Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst
Ambient electroreduction of nitrogen (N 2 ) is considered as a green and feasible approach for ammonia (NH 3 ) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure...
Saved in:
Published in | Nano research Vol. 15; no. 8; pp. 7134 - 7138 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ambient electroreduction of nitrogen (N
2
) is considered as a green and feasible approach for ammonia (NH
3
) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu
3
P nanoribbon is proposed as a highly efficient electrocatalyst for N
2
-to-NH
3
conversion under benign conditions. When measured in N
2
-saturated 0.1 M HCl, such Cu
3
P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h
−1
µmg
cat.
−1
at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h. |
---|---|
AbstractList | Ambient electroreduction of nitrogen (N
2
) is considered as a green and feasible approach for ammonia (NH
3
) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu
3
P nanoribbon is proposed as a highly efficient electrocatalyst for N
2
-to-NH
3
conversion under benign conditions. When measured in N
2
-saturated 0.1 M HCl, such Cu
3
P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h
−1
µmg
cat.
−1
at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h. Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu3P nanoribbon is proposed as a highly efficient electrocatalyst for N2-to-NH3 conversion under benign conditions. When measured in N2-saturated 0.1 M HCl, such Cu3P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h−1µmgcat.−1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h. |
Author | Kong, Qingquan Zhang, Longcheng Sun, Shengjun Sun, Xuping Lin, Yiting Xie, Lisi Alshehri, Abdulmohsen Ali Gu, Shuang Liu, Qian Hamdy, Mohamed S. Wang, Jiahong Cheng, Ziqiang Luo, Yongsong |
Author_xml | – sequence: 1 givenname: Qian surname: Liu fullname: Liu, Qian organization: Institute for Advanced Study, Chengdu University – sequence: 2 givenname: Yiting surname: Lin fullname: Lin, Yiting organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 3 givenname: Shuang surname: Gu fullname: Gu, Shuang organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 4 givenname: Ziqiang surname: Cheng fullname: Cheng, Ziqiang organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 5 givenname: Lisi surname: Xie fullname: Xie, Lisi organization: Institute for Advanced Study, Chengdu University – sequence: 6 givenname: Shengjun surname: Sun fullname: Sun, Shengjun organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 7 givenname: Longcheng surname: Zhang fullname: Zhang, Longcheng organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 8 givenname: Yongsong surname: Luo fullname: Luo, Yongsong organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 9 givenname: Abdulmohsen Ali surname: Alshehri fullname: Alshehri, Abdulmohsen Ali organization: Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University – sequence: 10 givenname: Mohamed S. surname: Hamdy fullname: Hamdy, Mohamed S. organization: Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University – sequence: 11 givenname: Qingquan surname: Kong fullname: Kong, Qingquan organization: Institute for Advanced Study, Chengdu University – sequence: 12 givenname: Jiahong surname: Wang fullname: Wang, Jiahong email: jh.wang1@siat.ac.cn organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 13 givenname: Xuping surname: Sun fullname: Sun, Xuping email: xpsun@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China |
BookMark | eNp9kMFKAzEQhoNUsK0-gLcFz6vJbNpkj1KqFUv1oOeQnc3qljWpSSq0T2_KKoKgOUwyzP9lZv4RGVhnDSHnjF4ySsVVYACC5xQg55OpzPdHZMjKUuY0ncH3mwE_IaMQ1pROgXE5JPdz-6otmjpbQR5dvloUGTr7YXxonc1M07TYGou7LGWzbfGYWW2db6vqUO0MRu9QR93tQjwlx43ugjn7usfk-Wb-NFvky4fbu9n1MsdCQkwRSs0YR1YjlUYgiLpEpFxraDgHKTk2tCnKopCMU8Cq5IZX1UQzkLVgxZhc9P9uvHvfmhDV2m29TS0VCFGCYJJBUolehd6F4E2jsI06pq2i122nGFUH51TvnErOqYNzap9I9ovc-PZN-92_DPRMSFr7YvzPTH9DnxtLghg |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_113197 crossref_primary_10_1039_D2SE00830K crossref_primary_10_1002_ece2_39 crossref_primary_10_1002_aenm_202301979 crossref_primary_10_1016_j_jcis_2024_02_153 crossref_primary_10_1021_acs_energyfuels_4c02424 crossref_primary_10_1007_s10562_024_04681_3 crossref_primary_10_1002_cssc_202300505 crossref_primary_10_1016_j_fuel_2023_129406 crossref_primary_10_1016_j_apcatb_2022_122186 crossref_primary_10_1016_j_rechem_2022_100702 crossref_primary_10_1016_S1872_2067_23_64464_X crossref_primary_10_1021_acsanm_2c03720 crossref_primary_10_1039_D2TA06933D crossref_primary_10_1016_j_apcata_2024_119562 crossref_primary_10_1021_acsami_3c01847 crossref_primary_10_1039_D2QI01791A crossref_primary_10_1039_D3CY00726J crossref_primary_10_1016_j_mcat_2023_113353 crossref_primary_10_1021_acsanm_4c01571 crossref_primary_10_1016_j_apsusc_2022_156025 crossref_primary_10_1021_acs_inorgchem_2c02834 crossref_primary_10_1038_s41598_023_34685_9 crossref_primary_10_1016_j_cclet_2023_108550 crossref_primary_10_1016_j_jcis_2023_12_046 crossref_primary_10_1039_D2YA00364C crossref_primary_10_1016_j_cej_2023_142628 crossref_primary_10_1039_D4TA07261H crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_1039_D3DT01705B crossref_primary_10_1039_D4CC01834F crossref_primary_10_1016_j_jcis_2024_02_005 crossref_primary_10_1016_j_jcis_2022_09_016 crossref_primary_10_1007_s12274_023_5798_4 crossref_primary_10_1016_j_cclet_2024_110005 crossref_primary_10_1016_j_jcis_2024_07_020 crossref_primary_10_1021_acs_inorgchem_3c01467 crossref_primary_10_1039_D4CC03256J crossref_primary_10_1016_j_est_2022_105642 crossref_primary_10_1002_adfm_202402607 crossref_primary_10_1021_acs_iecr_4c04223 crossref_primary_10_1007_s12274_022_4863_8 crossref_primary_10_1021_acsami_2c17092 crossref_primary_10_1002_cssc_202200919 crossref_primary_10_1007_s12274_023_6204_y crossref_primary_10_1039_D2TA07475C crossref_primary_10_1016_j_jcis_2022_09_049 crossref_primary_10_1021_acs_nanolett_3c04416 crossref_primary_10_1007_s40843_024_2798_5 crossref_primary_10_1016_j_jcis_2023_02_056 crossref_primary_10_1016_j_ijhydene_2023_05_206 crossref_primary_10_1039_D2QI01363K crossref_primary_10_1039_D3QI00718A crossref_primary_10_1039_D3CY00736G crossref_primary_10_1016_j_ijhydene_2024_01_203 crossref_primary_10_1016_j_gee_2022_09_001 crossref_primary_10_1002_smll_202310431 crossref_primary_10_1002_smll_202205313 crossref_primary_10_1016_j_cej_2023_145830 crossref_primary_10_1021_acsomega_3c02232 crossref_primary_10_1016_j_jcis_2023_05_110 crossref_primary_10_1016_j_mtphys_2022_100854 crossref_primary_10_1039_D2NR03540E crossref_primary_10_1039_D2GC03083G crossref_primary_10_1021_acs_inorgchem_2c02499 crossref_primary_10_1039_D4NR00884G crossref_primary_10_1021_acsanm_3c04712 crossref_primary_10_1016_j_apcatb_2022_122191 crossref_primary_10_1016_j_partic_2022_11_006 crossref_primary_10_1039_D3NJ02436A crossref_primary_10_1002_celc_202400033 crossref_primary_10_1002_advs_202204205 crossref_primary_10_1039_D2CC05333K crossref_primary_10_1016_S1872_2067_23_64640_6 crossref_primary_10_1039_D2TA07523G crossref_primary_10_1016_j_apenergy_2023_121960 crossref_primary_10_1021_acssuschemeng_3c02473 crossref_primary_10_1021_acsami_2c12175 crossref_primary_10_1016_j_jcis_2022_10_050 crossref_primary_10_1002_sstr_202300158 crossref_primary_10_1016_j_jelechem_2024_118737 crossref_primary_10_1021_acssuschemeng_3c07968 crossref_primary_10_1021_acs_inorgchem_2c02173 crossref_primary_10_1002_adfm_202410614 crossref_primary_10_1016_j_tgchem_2024_100040 crossref_primary_10_1039_D3CC04897G crossref_primary_10_1002_smll_202303424 crossref_primary_10_1016_j_coelec_2023_101292 |
Cites_doi | 10.1002/anie.201608899 10.1039/D0CC04374E 10.1016/j.apcatb.2021.120874 10.1039/C9CC08352A 10.1039/D2CC00856D 10.1038/s41598-018-19172-w 10.1002/anie.201912836 10.1002/anie.202006679 10.1007/s12274-020-2637-8 10.1039/C9CC06385D 10.1002/adfm.202110900 10.1002/smll.202000421 10.1021/acsami.0c00011 10.1016/j.cej.2018.07.197 10.1038/s41586-019-1074-x 10.1039/D1GC01614H 10.1007/s11426-021-1073-5 10.1016/j.coelec.2021.100766 10.1007/s12274-020-3049-5 10.1016/j.mtphys.2022.100611 10.1007/s12274-021-3951-5 10.1007/s12274-021-3583-9 10.1039/D1TA02424H 10.1039/C9TA00016J 10.1002/smll.202002885 10.1016/j.chempr.2018.10.007 10.1007/s12274-021-3592-8 10.1016/j.bios.2021.113245 10.1002/anie.202116282 10.1007/s12274-018-2268-5 10.1021/jp505257g 10.1007/s12274-020-3190-1 10.1063/1.5079860 10.1039/D1CC03139B 10.1002/cjoc.202100695 10.1021/acscatal.9b05260 10.1002/anie.202002337 10.1002/asia.202000969 10.1039/C9TA09920D 10.1007/978-3-642-79197-0 10.1002/anie.202112381 10.1002/adma.201606550 10.1039/D2QI00140C 10.1039/C7EE02220D 10.1016/j.mtphys.2021.100586 10.1002/anie.202202087 10.1007/s12274-020-2733-9 10.1002/smll.202106961 10.1039/b720020j 10.1039/D0TA07720H 10.1016/j.solidstatesciences.2021.106798 10.1021/ja805545x |
ContentType | Journal Article |
Copyright | Tsinghua University Press 2022 Tsinghua University Press 2022. |
Copyright_xml | – notice: Tsinghua University Press 2022 – notice: Tsinghua University Press 2022. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-022-4568-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 7138 |
ExternalDocumentID | 10_1007_s12274_022_4568_z |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c382t-c329a114c1dc08e7c27d9cc04aa2f442884cf0f393381402cb94e4bb5a128d713 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Wed Aug 20 00:31:01 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 01:47:04 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cu P nanoribbon ammonia electrosynthesis electrocatalysis nitrogen reduction reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c329a114c1dc08e7c27d9cc04aa2f442884cf0f393381402cb94e4bb5a128d713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2779271812 |
PQPubID | 326270 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2779271812 crossref_citationtrail_10_1007_s12274_022_4568_z crossref_primary_10_1007_s12274_022_4568_z springer_journals_10_1007_s12274_022_4568_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Kotekar-Patil, Deng, Wong, Lau, Goh (CR36) 2019; 114 Zhao, Geng, Chang, Wei, Luo, Shi, Asiri, Lu, Wang, Sun (CR28) 2020; 56 Yang, Wu, Zhuang, Li, Chen (CR29) 2022; 40 Johnson, Sabu, Swamy, Anto, Gangadharappa, Pramod (CR35) 2021; 184 Li, Li, Gu, Li, Tian, Pang (CR42) 2021; 14 Shaban, Ashraf, Abukhadra (CR37) 2018; 8 Long, Chen, Zhang, Guo, Fu, Deng, Xiao (CR51) 2020; 59 Zhao, Liang, Li, Zhang, Dong, Yue, Luo, Ren, Liu, Hamdy (CR45) 2022; 58 Chen, Zhang, Jin, Zhou, Yang, Nie (CR13) 2020; 15 Li, Luo, Yue, Li, Wang, Liu, Cui, Zhang, Asiri, Sun (CR4) 2021; 57 Li, Zhou, Zhang, Chen (CR33) 2008; 130 Klerke, Christensen, Nørskov, Vegge (CR2) 2008; 18 Lin, Liang, Li, Zhang, Mou, Li, Yue, Ji, Liu, Luo (CR52) 2022; 22 Zhang, Gong, Lv, Wang, Han, Wang, Shi, Zhang (CR19) 2019; 55 Zhu, Wu, Ji, Liu, Luo, Cui, Xiang, Zhang, Zheng, Sun (CR24) 2020; 56 Liu, Xu, Luo, Kong, Li, Lu, Alshehri, Alzahrani, Sun (CR9) 2021; 29 Xu, Liang, Wang, Li, Du, Li, Liu, Luo, Zhang, Shi (CR26) 2022; 15 Meng, Hou, Yang, Cao, Zou, Luo, Zhou, Tong, Chen, Zhou (CR22) 2022; 303 Liu, Bai, Li, Yang, Zhang, Pang (CR43) 2022; 61 Li, Ma, Liang, Ren, Li, Xu, Liu, Li, Tang, Liu (CR50) 2022; 22 Patil, Wang (CR16) 2020; 16 Liu, Wu, Liu, Liu, Ke, Peng, Shi, Yuan, Huang, Li (CR39) 2022; 32 Shi, Bao, Wulan, Li, Zhang, Yan, Jiang (CR14) 2017; 29 Liang, Liu, Li, Li, Yue, Luo, Liu, Li, Tang, Alshehri (CR1) 2022; 61 Yuan, Zhang, Gao, He, Sun, Lu, Dipazir, Li, Zhou, Li (CR23) 2020; 8 Tao, Choi, Ding, Jiang, Han, Jia, Fan, Gao, Wang, Robertson (CR12) 2019; 5 Gao, Lv, Wang, Luo, Lu, Chen, Gao, Zhong, Guo, Sun (CR20) 2020; 8 Guo, Lu, Dai, Wu, Zeng (CR34) 2014; 118 Yang, Ling, Zi, Wang, Zhang, Zhang, Zhou, Guo, Wang (CR27) 2020; 16 Fan, Xie, Liang, Ren, Zhang, Yue, Li, Luo, Li, Tang (CR46) 2022; 15 Liu, Xie, Liang, Ren, Wang, Zhang, Yue, Li, Luo, Li (CR47) 2022; 18 Liang, Deng, Liu, Wen, Liu, Li, Luo, Alshehri, Alzahrani, Ma (CR41) 2021; 23 Shi, Wang, Yang, Chen, Meng, Yu, Zhang (CR49) 2021; 64 Ma, Zhao, Li, Liu, Luo, Li, Lu, Asiri, Ma, Sun (CR15) 2021; 14 Du, Liang, Li, Xu, Li, Liu, Luo, Zhang, Liu, Kong (CR21) 2021; 9 Luo, Qiu, Liang, Xia, Qiu (CR25) 2020; 12 Ma, Wang, Chen, Yuan (CR31) 2018; 354 Yuan, Wu, Jiang, Tang, Niu, Hu (CR8) 2020; 13 Chen, Liang, Dong, Yue, Li, Luo, Feng, Li, Hamdy, Alshehri (CR11) 2022; 9 Jia, Wang, Wang, Ling, Yu, Zhang (CR48) 2020; 10 Xiong, Cheng, Wang, Luo, Feng, Lu, Asiri, Li, Jiang, Sun (CR6) 2020; 13 Huang, Zhang, Quan, Ren, Tian, Zhu, Liu (CR30) 2022; 123 Bai, Liu, Chen, Li, Zheng, Pi, Luo, Pang (CR40) 2021; 60 Chu, Liu, Li, Zhang, Tian (CR5) 2019; 7 Guo, Ran, Vasileff, Qiao (CR7) 2018; 11 Wen, Liang, Liu, Li, An, Zhang, Alshehri, Alzahrani, Luo, Kong (CR44) 2022; 15 Liu, Zhang, Wang, Zhang, Bian, Cheng, Kang, Huang, Gu, Wang (CR38) 2020; 59 Watts, Picco, Russell-Pavier, Cullen, Miller, Bartus, Payton, Skipper, Tileli, Howard (CR32) 2019; 568 Ji, Li, Ji, Zhang, Mou, Wu, Liu, Li, Zhu, Luo (CR18) 2020; 59 Nielsen (CR3) 1995 Tang, Zhang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR17) 2017; 56 Xue, Chen, Yan, Zhao, Hu, Zhang, Yang, Jin (CR10) 2019; 12 M C Watts (4568_CR32) 2019; 568 J J Gao (4568_CR20) 2020; 8 D L Zhao (4568_CR45) 2022; 58 Y X Luo (4568_CR25) 2020; 12 A Nielsen (4568_CR3) 1995 C L Liu (4568_CR43) 2022; 61 J W Shi (4568_CR49) 2021; 64 Y T Lin (4568_CR52) 2022; 22 Z B Du (4568_CR21) 2021; 9 Q Liu (4568_CR9) 2021; 29 K Chu (4568_CR5) 2019; 7 G L Wen (4568_CR44) 2022; 15 M M Shi (4568_CR14) 2017; 29 C Tang (4568_CR17) 2017; 56 Y X Liu (4568_CR39) 2022; 32 R B Zhao (4568_CR28) 2020; 56 H L Yang (4568_CR29) 2022; 40 S B Zhang (4568_CR19) 2019; 55 W Xiong (4568_CR6) 2020; 13 S B Patil (4568_CR16) 2020; 16 S J Ma (4568_CR31) 2018; 354 Y Bai (4568_CR40) 2021; 60 J Liang (4568_CR41) 2021; 23 J Liang (4568_CR1) 2022; 61 J Long (4568_CR51) 2020; 59 L P Yuan (4568_CR8) 2020; 13 X L Xue (4568_CR10) 2019; 12 X J Zhu (4568_CR24) 2020; 56 D Kotekar-Patil (4568_CR36) 2019; 114 C Huang (4568_CR30) 2022; 123 B Y Ma (4568_CR15) 2021; 14 X H Yang (4568_CR27) 2020; 16 M L Yuan (4568_CR23) 2020; 8 Q Li (4568_CR42) 2021; 14 Z R Li (4568_CR50) 2022; 22 L Ji (4568_CR18) 2020; 59 S X Li (4568_CR4) 2021; 57 H C Tao (4568_CR12) 2019; 5 X Y Fan (4568_CR46) 2022; 15 Q Liu (4568_CR47) 2022; 18 C X Guo (4568_CR7) 2018; 11 Q G Meng (4568_CR22) 2022; 303 R R Jia (4568_CR48) 2020; 10 A Klerke (4568_CR2) 2008; 18 Q Liu (4568_CR38) 2020; 59 T Xu (4568_CR26) 2022; 15 Y F Li (4568_CR33) 2008; 130 Q Q Chen (4568_CR13) 2020; 15 H Y Guo (4568_CR34) 2014; 118 A P Johnson (4568_CR35) 2021; 184 H J Chen (4568_CR11) 2022; 9 M Shaban (4568_CR37) 2018; 8 |
References_xml | – volume: 29 start-page: 100766 year: 2021 ident: CR9 article-title: Recent advances in strategies for highly selective electrocatalytic N reduction toward ambient NH synthesis publication-title: Curr. Opin. Electrochem. – volume: 9 start-page: 13861 year: 2021 end-page: 13866 ident: CR21 article-title: Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N -to-NH fixation by a CoP nanoarray publication-title: J. Mater. Chem. A – volume: 23 start-page: 5487 year: 2021 end-page: 5493 ident: CR41 article-title: High-efficiency electrochemical nitrite reduction to ammonium using a Cu P nanowire array under ambient conditions publication-title: Green Chem. – volume: 123 start-page: 106798 year: 2022 ident: CR30 article-title: Morphology and size controlled synthesis of metal-organic framework crystals for catalytic oxidation of toluene publication-title: Solid State Sci. – volume: 29 start-page: 1606550 year: 2017 ident: CR14 article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions publication-title: Adv. Mater. – volume: 15 start-page: 1039 year: 2022 end-page: 1046 ident: CR26 article-title: Enhancing electrocatalytic N -to-NH fixation by suppressing hydrogen evolution with alkylthiols modified Fe P nanoarrays publication-title: Nano Res. – volume: 15 start-page: 3050 year: 2022 end-page: 3055 ident: CR46 article-title: grown Fe O particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia publication-title: Nano Res. – volume: 59 start-page: 14383 year: 2020 end-page: 14387 ident: CR38 article-title: Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 12376 year: 2019 end-page: 12379 ident: CR19 article-title: A pyrolysis—phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia publication-title: Chem. Commun. – volume: 14 start-page: 1405 year: 2021 end-page: 1412 ident: CR42 article-title: Porous rod-like Ni P/Ni assemblies for enhanced urea electrooxidation publication-title: Nano Res. – volume: 10 start-page: 3533 year: 2020 end-page: 3540 ident: CR48 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO publication-title: ACS Catal. – volume: 56 start-page: 731 year: 2020 end-page: 734 ident: CR24 article-title: Unusual electrochemical N reduction activity in an earth-abundant iron catalyst via phosphorous modulation publication-title: Chem. Commun – volume: 568 start-page: 216 year: 2019 end-page: 220 ident: CR32 article-title: Production of phosphorene nanoribbons publication-title: Nature – volume: 184 start-page: 113245 year: 2021 ident: CR35 article-title: Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing publication-title: Biosens. Bioelectron. – volume: 18 start-page: 2304 year: 2008 end-page: 2310 ident: CR2 article-title: Ammonia for hydrogen storage: Challenges and opportunities publication-title: J. Mater. Chem. – volume: 5 start-page: 204 year: 2019 end-page: 214 ident: CR12 article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction publication-title: Chem – volume: 64 start-page: 1493 year: 2021 end-page: 1497 ident: CR49 article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping publication-title: Sci. China Chem – volume: 8 start-page: 2691 year: 2020 end-page: 2700 ident: CR23 article-title: Support effect boosting the electrocatalytic N reduction activity of Ni P/N, P-codoped carbon nanosheet hybrids publication-title: J. Mater. Chem. A – volume: 9 start-page: 1514 year: 2022 end-page: 1519 ident: CR11 article-title: Ambient electrochemical N -to-NH conversion catalyzed by TiO decorated juncus effusus-derived carbon microtubes publication-title: Inorg. Chem. Front. – volume: 15 start-page: 972 year: 2022 end-page: 977 ident: CR44 article-title: Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray publication-title: Nano Res. – volume: 61 start-page: e202202087 year: 2022 ident: CR1 article-title: Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH publication-title: Angew. Chem., Int. Ed – volume: 18 start-page: 2106961 year: 2022 ident: CR47 article-title: Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo O nanowire array publication-title: Small – start-page: 199 year: 1995 end-page: 308 ident: CR3 publication-title: Ammonia: Catalysis and Manufacture – volume: 16 start-page: 2002885 year: 2020 ident: CR16 article-title: Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction publication-title: Small – volume: 12 start-page: 1229 year: 2019 end-page: 1249 ident: CR10 article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives publication-title: Nano Res. – volume: 130 start-page: 16739 year: 2008 end-page: 16744 ident: CR33 article-title: MoS2 nanoribbons: High stability and unusual electronic and magnetic properties publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1008 year: 2020 end-page: 1012 ident: CR6 article-title: Co (hexahydroxytriphenylene) : A conductive metal-organic framework for ambient electrocatalytic N reduction to NH publication-title: Nano Res. – volume: 32 start-page: 2110900 year: 2022 ident: CR39 article-title: Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors publication-title: Adv. Funct. Mater. – volume: 59 start-page: 758 year: 2020 end-page: 762 ident: CR18 article-title: Highly selective electrochemical reduction of CO to alcohols on an FeP nanoarray publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 842 year: 2017 end-page: 846 ident: CR17 article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 14051 year: 2014 end-page: 14059 ident: CR34 article-title: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers publication-title: J. Phys. Chem. C – volume: 7 start-page: 4389 year: 2019 end-page: 4394 ident: CR5 article-title: Efficient electrocatalytic N reduction on CoO quantum dots publication-title: J. Mater. Chem. A – volume: 8 start-page: 17956 year: 2020 end-page: 17959 ident: CR20 article-title: Enabling electrochemical conversion of N to NH under ambient conditions by a CoP nanoneedle array publication-title: J. Mater. Chem. A – volume: 15 start-page: 4131 year: 2020 end-page: 4152 ident: CR13 article-title: An overview on noble metal (group VIII)-based heterogeneous electrocatalysts for nitrogen reduction reaction publication-title: Chem. Asian J. – volume: 22 start-page: 100586 year: 2022 ident: CR50 article-title: MnO nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH at ambient conditions publication-title: Mater. Today Phys. – volume: 61 start-page: e202116282 year: 2022 ident: CR43 article-title: growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors publication-title: Angew. Chem., Int. Ed. – volume: 354 start-page: 191 year: 2018 end-page: 196 ident: CR31 article-title: Effect of surface morphology on catalytic activity for NO oxidation of SmMn O nanocrystals publication-title: Chem. Eng. J. – volume: 12 start-page: 17452 year: 2020 end-page: 17458 ident: CR25 article-title: Modoped FeP nanospheres for artificial nitrogen fixation publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 013508 year: 2019 ident: CR36 article-title: Single layer MoS nanoribbon field effect transistor publication-title: Appl. Phys. Lett. – volume: 22 start-page: 100611 year: 2022 ident: CR52 article-title: Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH at ambient conditions publication-title: Mater. Today Phys. – volume: 11 start-page: 45 year: 2018 end-page: 56 ident: CR7 article-title: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ) under ambient conditions publication-title: Energy Environ. Sci. – volume: 59 start-page: 9711 year: 2020 end-page: 9718 ident: CR51 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 25318 year: 2021 end-page: 25322 ident: CR40 article-title: MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1376 year: 2020 end-page: 1382 ident: CR8 article-title: Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia publication-title: Nano Res – volume: 56 start-page: 9328 year: 2020 end-page: 9331 ident: CR28 article-title: Cu P nanoparticle-reduced graphene oxide hybrid: An efficient electrocatalyst to realize N -to-NH conversion under ambient conditions publication-title: Chem. Commun – volume: 16 start-page: 2000421 year: 2020 ident: CR27 article-title: Low-coordinate step atoms via plasma-assisted calcinations to enhance electrochemical reduction of nitrogen to ammonia publication-title: Small – volume: 40 start-page: 515 year: 2022 end-page: 523 ident: CR29 article-title: Factors affecting the catalytic performance of nano-catalysts publication-title: Chin. J. Chem. – volume: 57 start-page: 7806 year: 2021 end-page: 7809 ident: CR4 article-title: An amorphous WC thin film enabled high-efficiency N reduction electrocatalysis under ambient conditions publication-title: Chem. Commun. – volume: 303 start-page: 120874 year: 2022 ident: CR22 article-title: Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis publication-title: Appl. Catal. B: Environ. – volume: 14 start-page: 555 year: 2021 end-page: 569 ident: CR15 article-title: Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media publication-title: Nano Res. – volume: 8 start-page: 781 year: 2018 ident: CR37 article-title: TiO nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application publication-title: Sci. Rep. – volume: 58 start-page: 3669 year: 2022 end-page: 3672 ident: CR45 article-title: A TiO nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia publication-title: Chem. Commun – volume: 56 start-page: 842 year: 2017 ident: 4568_CR17 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608899 – volume: 56 start-page: 9328 year: 2020 ident: 4568_CR28 publication-title: Chem. Commun doi: 10.1039/D0CC04374E – volume: 303 start-page: 120874 year: 2022 ident: 4568_CR22 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120874 – volume: 56 start-page: 731 year: 2020 ident: 4568_CR24 publication-title: Chem. Commun doi: 10.1039/C9CC08352A – volume: 58 start-page: 3669 year: 2022 ident: 4568_CR45 publication-title: Chem. Commun doi: 10.1039/D2CC00856D – volume: 8 start-page: 781 year: 2018 ident: 4568_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-018-19172-w – volume: 59 start-page: 758 year: 2020 ident: 4568_CR18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912836 – volume: 59 start-page: 14383 year: 2020 ident: 4568_CR38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006679 – volume: 13 start-page: 1376 year: 2020 ident: 4568_CR8 publication-title: Nano Res doi: 10.1007/s12274-020-2637-8 – volume: 55 start-page: 12376 year: 2019 ident: 4568_CR19 publication-title: Chem. Commun. doi: 10.1039/C9CC06385D – volume: 32 start-page: 2110900 year: 2022 ident: 4568_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110900 – volume: 16 start-page: 2000421 year: 2020 ident: 4568_CR27 publication-title: Small doi: 10.1002/smll.202000421 – volume: 12 start-page: 17452 year: 2020 ident: 4568_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00011 – volume: 354 start-page: 191 year: 2018 ident: 4568_CR31 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.197 – volume: 568 start-page: 216 year: 2019 ident: 4568_CR32 publication-title: Nature doi: 10.1038/s41586-019-1074-x – volume: 23 start-page: 5487 year: 2021 ident: 4568_CR41 publication-title: Green Chem. doi: 10.1039/D1GC01614H – volume: 64 start-page: 1493 year: 2021 ident: 4568_CR49 publication-title: Sci. China Chem doi: 10.1007/s11426-021-1073-5 – volume: 29 start-page: 100766 year: 2021 ident: 4568_CR9 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2021.100766 – volume: 14 start-page: 555 year: 2021 ident: 4568_CR15 publication-title: Nano Res. doi: 10.1007/s12274-020-3049-5 – volume: 22 start-page: 100611 year: 2022 ident: 4568_CR52 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100611 – volume: 15 start-page: 3050 year: 2022 ident: 4568_CR46 publication-title: Nano Res. doi: 10.1007/s12274-021-3951-5 – volume: 15 start-page: 972 year: 2022 ident: 4568_CR44 publication-title: Nano Res. doi: 10.1007/s12274-021-3583-9 – volume: 9 start-page: 13861 year: 2021 ident: 4568_CR21 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02424H – volume: 7 start-page: 4389 year: 2019 ident: 4568_CR5 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00016J – volume: 16 start-page: 2002885 year: 2020 ident: 4568_CR16 publication-title: Small doi: 10.1002/smll.202002885 – volume: 5 start-page: 204 year: 2019 ident: 4568_CR12 publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 15 start-page: 1039 year: 2022 ident: 4568_CR26 publication-title: Nano Res. doi: 10.1007/s12274-021-3592-8 – volume: 184 start-page: 113245 year: 2021 ident: 4568_CR35 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113245 – volume: 61 start-page: e202116282 year: 2022 ident: 4568_CR43 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116282 – volume: 12 start-page: 1229 year: 2019 ident: 4568_CR10 publication-title: Nano Res. doi: 10.1007/s12274-018-2268-5 – volume: 118 start-page: 14051 year: 2014 ident: 4568_CR34 publication-title: J. Phys. Chem. C doi: 10.1021/jp505257g – volume: 14 start-page: 1405 year: 2021 ident: 4568_CR42 publication-title: Nano Res. doi: 10.1007/s12274-020-3190-1 – volume: 114 start-page: 013508 year: 2019 ident: 4568_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5079860 – volume: 57 start-page: 7806 year: 2021 ident: 4568_CR4 publication-title: Chem. Commun. doi: 10.1039/D1CC03139B – volume: 40 start-page: 515 year: 2022 ident: 4568_CR29 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202100695 – volume: 10 start-page: 3533 year: 2020 ident: 4568_CR48 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05260 – volume: 59 start-page: 9711 year: 2020 ident: 4568_CR51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002337 – volume: 15 start-page: 4131 year: 2020 ident: 4568_CR13 publication-title: Chem. Asian J. doi: 10.1002/asia.202000969 – volume: 8 start-page: 2691 year: 2020 ident: 4568_CR23 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09920D – start-page: 199 volume-title: Ammonia: Catalysis and Manufacture year: 1995 ident: 4568_CR3 doi: 10.1007/978-3-642-79197-0 – volume: 60 start-page: 25318 year: 2021 ident: 4568_CR40 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112381 – volume: 29 start-page: 1606550 year: 2017 ident: 4568_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 9 start-page: 1514 year: 2022 ident: 4568_CR11 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI00140C – volume: 11 start-page: 45 year: 2018 ident: 4568_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 22 start-page: 100586 year: 2022 ident: 4568_CR50 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2021.100586 – volume: 61 start-page: e202202087 year: 2022 ident: 4568_CR1 publication-title: Angew. Chem., Int. Ed doi: 10.1002/anie.202202087 – volume: 13 start-page: 1008 year: 2020 ident: 4568_CR6 publication-title: Nano Res. doi: 10.1007/s12274-020-2733-9 – volume: 18 start-page: 2106961 year: 2022 ident: 4568_CR47 publication-title: Small doi: 10.1002/smll.202106961 – volume: 18 start-page: 2304 year: 2008 ident: 4568_CR2 publication-title: J. Mater. Chem. doi: 10.1039/b720020j – volume: 8 start-page: 17956 year: 2020 ident: 4568_CR20 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07720H – volume: 123 start-page: 106798 year: 2022 ident: 4568_CR30 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2021.106798 – volume: 130 start-page: 16739 year: 2008 ident: 4568_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805545x |
SSID | ssj0062148 |
Score | 2.597786 |
Snippet | Ambient electroreduction of nitrogen (N
2
) is considered as a green and feasible approach for ammonia (NH
3
) synthesis, which urgently demands for efficient... Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7134 |
SubjectTerms | Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Catalysts Catalytic activity Catalytic oxidation Chemistry and Materials Science Condensed Matter Physics Efficiency Electrocatalysis Electrocatalysts Electrolysis Materials Science Morphology Nanomaterials Nanoparticles Nanoribbons Nanotechnology Nitrogen Quantum dots Research Article |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOhB_MTplB48KYE2H_04jrExFIcHB7uVJE1RkE627rD99b6krVVRwUuhJM3h5TW_98v7Arj2lfG5FJwYGeRIUIQikkmkKnEoeBYJw1zTvodJOJ7yu5mY1XncyybavXFJupO6TXajyKCIjT5H0I_JZht2hKXuqMRT2m-O35AGrmVWlTuG6NW4Mn9a4isYtRbmN6eow5rRAezXRqLXr3b1ELZMcQR7n0oHHsP9sHh2zntvQkk5J5Mx81wEubv-8oyrDGHTKj18G6zYo1fIYr54UcqOVr1v3NXNelmewHQ0fBqMSd0YgWgW0xKfNJFIZHSQaT82kaZRlmiNQpc050goYq5zP2cJ8k8kUFSrhBuulJCIRhnS0lPoFPPCnIHHtIPsPAiF4nmUqDAUiFBcaOHjmRx2wW8klOq6arhtXvGatvWOrVBTFGpqhZpuunDz8clbVTLjr8m9Ruxp_fcsUxpFCY2s7dGF22Yr2uFfFzv_1-wL2KVWFVw0Xw865WJlLtHCKNWV06h3mAvGGg priority: 102 providerName: Springer Nature |
Title | Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst |
URI | https://link.springer.com/article/10.1007/s12274-022-4568-z https://www.proquest.com/docview/2779271812 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFG90u-jB-Bmnc-HgSdPISsvHycyFbXGRLMYl80TaUuLBsOnYwf31vhYYauIuJVBownvQ937vE6FrWyibckax4t0UAAoTmDscoIrvMpp4TDmmad9T5I6m9HHGZqXBbVmGVVZ7otmok7nUNvI74nkB8bQ8ul98YN01SntXyxYau6ipS5fpkC5vtgFcLuma7llFGhkIssqraVLnCOAxrGPZQYXw8fq3XKqVzT_-USN2BofooNQXrV7B4CO0o7JjtP-jiuAJGofZm_HjWxHB-RxHI8cyweTGEmYpUyRCZ1hacNZfORMr4xm8mhB6tmiDY6w4X8v8FE0H4Ut_hMseCVg6PslhJAEHTCO7ibR95UniJYGUQH9OUgrYwqcytVMnACgKWIpIEVBFhWAcBFMCCPUMNbJ5ps6R5UgjvdOuywRNvUC4LgNhRZlkNmzPbgvZFYViWRYQ130s3uO69LEmagxEjTVR43UL3WweWRTVM7bd3K7IHpc_0jKu2d5CtxUr6ul_F7vYvtgl2iOa9yaSr40a-edKXYF2kYuO-YRg9AfDDmr2hq_jEI4PYTR5hqtT0vsGfS3OCg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RSFAhlgAVmkfuQxIISgpVCoGFqJLcSOIwaUAg1C7Y_iN3J2GgpIdGOJFCWxos_nu_vsewDsu1K7PBac6LieIkERksQsRqoSeIInvtDMNu277XitHr--F_cz8FHmwpiwylInWkWd9JXZIz-mvh9S39ij0-cXYrpGmdPVsoVGIRZtPXxHyjY4ubrA-T2gtNnonrfIuKsAUSygOV5pGCMLUPVEuYH2FfWTUCn845imHL3xgKvUTRkyfVMNiioZcs2lFDGq8gQ5HY47C3OcsdCsqKB5WWp-j9Ztt64ibQ0NZ3mKalP1KPI_YmLn0WUJyOinHZw4t7_OY62Zay7D0tg_dc4KgVqBGZ2twuK3qoVr0G5kjzZuwOlQkvdJp8UcG7xud94cbYtSmIxOB-_O39idk8UZQimleVq03bG7RsNBvg69f0FvAypZP9Ob4DBlvYW07gnJUz-UnifQOHKhhIvmwKuCWyIUqXHBctM34ymalFo2oEYIamRAjUZVOPz65Lmo1jHt5VoJezReuINoImZVOCqnYvL4z8G2pg-2B_Ot7u1NdHPVaW_DAjVyYKMIa1DJX9_0Dno2udy14uTAw3_L7yd3tAU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8QwEB1WBdGD-Imrq_agFyXYpknTHkREXXZdXTwo7K02aYoH6arbRfSn-eucpK2rgt68FErSUCaTzLxkZh7Ariu1yxLOiE68DAEKlyTxE4QqYcBZKrj2LWnfVT_o3LKLAR804L3OhTFhlfWeaDfqdKjMGfkhFSKiwtijw6wKi7g-ax8_PhHDIGVuWms6jVJFevr1BeHb6Kh7hnO9R2n7_Oa0QyqGAaL8kBb4pFGCiEB5qXJDLRQVaaQU_n1CM4aeechU5mY-on5TGYoqGTHNpOQJbusp4jscdwpmhM89s8bE4BPsBdSzzF1lChsa0fpG1abtUcSCxMTRo_sSkrfvNnHi6P64m7Umr70IC5Wv6pyUyrUEDZ0vw_yXCoYr0DvP720MgdOnpBiSfsd3bCC7PYVztC1QYbI7HXw7HfvXTp7kKEopTWtJwWNPkF5HxSrc_ov01mA6H-Z6HRxfWc8h8wIuWSYiGQQcDSXjirtoGoImuLWEYlUVLzccGg_xpOyyEWqMQo2NUOO3Jux_fvJYVu74q3OrFntcLeJRPFG5JhzUUzFp_nWwjb8H24FZ1Nz4stvvbcIcNWpgAwpbMF08j_UWOjmF3Lba5MDdf6vvB5UKCWU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+N2-to-NH3+conversion+efficiency+on+Cu3P+nanoribbon+electrocatalyst&rft.jtitle=Nano+research&rft.au=Liu%2C+Qian&rft.au=Lin%2C+Yiting&rft.au=Gu%2C+Shuang&rft.au=Cheng%2C+Ziqiang&rft.date=2022-08-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=8&rft.spage=7134&rft.epage=7138&rft_id=info:doi/10.1007%2Fs12274-022-4568-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |