Detection of District Heating Pipe Network Leakage Fault Using UCB Arm Selection Method
District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selectio...
Saved in:
Published in | Buildings (Basel) Vol. 11; no. 7; p. 275 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selection in the Contextual Bandit (CB) algorithm. With data collected from end-users’ pressure and flow information in the simulation model, the LinUCB method is adopted to locate the leakage faults. Firstly, we use a hydraulic simulation model to simulate all failure conditions that can occur in the network, and these change rate vectors of observed data form a dataset. Secondly, the LinUCB method is used to train an agent for the arm selection, and the outcome of arm selection is the leaking pipe label. Thirdly, the experiment results show that this method can detect the leaking pipe accurately and effectively. Furthermore, it allows operators to evaluate the system performance, supports troubleshooting of decision mechanisms, and provides guidance in the arrangement of maintenance. |
---|---|
AbstractList | District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selection in the Contextual Bandit (CB) algorithm. With data collected from end-users’ pressure and flow information in the simulation model, the LinUCB method is adopted to locate the leakage faults. Firstly, we use a hydraulic simulation model to simulate all failure conditions that can occur in the network, and these change rate vectors of observed data form a dataset. Secondly, the LinUCB method is used to train an agent for the arm selection, and the outcome of arm selection is the leaking pipe label. Thirdly, the experiment results show that this method can detect the leaking pipe accurately and effectively. Furthermore, it allows operators to evaluate the system performance, supports troubleshooting of decision mechanisms, and provides guidance in the arrangement of maintenance. |
Author | Wang, Yunzhe Shen, Yachen Fu, Qiming Chen, Jianping Lu, You Wu, Hongjie |
Author_xml | – sequence: 1 givenname: Yachen surname: Shen fullname: Shen, Yachen – sequence: 2 givenname: Jianping surname: Chen fullname: Chen, Jianping – sequence: 3 givenname: Qiming surname: Fu fullname: Fu, Qiming – sequence: 4 givenname: Hongjie surname: Wu fullname: Wu, Hongjie – sequence: 5 givenname: Yunzhe surname: Wang fullname: Wang, Yunzhe – sequence: 6 givenname: You surname: Lu fullname: Lu, You |
BookMark | eNplkV1LYzEQhoO44Mf6A7wL7HXdfJx89LJb11XoqqDFy5CTTGra05NukrL47z3aIoIzFzMML8878J6gwz71gNA5JRecj8nPdhs7H_tFoZQowpQ4QMeMKDESnIwPP-1H6KyUJRlKC8ZEc4yeLqGCqzH1OAV8GUvN0VV8DbYOQHwfN4Bvof5PeYVnYFd2AfjKbruK5-VNMJ_-wpO8xg_Q7TF_oT4n_x19C7YrcLafp2h-9ftxej2a3f25mU5mI8c1qyMnJHBPh24oI60ORDeOS-Fa4KTxrWZjUCJwSmTriVJaShsUlSxIprj0_BTd7Lg-2aXZ5Li2-cUkG837IeWFsblG14EJMFaKtRLa4BovdMuZJWRwl1Jq5uXA-rFjbXL6t4VSzTJtcz-8b5gQTSO40HpQ0Z3K5VRKhvDhSol5i8N8iYO_AikAf1w |
CitedBy_id | crossref_primary_10_1016_j_segan_2022_100672 crossref_primary_10_3390_electronics12061448 crossref_primary_10_3390_buildings12060743 crossref_primary_10_1016_j_psep_2024_03_101 crossref_primary_10_3390_buildings12050610 crossref_primary_10_1016_j_psep_2023_09_069 |
Cites_doi | 10.1016/j.energy.2021.119835 10.1023/A:1013689704352 10.1016/j.jobe.2021.102246 10.1177/1420326X211007893 10.1177/1420326X20930325 10.3390/app8020146 10.1016/j.energy.2014.08.085 10.3390/buildings9120239 10.1145/1772690.1772758 10.1016/j.applthermaleng.2018.04.010 10.1016/j.enbuild.2020.110161 10.1002/ieam.4302 10.1111/j.2517-6161.1979.tb01068.x 10.3390/buildings9110233 10.1016/j.procs.2017.01.114 10.1016/j.energy.2010.05.034 10.1016/j.patrec.2016.07.002 10.1016/j.jlp.2016.06.018 10.1016/j.apenergy.2017.08.035 10.1177/1420326X20976058 10.1016/j.buildenv.2020.106698 10.1016/j.energy.2021.120140 10.1016/j.enconman.2020.113052 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PIMPY PQEST PQQKQ PQUKI PTHSS PYCSY DOA |
DOI | 10.3390/buildings11070275 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_fe9772b6ebfc4d58b32a003d166682d6 10_3390_buildings11070275 |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PIMPY PROAC PTHSS PYCSY RIG TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c382t-c56e3d1d1d4120b8f084c365cbe304db829e75f3106bd077866af7162f62736d3 |
IEDL.DBID | 8FG |
ISSN | 2075-5309 |
IngestDate | Tue Oct 22 15:10:08 EDT 2024 Mon Nov 04 15:36:13 EST 2024 Wed Jul 17 13:02:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c56e3d1d1d4120b8f084c365cbe304db829e75f3106bd077866af7162f62736d3 |
OpenAccessLink | https://www.proquest.com/docview/2554453588?pq-origsite=%requestingapplication% |
PQID | 2554453588 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe9772b6ebfc4d58b32a003d166682d6 proquest_journals_2554453588 crossref_primary_10_3390_buildings11070275 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_1) 2021; 30 Savchenko (ref_19) 2017; 103 Wang (ref_15) 2021; 39 Barone (ref_27) 2020; 220 BI (ref_23) 2021; 57 Auer (ref_21) 2002; 47 Zhou (ref_8) 2018; 137 Gittins (ref_17) 1979; 41 ref_12 ref_10 Liu (ref_5) 2021; 221 ref_31 ref_30 ref_18 Zhao (ref_9) 2010; 35 Mark (ref_24) 2017; 4 Lei (ref_28) 2010; 26 Hering (ref_2) 2021; 224 Hussam (ref_3) 2014; 77 ref_25 Yan (ref_7) 2020; 172 Li (ref_6) 2020; 29 ref_20 Berg (ref_14) 2016; 83 Morteza (ref_13) 2016; 43 ref_29 Huang (ref_22) 2016; Volume 9652 Xue (ref_32) 2017; 205 Martin (ref_16) 2020; 16 ref_26 Xue (ref_11) 2020; 223 ref_4 |
References_xml | – volume: 221 start-page: 119835 year: 2021 ident: ref_5 article-title: A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system publication-title: Energy doi: 10.1016/j.energy.2021.119835 contributor: fullname: Liu – volume: 47 start-page: 235 year: 2002 ident: ref_21 article-title: Finite-time analysis of the multiarmed bandit problem publication-title: Mach. Learn. doi: 10.1023/A:1013689704352 contributor: fullname: Auer – ident: ref_30 – volume: 39 start-page: 102246 year: 2021 ident: ref_15 article-title: Data mining approach for improving the optimal control of HVAC systems: An event-driven strategy publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.102246 contributor: fullname: Wang – ident: ref_4 doi: 10.1177/1420326X211007893 – volume: Volume 9652 start-page: 143 year: 2016 ident: ref_22 article-title: Linear Upper Confidence Bound Algorithm for Contextual Bandit Problem with Piled Rewards publication-title: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining contributor: fullname: Huang – volume: 29 start-page: 1249 year: 2020 ident: ref_6 article-title: Operation strategy of cross-season solar heat storage heating system in an alpine high-altitude area publication-title: Indoor Built Environ. doi: 10.1177/1420326X20930325 contributor: fullname: Li – ident: ref_10 doi: 10.3390/app8020146 – volume: 77 start-page: 265 year: 2014 ident: ref_3 article-title: Heat pipe based thermal management systems for energy-efficient data centres publication-title: Energy doi: 10.1016/j.energy.2014.08.085 contributor: fullname: Hussam – volume: 57 start-page: 224 year: 2021 ident: ref_23 article-title: Product Pricing Algorithm Based on Multi-armed Bandit publication-title: Comput. Eng. Appl. contributor: fullname: BI – ident: ref_26 doi: 10.3390/buildings9120239 – ident: ref_31 doi: 10.1145/1772690.1772758 – volume: 137 start-page: 567 year: 2018 ident: ref_8 article-title: A review of leakage detection methods for district heating networks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.010 contributor: fullname: Zhou – volume: 223 start-page: 110161 year: 2020 ident: ref_11 article-title: Machine learning-based leakage fault detection for district heating networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110161 contributor: fullname: Xue – volume: 16 start-page: 841 year: 2020 ident: ref_16 article-title: A Multiarmed Bandit Approach to Adaptive Water Quality Management publication-title: Integr. Environ. Assess Manag. doi: 10.1002/ieam.4302 contributor: fullname: Martin – volume: 4 start-page: 1 year: 2017 ident: ref_24 article-title: Reinforcement Learning: MDP Applied to Autonomous Navigation publication-title: Mach. Learn. Appl. Int. J. contributor: fullname: Mark – volume: 41 start-page: 148 year: 1979 ident: ref_17 article-title: Bandit Processes and Dynamic Allocation Indices publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1979.tb01068.x contributor: fullname: Gittins – ident: ref_29 – volume: 26 start-page: 173 year: 2010 ident: ref_28 article-title: Application of neural network in heating network leakage fault diagnosis publication-title: J. Southeast Univ. Engl. Ed. contributor: fullname: Lei – ident: ref_12 – ident: ref_25 doi: 10.3390/buildings9110233 – volume: 103 start-page: 316 year: 2017 ident: ref_19 article-title: Decision Support in Intelligent Maintenance-planning Systems Based on Contextual Multi-armed Bandit Algorithm publication-title: Procedia Computer Science. doi: 10.1016/j.procs.2017.01.114 contributor: fullname: Savchenko – ident: ref_18 doi: 10.1016/j.enbuild.2020.110161 – volume: 35 start-page: 3814 year: 2010 ident: ref_9 article-title: A new method of leak location for the natural gas pipeline based on wavelet analysis publication-title: Energy doi: 10.1016/j.energy.2010.05.034 contributor: fullname: Zhao – volume: 83 start-page: 215 year: 2016 ident: ref_14 article-title: Enhanced analysis of thermographic images for monitoring of district heat pipe networks publication-title: Pattern Recognition Letters. doi: 10.1016/j.patrec.2016.07.002 contributor: fullname: Berg – volume: 43 start-page: 479 year: 2016 ident: ref_13 article-title: Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN) publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2016.06.018 contributor: fullname: Morteza – ident: ref_20 – volume: 205 start-page: 926 year: 2017 ident: ref_32 article-title: Fault detection and operation optimization in district heating substations based on data mining techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.035 contributor: fullname: Xue – volume: 30 start-page: 3 year: 2021 ident: ref_1 article-title: Development trend and challenges of sustainable urban design in the digital age publication-title: Indoor Built Environ. doi: 10.1177/1420326X20976058 contributor: fullname: Wang – volume: 172 start-page: 106698 year: 2020 ident: ref_7 article-title: Generative adversarial network for fault detection diagnosis of chillers publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106698 contributor: fullname: Yan – volume: 224 start-page: 120140 year: 2021 ident: ref_2 article-title: Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming publication-title: Energy doi: 10.1016/j.energy.2021.120140 contributor: fullname: Hering – volume: 220 start-page: 113052 year: 2020 ident: ref_27 article-title: A novel dynamic simulation model for the thermo-economic analysis and optimisation of district heating systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113052 contributor: fullname: Barone |
SSID | ssj0000852254 |
Score | 2.258774 |
Snippet | District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 275 |
SubjectTerms | Accuracy Algorithms Artificial intelligence contextual bandit Decision making District heating district heating pipe network Electrical faults Fault detection Fault location Heat Heat pipes Heating Leakage linear upper confidence bound Machine learning Methods Neural networks reinforcement learning Sensors Simulation Troubleshooting User needs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1ar5OBJWLrNa7NH21qK2CJosbcl2SRSH9tit__fSXYrlR68yF7CErLLzCT5hvn4BqHrTqwS4lQaAVplEesoHqUKRiIRVhhtbBpINKOxGE7Y_ZRPN1p9eU5YJQ9cGa7tYHZCtLDa5cxwqSlREInGl7skMZXYdpxuJFNvFfsKApVVZUwKeX1b112mlz7h8bW6XxdR0OvfOo7DHTM4QPs1OMS31U8doh1bHKG9DcnAY_TSt2VgTxV47nDfy97O8hIPPfQrXvHjbGHxuKJ24wer3uG4wAO1-ihxIAfgSa8L63_ip9D_xi8zCj2kT9BkcPfcG0Z1c4Qop5KUUc6FBSvAwzok1tLFkuVU8FxbGjOjJUltwh2gN6FN7FXihHJeLsoJQCzC0FPUKOaFPUMYMIGhfu-q3Hq1GJ0yqg1LiCEdx41popu1pbJFpYGRQe7gzZptmbWJut6WPxO9fHV4AU7Naqdmfzm1iVprT2T1nlpmkPwwximX8vw_vnGBdonnpwTqbQs1yq-VvQSAUeqrEEvfWWjNQw priority: 102 providerName: Directory of Open Access Journals |
Title | Detection of District Heating Pipe Network Leakage Fault Using UCB Arm Selection Method |
URI | https://www.proquest.com/docview/2554453588 https://doaj.org/article/fe9772b6ebfc4d58b32a003d166682d6 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArKIslQ-ckCISb3FOiAKlQlAhoKK3yI7tqgLS0ob_x-OmLKqEconiyIfxePzG8_QGoZMkVilxKos8WmURSxSPMuXfRCqsMNrYLJBo7rui02O3fd6vL9ymNa1yHhNDoDajAu7Izzz0ZYxTLuX5-COCrlFQXa1baCyj1YSkKVC6ZPvm-47FwwnvrmxWzKQ-uz_Tda_pKaQ9ULH7cxwF1f6FoBxOmvYm2qghIr6YrekWWrLlNlr_JRy4g16ubBU4VCUeOXwF4rfDosIdAIDlAD8MxxZ3ZwRvfGfVqw8auK0-3yocKAK4d9ny87_jp9AFB6a5D52kd1Gvff182YnqFglRQSWpooILS03iH5aQWEsXS1ZQwQttacyMliSzKXcewwltYtCKE8qBaJQTHrcIQ_fQSjkq7T7CHhkYCjtYFRY0Y3TGqDYsJYYkjhvTQKdzS-XjmRJG7jMIMGu-YNYGaoEtv38EEevwYTQZ5PWeyJ13hJRoYbUrmOFSU6J8kDFQyZTEiAY6mq9EXu-saf7jBwf_Dx-iNQL8k0CtPUIr1eTTHnsAUelm8JImWm1ddx8emyEN_wKalcdA |
link.rule.ids | 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB214dD2UFFoRVra-tAT0opdf633VDVAFNokQkBUbit7bSME3aRk-f_1OA5QIaG9rNYrH8Yz42fP0xuAb0WuS-p1lQW0yjNeaJFVOrzJUjppjXVVJNFMpnI04z8vxEW6cFsmWuU6J8ZEbecN3pHvB-jLuWBCqe-Lvxl2jcLqamqh8RI2UKpK9WBjcDQ9Ob2_ZQmAIjgsX5UzWTjf75vUbXqJBx-s2f23IUXd_idpOe41w014m0Ai-bFa1XfwwrVb8OaRdOA2_D50XWRRtWTuySHK3141HRkhBGwvycnVwpHpiuJNxk5fh7RBhvrupiORJEBmB4Mw_x9yFvvg4DST2Ev6PcyGR-cHoyw1ScgapmiXNUI6Zovw8ILmRvlc8YZJ0RjHcm6NopUrhQ8oThqbo1qc1B5lo7wMyEVa9gF67bx1O0ACNrAMY1g3DlVjTMWZsbyklhZeWNuHvbWl6sVKC6MOZwg0a_3ErH0YoC3vf0QZ6_hhfntZp6iofXCFkhrpjG-4FcowqkOasVjLVNTKPuyuV6JOsbWsHzzh4_PDX-HV6HwyrsfH01-f4DVFNkok2u5Cr7u9c58DnOjMl-Qz_wCHKskC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4SBU9oNKC2ELBh54qRSR-JTlVLMtqea1WbVflFtmxvUJAdsuG_8-M10tBSCiXKI58GI_H33g-fUPI9yzVOfO6TACtikRkWialhjeVK6essa4MJJqroRqMxfm1vI78p3mkVS5jYgjUdlrjHfkRQF8hJJeQsPlIixj1-j9n_xLsIIWV1thOY5Ws50JxSMTWu6fD0a_nGxcAF-C8YlHa5JDrH5nYeXqOSRDW714dTkHD_02IDudO_xPZjICRHi9WeIusuOYz-fhCRvAL-dtzbWBUNXTqaQ-lcG_qlg4QDjYTOrqZOTpc0L3ppdO3EEJoXz_etTQQBuj4pAvz39PfoScOTnMV-kpvk3H_9M_JIIkNE5KaF6xNaqkctxk8ImOpKXxaiJorWRvHU2FNwUqXSw-IThmbonKc0h4lpLwCFKMs3yFrzbRxu4QCTrAc97OuHSrImFJwY0XOLMu8tLZDfiwtVc0WuhgV5BNo1uqNWTuki7Z8_hElrcOH6cOkijuk8uAWOTPKGV8LKwvDmYaQY7GuWTCrOmR_uRJV3Gfz6r9XfH1_-JB8AHepLs-GF3tkgyExJXBu98la-_DovgGyaM1BdJknxtfNNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+District+Heating+Pipe+Network+Leakage+Fault+Using+UCB+Arm+Selection+Method&rft.jtitle=Buildings+%28Basel%29&rft.au=Shen%2C+Yachen&rft.au=Chen%2C+Jianping&rft.au=Fu%2C+Qiming&rft.au=Wu%2C+Hongjie&rft.date=2021-07-01&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=11&rft.issue=7&rft.spage=275&rft_id=info:doi/10.3390%2Fbuildings11070275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_buildings11070275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |