On the scaling laws of dense wireless sensor networks: the data gathering channel

We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 51; no. 3; pp. 1229 - 1234
Main Author El Gamal, H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks.
AbstractList We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks.
We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as /spl Theta/(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks.
We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta left (log (N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks. [PUBLICATION ABSTRACT]
Author El Gamal, H.
Author_xml – sequence: 1
  givenname: H.
  surname: El Gamal
  fullname: El Gamal, H.
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16555483$$DView record in Pascal Francis
BookMark eNp9kUtLAzEURoMoWB9rF26CoLhpTSaPSdxJ8VEoiFDXIZO5o9Ex0WRK8d-bWkFw4SbJhXOS3Pvtoe0QAyB0RMmEUqIvFrPFpCKETxSvhGRbaESFqMdaCr6NRoRQNdacq120l_NLKbmg1Qg93Ac8PAPOzvY-POHerjKOHW4hZMArn6CHnHEuZUw4wLCK6TVffjutHSx-suWY1qp7tiFAf4B2OttnOPzZ99HjzfViejee39_OplfzsWOqGsoqWK2bttOuoaBJ-XNTt4oLUASkkrRlVjeSOdFpXssGqpo2BDrCoVG0cmwfnW3ufU_xYwl5MG8-O-h7GyAus6kUYYwKUsDzf0HKpKCsVlIX9OQP-hKXKZQ2DNVCE0mIKtDpD2TXU-uSDc5n8578m02fhkohBFescBcbzqWYc4LuFyFmHZkpkZl1ZGYTWTHEH8P5wQ4-hiFZ3__jHW88DwC_rzBdaynZF861o3c
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_MMM_2017_2740738
crossref_primary_10_1109_TC_2012_230
crossref_primary_10_1109_TIT_2007_909156
crossref_primary_10_1109_JSAC_2004_830889
crossref_primary_10_1109_TCOMM_2011_051311_090765
crossref_primary_10_1109_TCOMM_2014_2325039
crossref_primary_10_1109_TWC_2012_122212_121032
crossref_primary_10_1109_JSAC_2010_100925
crossref_primary_10_1145_2489253_2489264
crossref_primary_10_1155_2014_389451
crossref_primary_10_1109_TIT_2010_2050823
crossref_primary_10_1109_TMC_2011_204
crossref_primary_10_1145_2379799_2379802
crossref_primary_10_1109_TCOMM_2011_020411_100041
crossref_primary_10_1145_1167935_1167936
crossref_primary_10_1109_TIT_2010_2070110
crossref_primary_10_1109_TPDS_2011_96
crossref_primary_10_1109_TIT_2007_904966
crossref_primary_10_1109_JSEN_2016_2551466
crossref_primary_10_1007_s11276_010_0281_z
crossref_primary_10_1109_TIT_2012_2191449
crossref_primary_10_1016_j_inffus_2012_09_001
crossref_primary_10_1002_jnm_651
crossref_primary_10_1007_s10665_012_9566_9
crossref_primary_10_1109_JSAC_2007_070220
crossref_primary_10_1109_TIT_2012_2208549
crossref_primary_10_1109_TPDS_2011_194
crossref_primary_10_1109_TIT_2007_904835
crossref_primary_10_3390_s91108776
crossref_primary_10_1109_TWC_2009_080292
crossref_primary_10_1016_j_jnca_2012_04_019
crossref_primary_10_1109_TC_2010_140
crossref_primary_10_1109_TWC_2015_2424693
Cites_doi 10.1109/INFCOM.2002.1019409
10.1109/ITW.2002.1115429
10.1109/TIT.2004.826631
10.1109/MMSP.2002.1203332
10.1109/18.825799
10.1145/570645.570663
10.1002/0471200611
10.1007/3-540-36978-3_1
10.1109/TIT.1980.1056273
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2004.842563
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 1234
ExternalDocumentID 800754531
16555483
10_1109_TIT_2004_842563
1397966
Genre orig-research
Commentary
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c382t-c35379bdf9cb1e90256b7d845e80e6861d3a9b63c5f9476be271b0ef04eb812c3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Fri Jul 11 11:37:41 EDT 2025
Fri Jul 11 04:49:36 EDT 2025
Mon Jun 30 05:38:58 EDT 2025
Mon Jul 21 09:12:35 EDT 2025
Tue Jul 01 02:34:14 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Aug 26 16:40:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wireless LAN
Channel capacity
Joint source-channel coding
Transmission channel
Distributed source-channel coding
sensor networks
Separation principle
the many-to-one channel
Random field
Scaling law
Random sequence
relay channel
the separation principle
Coding
Sensor array
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c35379bdf9cb1e90256b7d845e80e6861d3a9b63c5f9476be271b0ef04eb812c3
Notes SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 195906008
PQPubID 23500
PageCount 6
ParticipantIDs ieee_primary_1397966
proquest_miscellaneous_1365137869
pascalfrancis_primary_16555483
proquest_miscellaneous_28033150
proquest_journals_195906008
crossref_citationtrail_10_1109_TIT_2004_842563
crossref_primary_10_1109_TIT_2004_842563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2005
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References teletar (ref10) 1995
ref7
ref9
ref3
ref6
ref5
ref2
ref1
cover (ref8) 1991
marco (ref4) 2003
References_xml – ident: ref5
  doi: 10.1109/INFCOM.2002.1019409
– ident: ref2
  doi: 10.1109/ITW.2002.1115429
– ident: ref7
  doi: 10.1109/TIT.2004.826631
– ident: ref6
  doi: 10.1109/MMSP.2002.1203332
– year: 1995
  ident: ref10
  publication-title: Capacity of multi-antenna Gaussian channels
– ident: ref1
  doi: 10.1109/18.825799
– ident: ref3
  doi: 10.1145/570645.570663
– year: 1991
  ident: ref8
  publication-title: Elements of Information Theory
  doi: 10.1002/0471200611
– year: 2003
  ident: ref4
  article-title: on the many-to-one transport capacity of a dense wireless sensor network and the compressibility of its data
  publication-title: International Workshop on Information Processing in Sensor Networks
  doi: 10.1007/3-540-36978-3_1
– ident: ref9
  doi: 10.1109/TIT.1980.1056273
SSID ssj0014512
Score 2.0792305
Snippet We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1229
SubjectTerms Ad hoc networks
Applied sciences
Capacitive sensors
Channels
Coding
Communication channels
Data collection
Distributed source-channel coding
Exact sciences and technology
H infinity control
Information theory
Network topology
Networks
Peer to peer computing
Random sequences
relay channel
Remote sensors
sensor networks
Sensor phenomena and characterization
Sensors
Systems, networks and services of telecommunications
Telecommunication traffic
Telecommunications
Telecommunications and information theory
the many-to-one channel
the separation principle
Traffic control
Transmission and modulation (techniques and equipments)
Transport
Wireless networks
Wireless sensor networks
Title On the scaling laws of dense wireless sensor networks: the data gathering channel
URI https://ieeexplore.ieee.org/document/1397966
https://www.proquest.com/docview/195906008
https://www.proquest.com/docview/1365137869
https://www.proquest.com/docview/28033150
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AJz2IgMaKwpp48GBLt7vddr0ZA0ETNCaPhFvT7U458NIa-l5I-Oud2fY9RCXh0vRjNtl29uM3nZnfALz3XnqUTsWZL1TMO0bsCDXHmZXOKKlMHdj5z76b03P97SK_2ICP61wYRAzBZ5jwafDl-75Z8q-yI0YrBM83YZMMtzFXa-0x0LkcmcElTWCyOSYaH5nao9nXWTAEE3Y5GXVvBwolVTggsh7om7RjMYt_1uWw2Zxsw9mqm2OMyVWyXLikuf2LwfGx7_Ecnk2oU3weh8kObGC3C9urig5imuC78PQPesI9-PmjE4QPBfeZboh5fTOIvhW0VA0omOR4TuukGOiyvxbdGFA-fAptOPJUXE7phZeC84s7nL-A85Pj2ZfTeCrBEDeqzBZ0zFVhnW9t4ySyS9K4wpc6xzJFUxrpVW1JqU3eWl0Yh1khXYptqtERdGjUS9jq-g5fgWizoimUI4SpW-00cq11bz3z99e0iuQRJCu1VM3ET85lMuZVsFNSW5EeuWqmrkY9RvBh3eDXSM3xsOgea-FObFRABAf39H733OQEs0pqt78aCNU0t4eK6XhSwollBO_WT2lSsqel7rBfkogyuVRFaWwEhw_IcFkwRXD89f_7tg9PAktsCHd7A1uL6yW-JfyzcAdh4P8GIkEAtg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoQoS8jceBA0jh-JOkNIaotdIuQtlJvURw7PbBKULMrJH49M3Z2S6GVuERJbEtOJjPzOTP-BuCttdw6bkSc2VzE5DFig6g5zkputOBC156df3quJxfy86W63ID3670wzjmffOYSOvWxfNs3S_pVdkRoBeH5A3iIfl9lYbfWOmYgFQ_c4BxVGFcdI5EPT8uj2enMLwUTCjppccsH-aIqlBJZD_hW2lDO4h_L7N3NyRZMVxMNWSbfk-XCJM2vvzgc__dJnsHTEXeyD-FDeQ4brtuGrVVNBzaq-DY8-YOgcAe-fe0YIkRGc8YbbF7_HFjfMjRWg2NEczxHS8kGvOyvWRdSyodjP4ZyT9nVuMHwitEO487NX8DFyafZx0k8FmGIG1FkCzwqkZfGtmVjuKOgpDa5LaRyRep0obkVdYlibVRbylwbl-XcpK5NpTMIHhrxEja7vnOvgLVZ3uTCIMaUrTTSUbV1W1pi8K_RjqgIkpVYqmZkKKdCGfPKr1TSskI5Ut1MWQU5RvBuPeBHIOe4v-sOSeGmWxBABAe35H7TrhUCrQLH7a4-hGrU7qEiQp4UkWIRwZt1K6olxVrqzvVL7CK04iIvdBnB4T19qDCYQED--u65HcKjyWx6Vp2dnn_ZhceeM9Ynv-3B5uJ66fYRDS3MgVeC36iLBAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+scaling+laws+of+dense+wireless+sensor+networks%3A+the+data+gathering+channel&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Gamal%2C+H+E&rft.date=2005-03-01&rft.issn=0018-9448&rft.volume=51&rft.issue=3&rft.spage=1229&rft.epage=1234&rft_id=info:doi/10.1109%2FTIT.2004.842563&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon