DYNAMIC RISK PREDICTION TRIGGERED BY INTERMEDIATE EVENTS USING SURVIVAL TREE ENSEMBLES

With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified fram...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 17; no. 2; p. 1375
Main Authors Sun, Yifei, Chiou, Sy Han, Wu, Colin O, McGarry, Meghan, Huang, Chiung-Yu
Format Journal Article
LanguageEnglish
Published United States 01.06.2023
Subjects
Online AccessGet more information

Cover

Loading…
Abstract With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to conventional landmark prediction with fixed landmark times, our methods allow the landmark times to be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue of model incompatibility at different landmark times. In our framework, both the longitudinal predictors and the event time outcome are subject to right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Foundation Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors.
AbstractList With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to conventional landmark prediction with fixed landmark times, our methods allow the landmark times to be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue of model incompatibility at different landmark times. In our framework, both the longitudinal predictors and the event time outcome are subject to right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Foundation Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors.
Author Chiou, Sy Han
Wu, Colin O
McGarry, Meghan
Sun, Yifei
Huang, Chiung-Yu
Author_xml – sequence: 1
  givenname: Yifei
  surname: Sun
  fullname: Sun, Yifei
  organization: Department of Biostatistics, Columbia University
– sequence: 2
  givenname: Sy Han
  surname: Chiou
  fullname: Chiou, Sy Han
  organization: Department of Mathematical Sciences, University of Texas at Dallas
– sequence: 3
  givenname: Colin O
  surname: Wu
  fullname: Wu, Colin O
  organization: National Heart, Lung, and Blood Institute, National Institutes of Health
– sequence: 4
  givenname: Meghan
  surname: McGarry
  fullname: McGarry, Meghan
  organization: Department of Pediatrics, University of California San Francisco
– sequence: 5
  givenname: Chiung-Yu
  surname: Huang
  fullname: Huang, Chiung-Yu
  organization: Department of Epidemiology and Biostatistics, University of California San Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37284167$$D View this record in MEDLINE/PubMed
BookMark eNo1T7lOwzAA9VBED5jYkX8g4CtxPKapCRaJi2I3UqfKiV0JRA81MPD3WAKmd-pJbw4mx9MxAHCH0QMmmD0SkriTG3HG2QTMsKAkyXDKp2A-ju8IpSxn-BpMKSeRZHwGutVWF40qYavMC3xt5UqVVq01tK2qKhk1XG6h0la2TcwKK6HspLYGbozSFTSbtlNdUce-jJE2slnW0tyAq737GMPtHy7A5kna8jmp15UqizoZaE4-kz4PYeDCI98HigYceEhR4NGljqKA9oz6lAuKc-FQ3w-IeZJ5gXFwLPWCkQW4_909f_WH4Hfny9vBXb53_wfJD_yBSu8
CitedBy_id crossref_primary_10_1002_sim_10086
crossref_primary_10_1093_biostatistics_kxae036
ContentType Journal Article
DBID NPM
DOI 10.1214/22-aoas1674
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 37284167
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA193888
– fundername: NHLBI NIH HHS
  grantid: K23 HL133437
– fundername: NHLBI NIH HHS
  grantid: R21 HL156228
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c382t-b8eec79d0dbe30c1e7e50e78ee3a30e0f43d5793189a0bbc04d26d911ea45d942
ISSN 1932-6157
IngestDate Thu Apr 03 06:57:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multi-state model
survival tree
time-dependent predictors
landmark analysis
Dynamic prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-b8eec79d0dbe30c1e7e50e78ee3a30e0f43d5793189a0bbc04d26d911ea45d942
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10241448
PMID 37284167
ParticipantIDs pubmed_primary_37284167
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2023
SSID ssj0054841
Score 2.3236437
Snippet With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to...
SourceID pubmed
SourceType Index Database
StartPage 1375
Title DYNAMIC RISK PREDICTION TRIGGERED BY INTERMEDIATE EVENTS USING SURVIVAL TREE ENSEMBLES
URI https://www.ncbi.nlm.nih.gov/pubmed/37284167
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6IKHlgHi_kQ_cooBjO3FybHdDW9gWqU3L9rSyExuKRLtiixD8esZ2mkQLiMfFSmwrcvx9mczYnhmEnqfamIyzJKyoKUMe6ThMqSRhlmhFRFYRSaxz8mSajBb89Wl82ut97XqX7NSL8vsv_Ur-B1WoA1ytl-w_INs8FCrgGvCFEhCG8q8wPl5N-3YaZ-P5GzuXx2N3JCQoZuPhMIf7YLAKXNBbG8WxX-RBvsynxTywyTaGwXwxW46X_RPon0PTdJ5PBie1dvixZZFsYizLWmW1Xkg-wHO7p-Sk12pt9Lo9MbDefnGrq9-CUUvCd67uyCYLCt62y4JD-dnv6E_0-w9173o1grL21FQtQEEfBHPUB51uJKzoMIl2xGXEfNqUn-Q4jbh1VaGh3MoL6yjR7QUgnH9ykDJB7bap-HPrpaDa-6YDdADmhc2Xahd5_A8cbDiX8LR5ldqtE8b0sjOiQ3Rt_5RLJolTTYqb6EZtU-C-J8gt1NOb2-j6pAnIe3EHLWuqYEsV3FIFN1TBgxXuUgV7qmBHFbynCrZUwQ1V7qLFq7w4GoV1So2wZCndhSrVurSfYKU0I2WkhY6JFlDLJCOaGM6qGER2lGaSKFUSXtGkgh-iljyuMk7voSub7UY_QLiKuTBxFcWGKx5lmUpKRUzKmODaJEI-RPf9pJyd-7gpZ_vpevTblsfosCXVE3TVAL31U9D6duqZw-gHfRhHng
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DYNAMIC+RISK+PREDICTION+TRIGGERED+BY+INTERMEDIATE+EVENTS+USING+SURVIVAL+TREE+ENSEMBLES&rft.jtitle=The+annals+of+applied+statistics&rft.au=Sun%2C+Yifei&rft.au=Chiou%2C+Sy+Han&rft.au=Wu%2C+Colin+O&rft.au=McGarry%2C+Meghan&rft.date=2023-06-01&rft.issn=1932-6157&rft.volume=17&rft.issue=2&rft.spage=1375&rft_id=info:doi/10.1214%2F22-aoas1674&rft_id=info%3Apmid%2F37284167&rft_id=info%3Apmid%2F37284167&rft.externalDocID=37284167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon