Breast cancer diagnosis using GA feature selection and Rotation Forest

Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 28; no. 4; pp. 753 - 763
Main Authors Aličković, Emina, Subasi, Abdulhamit
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F -measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer.
AbstractList Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F -measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer.
Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F-measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer.
Author Subasi, Abdulhamit
Aličković, Emina
Author_xml – sequence: 1
  givenname: Emina
  surname: Aličković
  fullname: Aličković, Emina
  organization: Faculty of Engineering and Information Technologies, International Burch University
– sequence: 2
  givenname: Abdulhamit
  surname: Subasi
  fullname: Subasi, Abdulhamit
  email: absubasi@effatuniversity.edu.sa
  organization: Computer Science Department, College of Engineering, Effat University
BookMark eNp9kM1LAzEQxYNUsFX_AG8Bz6sz-diPYy22CgVB9BzSbLZsqUlNsgf_e1PXgwh6GoZ5vzePNyMT550l5ArhBgGq2wggGRaAsmAIvGhOyBQF5wUHWU_IFBqRr6XgZ2QW4w4ARFnLKVneBatjokY7YwNte711PvaRDrF3W7qa087qNARLo91bk3rvqHYtffZJfy1LH2xMF-S00_toL7_nOXld3r8sHor10-pxMV8XhtcsFQZqLUwNVdsYBmA2mtlGVMJypgFZg9aUnWg446UxWKEUUjBpN7JssWNdxc_J9eh7CP59yI_Vzg_B5ZcK6-wrJEqeVdWoMsHHGGynTD_GTUH3e4WgjqWpsTSVS1PH0lSTSfxFHkL_psPHvwwbmZi1bmvDj0x_Qp-oBX7q
CitedBy_id crossref_primary_10_1007_s00500_021_06498_3
crossref_primary_10_1186_s12911_023_02142_2
crossref_primary_10_1007_s11045_023_00880_0
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1016_j_bspc_2019_101789
crossref_primary_10_1080_21681163_2020_1730974
crossref_primary_10_1016_j_procs_2024_03_282
crossref_primary_10_1016_j_cmpb_2021_106451
crossref_primary_10_1186_s12859_020_3483_0
crossref_primary_10_1016_j_cmpb_2017_10_024
crossref_primary_10_1155_2018_7538204
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_1371_journal_pone_0274263
crossref_primary_10_1371_journal_pone_0314523
crossref_primary_10_1007_s10489_020_01725_0
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1007_s00500_020_05321_9
crossref_primary_10_3934_mbe_2022373
crossref_primary_10_1016_j_knosys_2021_107638
crossref_primary_10_3390_s21082855
crossref_primary_10_1007_s42235_024_00515_5
crossref_primary_10_1177_20552076241297002
crossref_primary_10_1055_s_0042_1751043
crossref_primary_10_1007_s00521_022_07230_4
crossref_primary_10_1080_21681163_2020_1811159
crossref_primary_10_1007_s11227_022_04606_0
crossref_primary_10_4108_eetpht_9_3533
crossref_primary_10_1109_ACCESS_2019_2895636
crossref_primary_10_1080_21681163_2023_2212086
crossref_primary_10_1002_jbio_202200231
crossref_primary_10_4018_IJSI_301221
crossref_primary_10_1007_s00521_022_07950_7
crossref_primary_10_32604_iasc_2022_020662
crossref_primary_10_1016_j_eswa_2020_114103
crossref_primary_10_1016_j_imu_2020_100459
crossref_primary_10_1080_08839514_2022_2031820
crossref_primary_10_3390_e25081223
crossref_primary_10_1109_ACCESS_2020_2976822
crossref_primary_10_1002_ima_22924
crossref_primary_10_1111_coin_12163
crossref_primary_10_4108_eetcasa_v8i2_2788
crossref_primary_10_1039_C8AN00189H
crossref_primary_10_1007_s00521_023_08297_3
crossref_primary_10_3390_bdcc6010013
crossref_primary_10_1097_MD_0000000000028697
crossref_primary_10_5812_jjnpp_142058
crossref_primary_10_1002_cpe_5467
crossref_primary_10_1016_j_obmed_2020_100270
crossref_primary_10_2139_ssrn_4149525
crossref_primary_10_1111_exsy_13038
crossref_primary_10_32604_cmc_2021_015326
crossref_primary_10_1038_s41598_023_33525_0
crossref_primary_10_1016_j_bspc_2018_12_011
crossref_primary_10_1007_s00432_023_05422_6
crossref_primary_10_1016_j_swevo_2024_101618
crossref_primary_10_12677_CSA_2019_912255
crossref_primary_10_1007_s42452_021_04148_9
crossref_primary_10_1080_0952813X_2021_1938698
crossref_primary_10_1016_j_swevo_2021_100925
crossref_primary_10_3390_healthcare10091759
crossref_primary_10_1007_s11277_023_10378_4
crossref_primary_10_1016_j_bspc_2021_102705
crossref_primary_10_1007_s00521_022_07290_6
crossref_primary_10_1007_s11042_023_17044_8
crossref_primary_10_2196_27304
crossref_primary_10_32604_cmc_2021_015291
crossref_primary_10_1590_1678_4324_2019180486
crossref_primary_10_1007_s40799_021_00470_4
crossref_primary_10_3390_app11146574
crossref_primary_10_17694_bajece_502156
crossref_primary_10_1109_ACCESS_2019_2932505
crossref_primary_10_1155_2022_1367366
crossref_primary_10_21078_JSSI_2018_447_12
crossref_primary_10_1016_j_jbi_2020_103591
crossref_primary_10_1080_0952813X_2021_1960627
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_1007_s41688_020_00039_x
crossref_primary_10_1007_s44174_024_00262_5
crossref_primary_10_1155_2022_1820777
crossref_primary_10_1016_j_artmed_2020_101884
crossref_primary_10_3390_e25081128
crossref_primary_10_1016_j_asoc_2018_10_036
crossref_primary_10_1109_ACCESS_2021_3055806
crossref_primary_10_1016_j_patrec_2018_11_004
crossref_primary_10_1590_1516_3180_2024_0080_03072024
crossref_primary_10_1016_j_eswa_2018_12_051
crossref_primary_10_1007_s12065_023_00819_1
crossref_primary_10_1155_2019_5176705
crossref_primary_10_32628_CSEIT2410274
crossref_primary_10_1007_s11517_020_02187_9
crossref_primary_10_1016_j_clinph_2019_10_011
crossref_primary_10_1016_j_jbi_2020_103466
crossref_primary_10_1109_TEVC_2023_3284867
crossref_primary_10_1007_s00521_020_04956_x
crossref_primary_10_1109_ACCESS_2019_2892795
crossref_primary_10_1016_j_compbiomed_2021_104413
crossref_primary_10_1016_j_measurement_2019_05_022
crossref_primary_10_1109_ACCESS_2020_3001204
crossref_primary_10_1007_s41870_018_0184_2
crossref_primary_10_1016_j_asoc_2023_110241
crossref_primary_10_1007_s00500_023_07939_x
crossref_primary_10_1186_s12859_020_03767_0
crossref_primary_10_32350_BSR_0401_04
crossref_primary_10_1007_s11042_024_18473_9
crossref_primary_10_1109_ACCESS_2018_2879848
crossref_primary_10_3390_a14070214
crossref_primary_10_4018_IJISMD_2017040105
crossref_primary_10_1007_s11042_024_18646_6
crossref_primary_10_1007_s42452_019_1243_4
crossref_primary_10_1155_2019_4253641
crossref_primary_10_1007_s00542_019_04426_y
crossref_primary_10_1007_s10916_018_1073_8
crossref_primary_10_1371_journal_pone_0263171
crossref_primary_10_4015_S1016237221500204
crossref_primary_10_4018_IJSIR_2020070106
crossref_primary_10_1016_j_bspc_2020_102341
crossref_primary_10_3934_era_2025079
crossref_primary_10_1016_j_cpccr_2024_100278
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_primary_10_3390_healthcare9121652
crossref_primary_10_1007_s12652_020_02249_8
crossref_primary_10_1016_j_measurement_2019_02_042
crossref_primary_10_1016_j_cmpb_2019_105091
crossref_primary_10_1109_JBHI_2022_3199462
crossref_primary_10_1055_s_0045_1805044
crossref_primary_10_1007_s13042_022_01562_2
crossref_primary_10_1038_s41598_019_41973_w
crossref_primary_10_1108_DTA_10_2019_0189
crossref_primary_10_1007_s10489_022_04157_0
crossref_primary_10_1038_s41598_021_89434_7
crossref_primary_10_1109_TIM_2018_2799059
crossref_primary_10_3233_JIFS_191461
crossref_primary_10_3233_IDT_210074
crossref_primary_10_3390_healthcare8020111
crossref_primary_10_1155_2020_8824625
crossref_primary_10_1007_s13369_019_03829_3
crossref_primary_10_1016_j_eswa_2018_09_056
crossref_primary_10_1007_s00500_022_07518_6
crossref_primary_10_3103_S0146411623060093
crossref_primary_10_1088_1742_6596_1848_1_012018
crossref_primary_10_1016_j_bspc_2023_105016
crossref_primary_10_1016_j_measurement_2023_113525
crossref_primary_10_1016_j_eswa_2020_113873
crossref_primary_10_1016_j_eswa_2024_124518
crossref_primary_10_1007_s10729_019_09498_w
crossref_primary_10_1080_20476965_2021_1966324
crossref_primary_10_1016_j_imu_2021_100538
crossref_primary_10_1186_s12885_017_3877_1
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1007_s42452_020_2575_9
crossref_primary_10_3390_s22010203
crossref_primary_10_3390_math8101814
crossref_primary_10_3233_IDT_210066
crossref_primary_10_3233_JIFS_230421
crossref_primary_10_1007_s10489_024_05267_7
crossref_primary_10_1007_s40815_019_00730_x
crossref_primary_10_1016_j_foreco_2021_119828
crossref_primary_10_1109_ACCESS_2020_2992752
crossref_primary_10_1007_s12652_020_01919_x
crossref_primary_10_1016_j_bbe_2019_03_001
crossref_primary_10_1007_s10661_019_7362_y
crossref_primary_10_1109_TCYB_2021_3053944
crossref_primary_10_1007_s10586_024_04879_5
crossref_primary_10_3389_fpubh_2022_860396
Cites_doi 10.1016/S0933-3657(99)00019-6
10.1016/j.engappai.2014.03.007
10.1016/j.asoc.2009.12.023
10.1016/S0933-3657(02)00086-6
10.1016/S0167-8655(03)00047-3
10.1016/j.artmed.2009.05.003
10.1109/TPAMI.2006.211
10.1002/asi.20042
10.1016/j.eswa.2010.10.063
10.1016/j.eswa.2013.08.044
10.1016/j.neucom.2010.06.018
10.1016/j.compbiomed.2009.11.003
10.1016/S0933-3657(98)00070-0
10.1016/j.eswa.2005.09.024
10.1148/radiology.143.1.7063747
10.1109/TPAMI.2004.71
10.1007/978-0-387-84858-7
10.1016/j.eswa.2014.12.025
10.1109/72.914517
10.1148/radiol.2291010898
10.1016/j.eswa.2011.01.120
10.1016/j.eswa.2010.10.041
10.1016/0304-3835(95)03916-K
10.1007/s10489-007-0073-z
10.1016/j.compbiomed.2006.05.003
10.1023/A:1010933404324
10.1016/j.patcog.2012.07.006
10.1016/j.asoc.2009.09.009
10.1145/1656274.1656278
10.1016/j.eswa.2013.01.040
10.1023/A:1009752403260
10.1016/j.eswa.2012.11.007
10.1016/S0933-3657(02)00028-3
10.1016/j.eswa.2009.09.019
10.1016/S0933-3657(99)00041-X
10.1016/j.eswa.2009.04.062
10.1016/j.patcog.2014.06.012
10.1016/j.eswa.2011.01.167
10.1097/00004424-197903000-00002
10.1613/jair.279
10.1109/ICONIP.2002.1202156
10.1016/j.amc.2014.04.039
10.1093/clinchem/39.4.561
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2015
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2015
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-015-2103-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 763
ExternalDocumentID 10_1007_s00521_015_2103_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
PQGLB
ID FETCH-LOGICAL-c382t-c08a4c807d9c200cba2e9474e32a01291ec6f493236cc171545425eb56d1f2f73
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sat Jul 26 00:56:01 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Tue Jul 01 01:46:41 EDT 2025
Fri Feb 21 02:34:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Genetic algorithm (GA)
Logistic Regression
Rotation Forest
Support Vector Machine (SVM)
Bayesian Network
Decision Trees
Radial Basis Function Networks (RBFN)
Multilayer Perceptron (MLP)
Breast cancer diagnosis
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-c08a4c807d9c200cba2e9474e32a01291ec6f493236cc171545425eb56d1f2f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880745153
PQPubID 2043988
PageCount 11
ParticipantIDs proquest_journals_1880745153
crossref_citationtrail_10_1007_s00521_015_2103_9
crossref_primary_10_1007_s00521_015_2103_9
springer_journals_10_1007_s00521_015_2103_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Salzberg (CR45) 1997; 1
Peng, Yang, Jiang (CR39) 2009; 179
Stoean, Stoean (CR49) 2013; 40
Rodriguez, Kuncheva, Alonso (CR42) 2006; 28
Pena-Reyes, Sipper (CR38) 1999; 17
Müller, Mika, Rätsch, Tsuda, Schölkopf (CR34) 2001; 12
Lim, Chan (CR30) 2015; 42
Fan, Chang, Lin, Hsieh (CR11) 2011; 11
Du, Swamy (CR10) 2006
Zhao, Fu, Ji, Tang, Zhou (CR59) 2011; 38
Law, Figueiredo, Jain (CR28) 2004; 26
CR3
Marcano-Cedeño, Quintanilla-Domínguez, Andina (CR33) 2011; 38
Hassanien (CR21) 2004; 55
Haykin (CR23) 2005
CR48
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR16) 2009; 11
Breiman (CR5) 2001; 45
Fielding (CR12) 2007
Quinlan (CR41) 1996; 4
Witten, Frank (CR58) 2005
Obuchowski (CR36) 2003; 229
Jerez-Aragones, Gomez-Ruiz, Ramos-Jimenez, Munoz-Perez, Alba-Conejo (CR25) 2003; 27
Kim, Rattakorn (CR26) 2011; 38
Zheng, Yoon, Lam (CR60) 2014; 41
Chen, Yang, Wang, Liu, Li, Wen (CR8) 2014; 239
Chen, Yang, Liu, Liu (CR9) 2011; 38
Fogel, Wasson, Boughton (CR13) 1995; 96
Pawlak (CR37) 1982; 11
Sahan, Polat (CR44) 2007; 3
CR19
CR17
Gadaras, Mikhailov (CR14) 2009; 47
CR15
CR57
Hassan, Hossain, Begg, Ramamohanarao, Morsi (CR20) 2010; 40
CR56
Swets (CR50) 1979; 14
CR53
Hanley, McNeil (CR18) 1982; 143
CR52
Cevikalp, Triggs, Yavuz, Kucuk, Kucuk, Barkana (CR6) 2010; 73
Wang, Huang (CR55) 2006; 31
Vapnik (CR54) 2005
Abbas (CR1) 2001; 25
Maglogiannis, Zafiropoulos (CR32) 2009; 30
Abonyi, Szeifert (CR2) 2003; 24
Zweig, Campbell (CR61) 1993; 39
Liu, Ren (CR31) 2010; 10
Hastie, Tibshirani, Friedman (CR22) 2009
Nauck, Kruse (CR35) 1999; 16
CR24
Sebe, Cohen, Garg, Huang (CR46) 2005
Chang, Fan, Dzan (CR7) 2010; 37
Koloseni, Lampinen, Luukka (CR27) 2013; 40
Saez, Derrac, Luengo, Herrera (CR43) 2014; 47
Astudillo, Oommenb (CR4) 2013; 46
Tabakhi, Moradi, Akhlaghian (CR51) 2014; 32
Setiono (CR47) 2000; 18
Li, Liu (CR29) 2010; 37
Quinlan (CR40) 1993
NA Obuchowski (2103_CR36) 2003; 229
M Hall (2103_CR16) 2009; 11
DC Li (2103_CR29) 2010; 37
CA Pena-Reyes (2103_CR38) 1999; 17
MH Zweig (2103_CR61) 1993; 39
M Law (2103_CR28) 2004; 26
2103_CR3
S Sahan (2103_CR44) 2007; 3
2103_CR24
CJ Wang (2103_CR55) 2006; 31
R Stoean (2103_CR49) 2013; 40
KR Müller (2103_CR34) 2001; 12
J Abonyi (2103_CR2) 2003; 24
SB Kim (2103_CR26) 2011; 38
JA Swets (2103_CR50) 1979; 14
AH Fielding (2103_CR12) 2007
DB Fogel (2103_CR13) 1995; 96
X Liu (2103_CR31) 2010; 10
R Setiono (2103_CR47) 2000; 18
CA Astudillo (2103_CR4) 2013; 46
VN Vapnik (2103_CR54) 2005
H-L Chen (2103_CR9) 2011; 38
JA Hanley (2103_CR18) 1982; 143
S Tabakhi (2103_CR51) 2014; 32
HA Abbas (2103_CR1) 2001; 25
T Hastie (2103_CR22) 2009
Z Pawlak (2103_CR37) 1982; 11
D Nauck (2103_CR35) 1999; 16
I Maglogiannis (2103_CR32) 2009; 30
JR Quinlan (2103_CR40) 1993
AE Hassanien (2103_CR21) 2004; 55
M Zhao (2103_CR59) 2011; 38
MR Hassan (2103_CR20) 2010; 40
JR Quinlan (2103_CR41) 1996; 4
JA Saez (2103_CR43) 2014; 47
N Sebe (2103_CR46) 2005
CY Fan (2103_CR11) 2011; 11
L Breiman (2103_CR5) 2001; 45
H Cevikalp (2103_CR6) 2010; 73
2103_CR48
HL Chen (2103_CR8) 2014; 239
CK Lim (2103_CR30) 2015; 42
A Marcano-Cedeño (2103_CR33) 2011; 38
IH Witten (2103_CR58) 2005
J Jerez-Aragones (2103_CR25) 2003; 27
I Gadaras (2103_CR14) 2009; 47
B Zheng (2103_CR60) 2014; 41
SL Salzberg (2103_CR45) 1997; 1
2103_CR53
K-L Du (2103_CR10) 2006
2103_CR52
2103_CR57
2103_CR56
2103_CR17
D Koloseni (2103_CR27) 2013; 40
2103_CR15
S Haykin (2103_CR23) 2005
2103_CR19
L Peng (2103_CR39) 2009; 179
PC Chang (2103_CR7) 2010; 37
JJ Rodriguez (2103_CR42) 2006; 28
References_xml – volume: 17
  start-page: 131
  year: 1999
  end-page: 155
  ident: CR38
  article-title: A fuzzy-genetic approach to breast cancer diagnosis
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(99)00019-6
– year: 2006
  ident: CR10
  publication-title: Neural networks in a softcomputing framework
– volume: 32
  start-page: 112
  year: 2014
  end-page: 123
  ident: CR51
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.03.007
– volume: 11
  start-page: 632
  year: 2011
  end-page: 644
  ident: CR11
  article-title: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.12.023
– volume: 27
  start-page: 45
  issue: 1
  year: 2003
  end-page: 63
  ident: CR25
  article-title: A combined neural network and decision trees model for prognosis of breast cancer relapse
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00086-6
– volume: 24
  start-page: 2195
  issue: 14
  year: 2003
  end-page: 2207
  ident: CR2
  article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(03)00047-3
– volume: 47
  start-page: 25
  issue: 1
  year: 2009
  end-page: 41
  ident: CR14
  article-title: An interpretable fuzzy rule-based classification methodology for medical diagnosis
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.05.003
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  end-page: 1630
  ident: CR42
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.211
– volume: 55
  start-page: 954
  issue: 11
  year: 2004
  end-page: 962
  ident: CR21
  article-title: Rough set approach for attribute reduction and rule generation
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.20042
– volume: 38
  start-page: 5704
  year: 2011
  end-page: 5710
  ident: CR26
  article-title: Unsupervised feature selection using weighted principal components
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.063
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  end-page: 1482
  ident: CR60
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.044
– ident: CR19
– year: 2005
  ident: CR23
  publication-title: Neural networks: a comprehensive foundation
– ident: CR15
– ident: CR57
– volume: 73
  start-page: 3160
  year: 2010
  end-page: 3168
  ident: CR6
  article-title: Large margin classifiers based on affine hulls
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.018
– volume: 40
  start-page: 240
  year: 2010
  end-page: 251
  ident: CR20
  article-title: Breast-cancer identification using HMM-fuzzy approach
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2009.11.003
– volume: 16
  start-page: 149
  year: 1999
  end-page: 169
  ident: CR35
  article-title: Obtaining interpretable fuzzy classification rules from medical data
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(98)00070-0
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: CR55
  article-title: A GA-based feature selection and parameters optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.024
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  ident: CR18
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 4
  start-page: 77
  year: 1996
  end-page: 90
  ident: CR41
  article-title: Improved use of continuous attributes in C4.5
  publication-title: J Artif Intell Res
– volume: 26
  start-page: 1154
  issue: 9
  year: 2004
  end-page: 1166
  ident: CR28
  article-title: Simultaneous feature selection and clustering using mixture models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.71
– volume: 179
  start-page: 809
  issue: 1
  year: 2009
  end-page: 819
  ident: CR39
  article-title: A novel feature selection approach for biomedical data classification
  publication-title: J Biomed Inform
– year: 2005
  ident: CR46
  publication-title: Machine learning in computer vision
– year: 2009
  ident: CR22
  publication-title: The elements of statistical learning: data mining, inference, and prediction
  doi: 10.1007/978-0-387-84858-7
– year: 2005
  ident: CR54
  publication-title: The nature of statistical learning theory
– ident: CR53
– volume: 42
  start-page: 3410
  issue: 7
  year: 2015
  end-page: 3419
  ident: CR30
  article-title: A weighted inference engine based on interval-valued fuzzy relational theory
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.12.025
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  end-page: 202
  ident: CR34
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.914517
– year: 2005
  ident: CR58
  publication-title: Data mining: practical machine learning tools and techniques
– volume: 229
  start-page: 3
  year: 2003
  end-page: 8
  ident: CR36
  article-title: Receiver operating characteristic curves and their use in radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2291010898
– ident: CR56
– volume: 39
  start-page: 561
  year: 1993
  end-page: 577
  ident: CR61
  article-title: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clin Chem
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  end-page: 9022
  ident: CR9
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.120
– volume: 239
  start-page: 180
  year: 2014
  end-page: 197
  ident: CR8
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl Math Comput
– volume: 38
  start-page: 5197
  year: 2011
  end-page: 5204
  ident: CR59
  article-title: Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.041
– volume: 96
  start-page: 49
  year: 1995
  end-page: 53
  ident: CR13
  article-title: Evolving neural network for detecting breast cancer
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(95)03916-K
– volume: 30
  start-page: 24
  issue: 1
  year: 2009
  end-page: 36
  ident: CR32
  article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers
  publication-title: Appl Intell
  doi: 10.1007/s10489-007-0073-z
– volume: 3
  start-page: 415
  year: 2007
  end-page: 423
  ident: CR44
  article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2006.05.003
– ident: CR48
– year: 2007
  ident: CR12
  publication-title: Cluster and classification techniques for the biosciences
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR5
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 46
  start-page: 293
  issue: 1
  year: 2013
  end-page: 304
  ident: CR4
  article-title: On achieving semi-supervised pattern recognition by utilizing tree-based SOMs
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.07.006
– volume: 10
  start-page: 793
  year: 2010
  end-page: 805
  ident: CR31
  article-title: Novel artificial intelligent techniques via AFS theory: feature selection, concept categorization and characteristic description
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.09.009
– ident: CR3
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: CR16
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– volume: 40
  start-page: 4075
  issue: 10
  year: 2013
  end-page: 4082
  ident: CR27
  article-title: Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.040
– volume: 1
  start-page: 317
  year: 1997
  end-page: 328
  ident: CR45
  article-title: On comparing classifiers: pitfalls to avoid and a recommended approach
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009752403260
– volume: 40
  start-page: 2677
  year: 2013
  end-page: 2686
  ident: CR49
  article-title: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.11.007
– ident: CR52
– ident: CR17
– volume: 25
  start-page: 265
  year: 2001
  end-page: 281
  ident: CR1
  article-title: An evolutionary artificial neural network approach for breast cancer diagnosis
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00028-3
– volume: 37
  start-page: 3104
  year: 2010
  end-page: 3110
  ident: CR29
  article-title: A class possibility based kernel to increase classification accuracy for small data sets using support vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.019
– volume: 18
  start-page: 205
  issue: 3
  year: 2000
  end-page: 217
  ident: CR47
  article-title: Generating concise and accurate classification rules for breast cancer diagnosis
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(99)00041-X
– year: 1993
  ident: CR40
  publication-title: C4.5: programs for machine learning
– volume: 37
  start-page: 214
  year: 2010
  end-page: 225
  ident: CR7
  article-title: A CBR-based fuzzy decision tree approach for database classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.062
– volume: 47
  start-page: 3941
  issue: 12
  year: 2014
  end-page: 3948
  ident: CR43
  article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.06.012
– volume: 11
  start-page: 341
  issue: 5
  year: 1982
  end-page: 356
  ident: CR37
  article-title: Rough sets
  publication-title: Int J Parallel Prog
– volume: 38
  start-page: 9573
  issue: 11
  year: 2011
  end-page: 9579
  ident: CR33
  article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.167
– ident: CR24
– volume: 14
  start-page: 109
  year: 1979
  end-page: 121
  ident: CR50
  article-title: ROC analysis applied to the evaluation of medical imaging techniques
  publication-title: Invest Radiol
  doi: 10.1097/00004424-197903000-00002
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 2103_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.120
– volume: 14
  start-page: 109
  year: 1979
  ident: 2103_CR50
  publication-title: Invest Radiol
  doi: 10.1097/00004424-197903000-00002
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 2103_CR16
  publication-title: SIGKDD Explor
  doi: 10.1145/1656274.1656278
– volume: 30
  start-page: 24
  issue: 1
  year: 2009
  ident: 2103_CR32
  publication-title: Appl Intell
  doi: 10.1007/s10489-007-0073-z
– volume: 179
  start-page: 809
  issue: 1
  year: 2009
  ident: 2103_CR39
  publication-title: J Biomed Inform
– volume: 32
  start-page: 112
  year: 2014
  ident: 2103_CR51
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.03.007
– volume: 17
  start-page: 131
  year: 1999
  ident: 2103_CR38
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(99)00019-6
– volume: 26
  start-page: 1154
  issue: 9
  year: 2004
  ident: 2103_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.71
– volume: 1
  start-page: 317
  year: 1997
  ident: 2103_CR45
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009752403260
– volume: 4
  start-page: 77
  year: 1996
  ident: 2103_CR41
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.279
– volume: 11
  start-page: 632
  year: 2011
  ident: 2103_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.12.023
– volume: 46
  start-page: 293
  issue: 1
  year: 2013
  ident: 2103_CR4
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.07.006
– volume-title: Neural networks in a softcomputing framework
  year: 2006
  ident: 2103_CR10
– volume: 40
  start-page: 4075
  issue: 10
  year: 2013
  ident: 2103_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.040
– volume: 38
  start-page: 9573
  issue: 11
  year: 2011
  ident: 2103_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.167
– volume: 42
  start-page: 3410
  issue: 7
  year: 2015
  ident: 2103_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.12.025
– ident: 2103_CR3
  doi: 10.1109/ICONIP.2002.1202156
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 2103_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.211
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  ident: 2103_CR60
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.044
– volume: 55
  start-page: 954
  issue: 11
  year: 2004
  ident: 2103_CR21
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.20042
– volume-title: Cluster and classification techniques for the biosciences
  year: 2007
  ident: 2103_CR12
– volume: 11
  start-page: 341
  issue: 5
  year: 1982
  ident: 2103_CR37
  publication-title: Int J Parallel Prog
– ident: 2103_CR17
– volume: 40
  start-page: 2677
  year: 2013
  ident: 2103_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.11.007
– volume: 37
  start-page: 3104
  year: 2010
  ident: 2103_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.019
– volume: 45
  start-page: 5
  year: 2001
  ident: 2103_CR5
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 73
  start-page: 3160
  year: 2010
  ident: 2103_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.018
– ident: 2103_CR48
– volume: 229
  start-page: 3
  year: 2003
  ident: 2103_CR36
  publication-title: Radiology
  doi: 10.1148/radiol.2291010898
– volume-title: Machine learning in computer vision
  year: 2005
  ident: 2103_CR46
– volume: 38
  start-page: 5197
  year: 2011
  ident: 2103_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.041
– ident: 2103_CR52
– volume-title: C4.5: programs for machine learning
  year: 1993
  ident: 2103_CR40
– ident: 2103_CR56
– volume: 40
  start-page: 240
  year: 2010
  ident: 2103_CR20
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2009.11.003
– volume: 18
  start-page: 205
  issue: 3
  year: 2000
  ident: 2103_CR47
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(99)00041-X
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 2103_CR22
  doi: 10.1007/978-0-387-84858-7
– volume: 31
  start-page: 231
  year: 2006
  ident: 2103_CR55
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.024
– volume: 24
  start-page: 2195
  issue: 14
  year: 2003
  ident: 2103_CR2
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(03)00047-3
– ident: 2103_CR24
– volume: 3
  start-page: 415
  year: 2007
  ident: 2103_CR44
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2006.05.003
– ident: 2103_CR57
– volume-title: Neural networks: a comprehensive foundation
  year: 2005
  ident: 2103_CR23
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 2103_CR34
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.914517
– volume-title: The nature of statistical learning theory
  year: 2005
  ident: 2103_CR54
– volume: 25
  start-page: 265
  year: 2001
  ident: 2103_CR1
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00028-3
– volume: 10
  start-page: 793
  year: 2010
  ident: 2103_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.09.009
– volume: 239
  start-page: 180
  year: 2014
  ident: 2103_CR8
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.04.039
– volume: 38
  start-page: 5704
  year: 2011
  ident: 2103_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.063
– volume: 96
  start-page: 49
  year: 1995
  ident: 2103_CR13
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(95)03916-K
– volume: 16
  start-page: 149
  year: 1999
  ident: 2103_CR35
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(98)00070-0
– ident: 2103_CR15
– ident: 2103_CR53
– volume: 39
  start-page: 561
  year: 1993
  ident: 2103_CR61
  publication-title: Clin Chem
  doi: 10.1093/clinchem/39.4.561
– volume: 47
  start-page: 3941
  issue: 12
  year: 2014
  ident: 2103_CR43
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.06.012
– ident: 2103_CR19
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 2103_CR18
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 27
  start-page: 45
  issue: 1
  year: 2003
  ident: 2103_CR25
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00086-6
– volume: 47
  start-page: 25
  issue: 1
  year: 2009
  ident: 2103_CR14
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.05.003
– volume: 37
  start-page: 214
  year: 2010
  ident: 2103_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.062
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2005
  ident: 2103_CR58
SSID ssj0004685
Score 2.5568137
Snippet Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Accuracy
Artificial Intelligence
Breast cancer
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Decision making
Diagnosis
Feature extraction
Genetic algorithms
Image Processing and Computer Vision
Medical diagnosis
Original Article
Probability and Statistics in Computer Science
Rotation
Title Breast cancer diagnosis using GA feature selection and Rotation Forest
URI https://link.springer.com/article/10.1007/s00521-015-2103-9
https://www.proquest.com/docview/1880745153
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66e_HiW1xdlxw8KYGm6SM9troPFBZZXFhPJU8RpCvb-v9N0nZdRQVPoXSawzw6M5kvMwBcCiNVKThFUnoUGQ_BETPPCIca-5gThpUDyE6jyTy4W4SL5h532aLd25Kk-1OvL7vZE0yb-obIpCkEJdugG9rU3Sjx3E83LkO6OZwmbbGQnoC0pcyftvjqjD4jzG9FUedrRvtgtwkSYVpL9QBsqeIQ7LUDGGBjj0dglFlIeQWFFd0Kyho291JCi2Z_huMUauUad8LSjbsxMoCskHC2rAvw0A7mLKtjMB8NH28mqBmMgAShfoWER1kgqBfLRBgtF5z5KgniQBGf2YMlrESkAxOZkUgIHNsoyZim4mEksfZ1TE5Ap1gW6hRAJnwdSqo4MzRMSxozgrlmMZFUCiJ7wGs5lIuma7gdXvGar_sdO6bmhqm5ZWqe9MDV-pO3umXGX8T9lu15Yz1lbnvExYGJtEgPXLei2Hj922Zn_6I-Bzu-9dEOhtMHnWr1ri5MhFHxAeim2W02suv46X5o1mw4fZgNnKZ9ACnNyvw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGACWartPJyxIEqB0gG1UjfLT4SEUtSE_4_tJKUgQGKM4ni48-W-8313B8C5clrVSjKkdZch5yEkEu4Z4dhigiUV2ASC7CgZTKL7aTyt67iLhu3epCTDn3pR7OZvMH3oGyMXplCUrYI1hwWY53FNSG-pGDLM4XRhi6f0RLRJZf60xVdn9IkwvyVFg6_pb4PNGiTCXqXVHbBi8l2w1QxggLU97oH-laeUl1B51c2hrmhzLwX0bPZneNuD1oTGnbAI426cDqDINXyaVQl46AdzFuU-mPRvxtcDVA9GQIoyUiLVZSJSrJvqTLlTrqQgJovSyFAi_MUSNiqxkUNmNFEKpx4lOdM0Mk40tsSm9AC08lluDgEUithYMyOFWyOsZqmgWFqRUs20oroNuo2EuKq7hvvhFa980e84CJU7oXIvVJ61wcXik7eqZcZfizuN2HltPQX3PeLSyCEt2gaXjSqWXv-22dG_Vp-B9cH4cciHd6OHY7BBvL8OlJwOaJXzd3Pi0EYpT8Pp-gDbFMlP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA6cQNGWpI_0OB5lPDQhxKTdojQPhIS6aS3_nyRtx0CAxLGqm4Pt1Hb8xR8Ap9JaVcmMIaV6DNkIkSFhnxEODSY4owJrD5AdRoNRcDcOxzXPadGg3ZuWZHWnwU1pysvuVJnu_OKbO810ZXCIbMlCUbIMVuzfGDu3HpH-wsVIz8lpSxgH7wlo09b8aYmvgekz2_zWIPVxJ90E63XCCPuVhbfAks63wUZDxgDrvbkD0gsHLy-hdGacQVVB6F4L6JDtL_CmD432Qzxh4alvrD2gyBV8mlTNeOhIOotyF4zS6-fLAapJEpCkjJRI9pgIJOvFKpHW42UmiE6CONCUCHfIhLWMTGCzNBpJiWOXMdltqrMwUtgQE9M90Monud4HUEhiQsV0JqyMMIrFguLMiJgqpiRVbdBrNMRlPUHcEVm88fnsY69UbpXKnVJ50gZn80-m1fiMv4Q7jdp5vZMK7ubFxYHNumgbnDemWHj922IH_5I-AauPVyl_uB3eH4I14kK3R-d0QKucvesjm3iU2bF3rg_PeM2L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+using+GA+feature+selection+and+Rotation+Forest&rft.jtitle=Neural+computing+%26+applications&rft.au=Ali%C4%8Dkovi%C4%87%2C+Emina&rft.au=Subasi%2C+Abdulhamit&rft.date=2017-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=4&rft.spage=753&rft.epage=763&rft_id=info:doi/10.1007%2Fs00521-015-2103-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon