Detection of District Heating Pipe Network Leakage Fault Using UCB Arm Selection Method

District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selectio...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 11; no. 7; p. 275
Main Authors Shen, Yachen, Chen, Jianping, Fu, Qiming, Wu, Hongjie, Wang, Yunzhe, Lu, You
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selection in the Contextual Bandit (CB) algorithm. With data collected from end-users’ pressure and flow information in the simulation model, the LinUCB method is adopted to locate the leakage faults. Firstly, we use a hydraulic simulation model to simulate all failure conditions that can occur in the network, and these change rate vectors of observed data form a dataset. Secondly, the LinUCB method is used to train an agent for the arm selection, and the outcome of arm selection is the leaking pipe label. Thirdly, the experiment results show that this method can detect the leaking pipe accurately and effectively. Furthermore, it allows operators to evaluate the system performance, supports troubleshooting of decision mechanisms, and provides guidance in the arrangement of maintenance.
AbstractList District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation. This paper proposes a Leakage Fault Detection (LFD) method based on the Linear Upper Confidence Bound (LinUCB) which is used for arm selection in the Contextual Bandit (CB) algorithm. With data collected from end-users’ pressure and flow information in the simulation model, the LinUCB method is adopted to locate the leakage faults. Firstly, we use a hydraulic simulation model to simulate all failure conditions that can occur in the network, and these change rate vectors of observed data form a dataset. Secondly, the LinUCB method is used to train an agent for the arm selection, and the outcome of arm selection is the leaking pipe label. Thirdly, the experiment results show that this method can detect the leaking pipe accurately and effectively. Furthermore, it allows operators to evaluate the system performance, supports troubleshooting of decision mechanisms, and provides guidance in the arrangement of maintenance.
Author Wang, Yunzhe
Shen, Yachen
Fu, Qiming
Chen, Jianping
Lu, You
Wu, Hongjie
Author_xml – sequence: 1
  givenname: Yachen
  surname: Shen
  fullname: Shen, Yachen
– sequence: 2
  givenname: Jianping
  surname: Chen
  fullname: Chen, Jianping
– sequence: 3
  givenname: Qiming
  surname: Fu
  fullname: Fu, Qiming
– sequence: 4
  givenname: Hongjie
  surname: Wu
  fullname: Wu, Hongjie
– sequence: 5
  givenname: Yunzhe
  surname: Wang
  fullname: Wang, Yunzhe
– sequence: 6
  givenname: You
  surname: Lu
  fullname: Lu, You
BookMark eNplkV1LYzEQhoO44Mf6A7wL7HXdfJx89LJb11XoqqDFy5CTTGra05NukrL47z3aIoIzFzMML8878J6gwz71gNA5JRecj8nPdhs7H_tFoZQowpQ4QMeMKDESnIwPP-1H6KyUJRlKC8ZEc4yeLqGCqzH1OAV8GUvN0VV8DbYOQHwfN4Bvof5PeYVnYFd2AfjKbruK5-VNMJ_-wpO8xg_Q7TF_oT4n_x19C7YrcLafp2h-9ftxej2a3f25mU5mI8c1qyMnJHBPh24oI60ORDeOS-Fa4KTxrWZjUCJwSmTriVJaShsUlSxIprj0_BTd7Lg-2aXZ5Li2-cUkG837IeWFsblG14EJMFaKtRLa4BovdMuZJWRwl1Jq5uXA-rFjbXL6t4VSzTJtcz-8b5gQTSO40HpQ0Z3K5VRKhvDhSol5i8N8iYO_AikAf1w
CitedBy_id crossref_primary_10_1016_j_segan_2022_100672
crossref_primary_10_3390_electronics12061448
crossref_primary_10_3390_buildings12060743
crossref_primary_10_1016_j_psep_2024_03_101
crossref_primary_10_3390_buildings12050610
crossref_primary_10_1016_j_psep_2023_09_069
Cites_doi 10.1016/j.energy.2021.119835
10.1023/A:1013689704352
10.1016/j.jobe.2021.102246
10.1177/1420326X211007893
10.1177/1420326X20930325
10.3390/app8020146
10.1016/j.energy.2014.08.085
10.3390/buildings9120239
10.1145/1772690.1772758
10.1016/j.applthermaleng.2018.04.010
10.1016/j.enbuild.2020.110161
10.1002/ieam.4302
10.1111/j.2517-6161.1979.tb01068.x
10.3390/buildings9110233
10.1016/j.procs.2017.01.114
10.1016/j.energy.2010.05.034
10.1016/j.patrec.2016.07.002
10.1016/j.jlp.2016.06.018
10.1016/j.apenergy.2017.08.035
10.1177/1420326X20976058
10.1016/j.buildenv.2020.106698
10.1016/j.energy.2021.120140
10.1016/j.enconman.2020.113052
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.3390/buildings11070275
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_fe9772b6ebfc4d58b32a003d166682d6
10_3390_buildings11070275
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PIMPY
PROAC
PTHSS
PYCSY
RIG
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c382t-c56e3d1d1d4120b8f084c365cbe304db829e75f3106bd077866af7162f62736d3
IEDL.DBID 8FG
ISSN 2075-5309
IngestDate Tue Oct 22 15:10:08 EDT 2024
Mon Nov 04 15:36:13 EST 2024
Wed Jul 17 13:02:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c56e3d1d1d4120b8f084c365cbe304db829e75f3106bd077866af7162f62736d3
OpenAccessLink https://www.proquest.com/docview/2554453588?pq-origsite=%requestingapplication%
PQID 2554453588
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_fe9772b6ebfc4d58b32a003d166682d6
proquest_journals_2554453588
crossref_primary_10_3390_buildings11070275
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_1) 2021; 30
Savchenko (ref_19) 2017; 103
Wang (ref_15) 2021; 39
Barone (ref_27) 2020; 220
BI (ref_23) 2021; 57
Auer (ref_21) 2002; 47
Zhou (ref_8) 2018; 137
Gittins (ref_17) 1979; 41
ref_12
ref_10
Liu (ref_5) 2021; 221
ref_31
ref_30
ref_18
Zhao (ref_9) 2010; 35
Mark (ref_24) 2017; 4
Lei (ref_28) 2010; 26
Hering (ref_2) 2021; 224
Hussam (ref_3) 2014; 77
ref_25
Yan (ref_7) 2020; 172
Li (ref_6) 2020; 29
ref_20
Berg (ref_14) 2016; 83
Morteza (ref_13) 2016; 43
ref_29
Huang (ref_22) 2016; Volume 9652
Xue (ref_32) 2017; 205
Martin (ref_16) 2020; 16
ref_26
Xue (ref_11) 2020; 223
ref_4
References_xml – volume: 221
  start-page: 119835
  year: 2021
  ident: ref_5
  article-title: A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119835
  contributor:
    fullname: Liu
– volume: 47
  start-page: 235
  year: 2002
  ident: ref_21
  article-title: Finite-time analysis of the multiarmed bandit problem
  publication-title: Mach. Learn.
  doi: 10.1023/A:1013689704352
  contributor:
    fullname: Auer
– ident: ref_30
– volume: 39
  start-page: 102246
  year: 2021
  ident: ref_15
  article-title: Data mining approach for improving the optimal control of HVAC systems: An event-driven strategy
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.102246
  contributor:
    fullname: Wang
– ident: ref_4
  doi: 10.1177/1420326X211007893
– volume: Volume 9652
  start-page: 143
  year: 2016
  ident: ref_22
  article-title: Linear Upper Confidence Bound Algorithm for Contextual Bandit Problem with Piled Rewards
  publication-title: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Huang
– volume: 29
  start-page: 1249
  year: 2020
  ident: ref_6
  article-title: Operation strategy of cross-season solar heat storage heating system in an alpine high-altitude area
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X20930325
  contributor:
    fullname: Li
– ident: ref_10
  doi: 10.3390/app8020146
– volume: 77
  start-page: 265
  year: 2014
  ident: ref_3
  article-title: Heat pipe based thermal management systems for energy-efficient data centres
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.085
  contributor:
    fullname: Hussam
– volume: 57
  start-page: 224
  year: 2021
  ident: ref_23
  article-title: Product Pricing Algorithm Based on Multi-armed Bandit
  publication-title: Comput. Eng. Appl.
  contributor:
    fullname: BI
– ident: ref_26
  doi: 10.3390/buildings9120239
– ident: ref_31
  doi: 10.1145/1772690.1772758
– volume: 137
  start-page: 567
  year: 2018
  ident: ref_8
  article-title: A review of leakage detection methods for district heating networks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.010
  contributor:
    fullname: Zhou
– volume: 223
  start-page: 110161
  year: 2020
  ident: ref_11
  article-title: Machine learning-based leakage fault detection for district heating networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110161
  contributor:
    fullname: Xue
– volume: 16
  start-page: 841
  year: 2020
  ident: ref_16
  article-title: A Multiarmed Bandit Approach to Adaptive Water Quality Management
  publication-title: Integr. Environ. Assess Manag.
  doi: 10.1002/ieam.4302
  contributor:
    fullname: Martin
– volume: 4
  start-page: 1
  year: 2017
  ident: ref_24
  article-title: Reinforcement Learning: MDP Applied to Autonomous Navigation
  publication-title: Mach. Learn. Appl. Int. J.
  contributor:
    fullname: Mark
– volume: 41
  start-page: 148
  year: 1979
  ident: ref_17
  article-title: Bandit Processes and Dynamic Allocation Indices
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1979.tb01068.x
  contributor:
    fullname: Gittins
– ident: ref_29
– volume: 26
  start-page: 173
  year: 2010
  ident: ref_28
  article-title: Application of neural network in heating network leakage fault diagnosis
  publication-title: J. Southeast Univ. Engl. Ed.
  contributor:
    fullname: Lei
– ident: ref_12
– ident: ref_25
  doi: 10.3390/buildings9110233
– volume: 103
  start-page: 316
  year: 2017
  ident: ref_19
  article-title: Decision Support in Intelligent Maintenance-planning Systems Based on Contextual Multi-armed Bandit Algorithm
  publication-title: Procedia Computer Science.
  doi: 10.1016/j.procs.2017.01.114
  contributor:
    fullname: Savchenko
– ident: ref_18
  doi: 10.1016/j.enbuild.2020.110161
– volume: 35
  start-page: 3814
  year: 2010
  ident: ref_9
  article-title: A new method of leak location for the natural gas pipeline based on wavelet analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.034
  contributor:
    fullname: Zhao
– volume: 83
  start-page: 215
  year: 2016
  ident: ref_14
  article-title: Enhanced analysis of thermographic images for monitoring of district heat pipe networks
  publication-title: Pattern Recognition Letters.
  doi: 10.1016/j.patrec.2016.07.002
  contributor:
    fullname: Berg
– volume: 43
  start-page: 479
  year: 2016
  ident: ref_13
  article-title: Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN)
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2016.06.018
  contributor:
    fullname: Morteza
– ident: ref_20
– volume: 205
  start-page: 926
  year: 2017
  ident: ref_32
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.035
  contributor:
    fullname: Xue
– volume: 30
  start-page: 3
  year: 2021
  ident: ref_1
  article-title: Development trend and challenges of sustainable urban design in the digital age
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X20976058
  contributor:
    fullname: Wang
– volume: 172
  start-page: 106698
  year: 2020
  ident: ref_7
  article-title: Generative adversarial network for fault detection diagnosis of chillers
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106698
  contributor:
    fullname: Yan
– volume: 224
  start-page: 120140
  year: 2021
  ident: ref_2
  article-title: Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120140
  contributor:
    fullname: Hering
– volume: 220
  start-page: 113052
  year: 2020
  ident: ref_27
  article-title: A novel dynamic simulation model for the thermo-economic analysis and optimisation of district heating systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113052
  contributor:
    fullname: Barone
SSID ssj0000852254
Score 2.258774
Snippet District heating networks make up an important public energy service, in which leakage is the main problem affecting the safety of pipeline network operation....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 275
SubjectTerms Accuracy
Algorithms
Artificial intelligence
contextual bandit
Decision making
District heating
district heating pipe network
Electrical faults
Fault detection
Fault location
Heat
Heat pipes
Heating
Leakage
linear upper confidence bound
Machine learning
Methods
Neural networks
reinforcement learning
Sensors
Simulation
Troubleshooting
User needs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1ar5OBJWLrNa7NH21qK2CJosbcl2SRSH9tit__fSXYrlR68yF7CErLLzCT5hvn4BqHrTqwS4lQaAVplEesoHqUKRiIRVhhtbBpINKOxGE7Y_ZRPN1p9eU5YJQ9cGa7tYHZCtLDa5cxwqSlREInGl7skMZXYdpxuJFNvFfsKApVVZUwKeX1b112mlz7h8bW6XxdR0OvfOo7DHTM4QPs1OMS31U8doh1bHKG9DcnAY_TSt2VgTxV47nDfy97O8hIPPfQrXvHjbGHxuKJ24wer3uG4wAO1-ihxIAfgSa8L63_ip9D_xi8zCj2kT9BkcPfcG0Z1c4Qop5KUUc6FBSvAwzok1tLFkuVU8FxbGjOjJUltwh2gN6FN7FXihHJeLsoJQCzC0FPUKOaFPUMYMIGhfu-q3Hq1GJ0yqg1LiCEdx41popu1pbJFpYGRQe7gzZptmbWJut6WPxO9fHV4AU7Naqdmfzm1iVprT2T1nlpmkPwwximX8vw_vnGBdonnpwTqbQs1yq-VvQSAUeqrEEvfWWjNQw
  priority: 102
  providerName: Directory of Open Access Journals
Title Detection of District Heating Pipe Network Leakage Fault Using UCB Arm Selection Method
URI https://www.proquest.com/docview/2554453588
https://doaj.org/article/fe9772b6ebfc4d58b32a003d166682d6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArKIslQ-ckCISb3FOiAKlQlAhoKK3yI7tqgLS0ob_x-OmLKqEconiyIfxePzG8_QGoZMkVilxKos8WmURSxSPMuXfRCqsMNrYLJBo7rui02O3fd6vL9ymNa1yHhNDoDajAu7Izzz0ZYxTLuX5-COCrlFQXa1baCyj1YSkKVC6ZPvm-47FwwnvrmxWzKQ-uz_Tda_pKaQ9ULH7cxwF1f6FoBxOmvYm2qghIr6YrekWWrLlNlr_JRy4g16ubBU4VCUeOXwF4rfDosIdAIDlAD8MxxZ3ZwRvfGfVqw8auK0-3yocKAK4d9ny87_jp9AFB6a5D52kd1Gvff182YnqFglRQSWpooILS03iH5aQWEsXS1ZQwQttacyMliSzKXcewwltYtCKE8qBaJQTHrcIQ_fQSjkq7T7CHhkYCjtYFRY0Y3TGqDYsJYYkjhvTQKdzS-XjmRJG7jMIMGu-YNYGaoEtv38EEevwYTQZ5PWeyJ13hJRoYbUrmOFSU6J8kDFQyZTEiAY6mq9EXu-saf7jBwf_Dx-iNQL8k0CtPUIr1eTTHnsAUelm8JImWm1ddx8emyEN_wKalcdA
link.rule.ids 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB214dD2UFFoRVra-tAT0opdf633VDVAFNokQkBUbit7bSME3aRk-f_1OA5QIaG9rNYrH8Yz42fP0xuAb0WuS-p1lQW0yjNeaJFVOrzJUjppjXVVJNFMpnI04z8vxEW6cFsmWuU6J8ZEbecN3pHvB-jLuWBCqe-Lvxl2jcLqamqh8RI2UKpK9WBjcDQ9Ob2_ZQmAIjgsX5UzWTjf75vUbXqJBx-s2f23IUXd_idpOe41w014m0Ai-bFa1XfwwrVb8OaRdOA2_D50XWRRtWTuySHK3141HRkhBGwvycnVwpHpiuJNxk5fh7RBhvrupiORJEBmB4Mw_x9yFvvg4DST2Ev6PcyGR-cHoyw1ScgapmiXNUI6Zovw8ILmRvlc8YZJ0RjHcm6NopUrhQ8oThqbo1qc1B5lo7wMyEVa9gF67bx1O0ACNrAMY1g3DlVjTMWZsbyklhZeWNuHvbWl6sVKC6MOZwg0a_3ErH0YoC3vf0QZ6_hhfntZp6iofXCFkhrpjG-4FcowqkOasVjLVNTKPuyuV6JOsbWsHzzh4_PDX-HV6HwyrsfH01-f4DVFNkok2u5Cr7u9c58DnOjMl-Qz_wCHKskC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4SBU9oNKC2ELBh54qRSR-JTlVLMtqea1WbVflFtmxvUJAdsuG_8-M10tBSCiXKI58GI_H33g-fUPI9yzVOfO6TACtikRkWialhjeVK6essa4MJJqroRqMxfm1vI78p3mkVS5jYgjUdlrjHfkRQF8hJJeQsPlIixj1-j9n_xLsIIWV1thOY5Ws50JxSMTWu6fD0a_nGxcAF-C8YlHa5JDrH5nYeXqOSRDW714dTkHD_02IDudO_xPZjICRHi9WeIusuOYz-fhCRvAL-dtzbWBUNXTqaQ-lcG_qlg4QDjYTOrqZOTpc0L3ppdO3EEJoXz_etTQQBuj4pAvz39PfoScOTnMV-kpvk3H_9M_JIIkNE5KaF6xNaqkctxk8ImOpKXxaiJorWRvHU2FNwUqXSw-IThmbonKc0h4lpLwCFKMs3yFrzbRxu4QCTrAc97OuHSrImFJwY0XOLMu8tLZDfiwtVc0WuhgV5BNo1uqNWTuki7Z8_hElrcOH6cOkijuk8uAWOTPKGV8LKwvDmYaQY7GuWTCrOmR_uRJV3Gfz6r9XfH1_-JB8AHepLs-GF3tkgyExJXBu98la-_DovgGyaM1BdJknxtfNNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+District+Heating+Pipe+Network+Leakage+Fault+Using+UCB+Arm+Selection+Method&rft.jtitle=Buildings+%28Basel%29&rft.au=Shen%2C+Yachen&rft.au=Chen%2C+Jianping&rft.au=Fu%2C+Qiming&rft.au=Wu%2C+Hongjie&rft.date=2021-07-01&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=11&rft.issue=7&rft.spage=275&rft_id=info:doi/10.3390%2Fbuildings11070275&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_buildings11070275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon