Breast cancer diagnosis using GA feature selection and Rotation Forest
Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining...
Saved in:
Published in | Neural computing & applications Vol. 28; no. 4; pp. 753 - 763 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and
F
-measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer. |
---|---|
AbstractList | Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and
F
-measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer. Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F-measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer. |
Author | Subasi, Abdulhamit Aličković, Emina |
Author_xml | – sequence: 1 givenname: Emina surname: Aličković fullname: Aličković, Emina organization: Faculty of Engineering and Information Technologies, International Burch University – sequence: 2 givenname: Abdulhamit surname: Subasi fullname: Subasi, Abdulhamit email: absubasi@effatuniversity.edu.sa organization: Computer Science Department, College of Engineering, Effat University |
BookMark | eNp9kM1LAzEQxYNUsFX_AG8Bz6sz-diPYy22CgVB9BzSbLZsqUlNsgf_e1PXgwh6GoZ5vzePNyMT550l5ArhBgGq2wggGRaAsmAIvGhOyBQF5wUHWU_IFBqRr6XgZ2QW4w4ARFnLKVneBatjokY7YwNte711PvaRDrF3W7qa087qNARLo91bk3rvqHYtffZJfy1LH2xMF-S00_toL7_nOXld3r8sHor10-pxMV8XhtcsFQZqLUwNVdsYBmA2mtlGVMJypgFZg9aUnWg446UxWKEUUjBpN7JssWNdxc_J9eh7CP59yI_Vzg_B5ZcK6-wrJEqeVdWoMsHHGGynTD_GTUH3e4WgjqWpsTSVS1PH0lSTSfxFHkL_psPHvwwbmZi1bmvDj0x_Qp-oBX7q |
CitedBy_id | crossref_primary_10_1007_s00500_021_06498_3 crossref_primary_10_1186_s12911_023_02142_2 crossref_primary_10_1007_s11045_023_00880_0 crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1016_j_bspc_2019_101789 crossref_primary_10_1080_21681163_2020_1730974 crossref_primary_10_1016_j_procs_2024_03_282 crossref_primary_10_1016_j_cmpb_2021_106451 crossref_primary_10_1186_s12859_020_3483_0 crossref_primary_10_1016_j_cmpb_2017_10_024 crossref_primary_10_1155_2018_7538204 crossref_primary_10_1016_j_bspc_2023_104700 crossref_primary_10_1371_journal_pone_0274263 crossref_primary_10_1371_journal_pone_0314523 crossref_primary_10_1007_s10489_020_01725_0 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_1007_s00500_020_05321_9 crossref_primary_10_3934_mbe_2022373 crossref_primary_10_1016_j_knosys_2021_107638 crossref_primary_10_3390_s21082855 crossref_primary_10_1007_s42235_024_00515_5 crossref_primary_10_1177_20552076241297002 crossref_primary_10_1055_s_0042_1751043 crossref_primary_10_1007_s00521_022_07230_4 crossref_primary_10_1080_21681163_2020_1811159 crossref_primary_10_1007_s11227_022_04606_0 crossref_primary_10_4108_eetpht_9_3533 crossref_primary_10_1109_ACCESS_2019_2895636 crossref_primary_10_1080_21681163_2023_2212086 crossref_primary_10_1002_jbio_202200231 crossref_primary_10_4018_IJSI_301221 crossref_primary_10_1007_s00521_022_07950_7 crossref_primary_10_32604_iasc_2022_020662 crossref_primary_10_1016_j_eswa_2020_114103 crossref_primary_10_1016_j_imu_2020_100459 crossref_primary_10_1080_08839514_2022_2031820 crossref_primary_10_3390_e25081223 crossref_primary_10_1109_ACCESS_2020_2976822 crossref_primary_10_1002_ima_22924 crossref_primary_10_1111_coin_12163 crossref_primary_10_4108_eetcasa_v8i2_2788 crossref_primary_10_1039_C8AN00189H crossref_primary_10_1007_s00521_023_08297_3 crossref_primary_10_3390_bdcc6010013 crossref_primary_10_1097_MD_0000000000028697 crossref_primary_10_5812_jjnpp_142058 crossref_primary_10_1002_cpe_5467 crossref_primary_10_1016_j_obmed_2020_100270 crossref_primary_10_2139_ssrn_4149525 crossref_primary_10_1111_exsy_13038 crossref_primary_10_32604_cmc_2021_015326 crossref_primary_10_1038_s41598_023_33525_0 crossref_primary_10_1016_j_bspc_2018_12_011 crossref_primary_10_1007_s00432_023_05422_6 crossref_primary_10_1016_j_swevo_2024_101618 crossref_primary_10_12677_CSA_2019_912255 crossref_primary_10_1007_s42452_021_04148_9 crossref_primary_10_1080_0952813X_2021_1938698 crossref_primary_10_1016_j_swevo_2021_100925 crossref_primary_10_3390_healthcare10091759 crossref_primary_10_1007_s11277_023_10378_4 crossref_primary_10_1016_j_bspc_2021_102705 crossref_primary_10_1007_s00521_022_07290_6 crossref_primary_10_1007_s11042_023_17044_8 crossref_primary_10_2196_27304 crossref_primary_10_32604_cmc_2021_015291 crossref_primary_10_1590_1678_4324_2019180486 crossref_primary_10_1007_s40799_021_00470_4 crossref_primary_10_3390_app11146574 crossref_primary_10_17694_bajece_502156 crossref_primary_10_1109_ACCESS_2019_2932505 crossref_primary_10_1155_2022_1367366 crossref_primary_10_21078_JSSI_2018_447_12 crossref_primary_10_1016_j_jbi_2020_103591 crossref_primary_10_1080_0952813X_2021_1960627 crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_1007_s41688_020_00039_x crossref_primary_10_1007_s44174_024_00262_5 crossref_primary_10_1155_2022_1820777 crossref_primary_10_1016_j_artmed_2020_101884 crossref_primary_10_3390_e25081128 crossref_primary_10_1016_j_asoc_2018_10_036 crossref_primary_10_1109_ACCESS_2021_3055806 crossref_primary_10_1016_j_patrec_2018_11_004 crossref_primary_10_1590_1516_3180_2024_0080_03072024 crossref_primary_10_1016_j_eswa_2018_12_051 crossref_primary_10_1007_s12065_023_00819_1 crossref_primary_10_1155_2019_5176705 crossref_primary_10_32628_CSEIT2410274 crossref_primary_10_1007_s11517_020_02187_9 crossref_primary_10_1016_j_clinph_2019_10_011 crossref_primary_10_1016_j_jbi_2020_103466 crossref_primary_10_1109_TEVC_2023_3284867 crossref_primary_10_1007_s00521_020_04956_x crossref_primary_10_1109_ACCESS_2019_2892795 crossref_primary_10_1016_j_compbiomed_2021_104413 crossref_primary_10_1016_j_measurement_2019_05_022 crossref_primary_10_1109_ACCESS_2020_3001204 crossref_primary_10_1007_s41870_018_0184_2 crossref_primary_10_1016_j_asoc_2023_110241 crossref_primary_10_1007_s00500_023_07939_x crossref_primary_10_1186_s12859_020_03767_0 crossref_primary_10_32350_BSR_0401_04 crossref_primary_10_1007_s11042_024_18473_9 crossref_primary_10_1109_ACCESS_2018_2879848 crossref_primary_10_3390_a14070214 crossref_primary_10_4018_IJISMD_2017040105 crossref_primary_10_1007_s11042_024_18646_6 crossref_primary_10_1007_s42452_019_1243_4 crossref_primary_10_1155_2019_4253641 crossref_primary_10_1007_s00542_019_04426_y crossref_primary_10_1007_s10916_018_1073_8 crossref_primary_10_1371_journal_pone_0263171 crossref_primary_10_4015_S1016237221500204 crossref_primary_10_4018_IJSIR_2020070106 crossref_primary_10_1016_j_bspc_2020_102341 crossref_primary_10_3934_era_2025079 crossref_primary_10_1016_j_cpccr_2024_100278 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_primary_10_3390_healthcare9121652 crossref_primary_10_1007_s12652_020_02249_8 crossref_primary_10_1016_j_measurement_2019_02_042 crossref_primary_10_1016_j_cmpb_2019_105091 crossref_primary_10_1109_JBHI_2022_3199462 crossref_primary_10_1055_s_0045_1805044 crossref_primary_10_1007_s13042_022_01562_2 crossref_primary_10_1038_s41598_019_41973_w crossref_primary_10_1108_DTA_10_2019_0189 crossref_primary_10_1007_s10489_022_04157_0 crossref_primary_10_1038_s41598_021_89434_7 crossref_primary_10_1109_TIM_2018_2799059 crossref_primary_10_3233_JIFS_191461 crossref_primary_10_3233_IDT_210074 crossref_primary_10_3390_healthcare8020111 crossref_primary_10_1155_2020_8824625 crossref_primary_10_1007_s13369_019_03829_3 crossref_primary_10_1016_j_eswa_2018_09_056 crossref_primary_10_1007_s00500_022_07518_6 crossref_primary_10_3103_S0146411623060093 crossref_primary_10_1088_1742_6596_1848_1_012018 crossref_primary_10_1016_j_bspc_2023_105016 crossref_primary_10_1016_j_measurement_2023_113525 crossref_primary_10_1016_j_eswa_2020_113873 crossref_primary_10_1016_j_eswa_2024_124518 crossref_primary_10_1007_s10729_019_09498_w crossref_primary_10_1080_20476965_2021_1966324 crossref_primary_10_1016_j_imu_2021_100538 crossref_primary_10_1186_s12885_017_3877_1 crossref_primary_10_1111_exsy_13002 crossref_primary_10_1007_s42452_020_2575_9 crossref_primary_10_3390_s22010203 crossref_primary_10_3390_math8101814 crossref_primary_10_3233_IDT_210066 crossref_primary_10_3233_JIFS_230421 crossref_primary_10_1007_s10489_024_05267_7 crossref_primary_10_1007_s40815_019_00730_x crossref_primary_10_1016_j_foreco_2021_119828 crossref_primary_10_1109_ACCESS_2020_2992752 crossref_primary_10_1007_s12652_020_01919_x crossref_primary_10_1016_j_bbe_2019_03_001 crossref_primary_10_1007_s10661_019_7362_y crossref_primary_10_1109_TCYB_2021_3053944 crossref_primary_10_1007_s10586_024_04879_5 crossref_primary_10_3389_fpubh_2022_860396 |
Cites_doi | 10.1016/S0933-3657(99)00019-6 10.1016/j.engappai.2014.03.007 10.1016/j.asoc.2009.12.023 10.1016/S0933-3657(02)00086-6 10.1016/S0167-8655(03)00047-3 10.1016/j.artmed.2009.05.003 10.1109/TPAMI.2006.211 10.1002/asi.20042 10.1016/j.eswa.2010.10.063 10.1016/j.eswa.2013.08.044 10.1016/j.neucom.2010.06.018 10.1016/j.compbiomed.2009.11.003 10.1016/S0933-3657(98)00070-0 10.1016/j.eswa.2005.09.024 10.1148/radiology.143.1.7063747 10.1109/TPAMI.2004.71 10.1007/978-0-387-84858-7 10.1016/j.eswa.2014.12.025 10.1109/72.914517 10.1148/radiol.2291010898 10.1016/j.eswa.2011.01.120 10.1016/j.eswa.2010.10.041 10.1016/0304-3835(95)03916-K 10.1007/s10489-007-0073-z 10.1016/j.compbiomed.2006.05.003 10.1023/A:1010933404324 10.1016/j.patcog.2012.07.006 10.1016/j.asoc.2009.09.009 10.1145/1656274.1656278 10.1016/j.eswa.2013.01.040 10.1023/A:1009752403260 10.1016/j.eswa.2012.11.007 10.1016/S0933-3657(02)00028-3 10.1016/j.eswa.2009.09.019 10.1016/S0933-3657(99)00041-X 10.1016/j.eswa.2009.04.062 10.1016/j.patcog.2014.06.012 10.1016/j.eswa.2011.01.167 10.1097/00004424-197903000-00002 10.1613/jair.279 10.1109/ICONIP.2002.1202156 10.1016/j.amc.2014.04.039 10.1093/clinchem/39.4.561 |
ContentType | Journal Article |
Copyright | The Natural Computing Applications Forum 2015 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Natural Computing Applications Forum 2015 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00521-015-2103-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 763 |
ExternalDocumentID | 10_1007_s00521_015_2103_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB |
ID | FETCH-LOGICAL-c382t-c08a4c807d9c200cba2e9474e32a01291ec6f493236cc171545425eb56d1f2f73 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Sat Jul 26 00:56:01 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Tue Jul 01 01:46:41 EDT 2025 Fri Feb 21 02:34:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Genetic algorithm (GA) Logistic Regression Rotation Forest Support Vector Machine (SVM) Bayesian Network Decision Trees Radial Basis Function Networks (RBFN) Multilayer Perceptron (MLP) Breast cancer diagnosis Random Forest |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-c08a4c807d9c200cba2e9474e32a01291ec6f493236cc171545425eb56d1f2f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880745153 |
PQPubID | 2043988 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1880745153 crossref_citationtrail_10_1007_s00521_015_2103_9 crossref_primary_10_1007_s00521_015_2103_9 springer_journals_10_1007_s00521_015_2103_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2017 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Salzberg (CR45) 1997; 1 Peng, Yang, Jiang (CR39) 2009; 179 Stoean, Stoean (CR49) 2013; 40 Rodriguez, Kuncheva, Alonso (CR42) 2006; 28 Pena-Reyes, Sipper (CR38) 1999; 17 Müller, Mika, Rätsch, Tsuda, Schölkopf (CR34) 2001; 12 Lim, Chan (CR30) 2015; 42 Fan, Chang, Lin, Hsieh (CR11) 2011; 11 Du, Swamy (CR10) 2006 Zhao, Fu, Ji, Tang, Zhou (CR59) 2011; 38 Law, Figueiredo, Jain (CR28) 2004; 26 CR3 Marcano-Cedeño, Quintanilla-Domínguez, Andina (CR33) 2011; 38 Hassanien (CR21) 2004; 55 Haykin (CR23) 2005 CR48 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR16) 2009; 11 Breiman (CR5) 2001; 45 Fielding (CR12) 2007 Quinlan (CR41) 1996; 4 Witten, Frank (CR58) 2005 Obuchowski (CR36) 2003; 229 Jerez-Aragones, Gomez-Ruiz, Ramos-Jimenez, Munoz-Perez, Alba-Conejo (CR25) 2003; 27 Kim, Rattakorn (CR26) 2011; 38 Zheng, Yoon, Lam (CR60) 2014; 41 Chen, Yang, Wang, Liu, Li, Wen (CR8) 2014; 239 Chen, Yang, Liu, Liu (CR9) 2011; 38 Fogel, Wasson, Boughton (CR13) 1995; 96 Pawlak (CR37) 1982; 11 Sahan, Polat (CR44) 2007; 3 CR19 CR17 Gadaras, Mikhailov (CR14) 2009; 47 CR15 CR57 Hassan, Hossain, Begg, Ramamohanarao, Morsi (CR20) 2010; 40 CR56 Swets (CR50) 1979; 14 CR53 Hanley, McNeil (CR18) 1982; 143 CR52 Cevikalp, Triggs, Yavuz, Kucuk, Kucuk, Barkana (CR6) 2010; 73 Wang, Huang (CR55) 2006; 31 Vapnik (CR54) 2005 Abbas (CR1) 2001; 25 Maglogiannis, Zafiropoulos (CR32) 2009; 30 Abonyi, Szeifert (CR2) 2003; 24 Zweig, Campbell (CR61) 1993; 39 Liu, Ren (CR31) 2010; 10 Hastie, Tibshirani, Friedman (CR22) 2009 Nauck, Kruse (CR35) 1999; 16 CR24 Sebe, Cohen, Garg, Huang (CR46) 2005 Chang, Fan, Dzan (CR7) 2010; 37 Koloseni, Lampinen, Luukka (CR27) 2013; 40 Saez, Derrac, Luengo, Herrera (CR43) 2014; 47 Astudillo, Oommenb (CR4) 2013; 46 Tabakhi, Moradi, Akhlaghian (CR51) 2014; 32 Setiono (CR47) 2000; 18 Li, Liu (CR29) 2010; 37 Quinlan (CR40) 1993 NA Obuchowski (2103_CR36) 2003; 229 M Hall (2103_CR16) 2009; 11 DC Li (2103_CR29) 2010; 37 CA Pena-Reyes (2103_CR38) 1999; 17 MH Zweig (2103_CR61) 1993; 39 M Law (2103_CR28) 2004; 26 2103_CR3 S Sahan (2103_CR44) 2007; 3 2103_CR24 CJ Wang (2103_CR55) 2006; 31 R Stoean (2103_CR49) 2013; 40 KR Müller (2103_CR34) 2001; 12 J Abonyi (2103_CR2) 2003; 24 SB Kim (2103_CR26) 2011; 38 JA Swets (2103_CR50) 1979; 14 AH Fielding (2103_CR12) 2007 DB Fogel (2103_CR13) 1995; 96 X Liu (2103_CR31) 2010; 10 R Setiono (2103_CR47) 2000; 18 CA Astudillo (2103_CR4) 2013; 46 VN Vapnik (2103_CR54) 2005 H-L Chen (2103_CR9) 2011; 38 JA Hanley (2103_CR18) 1982; 143 S Tabakhi (2103_CR51) 2014; 32 HA Abbas (2103_CR1) 2001; 25 T Hastie (2103_CR22) 2009 Z Pawlak (2103_CR37) 1982; 11 D Nauck (2103_CR35) 1999; 16 I Maglogiannis (2103_CR32) 2009; 30 JR Quinlan (2103_CR40) 1993 AE Hassanien (2103_CR21) 2004; 55 M Zhao (2103_CR59) 2011; 38 MR Hassan (2103_CR20) 2010; 40 JR Quinlan (2103_CR41) 1996; 4 JA Saez (2103_CR43) 2014; 47 N Sebe (2103_CR46) 2005 CY Fan (2103_CR11) 2011; 11 L Breiman (2103_CR5) 2001; 45 H Cevikalp (2103_CR6) 2010; 73 2103_CR48 HL Chen (2103_CR8) 2014; 239 CK Lim (2103_CR30) 2015; 42 A Marcano-Cedeño (2103_CR33) 2011; 38 IH Witten (2103_CR58) 2005 J Jerez-Aragones (2103_CR25) 2003; 27 I Gadaras (2103_CR14) 2009; 47 B Zheng (2103_CR60) 2014; 41 SL Salzberg (2103_CR45) 1997; 1 2103_CR53 K-L Du (2103_CR10) 2006 2103_CR52 2103_CR57 2103_CR56 2103_CR17 D Koloseni (2103_CR27) 2013; 40 2103_CR15 S Haykin (2103_CR23) 2005 2103_CR19 L Peng (2103_CR39) 2009; 179 PC Chang (2103_CR7) 2010; 37 JJ Rodriguez (2103_CR42) 2006; 28 |
References_xml | – volume: 17 start-page: 131 year: 1999 end-page: 155 ident: CR38 article-title: A fuzzy-genetic approach to breast cancer diagnosis publication-title: Artif Intell Med doi: 10.1016/S0933-3657(99)00019-6 – year: 2006 ident: CR10 publication-title: Neural networks in a softcomputing framework – volume: 32 start-page: 112 year: 2014 end-page: 123 ident: CR51 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.03.007 – volume: 11 start-page: 632 year: 2011 end-page: 644 ident: CR11 article-title: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.12.023 – volume: 27 start-page: 45 issue: 1 year: 2003 end-page: 63 ident: CR25 article-title: A combined neural network and decision trees model for prognosis of breast cancer relapse publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00086-6 – volume: 24 start-page: 2195 issue: 14 year: 2003 end-page: 2207 ident: CR2 article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(03)00047-3 – volume: 47 start-page: 25 issue: 1 year: 2009 end-page: 41 ident: CR14 article-title: An interpretable fuzzy rule-based classification methodology for medical diagnosis publication-title: Artif Intell Med doi: 10.1016/j.artmed.2009.05.003 – volume: 28 start-page: 1619 issue: 10 year: 2006 end-page: 1630 ident: CR42 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.211 – volume: 55 start-page: 954 issue: 11 year: 2004 end-page: 962 ident: CR21 article-title: Rough set approach for attribute reduction and rule generation publication-title: J Am Soc Inf Sci Technol doi: 10.1002/asi.20042 – volume: 38 start-page: 5704 year: 2011 end-page: 5710 ident: CR26 article-title: Unsupervised feature selection using weighted principal components publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.063 – volume: 41 start-page: 1476 issue: 4 year: 2014 end-page: 1482 ident: CR60 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.044 – ident: CR19 – year: 2005 ident: CR23 publication-title: Neural networks: a comprehensive foundation – ident: CR15 – ident: CR57 – volume: 73 start-page: 3160 year: 2010 end-page: 3168 ident: CR6 article-title: Large margin classifiers based on affine hulls publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.018 – volume: 40 start-page: 240 year: 2010 end-page: 251 ident: CR20 article-title: Breast-cancer identification using HMM-fuzzy approach publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2009.11.003 – volume: 16 start-page: 149 year: 1999 end-page: 169 ident: CR35 article-title: Obtaining interpretable fuzzy classification rules from medical data publication-title: Artif Intell Med doi: 10.1016/S0933-3657(98)00070-0 – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: CR55 article-title: A GA-based feature selection and parameters optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.024 – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 ident: CR18 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 4 start-page: 77 year: 1996 end-page: 90 ident: CR41 article-title: Improved use of continuous attributes in C4.5 publication-title: J Artif Intell Res – volume: 26 start-page: 1154 issue: 9 year: 2004 end-page: 1166 ident: CR28 article-title: Simultaneous feature selection and clustering using mixture models publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.71 – volume: 179 start-page: 809 issue: 1 year: 2009 end-page: 819 ident: CR39 article-title: A novel feature selection approach for biomedical data classification publication-title: J Biomed Inform – year: 2005 ident: CR46 publication-title: Machine learning in computer vision – year: 2009 ident: CR22 publication-title: The elements of statistical learning: data mining, inference, and prediction doi: 10.1007/978-0-387-84858-7 – year: 2005 ident: CR54 publication-title: The nature of statistical learning theory – ident: CR53 – volume: 42 start-page: 3410 issue: 7 year: 2015 end-page: 3419 ident: CR30 article-title: A weighted inference engine based on interval-valued fuzzy relational theory publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.12.025 – volume: 12 start-page: 181 issue: 2 year: 2001 end-page: 202 ident: CR34 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans Neural Netw doi: 10.1109/72.914517 – year: 2005 ident: CR58 publication-title: Data mining: practical machine learning tools and techniques – volume: 229 start-page: 3 year: 2003 end-page: 8 ident: CR36 article-title: Receiver operating characteristic curves and their use in radiology publication-title: Radiology doi: 10.1148/radiol.2291010898 – ident: CR56 – volume: 39 start-page: 561 year: 1993 end-page: 577 ident: CR61 article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine publication-title: Clin Chem – volume: 38 start-page: 9014 issue: 7 year: 2011 end-page: 9022 ident: CR9 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.120 – volume: 239 start-page: 180 year: 2014 end-page: 197 ident: CR8 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl Math Comput – volume: 38 start-page: 5197 year: 2011 end-page: 5204 ident: CR59 article-title: Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.041 – volume: 96 start-page: 49 year: 1995 end-page: 53 ident: CR13 article-title: Evolving neural network for detecting breast cancer publication-title: Cancer Lett doi: 10.1016/0304-3835(95)03916-K – volume: 30 start-page: 24 issue: 1 year: 2009 end-page: 36 ident: CR32 article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers publication-title: Appl Intell doi: 10.1007/s10489-007-0073-z – volume: 3 start-page: 415 year: 2007 end-page: 423 ident: CR44 article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2006.05.003 – ident: CR48 – year: 2007 ident: CR12 publication-title: Cluster and classification techniques for the biosciences – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR5 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 46 start-page: 293 issue: 1 year: 2013 end-page: 304 ident: CR4 article-title: On achieving semi-supervised pattern recognition by utilizing tree-based SOMs publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.07.006 – volume: 10 start-page: 793 year: 2010 end-page: 805 ident: CR31 article-title: Novel artificial intelligent techniques via AFS theory: feature selection, concept categorization and characteristic description publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.09.009 – ident: CR3 – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 ident: CR16 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explor doi: 10.1145/1656274.1656278 – volume: 40 start-page: 4075 issue: 10 year: 2013 end-page: 4082 ident: CR27 article-title: Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.040 – volume: 1 start-page: 317 year: 1997 end-page: 328 ident: CR45 article-title: On comparing classifiers: pitfalls to avoid and a recommended approach publication-title: Data Min Knowl Disc doi: 10.1023/A:1009752403260 – volume: 40 start-page: 2677 year: 2013 end-page: 2686 ident: CR49 article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.11.007 – ident: CR52 – ident: CR17 – volume: 25 start-page: 265 year: 2001 end-page: 281 ident: CR1 article-title: An evolutionary artificial neural network approach for breast cancer diagnosis publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00028-3 – volume: 37 start-page: 3104 year: 2010 end-page: 3110 ident: CR29 article-title: A class possibility based kernel to increase classification accuracy for small data sets using support vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.019 – volume: 18 start-page: 205 issue: 3 year: 2000 end-page: 217 ident: CR47 article-title: Generating concise and accurate classification rules for breast cancer diagnosis publication-title: Artif Intell Med doi: 10.1016/S0933-3657(99)00041-X – year: 1993 ident: CR40 publication-title: C4.5: programs for machine learning – volume: 37 start-page: 214 year: 2010 end-page: 225 ident: CR7 article-title: A CBR-based fuzzy decision tree approach for database classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.062 – volume: 47 start-page: 3941 issue: 12 year: 2014 end-page: 3948 ident: CR43 article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.06.012 – volume: 11 start-page: 341 issue: 5 year: 1982 end-page: 356 ident: CR37 article-title: Rough sets publication-title: Int J Parallel Prog – volume: 38 start-page: 9573 issue: 11 year: 2011 end-page: 9579 ident: CR33 article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.167 – ident: CR24 – volume: 14 start-page: 109 year: 1979 end-page: 121 ident: CR50 article-title: ROC analysis applied to the evaluation of medical imaging techniques publication-title: Invest Radiol doi: 10.1097/00004424-197903000-00002 – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 2103_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.120 – volume: 14 start-page: 109 year: 1979 ident: 2103_CR50 publication-title: Invest Radiol doi: 10.1097/00004424-197903000-00002 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 2103_CR16 publication-title: SIGKDD Explor doi: 10.1145/1656274.1656278 – volume: 30 start-page: 24 issue: 1 year: 2009 ident: 2103_CR32 publication-title: Appl Intell doi: 10.1007/s10489-007-0073-z – volume: 179 start-page: 809 issue: 1 year: 2009 ident: 2103_CR39 publication-title: J Biomed Inform – volume: 32 start-page: 112 year: 2014 ident: 2103_CR51 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.03.007 – volume: 17 start-page: 131 year: 1999 ident: 2103_CR38 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(99)00019-6 – volume: 26 start-page: 1154 issue: 9 year: 2004 ident: 2103_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.71 – volume: 1 start-page: 317 year: 1997 ident: 2103_CR45 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009752403260 – volume: 4 start-page: 77 year: 1996 ident: 2103_CR41 publication-title: J Artif Intell Res doi: 10.1613/jair.279 – volume: 11 start-page: 632 year: 2011 ident: 2103_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.12.023 – volume: 46 start-page: 293 issue: 1 year: 2013 ident: 2103_CR4 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.07.006 – volume-title: Neural networks in a softcomputing framework year: 2006 ident: 2103_CR10 – volume: 40 start-page: 4075 issue: 10 year: 2013 ident: 2103_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.040 – volume: 38 start-page: 9573 issue: 11 year: 2011 ident: 2103_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.167 – volume: 42 start-page: 3410 issue: 7 year: 2015 ident: 2103_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.12.025 – ident: 2103_CR3 doi: 10.1109/ICONIP.2002.1202156 – volume: 28 start-page: 1619 issue: 10 year: 2006 ident: 2103_CR42 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.211 – volume: 41 start-page: 1476 issue: 4 year: 2014 ident: 2103_CR60 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.044 – volume: 55 start-page: 954 issue: 11 year: 2004 ident: 2103_CR21 publication-title: J Am Soc Inf Sci Technol doi: 10.1002/asi.20042 – volume-title: Cluster and classification techniques for the biosciences year: 2007 ident: 2103_CR12 – volume: 11 start-page: 341 issue: 5 year: 1982 ident: 2103_CR37 publication-title: Int J Parallel Prog – ident: 2103_CR17 – volume: 40 start-page: 2677 year: 2013 ident: 2103_CR49 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.11.007 – volume: 37 start-page: 3104 year: 2010 ident: 2103_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.019 – volume: 45 start-page: 5 year: 2001 ident: 2103_CR5 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 73 start-page: 3160 year: 2010 ident: 2103_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.018 – ident: 2103_CR48 – volume: 229 start-page: 3 year: 2003 ident: 2103_CR36 publication-title: Radiology doi: 10.1148/radiol.2291010898 – volume-title: Machine learning in computer vision year: 2005 ident: 2103_CR46 – volume: 38 start-page: 5197 year: 2011 ident: 2103_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.041 – ident: 2103_CR52 – volume-title: C4.5: programs for machine learning year: 1993 ident: 2103_CR40 – ident: 2103_CR56 – volume: 40 start-page: 240 year: 2010 ident: 2103_CR20 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2009.11.003 – volume: 18 start-page: 205 issue: 3 year: 2000 ident: 2103_CR47 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(99)00041-X – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 2103_CR22 doi: 10.1007/978-0-387-84858-7 – volume: 31 start-page: 231 year: 2006 ident: 2103_CR55 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.024 – volume: 24 start-page: 2195 issue: 14 year: 2003 ident: 2103_CR2 publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(03)00047-3 – ident: 2103_CR24 – volume: 3 start-page: 415 year: 2007 ident: 2103_CR44 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2006.05.003 – ident: 2103_CR57 – volume-title: Neural networks: a comprehensive foundation year: 2005 ident: 2103_CR23 – volume: 12 start-page: 181 issue: 2 year: 2001 ident: 2103_CR34 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.914517 – volume-title: The nature of statistical learning theory year: 2005 ident: 2103_CR54 – volume: 25 start-page: 265 year: 2001 ident: 2103_CR1 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00028-3 – volume: 10 start-page: 793 year: 2010 ident: 2103_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.09.009 – volume: 239 start-page: 180 year: 2014 ident: 2103_CR8 publication-title: Appl Math Comput doi: 10.1016/j.amc.2014.04.039 – volume: 38 start-page: 5704 year: 2011 ident: 2103_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.063 – volume: 96 start-page: 49 year: 1995 ident: 2103_CR13 publication-title: Cancer Lett doi: 10.1016/0304-3835(95)03916-K – volume: 16 start-page: 149 year: 1999 ident: 2103_CR35 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(98)00070-0 – ident: 2103_CR15 – ident: 2103_CR53 – volume: 39 start-page: 561 year: 1993 ident: 2103_CR61 publication-title: Clin Chem doi: 10.1093/clinchem/39.4.561 – volume: 47 start-page: 3941 issue: 12 year: 2014 ident: 2103_CR43 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.06.012 – ident: 2103_CR19 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 2103_CR18 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 27 start-page: 45 issue: 1 year: 2003 ident: 2103_CR25 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00086-6 – volume: 47 start-page: 25 issue: 1 year: 2009 ident: 2103_CR14 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2009.05.003 – volume: 37 start-page: 214 year: 2010 ident: 2103_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.062 – volume-title: Data mining: practical machine learning tools and techniques year: 2005 ident: 2103_CR58 |
SSID | ssj0004685 |
Score | 2.5568137 |
Snippet | Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 753 |
SubjectTerms | Accuracy Artificial Intelligence Breast cancer Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data mining Data Mining and Knowledge Discovery Decision making Diagnosis Feature extraction Genetic algorithms Image Processing and Computer Vision Medical diagnosis Original Article Probability and Statistics in Computer Science Rotation |
Title | Breast cancer diagnosis using GA feature selection and Rotation Forest |
URI | https://link.springer.com/article/10.1007/s00521-015-2103-9 https://www.proquest.com/docview/1880745153 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66e_HiW1xdlxw8KYGm6SM9troPFBZZXFhPJU8RpCvb-v9N0nZdRQVPoXSawzw6M5kvMwBcCiNVKThFUnoUGQ_BETPPCIca-5gThpUDyE6jyTy4W4SL5h532aLd25Kk-1OvL7vZE0yb-obIpCkEJdugG9rU3Sjx3E83LkO6OZwmbbGQnoC0pcyftvjqjD4jzG9FUedrRvtgtwkSYVpL9QBsqeIQ7LUDGGBjj0dglFlIeQWFFd0Kyho291JCi2Z_huMUauUad8LSjbsxMoCskHC2rAvw0A7mLKtjMB8NH28mqBmMgAShfoWER1kgqBfLRBgtF5z5KgniQBGf2YMlrESkAxOZkUgIHNsoyZim4mEksfZ1TE5Ap1gW6hRAJnwdSqo4MzRMSxozgrlmMZFUCiJ7wGs5lIuma7gdXvGar_sdO6bmhqm5ZWqe9MDV-pO3umXGX8T9lu15Yz1lbnvExYGJtEgPXLei2Hj922Zn_6I-Bzu-9dEOhtMHnWr1ri5MhFHxAeim2W02suv46X5o1mw4fZgNnKZ9ACnNyvw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGACWartPJyxIEqB0gG1UjfLT4SEUtSE_4_tJKUgQGKM4ni48-W-8313B8C5clrVSjKkdZch5yEkEu4Z4dhigiUV2ASC7CgZTKL7aTyt67iLhu3epCTDn3pR7OZvMH3oGyMXplCUrYI1hwWY53FNSG-pGDLM4XRhi6f0RLRJZf60xVdn9IkwvyVFg6_pb4PNGiTCXqXVHbBi8l2w1QxggLU97oH-laeUl1B51c2hrmhzLwX0bPZneNuD1oTGnbAI426cDqDINXyaVQl46AdzFuU-mPRvxtcDVA9GQIoyUiLVZSJSrJvqTLlTrqQgJovSyFAi_MUSNiqxkUNmNFEKpx4lOdM0Mk40tsSm9AC08lluDgEUithYMyOFWyOsZqmgWFqRUs20oroNuo2EuKq7hvvhFa980e84CJU7oXIvVJ61wcXik7eqZcZfizuN2HltPQX3PeLSyCEt2gaXjSqWXv-22dG_Vp-B9cH4cciHd6OHY7BBvL8OlJwOaJXzd3Pi0EYpT8Pp-gDbFMlP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA6cQNGWpI_0OB5lPDQhxKTdojQPhIS6aS3_nyRtx0CAxLGqm4Pt1Hb8xR8Ap9JaVcmMIaV6DNkIkSFhnxEODSY4owJrD5AdRoNRcDcOxzXPadGg3ZuWZHWnwU1pysvuVJnu_OKbO810ZXCIbMlCUbIMVuzfGDu3HpH-wsVIz8lpSxgH7wlo09b8aYmvgekz2_zWIPVxJ90E63XCCPuVhbfAks63wUZDxgDrvbkD0gsHLy-hdGacQVVB6F4L6JDtL_CmD432Qzxh4alvrD2gyBV8mlTNeOhIOotyF4zS6-fLAapJEpCkjJRI9pgIJOvFKpHW42UmiE6CONCUCHfIhLWMTGCzNBpJiWOXMdltqrMwUtgQE9M90Monud4HUEhiQsV0JqyMMIrFguLMiJgqpiRVbdBrNMRlPUHcEVm88fnsY69UbpXKnVJ50gZn80-m1fiMv4Q7jdp5vZMK7ubFxYHNumgbnDemWHj922IH_5I-AauPVyl_uB3eH4I14kK3R-d0QKucvesjm3iU2bF3rg_PeM2L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+using+GA+feature+selection+and+Rotation+Forest&rft.jtitle=Neural+computing+%26+applications&rft.au=Ali%C4%8Dkovi%C4%87%2C+Emina&rft.au=Subasi%2C+Abdulhamit&rft.date=2017-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=4&rft.spage=753&rft.epage=763&rft_id=info:doi/10.1007%2Fs00521-015-2103-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |