On the scaling laws of dense wireless sensor networks: the data gathering channel
We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacit...
Saved in:
Published in | IEEE transactions on information theory Vol. 51; no. 3; pp. 1229 - 1234 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks. |
---|---|
AbstractList | We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks. We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as /spl Theta/(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks. We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta left (log (N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks. [PUBLICATION ABSTRACT] |
Author | El Gamal, H. |
Author_xml | – sequence: 1 givenname: H. surname: El Gamal fullname: El Gamal, H. organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16555483$$DView record in Pascal Francis |
BookMark | eNp9kUtLAzEURoMoWB9rF26CoLhpTSaPSdxJ8VEoiFDXIZO5o9Ex0WRK8d-bWkFw4SbJhXOS3Pvtoe0QAyB0RMmEUqIvFrPFpCKETxSvhGRbaESFqMdaCr6NRoRQNdacq120l_NLKbmg1Qg93Ac8PAPOzvY-POHerjKOHW4hZMArn6CHnHEuZUw4wLCK6TVffjutHSx-suWY1qp7tiFAf4B2OttnOPzZ99HjzfViejee39_OplfzsWOqGsoqWK2bttOuoaBJ-XNTt4oLUASkkrRlVjeSOdFpXssGqpo2BDrCoVG0cmwfnW3ufU_xYwl5MG8-O-h7GyAus6kUYYwKUsDzf0HKpKCsVlIX9OQP-hKXKZQ2DNVCE0mIKtDpD2TXU-uSDc5n8578m02fhkohBFescBcbzqWYc4LuFyFmHZkpkZl1ZGYTWTHEH8P5wQ4-hiFZ3__jHW88DwC_rzBdaynZF861o3c |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_MMM_2017_2740738 crossref_primary_10_1109_TC_2012_230 crossref_primary_10_1109_TIT_2007_909156 crossref_primary_10_1109_JSAC_2004_830889 crossref_primary_10_1109_TCOMM_2011_051311_090765 crossref_primary_10_1109_TCOMM_2014_2325039 crossref_primary_10_1109_TWC_2012_122212_121032 crossref_primary_10_1109_JSAC_2010_100925 crossref_primary_10_1145_2489253_2489264 crossref_primary_10_1155_2014_389451 crossref_primary_10_1109_TIT_2010_2050823 crossref_primary_10_1109_TMC_2011_204 crossref_primary_10_1145_2379799_2379802 crossref_primary_10_1109_TCOMM_2011_020411_100041 crossref_primary_10_1145_1167935_1167936 crossref_primary_10_1109_TIT_2010_2070110 crossref_primary_10_1109_TPDS_2011_96 crossref_primary_10_1109_TIT_2007_904966 crossref_primary_10_1109_JSEN_2016_2551466 crossref_primary_10_1007_s11276_010_0281_z crossref_primary_10_1109_TIT_2012_2191449 crossref_primary_10_1016_j_inffus_2012_09_001 crossref_primary_10_1002_jnm_651 crossref_primary_10_1007_s10665_012_9566_9 crossref_primary_10_1109_JSAC_2007_070220 crossref_primary_10_1109_TIT_2012_2208549 crossref_primary_10_1109_TPDS_2011_194 crossref_primary_10_1109_TIT_2007_904835 crossref_primary_10_3390_s91108776 crossref_primary_10_1109_TWC_2009_080292 crossref_primary_10_1016_j_jnca_2012_04_019 crossref_primary_10_1109_TC_2010_140 crossref_primary_10_1109_TWC_2015_2424693 |
Cites_doi | 10.1109/INFCOM.2002.1019409 10.1109/ITW.2002.1115429 10.1109/TIT.2004.826631 10.1109/MMSP.2002.1203332 10.1109/18.825799 10.1145/570645.570663 10.1002/0471200611 10.1007/3-540-36978-3_1 10.1109/TIT.1980.1056273 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2005 |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2005 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TIT.2004.842563 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1557-9654 |
EndPage | 1234 |
ExternalDocumentID | 800754531 16555483 10_1109_TIT_2004_842563 1397966 |
Genre | orig-research Commentary |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c382t-c35379bdf9cb1e90256b7d845e80e6861d3a9b63c5f9476be271b0ef04eb812c3 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Fri Jul 11 11:37:41 EDT 2025 Fri Jul 11 04:49:36 EDT 2025 Mon Jun 30 05:38:58 EDT 2025 Mon Jul 21 09:12:35 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Aug 26 16:40:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wireless LAN Channel capacity Joint source-channel coding Transmission channel Distributed source-channel coding sensor networks Separation principle the many-to-one channel Random field Scaling law Random sequence relay channel the separation principle Coding Sensor array |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c35379bdf9cb1e90256b7d845e80e6861d3a9b63c5f9476be271b0ef04eb812c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 195906008 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | ieee_primary_1397966 proquest_miscellaneous_1365137869 pascalfrancis_primary_16555483 proquest_miscellaneous_28033150 proquest_journals_195906008 crossref_citationtrail_10_1109_TIT_2004_842563 crossref_primary_10_1109_TIT_2004_842563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-01 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2005 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | teletar (ref10) 1995 ref7 ref9 ref3 ref6 ref5 ref2 ref1 cover (ref8) 1991 marco (ref4) 2003 |
References_xml | – ident: ref5 doi: 10.1109/INFCOM.2002.1019409 – ident: ref2 doi: 10.1109/ITW.2002.1115429 – ident: ref7 doi: 10.1109/TIT.2004.826631 – ident: ref6 doi: 10.1109/MMSP.2002.1203332 – year: 1995 ident: ref10 publication-title: Capacity of multi-antenna Gaussian channels – ident: ref1 doi: 10.1109/18.825799 – ident: ref3 doi: 10.1145/570645.570663 – year: 1991 ident: ref8 publication-title: Elements of Information Theory doi: 10.1002/0471200611 – year: 2003 ident: ref4 article-title: on the many-to-one transport capacity of a dense wireless sensor network and the compressibility of its data publication-title: International Workshop on Information Processing in Sensor Networks doi: 10.1007/3-540-36978-3_1 – ident: ref9 doi: 10.1109/TIT.1980.1056273 |
SSID | ssj0014512 |
Score | 2.0792305 |
Snippet | We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1229 |
SubjectTerms | Ad hoc networks Applied sciences Capacitive sensors Channels Coding Communication channels Data collection Distributed source-channel coding Exact sciences and technology H infinity control Information theory Network topology Networks Peer to peer computing Random sequences relay channel Remote sensors sensor networks Sensor phenomena and characterization Sensors Systems, networks and services of telecommunications Telecommunication traffic Telecommunications Telecommunications and information theory the many-to-one channel the separation principle Traffic control Transmission and modulation (techniques and equipments) Transport Wireless networks Wireless sensor networks |
Title | On the scaling laws of dense wireless sensor networks: the data gathering channel |
URI | https://ieeexplore.ieee.org/document/1397966 https://www.proquest.com/docview/195906008 https://www.proquest.com/docview/1365137869 https://www.proquest.com/docview/28033150 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AJz2IgMaKwpp48GBLt7vddr0ZA0ETNCaPhFvT7U458NIa-l5I-Oud2fY9RCXh0vRjNtl29uM3nZnfALz3XnqUTsWZL1TMO0bsCDXHmZXOKKlMHdj5z76b03P97SK_2ICP61wYRAzBZ5jwafDl-75Z8q-yI0YrBM83YZMMtzFXa-0x0LkcmcElTWCyOSYaH5nao9nXWTAEE3Y5GXVvBwolVTggsh7om7RjMYt_1uWw2Zxsw9mqm2OMyVWyXLikuf2LwfGx7_Ecnk2oU3weh8kObGC3C9urig5imuC78PQPesI9-PmjE4QPBfeZboh5fTOIvhW0VA0omOR4TuukGOiyvxbdGFA-fAptOPJUXE7phZeC84s7nL-A85Pj2ZfTeCrBEDeqzBZ0zFVhnW9t4ySyS9K4wpc6xzJFUxrpVW1JqU3eWl0Yh1khXYptqtERdGjUS9jq-g5fgWizoimUI4SpW-00cq11bz3z99e0iuQRJCu1VM3ET85lMuZVsFNSW5EeuWqmrkY9RvBh3eDXSM3xsOgea-FObFRABAf39H733OQEs0pqt78aCNU0t4eK6XhSwollBO_WT2lSsqel7rBfkogyuVRFaWwEhw_IcFkwRXD89f_7tg9PAktsCHd7A1uL6yW-JfyzcAdh4P8GIkEAtg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoQoS8jceBA0jh-JOkNIaotdIuQtlJvURw7PbBKULMrJH49M3Z2S6GVuERJbEtOJjPzOTP-BuCttdw6bkSc2VzE5DFig6g5zkputOBC156df3quJxfy86W63ID3670wzjmffOYSOvWxfNs3S_pVdkRoBeH5A3iIfl9lYbfWOmYgFQ_c4BxVGFcdI5EPT8uj2enMLwUTCjppccsH-aIqlBJZD_hW2lDO4h_L7N3NyRZMVxMNWSbfk-XCJM2vvzgc__dJnsHTEXeyD-FDeQ4brtuGrVVNBzaq-DY8-YOgcAe-fe0YIkRGc8YbbF7_HFjfMjRWg2NEczxHS8kGvOyvWRdSyodjP4ZyT9nVuMHwitEO487NX8DFyafZx0k8FmGIG1FkCzwqkZfGtmVjuKOgpDa5LaRyRep0obkVdYlibVRbylwbl-XcpK5NpTMIHhrxEja7vnOvgLVZ3uTCIMaUrTTSUbV1W1pi8K_RjqgIkpVYqmZkKKdCGfPKr1TSskI5Ut1MWQU5RvBuPeBHIOe4v-sOSeGmWxBABAe35H7TrhUCrQLH7a4-hGrU7qEiQp4UkWIRwZt1K6olxVrqzvVL7CK04iIvdBnB4T19qDCYQED--u65HcKjyWx6Vp2dnn_ZhceeM9Ynv-3B5uJ66fYRDS3MgVeC36iLBAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+scaling+laws+of+dense+wireless+sensor+networks%3A+the+data+gathering+channel&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Gamal%2C+H+E&rft.date=2005-03-01&rft.issn=0018-9448&rft.volume=51&rft.issue=3&rft.spage=1229&rft.epage=1234&rft_id=info:doi/10.1109%2FTIT.2004.842563&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |