Self-calibrating smooth pursuit through active efficient coding

This paper presents a model for the autonomous learning of smooth pursuit eye movements based on an efficient coding criterion for active perception. This model accounts for the joint development of visual encoding and eye control. Sparse coding models encode the incoming data at two different spati...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 71; pp. 3 - 12
Main Authors Teulière, C., Forestier, S., Lonini, L., Zhang, C., Zhao, Y., Shi, B., Triesch, J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a model for the autonomous learning of smooth pursuit eye movements based on an efficient coding criterion for active perception. This model accounts for the joint development of visual encoding and eye control. Sparse coding models encode the incoming data at two different spatial resolutions and capture the statistics of the input in spatio-temporal basis functions. A reinforcement learner controls eye velocity so as to maximize a reward signal based on the efficiency of the encoding. We consider the embodiment of the approach in the iCub simulator and real robot. Motion perception and smooth pursuit control are not explicitly expressed as tasks for the robot to achieve but emerge as the result of the system’s active attempt to efficiently encode its sensory inputs. Experiments demonstrate that the proposed approach is self-calibrating and robust to strong perturbations of the perception–action link. •Efficient coding principle is used as a criterion for learning smooth pursuit eye movements.•A multi-scale approach allows to perceive a large range of motions.•The model is fully self-calibrating and autonomously recovers from perturbations in the perception/action link.•Experiments on both simulation and iCub robot demonstrate the approach.
AbstractList This paper presents a model for the autonomous learning of smooth pursuit eye movements based on an efficient coding criterion for active perception. This model accounts for the joint development of visual encoding and eye control. Sparse coding models encode the incoming data at two different spatial resolutions and capture the statistics of the input in spatio-temporal basis functions. A reinforcement learner controls eye velocity so as to maximize a reward signal based on the efficiency of the encoding. We consider the embodiment of the approach in the iCub simulator and real robot. Motion perception and smooth pursuit control are not explicitly expressed as tasks for the robot to achieve but emerge as the result of the system’s active attempt to efficiently encode its sensory inputs. Experiments demonstrate that the proposed approach is self-calibrating and robust to strong perturbations of the perception–action link. •Efficient coding principle is used as a criterion for learning smooth pursuit eye movements.•A multi-scale approach allows to perceive a large range of motions.•The model is fully self-calibrating and autonomously recovers from perturbations in the perception/action link.•Experiments on both simulation and iCub robot demonstrate the approach.
This paper presents a model for the autonomous learning of smooth pursuit eye movements based on an efficient coding criterion for active perception. This model accounts for the joint development of visual encoding and eye control. Sparse coding models encode the incoming data at two different spatial resolu-tions and capture the statistics of the input in spatio-temporal basis functions. A reinforcement learner controls eye velocity so as to maximize a reward signal based on the efficiency of the encoding. We consider the embodiment of the approach in the iCub simulator and real robot.Motion perception and smooth pursuit control are not explicitly expressed as tasks for the robot to achieve but emerge as the result of the system's active attempt to efficiently encode its sensory inputs. Experiments demonstrate that the proposed approach is self-calibrating and robust to strong perturbations of the perception-action link.
Author Zhang, C.
Lonini, L.
Triesch, J.
Teulière, C.
Forestier, S.
Zhao, Y.
Shi, B.
Author_xml – sequence: 1
  givenname: C.
  surname: Teulière
  fullname: Teulière, C.
  email: celine.teuliere@univ-bpclermont.fr
  organization: Frankfurt Institute For Advanced Studies, Goethe University, Frankfurt am Main, Germany
– sequence: 2
  givenname: S.
  surname: Forestier
  fullname: Forestier, S.
  organization: Frankfurt Institute For Advanced Studies, Goethe University, Frankfurt am Main, Germany
– sequence: 3
  givenname: L.
  surname: Lonini
  fullname: Lonini, L.
  organization: Frankfurt Institute For Advanced Studies, Goethe University, Frankfurt am Main, Germany
– sequence: 4
  givenname: C.
  surname: Zhang
  fullname: Zhang, C.
  organization: Department of Electronic and Computer Engineering, HK University of Science and Technology, Hong Kong, China
– sequence: 5
  givenname: Y.
  surname: Zhao
  fullname: Zhao, Y.
  organization: Department of Electronic and Computer Engineering, HK University of Science and Technology, Hong Kong, China
– sequence: 6
  givenname: B.
  surname: Shi
  fullname: Shi, B.
  organization: Department of Electronic and Computer Engineering, HK University of Science and Technology, Hong Kong, China
– sequence: 7
  givenname: J.
  surname: Triesch
  fullname: Triesch, J.
  organization: Frankfurt Institute For Advanced Studies, Goethe University, Frankfurt am Main, Germany
BackLink https://hal.science/hal-01113340$$DView record in HAL
BookMark eNqFkE1LAzEQQIMo2FZ_gZe9etg1s0l3k4NIKWqFggcVvIV8tinbTcmmBf-9u1Y8eNDLDAzvzeGN0WkbWovQFeACMFQ3myIGFVJRYqAFQIFxdYJGwOoyrzl5P0UjzEvIGeP4HI27boMxJtOajNDdi21crmXjVZTJt6us24aQ1tluH7u9T1lax7BfrTOpkz_YzDrntbdtynQwPX6BzpxsOnv5vSfo7eH-db7Il8-PT_PZMteElamfRhlKVelqhxk1IEFWSkpHjeKMM1JNp4xKrh1TnDMDda2IrmuuGdCq4mSCro9_17IRu-i3Mn6IIL1YzJZiuGEAIITiA_QsObI6hq6L1v0IgMXQS2zEVy8x9BIAou_VW_yXpX3qk4Q2Rembf9zbo2v7BAdvo-iGSNoaH61OwgT_p_8JIayKEw
CitedBy_id crossref_primary_10_1371_journal_pcbi_1008973
crossref_primary_10_3389_fnbot_2020_570308
crossref_primary_10_3389_frobt_2024_1435197
crossref_primary_10_3389_fnbot_2017_00058
crossref_primary_10_3389_fnbot_2019_00049
crossref_primary_10_1016_j_tins_2018_05_011
crossref_primary_10_1088_2634_4386_ac84fd
crossref_primary_10_3389_fncom_2022_929348
crossref_primary_10_3389_fnbot_2018_00066
crossref_primary_10_1073_pnas_1908100117
crossref_primary_10_1016_j_robot_2018_08_009
Cites_doi 10.1016/S0042-6989(96)00332-X
10.1109/MRA.2006.250573
10.1109/78.258082
10.1109/TSMCB.2006.886949
10.1016/j.robot.2010.02.010
10.1162/neco.1994.6.4.559
10.1142/S021984361250017X
10.1109/ICRA.2014.6907110
10.1038/381607a0
10.1109/DevLrn.2013.6652541
10.1109/CVPR.1992.223232
10.1016/j.robot.2013.12.011
10.1126/science.1070502
10.1016/j.automatica.2009.07.008
10.1109/DEVLRN.2014.6983022
10.1109/ROBOT.2006.1641167
10.1109/IROS.1994.407392
10.1016/0004-3702(81)90024-2
10.1037/h0054663
10.1109/IROS.2001.973371
10.1177/1059712313492176
10.1007/BF01420984
10.1038/nature04485
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.robot.2014.11.006
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-793X
EndPage 12
ExternalDocumentID oai_HAL_hal_01113340v1
10_1016_j_robot_2014_11_006
S0921889014002486
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c382t-c3dbd44b2f7f084d1a1a6baaf4db9898365584a9cf8b998d177b3c779c8146693
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Fri May 09 12:10:04 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 01:41:40 EDT 2025
Fri Feb 23 02:33:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Autonomous learning
Smooth pursuit
Efficient coding
Active perception
Robotics
efficient coding
robotics
active perception
smooth pursuit
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c3dbd44b2f7f084d1a1a6baaf4db9898365584a9cf8b998d177b3c779c8146693
ORCID 0000-0002-0841-5476
OpenAccessLink https://hal.science/hal-01113340
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_01113340v1
crossref_primary_10_1016_j_robot_2014_11_006
crossref_citationtrail_10_1016_j_robot_2014_11_006
elsevier_sciencedirect_doi_10_1016_j_robot_2014_11_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Robotics and autonomous systems
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhao, Rothkopf, Triesch, Shi (br000050) 2012
K. Hosoda, M. Asada, Versatile visual servoing without knowledge of true jacobian, in: IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, (IROS), vol. 1, 1994, pp. 186–193.
Chaumette, Hutchinson (br000100) 2006; 13
Horn, Schunck (br000080) 1981; 17
Jamone, Natale, Nori, Metta, Sandini (br000125) 2012; 9
Olshausen, Field (br000020) 1996; 381
T. Shibata, S. Schaal, Biomimetic smooth pursuit based on fast learning of the target dynamics, in: in Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2001.
T.N. Vikram, C. Teulière, C. Zhang, B.E. Shi, J. Triesch, Autonomous learning of smooth pursuit and vergence behaviour through efficient coding, in: Int. Conf. on Development and Learning and Epigenetic Robotics, 2014.
Lopes, Santos-Victor (br000120) 2007; 37
Ruesch, Ferreira, Bernardino (br000045) 2013; 21
Barlow (br000010) 1961
Triesch (br000165) 2013; 4
Bhatnagar, Sutton, Ghavamzadeh, Lee (br000140) 2009; 45
Tikhanoff, Cangelosi, Fitzpatrick, Metta, Natale, Nori (br000150) 2008
L. Lonini, Y. Zhao, C. P, B. Shi, J. Triesch, Autonomous learning of active multi-scale binocular vision, in: Int. Conf. on Development and Learning and Epigenetic Robotics, 2013.
Taiana, Santos, Gaspar, Nascimento, Bernardino, Lima (br000095) 2010; 58
Jalal, Singh (br000090) 2012; 36
Metta, Fitzpatrick, Natale (br000160) 2006
Barron, Fleet, Beauchemin (br000085) 1994; 12
Smith, Lewicki (br000030) 2006; 439
Rothkopf, Weisswange, Triesch (br000040) 2009
C. Zhang, Y. Zhao, J. Triesch, B. Shi, Intrinsically motivated learning of visual motion perception and smooth pursuit, in: Int. Conf. on Robotics and Automation, 2014.
D. Coombs, C. Brown, Real-time smooth pursuit tracking for a moving binocular robot, in: IEEE Conference on Computer Vision and Pattern Recognition, 1992, pp. 23–28.
Mallat, Zhang (br000135) 1993; 41
Hofsten, Rosander (br000070) 1997; 37
Testimages. URL
Jamone, Brandao, Natale, Hashimoto, Sandini, Takanishi (br000075) 2014; 62
.
Attneave (br000005) 1954; 61
Field (br000015) 1994; 6
Perez-Orive, Mazor, Turner, Cassenaer, Wilson, Laurent (br000025) 2002; 297
J. Triesch, The Role of a Priori Biases in Unsupervised Learning of Visual Representations: A Robotics Experiment, in: Workshop on Developmental Embodied Cognition, (DECO), 2001.
Lonini, Forestier, Teulière, Zhao, Shi, Triesch (br000060) 2013; 7
R. Beira, M. Lopes, M. Praga, J. Santos-Victor, A. Bernardino, G. Metta, F. Becchi, R. Saltaren, Design of the robot-cub (icub) head, in: IEEE Int. Conf. on Robotics and Automation, 2006, pp. 94–100.
10.1016/j.robot.2014.11.006_br000065
Taiana (10.1016/j.robot.2014.11.006_br000095) 2010; 58
Jamone (10.1016/j.robot.2014.11.006_br000075) 2014; 62
Barron (10.1016/j.robot.2014.11.006_br000085) 1994; 12
Olshausen (10.1016/j.robot.2014.11.006_br000020) 1996; 381
Triesch (10.1016/j.robot.2014.11.006_br000165) 2013; 4
Smith (10.1016/j.robot.2014.11.006_br000030) 2006; 439
10.1016/j.robot.2014.11.006_br000035
10.1016/j.robot.2014.11.006_br000115
Barlow (10.1016/j.robot.2014.11.006_br000010) 1961
Attneave (10.1016/j.robot.2014.11.006_br000005) 1954; 61
Chaumette (10.1016/j.robot.2014.11.006_br000100) 2006; 13
Hofsten (10.1016/j.robot.2014.11.006_br000070) 1997; 37
Jamone (10.1016/j.robot.2014.11.006_br000125) 2012; 9
Perez-Orive (10.1016/j.robot.2014.11.006_br000025) 2002; 297
Bhatnagar (10.1016/j.robot.2014.11.006_br000140) 2009; 45
10.1016/j.robot.2014.11.006_br000130
10.1016/j.robot.2014.11.006_br000055
10.1016/j.robot.2014.11.006_br000110
10.1016/j.robot.2014.11.006_br000155
Jalal (10.1016/j.robot.2014.11.006_br000090) 2012; 36
Rothkopf (10.1016/j.robot.2014.11.006_br000040) 2009
10.1016/j.robot.2014.11.006_br000105
Ruesch (10.1016/j.robot.2014.11.006_br000045) 2013; 21
10.1016/j.robot.2014.11.006_br000145
Zhao (10.1016/j.robot.2014.11.006_br000050) 2012
Metta (10.1016/j.robot.2014.11.006_br000160) 2006
Lonini (10.1016/j.robot.2014.11.006_br000060) 2013; 7
Lopes (10.1016/j.robot.2014.11.006_br000120) 2007; 37
Field (10.1016/j.robot.2014.11.006_br000015) 1994; 6
Horn (10.1016/j.robot.2014.11.006_br000080) 1981; 17
Mallat (10.1016/j.robot.2014.11.006_br000135) 1993; 41
Tikhanoff (10.1016/j.robot.2014.11.006_br000150) 2008
References_xml – volume: 58
  start-page: 784
  year: 2010
  end-page: 795
  ident: br000095
  article-title: Tracking objects with generic calibrated sensors: An algorithm based on color and 3d shape features
  publication-title: Robot. Auton. Syst.
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  ident: br000080
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
– volume: 9
  year: 2012
  ident: br000125
  article-title: Autonomous online learning of reaching behavior in a humanoid robot
  publication-title: Int. J. Humanoid Robot.
– start-page: 43
  year: 2006
  end-page: 48
  ident: br000160
  article-title: Yarp: Yet another robot platform
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 6
  start-page: 559
  year: 1994
  end-page: 601
  ident: br000015
  article-title: What is the goal of sensory coding?
  publication-title: Neural Comput.
– start-page: 1
  year: 2012
  end-page: 6
  ident: br000050
  article-title: A unified model of the joint development of disparity selectivity and vergence control
  publication-title: Int. Conf. on Development and Learning and Epigenetic Robotics (ICDL)
– reference: D. Coombs, C. Brown, Real-time smooth pursuit tracking for a moving binocular robot, in: IEEE Conference on Computer Vision and Pattern Recognition, 1992, pp. 23–28.
– volume: 61
  start-page: 183
  year: 1954
  end-page: 193
  ident: br000005
  article-title: Some informational aspects of visual perception
  publication-title: Psychol. Rev.
– volume: 37
  start-page: 1799
  year: 1997
  end-page: 1810
  ident: br000070
  article-title: Development of smooth pursuit tracking in young infants
  publication-title: Vis. Res.
– reference: T.N. Vikram, C. Teulière, C. Zhang, B.E. Shi, J. Triesch, Autonomous learning of smooth pursuit and vergence behaviour through efficient coding, in: Int. Conf. on Development and Learning and Epigenetic Robotics, 2014.
– reference: K. Hosoda, M. Asada, Versatile visual servoing without knowledge of true jacobian, in: IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, (IROS), vol. 1, 1994, pp. 186–193.
– volume: 21
  start-page: 452
  year: 2013
  end-page: 464
  ident: br000045
  article-title: A computational approach on the co-development of artificial visual sensorimotor
  publication-title: Adapt. Behav.
– reference: R. Beira, M. Lopes, M. Praga, J. Santos-Victor, A. Bernardino, G. Metta, F. Becchi, R. Saltaren, Design of the robot-cub (icub) head, in: IEEE Int. Conf. on Robotics and Automation, 2006, pp. 94–100.
– volume: 36
  start-page: 227
  year: 2012
  end-page: 248
  ident: br000090
  article-title: The state-of-the-art in visual object tracking
  publication-title: Informatica: Int. J. Comput. Inform.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 8
  ident: br000165
  article-title: Imitation learning based on an intrinsic motivation mechanism for efficient coding
  publication-title: Front. Psychol.
– year: 2008
  ident: br000150
  article-title: An open-source simulator for cognitive robotics research: The prototype of the icub humanoid robot simulator
  publication-title: Proceedings of IEEE Workshop on Performance Metrics for Intelligent Systems Workshop
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: br000020
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– reference: T. Shibata, S. Schaal, Biomimetic smooth pursuit based on fast learning of the target dynamics, in: in Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2001.
– reference: L. Lonini, Y. Zhao, C. P, B. Shi, J. Triesch, Autonomous learning of active multi-scale binocular vision, in: Int. Conf. on Development and Learning and Epigenetic Robotics, 2013.
– volume: 297
  start-page: 359
  year: 2002
  end-page: 365
  ident: br000025
  article-title: Oscillations and sparsening of odor representations in the mushroom body
  publication-title: Science
– reference: Testimages. URL:
– start-page: 1
  year: 2009
  end-page: 6
  ident: br000040
  article-title: Learning independent causes in natural images explains the spacevariant oblique effect
  publication-title: Int. Conf. on Development and Learning (ICDL)
– volume: 45
  start-page: 2471
  year: 2009
  end-page: 2482
  ident: br000140
  article-title: Natural actor–critic algorithms
  publication-title: Automatica
– reference: J. Triesch, The Role of a Priori Biases in Unsupervised Learning of Visual Representations: A Robotics Experiment, in: Workshop on Developmental Embodied Cognition, (DECO), 2001.
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: br000135
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– reference: .
– volume: 7
  start-page: 1
  year: 2013
  end-page: 10
  ident: br000060
  article-title: Robust active binocular vision through intrinsically motivated learning
  publication-title: Front. Neurorobot.
– volume: 12
  start-page: 43
  year: 1994
  end-page: 77
  ident: br000085
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis.
– volume: 13
  start-page: 82
  year: 2006
  end-page: 90
  ident: br000100
  article-title: Visual servo control, Part I: Basic approaches
  publication-title: IEEE Robot. Autom. Mag.
– reference: C. Zhang, Y. Zhao, J. Triesch, B. Shi, Intrinsically motivated learning of visual motion perception and smooth pursuit, in: Int. Conf. on Robotics and Automation, 2014.
– volume: 37
  start-page: 308
  year: 2007
  end-page: 321
  ident: br000120
  article-title: A developmental roadmap for learning by imitation in robots
  publication-title: IEEE Trans. Syst. Man Cybern. B
– start-page: 217
  year: 1961
  end-page: 234
  ident: br000010
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sensory Commun.
– volume: 439
  start-page: 978
  year: 2006
  end-page: 982
  ident: br000030
  article-title: Efficient auditory coding
  publication-title: Nature
– volume: 62
  start-page: 556
  year: 2014
  end-page: 567
  ident: br000075
  article-title: Autonomous online generation of a motor representation of the workspace for intelligent whole-body reaching
  publication-title: Robot. Auton. Syst.
– volume: 37
  start-page: 1799
  issue: 13
  year: 1997
  ident: 10.1016/j.robot.2014.11.006_br000070
  article-title: Development of smooth pursuit tracking in young infants
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(96)00332-X
– year: 2008
  ident: 10.1016/j.robot.2014.11.006_br000150
  article-title: An open-source simulator for cognitive robotics research: The prototype of the icub humanoid robot simulator
– volume: 13
  start-page: 82
  issue: 4
  year: 2006
  ident: 10.1016/j.robot.2014.11.006_br000100
  article-title: Visual servo control, Part I: Basic approaches
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2006.250573
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.robot.2014.11.006_br000135
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 37
  start-page: 308
  issue: 2
  year: 2007
  ident: 10.1016/j.robot.2014.11.006_br000120
  article-title: A developmental roadmap for learning by imitation in robots
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2006.886949
– volume: 58
  start-page: 784
  issue: 6
  year: 2010
  ident: 10.1016/j.robot.2014.11.006_br000095
  article-title: Tracking objects with generic calibrated sensors: An algorithm based on color and 3d shape features
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2010.02.010
– ident: 10.1016/j.robot.2014.11.006_br000155
– volume: 6
  start-page: 559
  issue: 4
  year: 1994
  ident: 10.1016/j.robot.2014.11.006_br000015
  article-title: What is the goal of sensory coding?
  publication-title: Neural Comput.
  doi: 10.1162/neco.1994.6.4.559
– volume: 9
  issue: 3
  year: 2012
  ident: 10.1016/j.robot.2014.11.006_br000125
  article-title: Autonomous online learning of reaching behavior in a humanoid robot
  publication-title: Int. J. Humanoid Robot.
  doi: 10.1142/S021984361250017X
– ident: 10.1016/j.robot.2014.11.006_br000065
  doi: 10.1109/ICRA.2014.6907110
– volume: 7
  start-page: 1
  issue: 20
  year: 2013
  ident: 10.1016/j.robot.2014.11.006_br000060
  article-title: Robust active binocular vision through intrinsically motivated learning
  publication-title: Front. Neurorobot.
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.robot.2014.11.006_br000020
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– ident: 10.1016/j.robot.2014.11.006_br000035
– ident: 10.1016/j.robot.2014.11.006_br000055
  doi: 10.1109/DevLrn.2013.6652541
– ident: 10.1016/j.robot.2014.11.006_br000105
  doi: 10.1109/CVPR.1992.223232
– start-page: 1
  year: 2012
  ident: 10.1016/j.robot.2014.11.006_br000050
  article-title: A unified model of the joint development of disparity selectivity and vergence control
– start-page: 43
  year: 2006
  ident: 10.1016/j.robot.2014.11.006_br000160
  article-title: Yarp: Yet another robot platform
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 62
  start-page: 556
  issue: 4
  year: 2014
  ident: 10.1016/j.robot.2014.11.006_br000075
  article-title: Autonomous online generation of a motor representation of the workspace for intelligent whole-body reaching
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.12.011
– volume: 297
  start-page: 359
  issue: 5580
  year: 2002
  ident: 10.1016/j.robot.2014.11.006_br000025
  article-title: Oscillations and sparsening of odor representations in the mushroom body
  publication-title: Science
  doi: 10.1126/science.1070502
– volume: 45
  start-page: 2471
  issue: 11
  year: 2009
  ident: 10.1016/j.robot.2014.11.006_br000140
  article-title: Natural actor–critic algorithms
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.07.008
– volume: 36
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.robot.2014.11.006_br000090
  article-title: The state-of-the-art in visual object tracking
  publication-title: Informatica: Int. J. Comput. Inform.
– ident: 10.1016/j.robot.2014.11.006_br000130
  doi: 10.1109/DEVLRN.2014.6983022
– ident: 10.1016/j.robot.2014.11.006_br000145
  doi: 10.1109/ROBOT.2006.1641167
– ident: 10.1016/j.robot.2014.11.006_br000115
  doi: 10.1109/IROS.1994.407392
– start-page: 217
  year: 1961
  ident: 10.1016/j.robot.2014.11.006_br000010
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sensory Commun.
– volume: 17
  start-page: 185
  issue: 1–3
  year: 1981
  ident: 10.1016/j.robot.2014.11.006_br000080
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(81)90024-2
– volume: 4
  start-page: 1
  issue: 800
  year: 2013
  ident: 10.1016/j.robot.2014.11.006_br000165
  article-title: Imitation learning based on an intrinsic motivation mechanism for efficient coding
  publication-title: Front. Psychol.
– volume: 61
  start-page: 183
  issue: 3
  year: 1954
  ident: 10.1016/j.robot.2014.11.006_br000005
  article-title: Some informational aspects of visual perception
  publication-title: Psychol. Rev.
  doi: 10.1037/h0054663
– ident: 10.1016/j.robot.2014.11.006_br000110
  doi: 10.1109/IROS.2001.973371
– volume: 21
  start-page: 452
  issue: 6
  year: 2013
  ident: 10.1016/j.robot.2014.11.006_br000045
  article-title: A computational approach on the co-development of artificial visual sensorimotor
  publication-title: Adapt. Behav.
  doi: 10.1177/1059712313492176
– volume: 12
  start-page: 43
  year: 1994
  ident: 10.1016/j.robot.2014.11.006_br000085
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF01420984
– volume: 439
  start-page: 978
  issue: 7079
  year: 2006
  ident: 10.1016/j.robot.2014.11.006_br000030
  article-title: Efficient auditory coding
  publication-title: Nature
  doi: 10.1038/nature04485
– start-page: 1
  year: 2009
  ident: 10.1016/j.robot.2014.11.006_br000040
  article-title: Learning independent causes in natural images explains the spacevariant oblique effect
SSID ssj0003573
Score 2.2401483
Snippet This paper presents a model for the autonomous learning of smooth pursuit eye movements based on an efficient coding criterion for active perception. This...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Active perception
Automatic
Autonomous learning
Cognitive science
Computer Science
Computer Vision and Pattern Recognition
Efficient coding
Engineering Sciences
Machine Learning
Neuroscience
Robotics
Smooth pursuit
Title Self-calibrating smooth pursuit through active efficient coding
URI https://dx.doi.org/10.1016/j.robot.2014.11.006
https://hal.science/hal-01113340
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VBFiJG3S2HEyVhVVoagDUNEt8iuiqDRVH4z8du6cpICEOrAkimXH0WfrHr7Ld4Rcc64jLYVyaYhhRtZKXWGMcCmGrAyDbWMs2-cg7A3p_YiNKqRT_guDaZWF7M9lupXWRUuzQLM5G4-bT14M6inCMKAl5kLabUo57vLG53eaR8DyKDN0drF3yTxkc7zmmcwwodKnDaTyxLJHf2unrdfynNXqne4-2SsMRqedf9MBqZjpIdn9QSN4BAa3maQugI2uL6YxO4v3DFbAma3mi9V46RTFeBxhhZtjLG0EaBtHZai6jsmwe_vc6blFYQRXBVFrCVctNaWylfLUi6j2hS9CKURKtcR6kEHIwK4QsUojCe6U9jmXgeI8VnjgF8bBCalOs6k5JU6K7DVGMR15ioZeEKXgsaowNkwzL-BxjbRKQBJVsIZj8YpJUqaHvSUWxQRRBH8iARRr5GY9aJaTZmzuHpZIJ7_WPgGxvnngFazLegpkyu61HxJsA7EF3jf1Pvyz_779nOzAE8sTyi5IdTlfmUuwQJaybrdYnWy37_q9Ad77jy_9L1Ua20s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI72OAAHxFOMZ4U4UtauSdoep4mpwNgFJu0W5VUxNNZpbPx-7D4mkNAOXHpIk7ayo8927H4m5CYMTWSU1C7lmGZkndSV1kqXYsrKMtg2Nmf7HPJkRB_HbFwjvepfGCyrLLG_wPQcrcuRdinN9nwyab94MZinCNOAOTEXr5MmslOxBml2H56S4RqQA1YkmmG-iwsq8qG8zGuRqQxrKn16h2ye2PnobwNVf6uOWnPT098ju6XP6HSLz9onNTs7IDs_mAQPwee209QFeWP0i5XMzudHBkpw5qvF52qydMp-PI7M8c2xOXMEGBxHZ2i9jsiof__aS9yyN4Krg6izhKtRhlLVScPUi6jxpS-5kjKlRmFLyIAzcC1krNNIQURl_DBUgQ7DWOOZH4-DY9KYZTN7QpwUCWysZibyNOVeEKUQtGoeW2aYF4Rxi3QqgQhdEodj_4qpqCrE3kUuRYFShJBCgBRb5Ha9aF7wZmyezitJi1_qF4Dsmxdeg17Wr0Cy7KQ7EDgGyAUBOPW-_NP_Pv2KbCWvzwMxeBg-nZFtuMOK-rJz0lguVvYCHJKluiw33DcGodxZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-calibrating+smooth+pursuit+through+active+efficient+coding&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Teuli%C3%A8re%2C+C.&rft.au=Forestier%2C+S.&rft.au=Lonini%2C+L.&rft.au=Zhang%2C+C.&rft.date=2015-09-01&rft.issn=0921-8890&rft.volume=71&rft.spage=3&rft.epage=12&rft_id=info:doi/10.1016%2Fj.robot.2014.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2014_11_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon