Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties

Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of mater...

Full description

Saved in:
Bibliographic Details
Published inCarbon Letters Vol. 33; no. 5; pp. 1321 - 1331
Main Authors Li, Fangyi, Anjarsari, Yulianti, Wang, Jiamei, Azzahiidah, Rifda, Jiang, Jizhou, Zou, Jing, Xiang, Kun, Ma, Huijuan, Arramel
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.08.2023
한국탄소학회
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications.
AbstractList Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications.
Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired for myriad of applications such as catalysis and energy storage. Since lattice modulation is a vital method of surface modification of materials, which form by an external force during the synthesis process, causing the internal compression and stretching, leading to lattice sliding event. In this review, we present a summary of different methods to tailor the lattice modulation in 2D carbon-based materials, including grain/twin boundary, lattice strain, lattice distortion, and lattice defects. This overview highlights the implication control of the diverse morphologies of nanocrystals and how to tailor the materials properties without adding any polymers. The improvement in the performance of 2D carbon materials ranges from the enhancement of charge transport and conductivity, structural stability, high-performance of light absorption capacity, and efficient selectivity promote the future prospect of 2D carbon materials broaden their applications in terms of energy conversion and storage. Finally, some perspectives are proposed on the future developments and challenges on 2D carbon materials towards energy storage applications. KCI Citation Count: 0
Author Anjarsari, Yulianti
Li, Fangyi
Wang, Jiamei
Arramel
Zou, Jing
Xiang, Kun
Azzahiidah, Rifda
Ma, Huijuan
Jiang, Jizhou
Author_xml – sequence: 1
  givenname: Fangyi
  surname: Li
  fullname: Li, Fangyi
  organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology
– sequence: 2
  givenname: Yulianti
  surname: Anjarsari
  fullname: Anjarsari, Yulianti
  organization: Nano Center Indonesia
– sequence: 3
  givenname: Jiamei
  surname: Wang
  fullname: Wang, Jiamei
  organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology
– sequence: 4
  givenname: Rifda
  surname: Azzahiidah
  fullname: Azzahiidah, Rifda
  organization: Nano Center Indonesia
– sequence: 5
  givenname: Jizhou
  orcidid: 0000-0003-1439-6512
  surname: Jiang
  fullname: Jiang, Jizhou
  email: 027wit@163.com
  organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology
– sequence: 6
  givenname: Jing
  surname: Zou
  fullname: Zou, Jing
  organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology
– sequence: 7
  givenname: Kun
  surname: Xiang
  fullname: Xiang, Kun
  organization: School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology
– sequence: 8
  givenname: Huijuan
  surname: Ma
  fullname: Ma, Huijuan
  organization: Hubei Three Gorges Laboratory
– sequence: 9
  orcidid: 0000-0003-4125-6099
  surname: Arramel
  fullname: Arramel
  email: arramel@nano.or.id
  organization: Nano Center Indonesia
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003046607$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kV1rHCEUhqWkkG2SP5AroXeFafTojHoZ0o8EUgohvRbHdXbtzo7bo1Pov6_ZCaT0IlcHPc_jOfi-IydTmgIhl5x95IypqyxBg2gYQMOY0KyRb8gKQIhGGqNPyIob1TUSWn5KLnKOPROmbZU2akW239J6Hl2JaaJpoGUbaD2V6APNBWdfZgxPDfhEvcM-TU3vcljTvSsBoxszHRLSuD9g-h2nDT1sU0lXYQy-YPS0Xh8ClhjyOXk7VDxcPNcz8uPL58eb2-b--9e7m-v7xgsNpfGtCdBL0UPbiUExZ9waWvBD65xWXnaiAzloJTvTM-a5CkwqYUAbr41xIM7Ih-XdCQe789EmF491k-wO7fXD453lTHSmShV-v8B1z19zyMX-TDNOdT8LBrjkWkP3Qu0SBpf9No0OX8j6-7zllYKF8phyxjDYA8a9wz91nH3KyS452ZqTPeZkZZX0f5KP5ZhGQRfH11WxqLnOmTbhn41esf4CzRyoVQ
CitedBy_id crossref_primary_10_1007_s42823_024_00697_2
crossref_primary_10_1016_j_mtcomm_2024_110223
crossref_primary_10_1007_s42823_023_00483_6
crossref_primary_10_1016_j_apmt_2023_102002
crossref_primary_10_1007_s42823_023_00466_7
crossref_primary_10_1007_s42823_024_00816_z
crossref_primary_10_1007_s42823_023_00590_4
crossref_primary_10_1039_D4TA01361A
crossref_primary_10_1007_s42823_024_00853_8
crossref_primary_10_1007_s42823_023_00647_4
crossref_primary_10_1039_D4CE01263A
crossref_primary_10_1007_s42823_023_00666_1
crossref_primary_10_1016_j_cis_2023_103077
crossref_primary_10_1016_j_jmst_2024_05_080
crossref_primary_10_1007_s42823_022_00456_1
crossref_primary_10_1007_s42823_024_00755_9
crossref_primary_10_1007_s12274_023_6302_x
crossref_primary_10_1016_j_diamond_2024_111389
crossref_primary_10_1016_j_ccr_2024_216226
crossref_primary_10_1007_s42823_023_00497_0
crossref_primary_10_1007_s10800_024_02202_z
crossref_primary_10_1016_j_carbon_2024_119732
crossref_primary_10_1016_j_jmst_2024_08_028
crossref_primary_10_1016_j_mtphys_2024_101444
crossref_primary_10_1016_j_mssp_2024_109099
crossref_primary_10_1007_s42823_023_00578_0
crossref_primary_10_1007_s42823_024_00741_1
crossref_primary_10_1007_s42823_023_00557_5
crossref_primary_10_3866_PKU_WHXB202308052
crossref_primary_10_1007_s42823_022_00446_3
crossref_primary_10_1016_j_jiec_2024_10_033
crossref_primary_10_1016_j_mattod_2024_05_003
crossref_primary_10_1016_j_cclet_2024_110288
crossref_primary_10_1016_j_ccr_2024_215722
crossref_primary_10_1007_s42823_025_00860_3
crossref_primary_10_1007_s42823_023_00500_8
crossref_primary_10_1007_s42823_024_00739_9
crossref_primary_10_1016_j_diamond_2024_111131
crossref_primary_10_1016_j_enrev_2024_100070
crossref_primary_10_1016_j_mssp_2025_109384
crossref_primary_10_1007_s11581_024_05642_x
crossref_primary_10_1007_s42823_024_00790_6
crossref_primary_10_1007_s42823_022_00419_6
crossref_primary_10_1007_s42823_023_00582_4
crossref_primary_10_1002_advs_202412214
crossref_primary_10_1016_j_jmst_2024_12_010
crossref_primary_10_1021_acsomega_4c00749
crossref_primary_10_1007_s42823_023_00561_9
crossref_primary_10_1016_j_jiec_2024_10_048
crossref_primary_10_1007_s42823_022_00455_2
crossref_primary_10_1016_S1872_2067_24_60183_X
crossref_primary_10_1016_j_cis_2024_103332
crossref_primary_10_1016_j_flatc_2024_100631
crossref_primary_10_1007_s42823_023_00470_x
crossref_primary_10_1007_s42823_023_00510_6
crossref_primary_10_1007_s42823_023_00514_2
crossref_primary_10_1016_j_est_2025_115341
crossref_primary_10_1016_j_jiec_2025_02_048
crossref_primary_10_1016_j_ccr_2025_216462
crossref_primary_10_1007_s42823_023_00635_8
crossref_primary_10_1007_s42823_023_00637_6
crossref_primary_10_1016_j_cjsc_2024_100469
crossref_primary_10_1016_j_mtphys_2024_101382
crossref_primary_10_1007_s42823_023_00573_5
crossref_primary_10_1016_j_jiec_2024_10_016
crossref_primary_10_1039_D4CP04277H
crossref_primary_10_1016_j_jallcom_2025_178846
crossref_primary_10_1007_s42823_023_00554_8
crossref_primary_10_1007_s42823_023_00558_4
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_1007_s42823_022_00445_4
crossref_primary_10_1007_s42823_023_00612_1
crossref_primary_10_1007_s42823_024_00743_z
crossref_primary_10_1007_s42823_024_00702_8
Cites_doi 10.1088/0953-8984/25/14/143201
10.1016/j.jmst.2017.11.050
10.1038/s41560-019-0463-6
10.1038/s41467-021-22428-1
10.1007/s00170-020-05394-8
10.1103/PhysRevLett.76.4825
10.1021/acsami.0c02806
10.1016/j.trac.2017.05.015
10.1016/j.carbon.2018.01.008
10.1016/j.jcat.2019.08.018
10.1016/S0169-409X(01)00097-7
10.1002/admi.201900948
10.1021/jp2121609
10.1016/j.jmst.2021.04.021
10.1039/C9NJ06028F
10.1007/s42823-020-00200-7
10.1038/s41467-020-15993-4
10.1038/nature09718
10.1039/C5CP02014J
10.1038/s41467-018-06074-8
10.1016/j.jmst.2021.12.018
10.1021/jacs.0c06960
10.1088/1748-9326/11/1/014012
10.1016/j.nanoen.2018.08.058
10.1021/acs.jpcc.9b07216
10.1002/aenm.202100497
10.1002/anie.201811938
10.1021/acscatal.8b03734
10.1007/s42823-021-00246-1
10.1038/ncomms4631
10.1103/PhysRevLett.109.025504
10.1021/jp403976d
10.1021/acsami.9b20552
10.1002/adfm.201500891
10.1126/science.aac9439
10.1557/mrs.2015.120
10.1016/j.apcatb.2021.119913
10.1021/cm050299q
10.1016/j.scib.2019.02.015
10.1016/j.carbon.2016.09.031
10.1016/j.electacta.2016.11.009
10.1021/acsami.7b01833
10.1039/D0QM01124J
10.1002/aelm.201800789
10.1063/5.0021093
10.1007/s42823-020-00161-x
10.1016/j.carbon.2015.02.025
10.1007/s13280-019-01244-4
10.1111/jfb.14599
10.1038/s41699-021-00259-4
10.1063/1.4823854
10.1039/D0CS01487G
10.1007/s42823-022-00353-7
10.1007/s42823-020-00156-8
10.3390/ma10070814
10.1016/j.jcis.2020.08.101
10.1021/acscatal.9b03814
10.1149/1.1837843
10.1038/nature12385
10.1021/nl802810g
10.1039/C9CS00348G
10.1016/j.carbon.2012.02.016
10.1039/D0NR08345C
10.1038/s41560-018-0308-8
10.1016/j.carbon.2011.03.031
10.1021/cm504618r
10.1016/j.jallcom.2022.165020
10.1002/cssc.201801003
10.1007/s12274-020-3252-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
KROLR
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
ACYCR
DOI 10.1007/s42823-022-00380-4
DatabaseName CrossRef
Korea Scholar
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2233-4998
EndPage 1331
ExternalDocumentID oai_kci_go_kr_ARTI_10369392
428151
10_1007_s42823_022_00380_4
GrantInformation_xml – fundername: Central Government Guided Local Science and Technology Development Special Fund Project
  grantid: 2020ZYYD033
– fundername: National Natural Science Foundation of China
  grantid: 62004143
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID .UV
0R~
406
88I
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABECU
ABFTV
ABJCF
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADMLS
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AFKRA
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ATCPS
AXYYD
AZQEC
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CSCUP
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FNLPD
GNUQQ
H13
HCIFZ
IKXTQ
IWAJR
JDI
JZLTJ
KB.
KOV
KROLR
LLZTM
M2P
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P5Y
PATMY
PDBOC
PT4
PTHSS
PYCSY
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
VEKWB
VFIZW
VP7
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
D1I
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ACYCR
ID FETCH-LOGICAL-c382t-c59e2b43b2563f70a9ad252cf5aa87c463624f87469b00c17e04739289c899a23
IEDL.DBID BENPR
ISSN 1976-4251
IngestDate Wed Jan 31 06:58:19 EST 2024
Fri Jul 25 11:39:21 EDT 2025
Sat Dec 09 04:14:54 EST 2023
Thu Apr 24 23:03:10 EDT 2025
Tue Jul 01 01:14:46 EDT 2025
Fri Feb 21 02:44:06 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Improving performance
2D carbon materials
Lattice structure
Energy conversion
Energy storage
Lattice structure · 2D carbon materials · Improving performance · Energy conversion · Energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c59e2b43b2563f70a9ad252cf5aa87c463624f87469b00c17e04739289c899a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4125-6099
0000-0003-1439-6512
PQID 2921418826
PQPubID 6587174
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10369392
proquest_journals_2921418826
koreascholar_journals_428151
crossref_primary_10_1007_s42823_022_00380_4
crossref_citationtrail_10_1007_s42823_022_00380_4
springer_journals_10_1007_s42823_022_00380_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Incheon
PublicationTitle Carbon Letters
PublicationTitleAbbrev Carbon Lett
PublicationYear 2023
Publisher Springer Nature Singapore
한국탄소학회
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: 한국탄소학회
– name: Springer Nature B.V
References Sun, Wu, Liang, Xiang (CR53) 2021; 5
Hsieh, Yang, Lin (CR25) 2011; 49
Čížek (CR28) 2018; 34
Zhang, Sun, Ruan, Zhang, Li, Zhang, Cheng, Wang, Wang (CR57) 2020; 128
Li, Josep, Ghorbani-Asl, Kolekar, Krasheninnikov, Batzill (CR41) 2021; 13
Zhang, Li, Heil, Zafeiratos, Lai, Savateev, Antonietti, Wang (CR67) 2019; 58
Miao, Cai, Zhang, Nah, Yeom, Wang (CR21) 2017; 9
Dang, Lin, Meng, Zhang, FanSufeng, Cao, Yang, Zhou, Fan, Kai, Lu (CR37) 2021; 95
Zhou, Zhou, Zhang, Lv, Liu, Qi, Wang, Shen, Yu, Bazan, Wang (CR6) 2019; 5
Tang, Kvashnin, Najmaei, Bando, Kimoto, Koskinen, Ajayan, Yakobson, Sorokin, Lou, Golberg (CR39) 2014; 5
Jiang, Zhu, Zou, Ou-yang, Zheng, Tang (CR24) 2015; 87
Zhang, Xu, Niu, Xia (CR65) 2015; 17
Grennfelt, Engleryd, Forsius, Øystein, Rodhe, Cowling (CR3) 2020; 49
Yuan, Zhao, Li, Liu (CR13) 2021; 31
Costa, Friedrichs, Sloan, Green (CR56) 2005; 17
Allen, Bullock, Yang, Javey, Wolf (CR34) 2019; 4
Han, Sun, Li, Cheng, Halbig, Feicht, Hübner, Strasser, Eigler (CR69) 2019; 9
Alghamdi, Maconachie, Downing, Brandt, Qian, Leary (CR27) 2020; 108
Kumar, Sharma, Dixit (CR14) 2021; 31
Geim, Grigorieva (CR31) 2013; 499
Ahsan, Santiago, Hong, Zhang, Cano, Rodriguez-Castellon, Echegoyen, Sreenivasan, Noveron (CR54) 2020; 142
Yang, Jiang, Huang, He, Yang, Li (CR42) 2020; 12
Yang, Chen, Wang, Zou, Wu, Jiang (CR4) 2022
Zhang, Li, Wang, Luo, Sun, Zhao, Yu, Wang, Chen (CR66) 2021; 11
Nikiforov, Tang, Wei, DumitricǎT (CR38) 2012; 109
Kalantar-zadeh, Ou, Daeneke, Strano, Pumera, Gras (CR18) 2015; 25
Pirrotta, Larcher, Lanza, Padovani, Porti, Nafría, Bersuker (CR30) 2013; 114
Huang, Zhang, Yu, Yang, Wang, Li, Su (CR44) 2016; 222
Zhang, Xia, Li, Yu, Wang, Sun (CR49) 2020; 44
Yan, Shin, Chen, Lee, Manickam, Hanson, Zhao, Lester, Wu, Pang (CR15) 2021; 31
Tian, Yu, Shi, Wang (CR16) 2017; 10
Bai, Zhang, Gao, Xiong (CR46) 2018; 53
Chen, Kim, Rajendiran, Prabakar, Li, Shi, Jeong, Kang, Li (CR55) 2021; 582
Tang, Shi, Bai, Hu, Xuan, Yue, Ye, Liu, Li, Zhuang, Shen, Liu, Sun (CR35) 2020; 10
Jiang, Xiong, Wang, Liao, Bai, Zou, Wu, Zhang (CR5) 2022; 118
Hu, Ordomsky, Khodakov (CR7) 2021; 286
Wang, Huang, Song, Zhang, Ma, Liang, Chen (CR63) 2009; 9
Tiwari, Yoon, Novak, Azam, Lee, Lee, Lee, Srolovitz, An, Jeon (CR48) 2019; 6
Solovyev, Hamada, Terakura (CR50) 1996; 76
Zou, Wu, Liu, Sun, Cao, Hsu, Wee, Jiang (CR10) 2018; 130
Huang, Jiang, Zou, Zhao, Liao (CR20) 2019; 64
Zou, Liao, Wang, Ding, Wu, Hsu, Jiang (CR22) 2022; 911
Liang, Liu, Zhong, Han, Zhong, Chen, Song, Deng, Lin (CR45) 2021; 14
Li, Wu, Li, Chen, Zeng, Arramel, Jiang (CR8) 2020; 12
Vippagunta, Brittain, Grant (CR33) 2001; 48
Huang, Ruiz-Vargas, Zande, Whitney, Levendorf, Kevek, Garg, Alden, Hustedt, Zhu, Park, McEuen, Muller (CR61) 2011; 469
Zou, Wu, Wang, Deng, Jiang, Zhang, Liu, Li, Zhang, Jiaguo, Zhai, Alshareef (CR11) 2022; 51
Zhang, Lu, Zhang, Ho, Wang (CR52) 2016; 110
Cheng, Yang, Zhang, Shi, Yang, Wang, Xie, Shi, Zhang (CR64) 2012; 50
Silva, Moura, Coutinho, Dražić, Teixeira, Sobolev, Silva Cláudia, Neves, Prieto, Faria (CR68) 2018; 11
Cheng, Zhao, Su, Tang, Che, Zhang, Liu (CR47) 2019; 4
Ansari (CR26) 2017; 93
Enyashin, Bar-Sadan, Houben, Seifert (CR58) 2013; 117
Rooney, Li, Zhao, Gholinia, Kozikov, Auton, Ding, Gorbachev, Young, Haigh (CR40) 2018; 9
Yule, Shkirskiy, Aarons, West, Bentley, Shollock, Unwin (CR43) 2019; 123
Tang, Gong, Xiao, Sun (CR36) 2021; 12
Kattel, Atanassov, Kiefer (CR59) 2012; 116
Morimoto, Jinno, Hirai, Ogata, Yamada, Yoneda (CR29) 1997; 144
Li, Liu, Gao, Goldsmith, Cong, Zhai, Miao, Jiang, Dou, Wang, Shi, Guo, Wang, Yu, Li, Song (CR60) 2019; 378
Huang, Wang, Wang, Zhang, Lu, Wang (CR62) 2015; 27
Hohenadler, Assaad (CR17) 2013; 25
Bai, Yang, Jiang, Xi, Zou, Xiong, Liao, Liu (CR23) 2021; 5
Jiang, Li, Zou, Zhou, Eda, Zhang, Zhang, Li, Zhai, Wee (CR12) 2019; 48
Hu, Pan, Wang, Lin, Gao, Luo, Hu, Fan, Liu, Wang (CR51) 2020; 11
Novoselov, Mishchenko, Carvalho, Neto (CR32) 2016; 353
Singh, Chatterjee, Palecha, Sen, Ateeq, Verma (CR9) 2021; 31
Alfonso, Gesto, Sadoul (CR2) 2021; 98
Berrill, Arvesen, Scholz, Hans, Edgar (CR1) 2016; 11
Vogel, Robinson (CR19) 2015; 40
D Hu (380_CR7) 2021; 286
Y Yan (380_CR15) 2021; 31
S Bai (380_CR46) 2018; 53
L Han (380_CR69) 2019; 9
Y Wang (380_CR63) 2009; 9
L Zhang (380_CR65) 2015; 17
W Tian (380_CR16) 2017; 10
DM Tang (380_CR39) 2014; 5
S Kattel (380_CR59) 2012; 116
Y Morimoto (380_CR29) 1997; 144
AK Geim (380_CR31) 2013; 499
I Nikiforov (380_CR38) 2012; 109
AP Rooney (380_CR40) 2018; 9
J Li (380_CR41) 2021; 13
SZ Huang (380_CR44) 2016; 222
MA Ahsan (380_CR54) 2020; 142
KS Novoselov (380_CR32) 2016; 353
SR Vippagunta (380_CR33) 2001; 48
C Tang (380_CR36) 2021; 12
EM Vogel (380_CR19) 2015; 40
J Miao (380_CR21) 2017; 9
PY Huang (380_CR61) 2011; 469
H Huang (380_CR20) 2019; 64
J Zou (380_CR10) 2018; 130
J Jiang (380_CR12) 2019; 48
C Dang (380_CR37) 2021; 95
AP Tiwari (380_CR48) 2019; 6
I Solovyev (380_CR50) 1996; 76
TG Allen (380_CR34) 2019; 4
P Grennfelt (380_CR3) 2020; 49
ESD Silva (380_CR68) 2018; 11
V Singh (380_CR9) 2021; 31
K Chen (380_CR55) 2021; 582
J Li (380_CR60) 2019; 378
Y Sun (380_CR53) 2021; 5
K Kalantar-zadeh (380_CR18) 2015; 25
A Alghamdi (380_CR27) 2020; 108
W Zhang (380_CR52) 2016; 110
J Zhang (380_CR57) 2020; 128
S Liang (380_CR45) 2021; 14
Y Hu (380_CR51) 2020; 11
C Yang (380_CR42) 2020; 12
LC Yule (380_CR43) 2019; 123
S Ansari (380_CR26) 2017; 93
J Huang (380_CR62) 2015; 27
P-J Costa (380_CR56) 2005; 17
J Zou (380_CR11) 2022; 51
K Yuan (380_CR13) 2021; 31
J Jiang (380_CR24) 2015; 87
CT Hsieh (380_CR25) 2011; 49
J Jiang (380_CR5) 2022; 118
M Cheng (380_CR64) 2012; 50
S Alfonso (380_CR2) 2021; 98
O Pirrotta (380_CR30) 2013; 114
M Hohenadler (380_CR17) 2013; 25
Y Zhang (380_CR66) 2021; 11
J Čížek (380_CR28) 2018; 34
AN Enyashin (380_CR58) 2013; 117
P Berrill (380_CR1) 2016; 11
S Bai (380_CR23) 2021; 5
J Zou (380_CR22) 2022; 911
M Yang (380_CR4) 2022
X Zhang (380_CR49) 2020; 44
A Kumar (380_CR14) 2021; 31
W Cheng (380_CR47) 2019; 4
X Zhou (380_CR6) 2019; 5
C Tang (380_CR35) 2020; 10
G Zhang (380_CR67) 2019; 58
B Li (380_CR8) 2020; 12
References_xml – volume: 25
  year: 2013
  ident: CR17
  article-title: Correlation effects in two-dimensional topological insulators
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/25/14/143201
– volume: 34
  start-page: 577
  year: 2018
  end-page: 598
  ident: CR28
  article-title: Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2017.11.050
– volume: 4
  start-page: 914
  year: 2019
  end-page: 928
  ident: CR34
  article-title: Passivating contacts for crystalline silicon solar cells
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0463-6
– volume: 12
  start-page: 2139
  year: 2021
  ident: CR36
  article-title: Direct electrosynthesis of 52% concentrated CO on silver’s twin boundary
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22428-1
– volume: 108
  start-page: 957
  year: 2020
  end-page: 971
  ident: CR27
  article-title: Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05394-8
– volume: 76
  start-page: 4825
  year: 1996
  ident: CR50
  article-title: Crucial role of the lattice distortion in the magnetism of LaMnO
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.76.4825
– volume: 12
  start-page: 23822
  year: 2020
  end-page: 23830
  ident: CR42
  article-title: Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti C T MXene nanosheets for efficient methanol oxidation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02806
– volume: 93
  start-page: 134
  year: 2017
  end-page: 151
  ident: CR26
  article-title: Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: recent applications and challenges
  publication-title: Trends Analyt Chem
  doi: 10.1016/j.trac.2017.05.015
– volume: 130
  start-page: 652
  year: 2018
  end-page: 663
  ident: CR10
  article-title: An ultra-sensitive electrochemical sensor based on 2D g-C N /CuO nanocomposites for dopamine detection
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.008
– volume: 378
  start-page: 113
  year: 2019
  end-page: 120
  ident: CR60
  article-title: Nitrogen-doped graphene layers for electrochemical oxygen reduction reaction boosted by lattice strain
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.08.018
– volume: 48
  start-page: 3
  year: 2001
  end-page: 26
  ident: CR33
  article-title: Crystalline solids
  publication-title: Adv Drug Deliv
  doi: 10.1016/S0169-409X(01)00097-7
– volume: 6
  start-page: 1900948
  year: 2019
  ident: CR48
  article-title: Lattice strain formation through spin-coupled shells of MoS on Mo C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201900948
– volume: 116
  start-page: 8161
  year: 2012
  end-page: 8166
  ident: CR59
  article-title: Stability, electronic and magnetic properties of in-plane defects in Graphene: a first-principles study
  publication-title: J Phys Chem C
  doi: 10.1021/jp2121609
– volume: 95
  start-page: 193
  year: 2021
  end-page: 202
  ident: CR37
  article-title: Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.04.021
– volume: 44
  start-page: 6818
  year: 2020
  end-page: 6824
  ident: CR49
  article-title: Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst
  publication-title: New J Chem
  doi: 10.1039/C9NJ06028F
– volume: 31
  start-page: 177
  year: 2021
  end-page: 199
  ident: CR15
  article-title: A recent trend: application of graphene in catalysis
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00200-7
– volume: 11
  start-page: 2129
  year: 2020
  ident: CR51
  article-title: Lattice distortion induced internal electric field in TiO photoelectrode for efficient charge separation and transfer
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15993-4
– volume: 469
  start-page: 389
  year: 2011
  end-page: 392
  ident: CR61
  article-title: Grains and grain boundaries in single-layer graphene atomic patchwork quilts
  publication-title: Nature
  doi: 10.1038/nature09718
– volume: 17
  start-page: 16733
  year: 2015
  end-page: 16743
  ident: CR65
  article-title: Role of lattice defects in catalytic activities of graphene clusters for fuel cells
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP02014J
– volume: 9
  start-page: 3597
  year: 2018
  ident: CR40
  article-title: Anomalous twin boundaries in two dimensional materials
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06074-8
– volume: 118
  start-page: 15
  year: 2022
  end-page: 24
  ident: CR5
  article-title: Sulfur-doped g-C N /g-C N isotype step-scheme heterojunction for photocatalytic H evolution
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.12.018
– volume: 142
  start-page: 14688
  year: 2020
  end-page: 14701
  ident: CR54
  article-title: Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c06960
– volume: 11
  year: 2016
  ident: CR1
  article-title: Environmental impacts of high penetration renewable energy scenarios for Europe
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/1/014012
– volume: 53
  start-page: 296
  year: 2018
  end-page: 336
  ident: CR46
  article-title: Defect engineering in photocatalytic materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.058
– volume: 123
  start-page: 24146
  year: 2019
  end-page: 24155
  ident: CR43
  article-title: Nanoscale active sites for the hydrogen evolution reaction on low carbon steel
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b07216
– volume: 11
  start-page: 2100497
  year: 2021
  ident: CR66
  article-title: “Sauna” activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium-sulfur batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202100497
– volume: 58
  start-page: 3433
  year: 2019
  end-page: 3437
  ident: CR67
  article-title: Tailoring grain boundary chemistry of polymeric carbon nitride for enhanced solar H production and CO reduction
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201811938
– volume: 9
  start-page: 1283
  year: 2019
  end-page: 1288
  ident: CR69
  article-title: In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b03734
– volume: 31
  start-page: 1227
  year: 2021
  end-page: 1235
  ident: CR13
  article-title: Predicting an ideal 2D carbon nanostructure with negative Poisson's ratio from first principles: implications for nanomechanical devices
  publication-title: Carbon Lett
  doi: 10.1007/s42823-021-00246-1
– volume: 5
  start-page: 3631
  year: 2014
  ident: CR39
  article-title: Nanomechanical cleavage of molybdenum disulphide atomic layers
  publication-title: Nat Commun
  doi: 10.1038/ncomms4631
– volume: 109
  year: 2012
  ident: CR38
  article-title: Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.025504
– volume: 117
  start-page: 10842
  year: 2013
  end-page: 10848
  ident: CR58
  article-title: Line defects in molybdenum disulfide layers
  publication-title: J Phys Chem C
  doi: 10.1021/jp403976d
– volume: 12
  start-page: 9261
  year: 2020
  end-page: 9267
  ident: CR8
  article-title: Single metal atoms supported on MBenes for robust electrochemical hydrogen evolution
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b20552
– volume: 25
  start-page: 5086
  year: 2015
  end-page: 5099
  ident: CR18
  article-title: Two-dimensional transition metal dichalcogenides in biosystems
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201500891
– volume: 353
  start-page: 6298
  year: 2016
  ident: CR32
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 40
  start-page: 558
  year: 2015
  end-page: 563
  ident: CR19
  article-title: Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications
  publication-title: MRS Bull
  doi: 10.1557/mrs.2015.120
– volume: 286
  year: 2021
  ident: CR7
  article-title: Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2021.119913
– volume: 17
  start-page: 3122
  year: 2005
  end-page: 3129
  ident: CR56
  article-title: Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes
  publication-title: Chem Mater
  doi: 10.1021/cm050299q
– volume: 64
  start-page: 1067
  year: 2019
  end-page: 1079
  ident: CR20
  article-title: Black phosphorus electronics
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.02.015
– volume: 110
  start-page: 330
  year: 2016
  end-page: 335
  ident: CR52
  article-title: Lattice distortion and electron charge redistribution induced by defects in graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.09.031
– volume: 222
  start-page: 561
  year: 2016
  end-page: 569
  ident: CR44
  article-title: Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.11.009
– volume: 9
  start-page: 10019
  year: 2017
  end-page: 10026
  ident: CR21
  article-title: Air-stable humidity sensor using few-layer black phosphorus
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b01833
– volume: 5
  start-page: 4089
  year: 2021
  end-page: 4106
  ident: CR53
  article-title: Recent developments in carbon-based materials as high-rate anode for sodium ion batteries
  publication-title: Mater Chem Front
  doi: 10.1039/D0QM01124J
– volume: 5
  start-page: 1800789
  year: 2019
  ident: CR6
  article-title: Conducting polymers-thylakoid hybrid materials for water oxidation and photoelectric conversion
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201800789
– volume: 128
  year: 2020
  ident: CR57
  article-title: Point defects in two-dimensional hexagonal boron nitride: a perspective
  publication-title: J Appl Phys
  doi: 10.1063/5.0021093
– volume: 31
  start-page: 149
  year: 2021
  end-page: 165
  ident: CR14
  article-title: A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00161-x
– volume: 87
  start-page: 193
  year: 2015
  end-page: 205
  ident: CR24
  article-title: Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.02.025
– volume: 49
  start-page: 849
  year: 2020
  end-page: 864
  ident: CR3
  article-title: Acid rain and air pollution: 50 years of progress in environmental science and policy
  publication-title: Ambio
  doi: 10.1007/s13280-019-01244-4
– volume: 98
  start-page: 1496
  year: 2021
  end-page: 1508
  ident: CR2
  article-title: Temperature increase and its effects on fish stress physiology in the context of global warming
  publication-title: J Fish Biol
  doi: 10.1111/jfb.14599
– volume: 5
  start-page: 78
  year: 2021
  ident: CR23
  article-title: Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction
  publication-title: npj 2D Mater Appl
  doi: 10.1038/s41699-021-00259-4
– volume: 114
  year: 2013
  ident: CR30
  article-title: Leakage current through the poly-crystalline HfO : trap densities at grains and grain boundaries
  publication-title: J Appl Phys
  doi: 10.1063/1.4823854
– volume: 51
  start-page: 2972
  year: 2022
  end-page: 2990
  ident: CR11
  article-title: Additive-mediated intercalation and surface modification of MXenes
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS01487G
– year: 2022
  ident: CR4
  article-title: Solvothermal preparation of CeO nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol
  publication-title: Carbon Lett
  doi: 10.1007/s42823-022-00353-7
– volume: 31
  start-page: 117
  year: 2021
  end-page: 123
  ident: CR9
  article-title: Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00156-8
– volume: 10
  start-page: 814
  year: 2017
  ident: CR16
  article-title: The property, preparation and application of topological insulators: a review
  publication-title: Materials
  doi: 10.3390/ma10070814
– volume: 582
  start-page: 977
  year: 2021
  end-page: 990
  ident: CR55
  article-title: Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2020.08.101
– volume: 10
  start-page: 2026
  year: 2020
  end-page: 2032
  ident: CR35
  article-title: Sun Z (2020) CO reduction on copper’s twin boundary
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03814
– volume: 144
  start-page: 2495
  year: 1997
  ident: CR29
  article-title: Influence of the grain boundaries and intragrain defects on the performance of poly-Si thin film transistors
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837843
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR31
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 9
  start-page: 220
  year: 2009
  end-page: 224
  ident: CR63
  article-title: Room-temperature ferromagnetism of graphene
  publication-title: Nano Lett
  doi: 10.1021/nl802810g
– volume: 48
  start-page: 4639
  year: 2019
  end-page: 4654
  ident: CR12
  article-title: Synergistic additive-mediated CVD growth and chemical modification of 2D materials
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00348G
– volume: 50
  start-page: 2581
  year: 2012
  end-page: 2587
  ident: CR64
  article-title: Restoration of graphene from graphene oxide by defect repair
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.02.016
– volume: 13
  start-page: 1038
  year: 2021
  end-page: 1047
  ident: CR41
  article-title: Mirror twin boundaries in MoSe monolayers as one dimensional nanotemplates for selective water adsorption
  publication-title: Nanoscale
  doi: 10.1039/D0NR08345C
– volume: 4
  start-page: 115
  year: 2019
  end-page: 122
  ident: CR47
  article-title: Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 49
  start-page: 3092
  year: 2011
  end-page: 3097
  ident: CR25
  article-title: One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.03.031
– volume: 27
  start-page: 2107
  year: 2015
  end-page: 2113
  ident: CR62
  article-title: Hierarchical porous graphene carbon-based supercapacitors
  publication-title: Chem Mater
  doi: 10.1021/cm504618r
– volume: 911
  year: 2022
  ident: CR22
  article-title: Controllable interface engineering of g-C N /CuS nanocomposite photocatalysts
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.165020
– volume: 11
  start-page: 2681
  year: 2018
  end-page: 2694
  ident: CR68
  article-title: β-Cyclodextrin as a precursor to holey C-doped g-C N nanosheets for photocatalytic hydrogen generation
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201801003
– volume: 14
  start-page: 2558
  year: 2021
  end-page: 2567
  ident: CR45
  article-title: Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO photoreduction
  publication-title: Nano Res
  doi: 10.1007/s12274-020-3252-4
– volume: 144
  start-page: 2495
  year: 1997
  ident: 380_CR29
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837843
– volume: 9
  start-page: 1283
  year: 2019
  ident: 380_CR69
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b03734
– volume: 50
  start-page: 2581
  year: 2012
  ident: 380_CR64
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.02.016
– volume: 48
  start-page: 3
  year: 2001
  ident: 380_CR33
  publication-title: Adv Drug Deliv
  doi: 10.1016/S0169-409X(01)00097-7
– volume: 14
  start-page: 2558
  year: 2021
  ident: 380_CR45
  publication-title: Nano Res
  doi: 10.1007/s12274-020-3252-4
– volume: 10
  start-page: 814
  year: 2017
  ident: 380_CR16
  publication-title: Materials
  doi: 10.3390/ma10070814
– volume: 95
  start-page: 193
  year: 2021
  ident: 380_CR37
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.04.021
– volume: 222
  start-page: 561
  year: 2016
  ident: 380_CR44
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.11.009
– volume: 25
  start-page: 5086
  year: 2015
  ident: 380_CR18
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201500891
– volume: 11
  year: 2016
  ident: 380_CR1
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/1/014012
– volume: 64
  start-page: 1067
  year: 2019
  ident: 380_CR20
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.02.015
– volume: 12
  start-page: 23822
  year: 2020
  ident: 380_CR42
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02806
– volume: 911
  year: 2022
  ident: 380_CR22
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.165020
– volume: 5
  start-page: 1800789
  year: 2019
  ident: 380_CR6
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201800789
– volume: 110
  start-page: 330
  year: 2016
  ident: 380_CR52
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.09.031
– volume: 469
  start-page: 389
  year: 2011
  ident: 380_CR61
  publication-title: Nature
  doi: 10.1038/nature09718
– volume: 12
  start-page: 2139
  year: 2021
  ident: 380_CR36
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22428-1
– volume: 13
  start-page: 1038
  year: 2021
  ident: 380_CR41
  publication-title: Nanoscale
  doi: 10.1039/D0NR08345C
– volume: 109
  year: 2012
  ident: 380_CR38
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.025504
– volume: 11
  start-page: 2681
  year: 2018
  ident: 380_CR68
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201801003
– volume: 93
  start-page: 134
  year: 2017
  ident: 380_CR26
  publication-title: Trends Analyt Chem
  doi: 10.1016/j.trac.2017.05.015
– volume: 4
  start-page: 115
  year: 2019
  ident: 380_CR47
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 4
  start-page: 914
  year: 2019
  ident: 380_CR34
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0463-6
– volume: 123
  start-page: 24146
  year: 2019
  ident: 380_CR43
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b07216
– volume: 5
  start-page: 3631
  year: 2014
  ident: 380_CR39
  publication-title: Nat Commun
  doi: 10.1038/ncomms4631
– volume: 9
  start-page: 220
  year: 2009
  ident: 380_CR63
  publication-title: Nano Lett
  doi: 10.1021/nl802810g
– volume: 108
  start-page: 957
  year: 2020
  ident: 380_CR27
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05394-8
– year: 2022
  ident: 380_CR4
  publication-title: Carbon Lett
  doi: 10.1007/s42823-022-00353-7
– volume: 40
  start-page: 558
  year: 2015
  ident: 380_CR19
  publication-title: MRS Bull
  doi: 10.1557/mrs.2015.120
– volume: 25
  year: 2013
  ident: 380_CR17
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/25/14/143201
– volume: 130
  start-page: 652
  year: 2018
  ident: 380_CR10
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.008
– volume: 53
  start-page: 296
  year: 2018
  ident: 380_CR46
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.058
– volume: 98
  start-page: 1496
  year: 2021
  ident: 380_CR2
  publication-title: J Fish Biol
  doi: 10.1111/jfb.14599
– volume: 10
  start-page: 2026
  year: 2020
  ident: 380_CR35
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03814
– volume: 17
  start-page: 3122
  year: 2005
  ident: 380_CR56
  publication-title: Chem Mater
  doi: 10.1021/cm050299q
– volume: 378
  start-page: 113
  year: 2019
  ident: 380_CR60
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.08.018
– volume: 11
  start-page: 2100497
  year: 2021
  ident: 380_CR66
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202100497
– volume: 44
  start-page: 6818
  year: 2020
  ident: 380_CR49
  publication-title: New J Chem
  doi: 10.1039/C9NJ06028F
– volume: 142
  start-page: 14688
  year: 2020
  ident: 380_CR54
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c06960
– volume: 17
  start-page: 16733
  year: 2015
  ident: 380_CR65
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP02014J
– volume: 58
  start-page: 3433
  year: 2019
  ident: 380_CR67
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201811938
– volume: 12
  start-page: 9261
  year: 2020
  ident: 380_CR8
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b20552
– volume: 48
  start-page: 4639
  year: 2019
  ident: 380_CR12
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00348G
– volume: 31
  start-page: 149
  year: 2021
  ident: 380_CR14
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00161-x
– volume: 353
  start-page: 6298
  year: 2016
  ident: 380_CR32
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 49
  start-page: 849
  year: 2020
  ident: 380_CR3
  publication-title: Ambio
  doi: 10.1007/s13280-019-01244-4
– volume: 286
  year: 2021
  ident: 380_CR7
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2021.119913
– volume: 9
  start-page: 10019
  year: 2017
  ident: 380_CR21
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b01833
– volume: 114
  year: 2013
  ident: 380_CR30
  publication-title: J Appl Phys
  doi: 10.1063/1.4823854
– volume: 117
  start-page: 10842
  year: 2013
  ident: 380_CR58
  publication-title: J Phys Chem C
  doi: 10.1021/jp403976d
– volume: 31
  start-page: 117
  year: 2021
  ident: 380_CR9
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00156-8
– volume: 128
  year: 2020
  ident: 380_CR57
  publication-title: J Appl Phys
  doi: 10.1063/5.0021093
– volume: 5
  start-page: 78
  year: 2021
  ident: 380_CR23
  publication-title: npj 2D Mater Appl
  doi: 10.1038/s41699-021-00259-4
– volume: 31
  start-page: 177
  year: 2021
  ident: 380_CR15
  publication-title: Carbon Lett
  doi: 10.1007/s42823-020-00200-7
– volume: 6
  start-page: 1900948
  year: 2019
  ident: 380_CR48
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201900948
– volume: 31
  start-page: 1227
  year: 2021
  ident: 380_CR13
  publication-title: Carbon Lett
  doi: 10.1007/s42823-021-00246-1
– volume: 34
  start-page: 577
  year: 2018
  ident: 380_CR28
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2017.11.050
– volume: 116
  start-page: 8161
  year: 2012
  ident: 380_CR59
  publication-title: J Phys Chem C
  doi: 10.1021/jp2121609
– volume: 9
  start-page: 3597
  year: 2018
  ident: 380_CR40
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06074-8
– volume: 27
  start-page: 2107
  year: 2015
  ident: 380_CR62
  publication-title: Chem Mater
  doi: 10.1021/cm504618r
– volume: 49
  start-page: 3092
  year: 2011
  ident: 380_CR25
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.03.031
– volume: 11
  start-page: 2129
  year: 2020
  ident: 380_CR51
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15993-4
– volume: 5
  start-page: 4089
  year: 2021
  ident: 380_CR53
  publication-title: Mater Chem Front
  doi: 10.1039/D0QM01124J
– volume: 51
  start-page: 2972
  year: 2022
  ident: 380_CR11
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS01487G
– volume: 118
  start-page: 15
  year: 2022
  ident: 380_CR5
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.12.018
– volume: 76
  start-page: 4825
  year: 1996
  ident: 380_CR50
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.76.4825
– volume: 582
  start-page: 977
  year: 2021
  ident: 380_CR55
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2020.08.101
– volume: 87
  start-page: 193
  year: 2015
  ident: 380_CR24
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.02.025
– volume: 499
  start-page: 419
  year: 2013
  ident: 380_CR31
  publication-title: Nature
  doi: 10.1038/nature12385
SSID ssib039557897
ssj0002992795
ssib007309036
ssib053376736
ssib036278051
Score 2.5285676
SecondaryResourceType review_article
Snippet Reliable, inexpensive, environment-friendly, and durable properties of carbon materials with unique and outstanding photoelectric performance is highly desired...
SourceID nrf
proquest
koreascholar
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1321
SubjectTerms Adsorption
Atmospheric corrosion
Carbon
Catalysis
Characterization and Evaluation of Materials
Charge transport
Chemical bonds
Chemistry and Materials Science
Crystal defects
Ductility
Electric properties
Electromagnetic absorption
Energy consumption
Energy conversion
Energy storage
Environmental impact
Grain boundaries
Graphene
Hydrogen
Industrial production
Lattice strain
Material properties
Materials Engineering
Materials Science
Modulation
Nanomaterials
Nanotechnology
Photoelectricity
Polymers
Review
Structural stability
Symmetry
Toxicity
Twin boundaries
자연과학일반
TableOfContents Modulation of the lattice structure of 2D carbon-based materials for improving photoelectric properties Abstract 1 Introduction 2 Method of lattice modulation of 2D carbon nanomaterials 2.1 Graintwin boundary 2.2 Lattice strain 2.3 Lattice distortion 2.4 Lattice defects 3 Conclusions and perspectives Acknowledgements References
Title Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties
URI https://link.springer.com/article/10.1007/s42823-022-00380-4
http://db.koreascholar.com/Article/Detail/428151
https://www.proquest.com/docview/2921418826
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003046607
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Carbon Letters, 2023, 33(5), , pp.1321-1331
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6S7KUUSkNauk26CJJbK2Lr4cepZNtsHpCllAZyE7IsNcsWa-Ns_39HtpxtAsnJGMvC1oxmvtFI8wEcsTyRrmKSSl7VVIiSU42BM3UuSxzCE206bsCreXZ-LS5v5E1ccLuP2yoHm9gZ6tqbsEZ-zEqWihTxYPZ1dUcDa1TIrkYKjW0YoQkuMPgaTU_nP34OGsVLiRoZ82TBNqPxZXlHxZKiH6aosGk8SdOdp0MszkJak9GQMUuoeOStXi992CjeB53oi5rWPcKlT1KpnYeavYU3EVqSk14XdmHLNntwe-XryNBFvCMI9wjehR1vpC8d-7e14QH7ToxuK9_Q4NdqgkC2102CqJYshqUHsrr1a3_ck-csDFmFtfw2FGV9B9ez01_fzmlkV6CGF2xNjSwtqwRHQWXc5Ykudc0kM05qXeQmFBJjwhU5xs84NU2a20TkiKaK0mCMphl_DzuNb-wHIMLqQiNSzHgthEUIYjGyQ7vpTKIrLusxpMMoKhNLjwcGjD_qoWhyN_IKR151I6_EGD4_vLPqC2-82Prgf-GoOBHvFbZETDOGQxSWWpqFCuW0w_W3V8tWYdBwgX3yrMQ_w04GYW462OjdGL4MAt48fv6TPr7c2z68Csz1_V7CA9hBkdtPiG_W1QS2i9nZBEYns-l0Pokq_Q8GFPVs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHKgqoVZQdQttLUFP1CLxI49DVVWly25hOYHEzXUcu6wWxUvYquJP9Td2Jg-2VIIbpyhyYjnz_CZjzxCyx9NI-YIrpkRRMilzwQwEzsz7JPIAT4xtegNOTpPRufx-oS5WyJ_-LAxuq-xtYmOoy2DxH_kBz3ksY8CDyef5NcOuUZhd7VtotGJx7G5_Q8h282l8CPz9wPnw29nXEeu6CjArMr5gVuWOF1LAAhPh08jkpuSKW6-MyVKLBbS49FkKcSOIpI1TF8kUUESWW4hNDBY6AJO_JoXIUaOy4VEvvyJXIP9dVg49AZh6njaNX2Lw-gzUI-7O7TSn9wD5c0yicob5uYjJe77x-SzgtvQ2xAXPV9X-Hgr-L3Hb-MPhC7LRAVn6pZW8l2TFVZvkchLKrh8YDZ4CuKRwh_vraFuo9lftcIAfUmvqIlQMvWhJATa3mkABQ9Np_6ODzi_DIhy0rXqmls4xc1BjCdgtcv4kVH9FVqtQudeESmcyA7g0EaWUDgCPgzgSrLS3kSmEKgck7qmobVfoHPttXOm7Es0N5TVQXjeU13JA9u_embdlPh59eudf5uhO7W80PAkIakB2gVl6Zqcai3fj9WfQs1pDiDKGOUWSw5fBJD0zlxMspXxAPvYMXg4_vKQ3j8_2nqyPziYn-mR8erxNnvEIBQ93Me6QVWC_ewvIalG8a8SZkh9PrT9_ATFiLKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+the+lattice+structure+of+2D+carbon%E2%80%91based+materials+for+improving+photo%2Felectric+properties&rft.jtitle=Carbon+Letters&rft.au=Fangyi+Li&rft.au=Yulianti+Anjarsari&rft.au=Jiamei+Wang&rft.au=Rifda+Azzahiidah&rft.date=2023-08-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%83%84%EC%86%8C%ED%95%99%ED%9A%8C&rft.issn=1976-4251&rft.eissn=2233-4998&rft.volume=33&rft.issue=5&rft.spage=1321&rft.epage=1331&rft_id=info:doi/10.1007%2Fs42823-022-00380-4&rft.externalDocID=428151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-4251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-4251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-4251&client=summon