms4631 – volume: 9 start-page: 220 year: 2009 ident: 380_CR63 publication-title: Nano Lett doi: 10.1021/nl802810g – volume: 108 start-page: 957 year: 2020 ident: 380_CR27 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05394-8 – year: 2022 ident: 380_CR4 publication-title: Carbon Lett doi: 10.1007/s42823-022-00353-7 – volume: 40 start-page: 558 year: 2015 ident: 380_CR19 publication-title: MRS Bull doi: 10.1557/mrs.2015.120 – volume: 25 year: 2013 ident: 380_CR17 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/25/14/143201 – volume: 130 start-page: 652 year: 2018 ident: 380_CR10 publication-title: Carbon doi: 10.1016/j.carbon.2018.01.008 – volume: 53 start-page: 296 year: 2018 ident: 380_CR46 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.058 – volume: 98 start-page: 1496 year: 2021 ident: 380_CR2 publication-title: J Fish Biol doi: 10.1111/jfb.14599 – volume: 10 start-page: 2026 year: 2020 ident: 380_CR35 publication-title: ACS Catal doi: 10.1021/acscatal.9b03814 – volume: 17 start-page: 3122 year: 2005 ident: 380_CR56 publication-title: Chem Mater doi: 10.1021/cm050299q – volume: 378 start-page: 113 year: 2019 ident: 380_CR60 publication-title: J Catal doi: 10.1016/j.jcat.2019.08.018 – volume: 11 start-page: 2100497 year: 2021 ident: 380_CR66 publication-title: Adv Energy Mater doi: 10.1002/aenm.202100497 – volume: 44 start-page: 6818 year: 2020 ident: 380_CR49 publication-title: New J Chem doi: 10.1039/C9NJ06028F – volume: 142 start-page: 14688 year: 2020 ident: 380_CR54 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c06960 – volume: 17 start-page: 16733 year: 2015 ident: 380_CR65 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP02014J – volume: 58 start-page: 3433 year: 2019 ident: 380_CR67 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201811938 – volume: 12 start-page: 9261 year: 2020 ident: 380_CR8 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b20552 – volume: 48 start-page: 4639 year: 2019 ident: 380_CR12 publication-title: Chem Soc Rev doi: 10.1039/C9CS00348G – volume: 31 start-page: 149 year: 2021 ident: 380_CR14 publication-title: Carbon Lett doi: 10.1007/s42823-020-00161-x – volume: 353 start-page: 6298 year: 2016 ident: 380_CR32 publication-title: Science doi: 10.1126/science.aac9439 – volume: 49 start-page: 849 year: 2020 ident: 380_CR3 publication-title: Ambio doi: 10.1007/s13280-019-01244-4 – volume: 286 year: 2021 ident: 380_CR7 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2021.119913 – volume: 9 start-page: 10019 year: 2017 ident: 380_CR21 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b01833 – volume: 114 year: 2013 ident: 380_CR30 publication-title: J Appl Phys doi: 10.1063/1.4823854 – volume: 117 start-page: 10842 year: 2013 ident: 380_CR58 publication-title: J Phys Chem C doi: 10.1021/jp403976d – volume: 31 start-page: 117 year: 2021 ident: 380_CR9 publication-title: Carbon Lett doi: 10.1007/s42823-020-00156-8 – volume: 128 year: 2020 ident: 380_CR57 publication-title: J Appl Phys doi: 10.1063/5.0021093 – volume: 5 start-page: 78 year: 2021 ident: 380_CR23 publication-title: npj 2D Mater Appl doi: 10.1038/s41699-021-00259-4 – volume: 31 start-page: 177 year: 2021 ident: 380_CR15 publication-title: Carbon Lett doi: 10.1007/s42823-020-00200-7 – volume: 6 start-page: 1900948 year: 2019 ident: 380_CR48 publication-title: Adv Mater Interfaces doi: 10.1002/admi.201900948 – volume: 31 start-page: 1227 year: 2021 ident: 380_CR13 publication-title: Carbon Lett doi: 10.1007/s42823-021-00246-1 – volume: 34 start-page: 577 year: 2018 ident: 380_CR28 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2017.11.050 – volume: 116 start-page: 8161 year: 2012 ident: 380_CR59 publication-title: J Phys Chem C doi: 10.1021/jp2121609 – volume: 9 start-page: 3597 year: 2018 ident: 380_CR40 publication-title: Nat Commun doi: 10.1038/s41467-018-06074-8 – volume: 27 start-page: 2107 year: 2015 ident: 380_CR62 publication-title: Chem Mater doi: 10.1021/cm504618r – volume: 49 start-page: 3092 year: 2011 ident: 380_CR25 publication-title: Carbon doi: 10.1016/j.carbon.2011.03.031 – volume: 11 start-page: 2129 year: 2020 ident: 380_CR51 publication-title: Nat Commun doi: 10.1038/s41467-020-15993-4 – volume: 5 start-page: 4089 year: 2021 ident: 380_CR53 publication-title: Mater Chem Front doi: 10.1039/D0QM01124J – volume: 51 start-page: 2972 year: 2022 ident: 380_CR11 publication-title: Chem Soc Rev doi: 10.1039/D0CS01487G – volume: 118 start-page: 15 year: 2022 ident: 380_CR5 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.12.018 – volume: 76 start-page: 4825 year: 1996 ident: 380_CR50 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.76.4825 – volume: 582 start-page: 977 year: 2021 ident: 380_CR55 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2020.08.101 – volume: 87 start-page: 193 year: 2015 ident: 380_CR24 publication-title: Carbon doi: 10.1016/j.carbon.2015.02.025 – volume: 499 start-page: 419 year: 2013 ident: 380_CR31 publication-title: Nature doi: 10.1038/nature12385 |
SSID | ssib039557897 ssj0002992795 ssib007309036 ssib053376736 ssib036278051 |
Score | 2.5285676 |
SecondaryResourceType | review_article |
Snippet | Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired... |
SourceID | nrf proquest koreascholar crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1321 |
SubjectTerms | Adsorption Atmospheric corrosion Carbon Catalysis Characterization and Evaluation of Materials Charge transport Chemical bonds Chemistry and Materials Science Crystal defects Ductility Electric properties Electromagnetic absorption Energy consumption Energy conversion Energy storage Environmental impact Grain boundaries Graphene Hydrogen Industrial production Lattice strain Material properties Materials Engineering Materials Science Modulation Nanomaterials Nanotechnology Photoelectricity Polymers Review Structural stability Symmetry Toxicity Twin boundaries 자연과학일반 |
TableOfContents | Modulation of the lattice structure of 2D carbon-based materials for improving photoelectric properties Abstract 1 Introduction 2 Method of lattice modulation of 2D carbon nanomaterials 2.1 Graintwin boundary 2.2 Lattice strain 2.3 Lattice distortion 2.4 Lattice defects 3 Conclusions and perspectives Acknowledgements References |
Title | Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties |
URI | https://link.springer.com/article/10.1007/s42823-022-00380-4 http://db.koreascholar.com/Article/Detail/428151 https://www.proquest.com/docview/2921418826 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003046607 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Carbon Letters, 2023, 33(5), , pp.1321-1331 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6S7KUUSkNauk26CJJbK2Lr4cepZNtsHpCllAZyE7IsNcsWa-Ns_39HtpxtAsnJGMvC1oxmvtFI8wEcsTyRrmKSSl7VVIiSU42BM3UuSxzCE206bsCreXZ-LS5v5E1ccLuP2yoHm9gZ6tqbsEZ-zEqWihTxYPZ1dUcDa1TIrkYKjW0YoQkuMPgaTU_nP34OGsVLiRoZ82TBNqPxZXlHxZKiH6aosGk8SdOdp0MszkJak9GQMUuoeOStXi992CjeB53oi5rWPcKlT1KpnYeavYU3EVqSk14XdmHLNntwe-XryNBFvCMI9wjehR1vpC8d-7e14QH7ToxuK9_Q4NdqgkC2102CqJYshqUHsrr1a3_ck-csDFmFtfw2FGV9B9ez01_fzmlkV6CGF2xNjSwtqwRHQWXc5Ykudc0kM05qXeQmFBJjwhU5xs84NU2a20TkiKaK0mCMphl_DzuNb-wHIMLqQiNSzHgthEUIYjGyQ7vpTKIrLusxpMMoKhNLjwcGjD_qoWhyN_IKR151I6_EGD4_vLPqC2-82Prgf-GoOBHvFbZETDOGQxSWWpqFCuW0w_W3V8tWYdBwgX3yrMQ_w04GYW462OjdGL4MAt48fv6TPr7c2z68Csz1_V7CA9hBkdtPiG_W1QS2i9nZBEYns-l0Pokq_Q8GFPVs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHKgqoVZQdQttLUFP1CLxI49DVVWly25hOYHEzXUcu6wWxUvYquJP9Td2Jg-2VIIbpyhyYjnz_CZjzxCyx9NI-YIrpkRRMilzwQwEzsz7JPIAT4xtegNOTpPRufx-oS5WyJ_-LAxuq-xtYmOoy2DxH_kBz3ksY8CDyef5NcOuUZhd7VtotGJx7G5_Q8h282l8CPz9wPnw29nXEeu6CjArMr5gVuWOF1LAAhPh08jkpuSKW6-MyVKLBbS49FkKcSOIpI1TF8kUUESWW4hNDBY6AJO_JoXIUaOy4VEvvyJXIP9dVg49AZh6njaNX2Lw-gzUI-7O7TSn9wD5c0yicob5uYjJe77x-SzgtvQ2xAXPV9X-Hgr-L3Hb-MPhC7LRAVn6pZW8l2TFVZvkchLKrh8YDZ4CuKRwh_vraFuo9lftcIAfUmvqIlQMvWhJATa3mkABQ9Np_6ODzi_DIhy0rXqmls4xc1BjCdgtcv4kVH9FVqtQudeESmcyA7g0EaWUDgCPgzgSrLS3kSmEKgck7qmobVfoHPttXOm7Es0N5TVQXjeU13JA9u_embdlPh59eudf5uhO7W80PAkIakB2gVl6Zqcai3fj9WfQs1pDiDKGOUWSw5fBJD0zlxMspXxAPvYMXg4_vKQ3j8_2nqyPziYn-mR8erxNnvEIBQ93Me6QVWC_ewvIalG8a8SZkh9PrT9_ATFiLKU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+the+lattice+structure+of+2D+carbon%E2%80%91based+materials+for+improving+photo%2Felectric+properties&rft.jtitle=Carbon+Letters&rft.au=Fangyi+Li&rft.au=Yulianti+Anjarsari&rft.au=Jiamei+Wang&rft.au=Rifda+Azzahiidah&rft.date=2023-08-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%83%84%EC%86%8C%ED%95%99%ED%9A%8C&rft.issn=1976-4251&rft.eissn=2233-4998&rft.volume=33&rft.issue=5&rft.spage=1321&rft.epage=1331&rft_id=info:doi/10.1007%2Fs42823-022-00380-4&rft.externalDocID=428151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-4251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-4251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-4251&client=summon |