Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst

Ambient electroreduction of nitrogen (N 2 ) is considered as a green and feasible approach for ammonia (NH 3 ) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 8; pp. 7134 - 7138
Main Authors Liu, Qian, Lin, Yiting, Gu, Shuang, Cheng, Ziqiang, Xie, Lisi, Sun, Shengjun, Zhang, Longcheng, Luo, Yongsong, Alshehri, Abdulmohsen Ali, Hamdy, Mohamed S., Kong, Qingquan, Wang, Jiahong, Sun, Xuping
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ambient electroreduction of nitrogen (N 2 ) is considered as a green and feasible approach for ammonia (NH 3 ) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu 3 P nanoribbon is proposed as a highly efficient electrocatalyst for N 2 -to-NH 3 conversion under benign conditions. When measured in N 2 -saturated 0.1 M HCl, such Cu 3 P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h −1 µmg cat. −1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h.
AbstractList Ambient electroreduction of nitrogen (N 2 ) is considered as a green and feasible approach for ammonia (NH 3 ) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu 3 P nanoribbon is proposed as a highly efficient electrocatalyst for N 2 -to-NH 3 conversion under benign conditions. When measured in N 2 -saturated 0.1 M HCl, such Cu 3 P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h −1 µmg cat. −1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h.
Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu3P nanoribbon is proposed as a highly efficient electrocatalyst for N2-to-NH3 conversion under benign conditions. When measured in N2-saturated 0.1 M HCl, such Cu3P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h−1µmgcat.−1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h.
Author Kong, Qingquan
Zhang, Longcheng
Sun, Shengjun
Sun, Xuping
Lin, Yiting
Xie, Lisi
Alshehri, Abdulmohsen Ali
Gu, Shuang
Liu, Qian
Hamdy, Mohamed S.
Wang, Jiahong
Cheng, Ziqiang
Luo, Yongsong
Author_xml – sequence: 1
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: Institute for Advanced Study, Chengdu University
– sequence: 2
  givenname: Yiting
  surname: Lin
  fullname: Lin, Yiting
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Shuang
  surname: Gu
  fullname: Gu, Shuang
  organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 4
  givenname: Ziqiang
  surname: Cheng
  fullname: Cheng, Ziqiang
  organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Lisi
  surname: Xie
  fullname: Xie, Lisi
  organization: Institute for Advanced Study, Chengdu University
– sequence: 6
  givenname: Shengjun
  surname: Sun
  fullname: Sun, Shengjun
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 7
  givenname: Longcheng
  surname: Zhang
  fullname: Zhang, Longcheng
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 8
  givenname: Yongsong
  surname: Luo
  fullname: Luo, Yongsong
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 9
  givenname: Abdulmohsen Ali
  surname: Alshehri
  fullname: Alshehri, Abdulmohsen Ali
  organization: Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University
– sequence: 10
  givenname: Mohamed S.
  surname: Hamdy
  fullname: Hamdy, Mohamed S.
  organization: Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University
– sequence: 11
  givenname: Qingquan
  surname: Kong
  fullname: Kong, Qingquan
  organization: Institute for Advanced Study, Chengdu University
– sequence: 12
  givenname: Jiahong
  surname: Wang
  fullname: Wang, Jiahong
  email: jh.wang1@siat.ac.cn
  organization: Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 13
  givenname: Xuping
  surname: Sun
  fullname: Sun, Xuping
  email: xpsun@uestc.edu.cn
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
BookMark eNp9kMFKAzEQhoNUsK0-gLcFz6vJbNpkj1KqFUv1oOeQnc3qljWpSSq0T2_KKoKgOUwyzP9lZv4RGVhnDSHnjF4ySsVVYACC5xQg55OpzPdHZMjKUuY0ncH3mwE_IaMQ1pROgXE5JPdz-6otmjpbQR5dvloUGTr7YXxonc1M07TYGou7LGWzbfGYWW2db6vqUO0MRu9QR93tQjwlx43ugjn7usfk-Wb-NFvky4fbu9n1MsdCQkwRSs0YR1YjlUYgiLpEpFxraDgHKTk2tCnKopCMU8Cq5IZX1UQzkLVgxZhc9P9uvHvfmhDV2m29TS0VCFGCYJJBUolehd6F4E2jsI06pq2i122nGFUH51TvnErOqYNzap9I9ovc-PZN-92_DPRMSFr7YvzPTH9DnxtLghg
CitedBy_id crossref_primary_10_1016_j_rser_2023_113197
crossref_primary_10_1039_D2SE00830K
crossref_primary_10_1002_ece2_39
crossref_primary_10_1002_aenm_202301979
crossref_primary_10_1016_j_jcis_2024_02_153
crossref_primary_10_1021_acs_energyfuels_4c02424
crossref_primary_10_1007_s10562_024_04681_3
crossref_primary_10_1002_cssc_202300505
crossref_primary_10_1016_j_fuel_2023_129406
crossref_primary_10_1016_j_apcatb_2022_122186
crossref_primary_10_1016_j_rechem_2022_100702
crossref_primary_10_1016_S1872_2067_23_64464_X
crossref_primary_10_1021_acsanm_2c03720
crossref_primary_10_1039_D2TA06933D
crossref_primary_10_1016_j_apcata_2024_119562
crossref_primary_10_1021_acsami_3c01847
crossref_primary_10_1039_D2QI01791A
crossref_primary_10_1039_D3CY00726J
crossref_primary_10_1016_j_mcat_2023_113353
crossref_primary_10_1021_acsanm_4c01571
crossref_primary_10_1016_j_apsusc_2022_156025
crossref_primary_10_1021_acs_inorgchem_2c02834
crossref_primary_10_1038_s41598_023_34685_9
crossref_primary_10_1016_j_cclet_2023_108550
crossref_primary_10_1016_j_jcis_2023_12_046
crossref_primary_10_1039_D2YA00364C
crossref_primary_10_1016_j_cej_2023_142628
crossref_primary_10_1039_D4TA07261H
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_1039_D3DT01705B
crossref_primary_10_1039_D4CC01834F
crossref_primary_10_1016_j_jcis_2024_02_005
crossref_primary_10_1016_j_jcis_2022_09_016
crossref_primary_10_1007_s12274_023_5798_4
crossref_primary_10_1016_j_cclet_2024_110005
crossref_primary_10_1016_j_jcis_2024_07_020
crossref_primary_10_1021_acs_inorgchem_3c01467
crossref_primary_10_1039_D4CC03256J
crossref_primary_10_1016_j_est_2022_105642
crossref_primary_10_1002_adfm_202402607
crossref_primary_10_1021_acs_iecr_4c04223
crossref_primary_10_1007_s12274_022_4863_8
crossref_primary_10_1021_acsami_2c17092
crossref_primary_10_1002_cssc_202200919
crossref_primary_10_1007_s12274_023_6204_y
crossref_primary_10_1039_D2TA07475C
crossref_primary_10_1016_j_jcis_2022_09_049
crossref_primary_10_1021_acs_nanolett_3c04416
crossref_primary_10_1007_s40843_024_2798_5
crossref_primary_10_1016_j_jcis_2023_02_056
crossref_primary_10_1016_j_ijhydene_2023_05_206
crossref_primary_10_1039_D2QI01363K
crossref_primary_10_1039_D3QI00718A
crossref_primary_10_1039_D3CY00736G
crossref_primary_10_1016_j_ijhydene_2024_01_203
crossref_primary_10_1016_j_gee_2022_09_001
crossref_primary_10_1002_smll_202310431
crossref_primary_10_1002_smll_202205313
crossref_primary_10_1016_j_cej_2023_145830
crossref_primary_10_1021_acsomega_3c02232
crossref_primary_10_1016_j_jcis_2023_05_110
crossref_primary_10_1016_j_mtphys_2022_100854
crossref_primary_10_1039_D2NR03540E
crossref_primary_10_1039_D2GC03083G
crossref_primary_10_1021_acs_inorgchem_2c02499
crossref_primary_10_1039_D4NR00884G
crossref_primary_10_1021_acsanm_3c04712
crossref_primary_10_1016_j_apcatb_2022_122191
crossref_primary_10_1016_j_partic_2022_11_006
crossref_primary_10_1039_D3NJ02436A
crossref_primary_10_1002_celc_202400033
crossref_primary_10_1002_advs_202204205
crossref_primary_10_1039_D2CC05333K
crossref_primary_10_1016_S1872_2067_23_64640_6
crossref_primary_10_1039_D2TA07523G
crossref_primary_10_1016_j_apenergy_2023_121960
crossref_primary_10_1021_acssuschemeng_3c02473
crossref_primary_10_1021_acsami_2c12175
crossref_primary_10_1016_j_jcis_2022_10_050
crossref_primary_10_1002_sstr_202300158
crossref_primary_10_1016_j_jelechem_2024_118737
crossref_primary_10_1021_acssuschemeng_3c07968
crossref_primary_10_1021_acs_inorgchem_2c02173
crossref_primary_10_1002_adfm_202410614
crossref_primary_10_1016_j_tgchem_2024_100040
crossref_primary_10_1039_D3CC04897G
crossref_primary_10_1002_smll_202303424
crossref_primary_10_1016_j_coelec_2023_101292
Cites_doi 10.1002/anie.201608899
10.1039/D0CC04374E
10.1016/j.apcatb.2021.120874
10.1039/C9CC08352A
10.1039/D2CC00856D
10.1038/s41598-018-19172-w
10.1002/anie.201912836
10.1002/anie.202006679
10.1007/s12274-020-2637-8
10.1039/C9CC06385D
10.1002/adfm.202110900
10.1002/smll.202000421
10.1021/acsami.0c00011
10.1016/j.cej.2018.07.197
10.1038/s41586-019-1074-x
10.1039/D1GC01614H
10.1007/s11426-021-1073-5
10.1016/j.coelec.2021.100766
10.1007/s12274-020-3049-5
10.1016/j.mtphys.2022.100611
10.1007/s12274-021-3951-5
10.1007/s12274-021-3583-9
10.1039/D1TA02424H
10.1039/C9TA00016J
10.1002/smll.202002885
10.1016/j.chempr.2018.10.007
10.1007/s12274-021-3592-8
10.1016/j.bios.2021.113245
10.1002/anie.202116282
10.1007/s12274-018-2268-5
10.1021/jp505257g
10.1007/s12274-020-3190-1
10.1063/1.5079860
10.1039/D1CC03139B
10.1002/cjoc.202100695
10.1021/acscatal.9b05260
10.1002/anie.202002337
10.1002/asia.202000969
10.1039/C9TA09920D
10.1007/978-3-642-79197-0
10.1002/anie.202112381
10.1002/adma.201606550
10.1039/D2QI00140C
10.1039/C7EE02220D
10.1016/j.mtphys.2021.100586
10.1002/anie.202202087
10.1007/s12274-020-2733-9
10.1002/smll.202106961
10.1039/b720020j
10.1039/D0TA07720H
10.1016/j.solidstatesciences.2021.106798
10.1021/ja805545x
ContentType Journal Article
Copyright Tsinghua University Press 2022
Tsinghua University Press 2022.
Copyright_xml – notice: Tsinghua University Press 2022
– notice: Tsinghua University Press 2022.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-022-4568-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 7138
ExternalDocumentID 10_1007_s12274_022_4568_z
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c382t-c329a114c1dc08e7c27d9cc04aa2f442884cf0f393381402cb94e4bb5a128d713
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Wed Aug 20 00:31:01 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 01:47:04 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cu
P nanoribbon
ammonia electrosynthesis
electrocatalysis
nitrogen reduction reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c329a114c1dc08e7c27d9cc04aa2f442884cf0f393381402cb94e4bb5a128d713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2779271812
PQPubID 326270
PageCount 5
ParticipantIDs proquest_journals_2779271812
crossref_citationtrail_10_1007_s12274_022_4568_z
crossref_primary_10_1007_s12274_022_4568_z
springer_journals_10_1007_s12274_022_4568_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Kotekar-Patil, Deng, Wong, Lau, Goh (CR36) 2019; 114
Zhao, Geng, Chang, Wei, Luo, Shi, Asiri, Lu, Wang, Sun (CR28) 2020; 56
Yang, Wu, Zhuang, Li, Chen (CR29) 2022; 40
Johnson, Sabu, Swamy, Anto, Gangadharappa, Pramod (CR35) 2021; 184
Li, Li, Gu, Li, Tian, Pang (CR42) 2021; 14
Shaban, Ashraf, Abukhadra (CR37) 2018; 8
Long, Chen, Zhang, Guo, Fu, Deng, Xiao (CR51) 2020; 59
Zhao, Liang, Li, Zhang, Dong, Yue, Luo, Ren, Liu, Hamdy (CR45) 2022; 58
Chen, Zhang, Jin, Zhou, Yang, Nie (CR13) 2020; 15
Li, Luo, Yue, Li, Wang, Liu, Cui, Zhang, Asiri, Sun (CR4) 2021; 57
Li, Zhou, Zhang, Chen (CR33) 2008; 130
Klerke, Christensen, Nørskov, Vegge (CR2) 2008; 18
Lin, Liang, Li, Zhang, Mou, Li, Yue, Ji, Liu, Luo (CR52) 2022; 22
Zhang, Gong, Lv, Wang, Han, Wang, Shi, Zhang (CR19) 2019; 55
Zhu, Wu, Ji, Liu, Luo, Cui, Xiang, Zhang, Zheng, Sun (CR24) 2020; 56
Liu, Xu, Luo, Kong, Li, Lu, Alshehri, Alzahrani, Sun (CR9) 2021; 29
Xu, Liang, Wang, Li, Du, Li, Liu, Luo, Zhang, Shi (CR26) 2022; 15
Meng, Hou, Yang, Cao, Zou, Luo, Zhou, Tong, Chen, Zhou (CR22) 2022; 303
Liu, Bai, Li, Yang, Zhang, Pang (CR43) 2022; 61
Li, Ma, Liang, Ren, Li, Xu, Liu, Li, Tang, Liu (CR50) 2022; 22
Patil, Wang (CR16) 2020; 16
Liu, Wu, Liu, Liu, Ke, Peng, Shi, Yuan, Huang, Li (CR39) 2022; 32
Shi, Bao, Wulan, Li, Zhang, Yan, Jiang (CR14) 2017; 29
Liang, Liu, Li, Li, Yue, Luo, Liu, Li, Tang, Alshehri (CR1) 2022; 61
Yuan, Zhang, Gao, He, Sun, Lu, Dipazir, Li, Zhou, Li (CR23) 2020; 8
Tao, Choi, Ding, Jiang, Han, Jia, Fan, Gao, Wang, Robertson (CR12) 2019; 5
Gao, Lv, Wang, Luo, Lu, Chen, Gao, Zhong, Guo, Sun (CR20) 2020; 8
Guo, Lu, Dai, Wu, Zeng (CR34) 2014; 118
Yang, Ling, Zi, Wang, Zhang, Zhang, Zhou, Guo, Wang (CR27) 2020; 16
Fan, Xie, Liang, Ren, Zhang, Yue, Li, Luo, Li, Tang (CR46) 2022; 15
Liu, Xie, Liang, Ren, Wang, Zhang, Yue, Li, Luo, Li (CR47) 2022; 18
Liang, Deng, Liu, Wen, Liu, Li, Luo, Alshehri, Alzahrani, Ma (CR41) 2021; 23
Shi, Wang, Yang, Chen, Meng, Yu, Zhang (CR49) 2021; 64
Ma, Zhao, Li, Liu, Luo, Li, Lu, Asiri, Ma, Sun (CR15) 2021; 14
Du, Liang, Li, Xu, Li, Liu, Luo, Zhang, Liu, Kong (CR21) 2021; 9
Luo, Qiu, Liang, Xia, Qiu (CR25) 2020; 12
Ma, Wang, Chen, Yuan (CR31) 2018; 354
Yuan, Wu, Jiang, Tang, Niu, Hu (CR8) 2020; 13
Chen, Liang, Dong, Yue, Li, Luo, Feng, Li, Hamdy, Alshehri (CR11) 2022; 9
Jia, Wang, Wang, Ling, Yu, Zhang (CR48) 2020; 10
Xiong, Cheng, Wang, Luo, Feng, Lu, Asiri, Li, Jiang, Sun (CR6) 2020; 13
Huang, Zhang, Quan, Ren, Tian, Zhu, Liu (CR30) 2022; 123
Bai, Liu, Chen, Li, Zheng, Pi, Luo, Pang (CR40) 2021; 60
Chu, Liu, Li, Zhang, Tian (CR5) 2019; 7
Guo, Ran, Vasileff, Qiao (CR7) 2018; 11
Wen, Liang, Liu, Li, An, Zhang, Alshehri, Alzahrani, Luo, Kong (CR44) 2022; 15
Liu, Zhang, Wang, Zhang, Bian, Cheng, Kang, Huang, Gu, Wang (CR38) 2020; 59
Watts, Picco, Russell-Pavier, Cullen, Miller, Bartus, Payton, Skipper, Tileli, Howard (CR32) 2019; 568
Ji, Li, Ji, Zhang, Mou, Wu, Liu, Li, Zhu, Luo (CR18) 2020; 59
Nielsen (CR3) 1995
Tang, Zhang, Lu, Wang, Liu, Hao, Du, Asiri, Sun (CR17) 2017; 56
Xue, Chen, Yan, Zhao, Hu, Zhang, Yang, Jin (CR10) 2019; 12
M C Watts (4568_CR32) 2019; 568
J J Gao (4568_CR20) 2020; 8
D L Zhao (4568_CR45) 2022; 58
Y X Luo (4568_CR25) 2020; 12
A Nielsen (4568_CR3) 1995
C L Liu (4568_CR43) 2022; 61
J W Shi (4568_CR49) 2021; 64
Y T Lin (4568_CR52) 2022; 22
Z B Du (4568_CR21) 2021; 9
Q Liu (4568_CR9) 2021; 29
K Chu (4568_CR5) 2019; 7
G L Wen (4568_CR44) 2022; 15
M M Shi (4568_CR14) 2017; 29
C Tang (4568_CR17) 2017; 56
Y X Liu (4568_CR39) 2022; 32
R B Zhao (4568_CR28) 2020; 56
H L Yang (4568_CR29) 2022; 40
S B Zhang (4568_CR19) 2019; 55
W Xiong (4568_CR6) 2020; 13
S B Patil (4568_CR16) 2020; 16
S J Ma (4568_CR31) 2018; 354
Y Bai (4568_CR40) 2021; 60
J Liang (4568_CR41) 2021; 23
J Liang (4568_CR1) 2022; 61
J Long (4568_CR51) 2020; 59
L P Yuan (4568_CR8) 2020; 13
X L Xue (4568_CR10) 2019; 12
X J Zhu (4568_CR24) 2020; 56
D Kotekar-Patil (4568_CR36) 2019; 114
C Huang (4568_CR30) 2022; 123
B Y Ma (4568_CR15) 2021; 14
X H Yang (4568_CR27) 2020; 16
M L Yuan (4568_CR23) 2020; 8
Q Li (4568_CR42) 2021; 14
Z R Li (4568_CR50) 2022; 22
L Ji (4568_CR18) 2020; 59
S X Li (4568_CR4) 2021; 57
H C Tao (4568_CR12) 2019; 5
X Y Fan (4568_CR46) 2022; 15
Q Liu (4568_CR47) 2022; 18
C X Guo (4568_CR7) 2018; 11
Q G Meng (4568_CR22) 2022; 303
R R Jia (4568_CR48) 2020; 10
A Klerke (4568_CR2) 2008; 18
Q Liu (4568_CR38) 2020; 59
T Xu (4568_CR26) 2022; 15
Y F Li (4568_CR33) 2008; 130
Q Q Chen (4568_CR13) 2020; 15
H Y Guo (4568_CR34) 2014; 118
A P Johnson (4568_CR35) 2021; 184
H J Chen (4568_CR11) 2022; 9
M Shaban (4568_CR37) 2018; 8
References_xml – volume: 29
  start-page: 100766
  year: 2021
  ident: CR9
  article-title: Recent advances in strategies for highly selective electrocatalytic N reduction toward ambient NH synthesis
  publication-title: Curr. Opin. Electrochem.
– volume: 9
  start-page: 13861
  year: 2021
  end-page: 13866
  ident: CR21
  article-title: Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N -to-NH fixation by a CoP nanoarray
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 5487
  year: 2021
  end-page: 5493
  ident: CR41
  article-title: High-efficiency electrochemical nitrite reduction to ammonium using a Cu P nanowire array under ambient conditions
  publication-title: Green Chem.
– volume: 123
  start-page: 106798
  year: 2022
  ident: CR30
  article-title: Morphology and size controlled synthesis of metal-organic framework crystals for catalytic oxidation of toluene
  publication-title: Solid State Sci.
– volume: 29
  start-page: 1606550
  year: 2017
  ident: CR14
  article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1039
  year: 2022
  end-page: 1046
  ident: CR26
  article-title: Enhancing electrocatalytic N -to-NH fixation by suppressing hydrogen evolution with alkylthiols modified Fe P nanoarrays
  publication-title: Nano Res.
– volume: 15
  start-page: 3050
  year: 2022
  end-page: 3055
  ident: CR46
  article-title: grown Fe O particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia
  publication-title: Nano Res.
– volume: 59
  start-page: 14383
  year: 2020
  end-page: 14387
  ident: CR38
  article-title: Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 12376
  year: 2019
  end-page: 12379
  ident: CR19
  article-title: A pyrolysis—phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1405
  year: 2021
  end-page: 1412
  ident: CR42
  article-title: Porous rod-like Ni P/Ni assemblies for enhanced urea electrooxidation
  publication-title: Nano Res.
– volume: 10
  start-page: 3533
  year: 2020
  end-page: 3540
  ident: CR48
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO
  publication-title: ACS Catal.
– volume: 56
  start-page: 731
  year: 2020
  end-page: 734
  ident: CR24
  article-title: Unusual electrochemical N reduction activity in an earth-abundant iron catalyst via phosphorous modulation
  publication-title: Chem. Commun
– volume: 568
  start-page: 216
  year: 2019
  end-page: 220
  ident: CR32
  article-title: Production of phosphorene nanoribbons
  publication-title: Nature
– volume: 184
  start-page: 113245
  year: 2021
  ident: CR35
  article-title: Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing
  publication-title: Biosens. Bioelectron.
– volume: 18
  start-page: 2304
  year: 2008
  end-page: 2310
  ident: CR2
  article-title: Ammonia for hydrogen storage: Challenges and opportunities
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 204
  year: 2019
  end-page: 214
  ident: CR12
  article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction
  publication-title: Chem
– volume: 64
  start-page: 1493
  year: 2021
  end-page: 1497
  ident: CR49
  article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping
  publication-title: Sci. China Chem
– volume: 8
  start-page: 2691
  year: 2020
  end-page: 2700
  ident: CR23
  article-title: Support effect boosting the electrocatalytic N reduction activity of Ni P/N, P-codoped carbon nanosheet hybrids
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1514
  year: 2022
  end-page: 1519
  ident: CR11
  article-title: Ambient electrochemical N -to-NH conversion catalyzed by TiO decorated juncus effusus-derived carbon microtubes
  publication-title: Inorg. Chem. Front.
– volume: 15
  start-page: 972
  year: 2022
  end-page: 977
  ident: CR44
  article-title: Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray
  publication-title: Nano Res.
– volume: 61
  start-page: e202202087
  year: 2022
  ident: CR1
  article-title: Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH
  publication-title: Angew. Chem., Int. Ed
– volume: 18
  start-page: 2106961
  year: 2022
  ident: CR47
  article-title: Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo O nanowire array
  publication-title: Small
– start-page: 199
  year: 1995
  end-page: 308
  ident: CR3
  publication-title: Ammonia: Catalysis and Manufacture
– volume: 16
  start-page: 2002885
  year: 2020
  ident: CR16
  article-title: Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction
  publication-title: Small
– volume: 12
  start-page: 1229
  year: 2019
  end-page: 1249
  ident: CR10
  article-title: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives
  publication-title: Nano Res.
– volume: 130
  start-page: 16739
  year: 2008
  end-page: 16744
  ident: CR33
  article-title: MoS2 nanoribbons: High stability and unusual electronic and magnetic properties
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1008
  year: 2020
  end-page: 1012
  ident: CR6
  article-title: Co (hexahydroxytriphenylene) : A conductive metal-organic framework for ambient electrocatalytic N reduction to NH
  publication-title: Nano Res.
– volume: 32
  start-page: 2110900
  year: 2022
  ident: CR39
  article-title: Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 758
  year: 2020
  end-page: 762
  ident: CR18
  article-title: Highly selective electrochemical reduction of CO to alcohols on an FeP nanoarray
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 842
  year: 2017
  end-page: 846
  ident: CR17
  article-title: Energy-saving electrolytic hydrogen generation: Ni P nanoarray as a high-performance non-noble-metal electrocatalyst
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 14051
  year: 2014
  end-page: 14059
  ident: CR34
  article-title: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 4389
  year: 2019
  end-page: 4394
  ident: CR5
  article-title: Efficient electrocatalytic N reduction on CoO quantum dots
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 17956
  year: 2020
  end-page: 17959
  ident: CR20
  article-title: Enabling electrochemical conversion of N to NH under ambient conditions by a CoP nanoneedle array
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 4131
  year: 2020
  end-page: 4152
  ident: CR13
  article-title: An overview on noble metal (group VIII)-based heterogeneous electrocatalysts for nitrogen reduction reaction
  publication-title: Chem. Asian J.
– volume: 22
  start-page: 100586
  year: 2022
  ident: CR50
  article-title: MnO nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH at ambient conditions
  publication-title: Mater. Today Phys.
– volume: 61
  start-page: e202116282
  year: 2022
  ident: CR43
  article-title: growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors
  publication-title: Angew. Chem., Int. Ed.
– volume: 354
  start-page: 191
  year: 2018
  end-page: 196
  ident: CR31
  article-title: Effect of surface morphology on catalytic activity for NO oxidation of SmMn O nanocrystals
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 17452
  year: 2020
  end-page: 17458
  ident: CR25
  article-title: Modoped FeP nanospheres for artificial nitrogen fixation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 013508
  year: 2019
  ident: CR36
  article-title: Single layer MoS nanoribbon field effect transistor
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 100611
  year: 2022
  ident: CR52
  article-title: Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH at ambient conditions
  publication-title: Mater. Today Phys.
– volume: 11
  start-page: 45
  year: 2018
  end-page: 56
  ident: CR7
  article-title: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ) under ambient conditions
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 9711
  year: 2020
  end-page: 9718
  ident: CR51
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 25318
  year: 2021
  end-page: 25322
  ident: CR40
  article-title: MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1376
  year: 2020
  end-page: 1382
  ident: CR8
  article-title: Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia
  publication-title: Nano Res
– volume: 56
  start-page: 9328
  year: 2020
  end-page: 9331
  ident: CR28
  article-title: Cu P nanoparticle-reduced graphene oxide hybrid: An efficient electrocatalyst to realize N -to-NH conversion under ambient conditions
  publication-title: Chem. Commun
– volume: 16
  start-page: 2000421
  year: 2020
  ident: CR27
  article-title: Low-coordinate step atoms via plasma-assisted calcinations to enhance electrochemical reduction of nitrogen to ammonia
  publication-title: Small
– volume: 40
  start-page: 515
  year: 2022
  end-page: 523
  ident: CR29
  article-title: Factors affecting the catalytic performance of nano-catalysts
  publication-title: Chin. J. Chem.
– volume: 57
  start-page: 7806
  year: 2021
  end-page: 7809
  ident: CR4
  article-title: An amorphous WC thin film enabled high-efficiency N reduction electrocatalysis under ambient conditions
  publication-title: Chem. Commun.
– volume: 303
  start-page: 120874
  year: 2022
  ident: CR22
  article-title: Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis
  publication-title: Appl. Catal. B: Environ.
– volume: 14
  start-page: 555
  year: 2021
  end-page: 569
  ident: CR15
  article-title: Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media
  publication-title: Nano Res.
– volume: 8
  start-page: 781
  year: 2018
  ident: CR37
  article-title: TiO nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application
  publication-title: Sci. Rep.
– volume: 58
  start-page: 3669
  year: 2022
  end-page: 3672
  ident: CR45
  article-title: A TiO nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia
  publication-title: Chem. Commun
– volume: 56
  start-page: 842
  year: 2017
  ident: 4568_CR17
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608899
– volume: 56
  start-page: 9328
  year: 2020
  ident: 4568_CR28
  publication-title: Chem. Commun
  doi: 10.1039/D0CC04374E
– volume: 303
  start-page: 120874
  year: 2022
  ident: 4568_CR22
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120874
– volume: 56
  start-page: 731
  year: 2020
  ident: 4568_CR24
  publication-title: Chem. Commun
  doi: 10.1039/C9CC08352A
– volume: 58
  start-page: 3669
  year: 2022
  ident: 4568_CR45
  publication-title: Chem. Commun
  doi: 10.1039/D2CC00856D
– volume: 8
  start-page: 781
  year: 2018
  ident: 4568_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19172-w
– volume: 59
  start-page: 758
  year: 2020
  ident: 4568_CR18
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912836
– volume: 59
  start-page: 14383
  year: 2020
  ident: 4568_CR38
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006679
– volume: 13
  start-page: 1376
  year: 2020
  ident: 4568_CR8
  publication-title: Nano Res
  doi: 10.1007/s12274-020-2637-8
– volume: 55
  start-page: 12376
  year: 2019
  ident: 4568_CR19
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06385D
– volume: 32
  start-page: 2110900
  year: 2022
  ident: 4568_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110900
– volume: 16
  start-page: 2000421
  year: 2020
  ident: 4568_CR27
  publication-title: Small
  doi: 10.1002/smll.202000421
– volume: 12
  start-page: 17452
  year: 2020
  ident: 4568_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00011
– volume: 354
  start-page: 191
  year: 2018
  ident: 4568_CR31
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.197
– volume: 568
  start-page: 216
  year: 2019
  ident: 4568_CR32
  publication-title: Nature
  doi: 10.1038/s41586-019-1074-x
– volume: 23
  start-page: 5487
  year: 2021
  ident: 4568_CR41
  publication-title: Green Chem.
  doi: 10.1039/D1GC01614H
– volume: 64
  start-page: 1493
  year: 2021
  ident: 4568_CR49
  publication-title: Sci. China Chem
  doi: 10.1007/s11426-021-1073-5
– volume: 29
  start-page: 100766
  year: 2021
  ident: 4568_CR9
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2021.100766
– volume: 14
  start-page: 555
  year: 2021
  ident: 4568_CR15
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3049-5
– volume: 22
  start-page: 100611
  year: 2022
  ident: 4568_CR52
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100611
– volume: 15
  start-page: 3050
  year: 2022
  ident: 4568_CR46
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3951-5
– volume: 15
  start-page: 972
  year: 2022
  ident: 4568_CR44
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3583-9
– volume: 9
  start-page: 13861
  year: 2021
  ident: 4568_CR21
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02424H
– volume: 7
  start-page: 4389
  year: 2019
  ident: 4568_CR5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00016J
– volume: 16
  start-page: 2002885
  year: 2020
  ident: 4568_CR16
  publication-title: Small
  doi: 10.1002/smll.202002885
– volume: 5
  start-page: 204
  year: 2019
  ident: 4568_CR12
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 15
  start-page: 1039
  year: 2022
  ident: 4568_CR26
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3592-8
– volume: 184
  start-page: 113245
  year: 2021
  ident: 4568_CR35
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113245
– volume: 61
  start-page: e202116282
  year: 2022
  ident: 4568_CR43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116282
– volume: 12
  start-page: 1229
  year: 2019
  ident: 4568_CR10
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2268-5
– volume: 118
  start-page: 14051
  year: 2014
  ident: 4568_CR34
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp505257g
– volume: 14
  start-page: 1405
  year: 2021
  ident: 4568_CR42
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3190-1
– volume: 114
  start-page: 013508
  year: 2019
  ident: 4568_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5079860
– volume: 57
  start-page: 7806
  year: 2021
  ident: 4568_CR4
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC03139B
– volume: 40
  start-page: 515
  year: 2022
  ident: 4568_CR29
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202100695
– volume: 10
  start-page: 3533
  year: 2020
  ident: 4568_CR48
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05260
– volume: 59
  start-page: 9711
  year: 2020
  ident: 4568_CR51
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002337
– volume: 15
  start-page: 4131
  year: 2020
  ident: 4568_CR13
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202000969
– volume: 8
  start-page: 2691
  year: 2020
  ident: 4568_CR23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09920D
– start-page: 199
  volume-title: Ammonia: Catalysis and Manufacture
  year: 1995
  ident: 4568_CR3
  doi: 10.1007/978-3-642-79197-0
– volume: 60
  start-page: 25318
  year: 2021
  ident: 4568_CR40
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112381
– volume: 29
  start-page: 1606550
  year: 2017
  ident: 4568_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 9
  start-page: 1514
  year: 2022
  ident: 4568_CR11
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI00140C
– volume: 11
  start-page: 45
  year: 2018
  ident: 4568_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 22
  start-page: 100586
  year: 2022
  ident: 4568_CR50
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2021.100586
– volume: 61
  start-page: e202202087
  year: 2022
  ident: 4568_CR1
  publication-title: Angew. Chem., Int. Ed
  doi: 10.1002/anie.202202087
– volume: 13
  start-page: 1008
  year: 2020
  ident: 4568_CR6
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2733-9
– volume: 18
  start-page: 2106961
  year: 2022
  ident: 4568_CR47
  publication-title: Small
  doi: 10.1002/smll.202106961
– volume: 18
  start-page: 2304
  year: 2008
  ident: 4568_CR2
  publication-title: J. Mater. Chem.
  doi: 10.1039/b720020j
– volume: 8
  start-page: 17956
  year: 2020
  ident: 4568_CR20
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07720H
– volume: 123
  start-page: 106798
  year: 2022
  ident: 4568_CR30
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2021.106798
– volume: 130
  start-page: 16739
  year: 2008
  ident: 4568_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805545x
SSID ssj0062148
Score 2.597786
Snippet Ambient electroreduction of nitrogen (N 2 ) is considered as a green and feasible approach for ammonia (NH 3 ) synthesis, which urgently demands for efficient...
Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7134
SubjectTerms Ammonia
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Catalysts
Catalytic activity
Catalytic oxidation
Chemistry and Materials Science
Condensed Matter Physics
Efficiency
Electrocatalysis
Electrocatalysts
Electrolysis
Materials Science
Morphology
Nanomaterials
Nanoparticles
Nanoribbons
Nanotechnology
Nitrogen
Quantum dots
Research Article
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ovOhB_MTplB48KYE2H_04jrExFIcHB7uVJE1RkE627rD99b6krVVRwUuhJM3h5TW_98v7Arj2lfG5FJwYGeRIUIQikkmkKnEoeBYJw1zTvodJOJ7yu5mY1XncyybavXFJupO6TXajyKCIjT5H0I_JZht2hKXuqMRT2m-O35AGrmVWlTuG6NW4Mn9a4isYtRbmN6eow5rRAezXRqLXr3b1ELZMcQR7n0oHHsP9sHh2zntvQkk5J5Mx81wEubv-8oyrDGHTKj18G6zYo1fIYr54UcqOVr1v3NXNelmewHQ0fBqMSd0YgWgW0xKfNJFIZHSQaT82kaZRlmiNQpc050goYq5zP2cJ8k8kUFSrhBuulJCIRhnS0lPoFPPCnIHHtIPsPAiF4nmUqDAUiFBcaOHjmRx2wW8klOq6arhtXvGatvWOrVBTFGpqhZpuunDz8clbVTLjr8m9Ruxp_fcsUxpFCY2s7dGF22Yr2uFfFzv_1-wL2KVWFVw0Xw865WJlLtHCKNWV06h3mAvGGg
  priority: 102
  providerName: Springer Nature
Title Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst
URI https://link.springer.com/article/10.1007/s12274-022-4568-z
https://www.proquest.com/docview/2779271812
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFG90u-jB-Bmnc-HgSdPISsvHycyFbXGRLMYl80TaUuLBsOnYwf31vhYYauIuJVBownvQ937vE6FrWyibckax4t0UAAoTmDscoIrvMpp4TDmmad9T5I6m9HHGZqXBbVmGVVZ7otmok7nUNvI74nkB8bQ8ul98YN01SntXyxYau6ipS5fpkC5vtgFcLuma7llFGhkIssqraVLnCOAxrGPZQYXw8fq3XKqVzT_-USN2BofooNQXrV7B4CO0o7JjtP-jiuAJGofZm_HjWxHB-RxHI8cyweTGEmYpUyRCZ1hacNZfORMr4xm8mhB6tmiDY6w4X8v8FE0H4Ut_hMseCVg6PslhJAEHTCO7ibR95UniJYGUQH9OUgrYwqcytVMnACgKWIpIEVBFhWAcBFMCCPUMNbJ5ps6R5UgjvdOuywRNvUC4LgNhRZlkNmzPbgvZFYViWRYQ130s3uO69LEmagxEjTVR43UL3WweWRTVM7bd3K7IHpc_0jKu2d5CtxUr6ul_F7vYvtgl2iOa9yaSr40a-edKXYF2kYuO-YRg9AfDDmr2hq_jEI4PYTR5hqtT0vsGfS3OCg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RSFAhlgAVmkfuQxIISgpVCoGFqJLcSOIwaUAg1C7Y_iN3J2GgpIdGOJFCWxos_nu_vsewDsu1K7PBac6LieIkERksQsRqoSeIInvtDMNu277XitHr--F_cz8FHmwpiwylInWkWd9JXZIz-mvh9S39ij0-cXYrpGmdPVsoVGIRZtPXxHyjY4ubrA-T2gtNnonrfIuKsAUSygOV5pGCMLUPVEuYH2FfWTUCn845imHL3xgKvUTRkyfVMNiioZcs2lFDGq8gQ5HY47C3OcsdCsqKB5WWp-j9Ztt64ibQ0NZ3mKalP1KPI_YmLn0WUJyOinHZw4t7_OY62Zay7D0tg_dc4KgVqBGZ2twuK3qoVr0G5kjzZuwOlQkvdJp8UcG7xud94cbYtSmIxOB-_O39idk8UZQimleVq03bG7RsNBvg69f0FvAypZP9Ob4DBlvYW07gnJUz-UnifQOHKhhIvmwKuCWyIUqXHBctM34ymalFo2oEYIamRAjUZVOPz65Lmo1jHt5VoJezReuINoImZVOCqnYvL4z8G2pg-2B_Ot7u1NdHPVaW_DAjVyYKMIa1DJX9_0Dno2udy14uTAw3_L7yd3tAU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8QwEB1WBdGD-Imrq_agFyXYpknTHkREXXZdXTwo7K02aYoH6arbRfSn-eucpK2rgt68FErSUCaTzLxkZh7Ariu1yxLOiE68DAEKlyTxE4QqYcBZKrj2LWnfVT_o3LKLAR804L3OhTFhlfWeaDfqdKjMGfkhFSKiwtijw6wKi7g-ax8_PhHDIGVuWms6jVJFevr1BeHb6Kh7hnO9R2n7_Oa0QyqGAaL8kBb4pFGCiEB5qXJDLRQVaaQU_n1CM4aeechU5mY-on5TGYoqGTHNpOQJbusp4jscdwpmhM89s8bE4BPsBdSzzF1lChsa0fpG1abtUcSCxMTRo_sSkrfvNnHi6P64m7Umr70IC5Wv6pyUyrUEDZ0vw_yXCoYr0DvP720MgdOnpBiSfsd3bCC7PYVztC1QYbI7HXw7HfvXTp7kKEopTWtJwWNPkF5HxSrc_ov01mA6H-Z6HRxfWc8h8wIuWSYiGQQcDSXjirtoGoImuLWEYlUVLzccGg_xpOyyEWqMQo2NUOO3Jux_fvJYVu74q3OrFntcLeJRPFG5JhzUUzFp_nWwjb8H24FZ1Nz4stvvbcIcNWpgAwpbMF08j_UWOjmF3Lba5MDdf6vvB5UKCWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+N2-to-NH3+conversion+efficiency+on+Cu3P+nanoribbon+electrocatalyst&rft.jtitle=Nano+research&rft.au=Liu%2C+Qian&rft.au=Lin%2C+Yiting&rft.au=Gu%2C+Shuang&rft.au=Cheng%2C+Ziqiang&rft.date=2022-08-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=8&rft.spage=7134&rft.epage=7138&rft_id=info:doi/10.1007%2Fs12274-022-4568-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon