DYNAMIC RISK PREDICTION TRIGGERED BY INTERMEDIATE EVENTS USING SURVIVAL TREE ENSEMBLES
With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified fram...
Saved in:
Published in | The annals of applied statistics Vol. 17; no. 2; p. 1375 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2023
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to conventional landmark prediction with fixed landmark times, our methods allow the landmark times to be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue of model incompatibility at different landmark times. In our framework, both the longitudinal predictors and the event time outcome are subject to right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Foundation Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors. |
---|---|
AbstractList | With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to improve risk prediction has attracted great attention. To exploit the growing amount of predictor information over time, we develop a unified framework for landmark prediction using survival tree ensembles, where an updated prediction can be performed when new information becomes available. Compared to conventional landmark prediction with fixed landmark times, our methods allow the landmark times to be subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric approach circumvents the thorny issue of model incompatibility at different landmark times. In our framework, both the longitudinal predictors and the event time outcome are subject to right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale estimating equations from individual trees. Extensive simulation studies are conducted to evaluate the performance of our methods. The methods are applied to the Cystic Fibrosis Foundation Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis patients and to identify important prognosis factors. |
Author | Chiou, Sy Han Wu, Colin O McGarry, Meghan Sun, Yifei Huang, Chiung-Yu |
Author_xml | – sequence: 1 givenname: Yifei surname: Sun fullname: Sun, Yifei organization: Department of Biostatistics, Columbia University – sequence: 2 givenname: Sy Han surname: Chiou fullname: Chiou, Sy Han organization: Department of Mathematical Sciences, University of Texas at Dallas – sequence: 3 givenname: Colin O surname: Wu fullname: Wu, Colin O organization: National Heart, Lung, and Blood Institute, National Institutes of Health – sequence: 4 givenname: Meghan surname: McGarry fullname: McGarry, Meghan organization: Department of Pediatrics, University of California San Francisco – sequence: 5 givenname: Chiung-Yu surname: Huang fullname: Huang, Chiung-Yu organization: Department of Epidemiology and Biostatistics, University of California San Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37284167$$D View this record in MEDLINE/PubMed |
BookMark | eNo1T7lOwzAA9VBED5jYkX8g4CtxPKapCRaJi2I3UqfKiV0JRA81MPD3WAKmd-pJbw4mx9MxAHCH0QMmmD0SkriTG3HG2QTMsKAkyXDKp2A-ju8IpSxn-BpMKSeRZHwGutVWF40qYavMC3xt5UqVVq01tK2qKhk1XG6h0la2TcwKK6HspLYGbozSFTSbtlNdUce-jJE2slnW0tyAq737GMPtHy7A5kna8jmp15UqizoZaE4-kz4PYeDCI98HigYceEhR4NGljqKA9oz6lAuKc-FQ3w-IeZJ5gXFwLPWCkQW4_909f_WH4Hfny9vBXb53_wfJD_yBSu8 |
CitedBy_id | crossref_primary_10_1002_sim_10086 crossref_primary_10_1093_biostatistics_kxae036 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/22-aoas1674 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 37284167 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA193888 – fundername: NHLBI NIH HHS grantid: K23 HL133437 – fundername: NHLBI NIH HHS grantid: R21 HL156228 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c382t-b8eec79d0dbe30c1e7e50e78ee3a30e0f43d5793189a0bbc04d26d911ea45d942 |
ISSN | 1932-6157 |
IngestDate | Thu Apr 03 06:57:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multi-state model survival tree time-dependent predictors landmark analysis Dynamic prediction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c382t-b8eec79d0dbe30c1e7e50e78ee3a30e0f43d5793189a0bbc04d26d911ea45d942 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10241448 |
PMID | 37284167 |
ParticipantIDs | pubmed_primary_37284167 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2023 |
SSID | ssj0054841 |
Score | 2.3236437 |
Snippet | With the availability of massive amounts of data from electronic health records and registry databases, incorporating time-varying patient information to... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1375 |
Title | DYNAMIC RISK PREDICTION TRIGGERED BY INTERMEDIATE EVENTS USING SURVIVAL TREE ENSEMBLES |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37284167 |
Volume | 17 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6IKHlgHi_kQ_cooBjO3FybHdDW9gWqU3L9rSyExuKRLtiixD8esZ2mkQLiMfFSmwrcvx9mczYnhmEnqfamIyzJKyoKUMe6ThMqSRhlmhFRFYRSaxz8mSajBb89Wl82ut97XqX7NSL8vsv_Ur-B1WoA1ytl-w_INs8FCrgGvCFEhCG8q8wPl5N-3YaZ-P5GzuXx2N3JCQoZuPhMIf7YLAKXNBbG8WxX-RBvsynxTywyTaGwXwxW46X_RPon0PTdJ5PBie1dvixZZFsYizLWmW1Xkg-wHO7p-Sk12pt9Lo9MbDefnGrq9-CUUvCd67uyCYLCt62y4JD-dnv6E_0-w9173o1grL21FQtQEEfBHPUB51uJKzoMIl2xGXEfNqUn-Q4jbh1VaGh3MoL6yjR7QUgnH9ykDJB7bap-HPrpaDa-6YDdADmhc2Xahd5_A8cbDiX8LR5ldqtE8b0sjOiQ3Rt_5RLJolTTYqb6EZtU-C-J8gt1NOb2-j6pAnIe3EHLWuqYEsV3FIFN1TBgxXuUgV7qmBHFbynCrZUwQ1V7qLFq7w4GoV1So2wZCndhSrVurSfYKU0I2WkhY6JFlDLJCOaGM6qGER2lGaSKFUSXtGkgh-iljyuMk7voSub7UY_QLiKuTBxFcWGKx5lmUpKRUzKmODaJEI-RPf9pJyd-7gpZ_vpevTblsfosCXVE3TVAL31U9D6duqZw-gHfRhHng |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DYNAMIC+RISK+PREDICTION+TRIGGERED+BY+INTERMEDIATE+EVENTS+USING+SURVIVAL+TREE+ENSEMBLES&rft.jtitle=The+annals+of+applied+statistics&rft.au=Sun%2C+Yifei&rft.au=Chiou%2C+Sy+Han&rft.au=Wu%2C+Colin+O&rft.au=McGarry%2C+Meghan&rft.date=2023-06-01&rft.issn=1932-6157&rft.volume=17&rft.issue=2&rft.spage=1375&rft_id=info:doi/10.1214%2F22-aoas1674&rft_id=info%3Apmid%2F37284167&rft_id=info%3Apmid%2F37284167&rft.externalDocID=37284167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |