A Residual-Corrected Hybrid ARIMA–CNN–LSTM Framework for High-Accuracy Tobacco Sales Forecasting in Regulated Markets
As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutiona...
Saved in:
Published in | International journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 25 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
27.07.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability (
R
2
: 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies. |
---|---|
AbstractList | As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability (
R
2
: 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies. As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( R2: 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies. Abstract As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( $${R}^{2}$$ R 2 : 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies. |
ArticleNumber | 194 |
Author | Zhou, Lili Huang, Shiyu |
Author_xml | – sequence: 1 givenname: Shiyu surname: Huang fullname: Huang, Shiyu email: hsy20968820505@163.com organization: School of Business Administration, South China University of Technology – sequence: 2 givenname: Lili surname: Zhou fullname: Zhou, Lili organization: Guangdong Maoming Tobacco Monopoly Bureau |
BookMark | eNp9kc1u1DAUhS1UJErpC7CyxDrgvyT2MhoxzEgzRWqHtXXj3IRM07jYiarZ8Q68IU9St0GFFRtf6-qc71zpvCVnox-RkPecfeSMlZ-iUtwUGRN5xpiRLFOvyDnXZZ4VWsuzf_5vyGWMR8aY4Ioxpc7JqaLXGPtmhiFb-RDQTdjQzakOfUOr6-2--v3z1-rqKr27m8OergPc4YMPt7T1gW767ntWOTcHcCd68DU45-kNDBjp2icYxKkfO9qPKaWbB3iC7yHc4hTfkdctDBEv_8wL8m39-bDaZLuvX7arapc5qcWU1YXURraK14isBq5abCVDUwgBqs1zDkJpMLyA3GhtmCwUIoh0Scl1nRt5QbYLt_FwtPehv4Nwsh56-7zwobMQpt4NaHPIUYEUWrFScY6QUmqWhjPONaxJrA8L6z74HzPGyR79HMZ0vpVCSlMaIcukEovKBR9jwPYllTP71JhdGrOpMfvcmFXJJBdTTOKxw_AX_R_XI4lRmxo |
Cites_doi | 10.1016/j.energy.2023.127701 10.1016/j.jhydrol.2023.130141 10.3390/jpm12040509 10.37727/jkdas.2019.21.3.1319 10.1007/978-981-19-5868-7_9 10.1002/for.3073 10.1093/ntr/ntx237 10.3390/en17225670 10.4103/0970-9290.99061 10.1145/3641181.3641190 10.1016/j.neunet.2020.07.025 10.4103/ijmr.IJMR_2063_17 10.1002/hpja.764 10.1136/jech-2020-216070 10.3390/app13063828 10.1016/j.proenv.2011.12.061 10.1016/j.sbi.2022.102518 10.1016/j.energy.2023.127430 10.1515/nleng-2022-0025 10.1136/jech-2016-208141 10.1088/2631-8695/ad6ca7 10.1007/s11042-023-17468-2 10.1111/bioe.12619 10.3390/s23041783 10.1016/j.asoc.2023.111112 10.15439/2024F7263 10.3390/app14219848 10.1109/ACCESS.2024.3514093 10.17269/s41997-019-00203-6 10.3390/computers13010025 10.1088/1402-4896/ad5649 10.1109/ACCESS.2024.3394843 10.1109/ACCESS.2024.3502542 10.3390/s24227249 10.1186/s43067-023-00128-8 10.1186/s40537-023-00820-6 10.1109/TITS.2022.3205676 10.4103/ijcm.ijcm_827_24 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1007/s44196-025-00930-4 |
DatabaseName | Springer Nature OA/Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Public Health |
EISSN | 1875-6883 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_5a5e4a328407411ea962b0ea9c9ccd0d 10_1007_s44196_025_00930_4 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AASML ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c382t-b63893f41bee0ba14fef30e9622a4f551a248a916a598890364eea2bac718b593 |
IEDL.DBID | DOA |
ISSN | 1875-6883 1875-6891 |
IngestDate | Wed Aug 27 01:19:20 EDT 2025 Fri Aug 01 05:20:47 EDT 2025 Thu Jul 31 00:35:12 EDT 2025 Mon Jul 28 01:58:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hybrid deep learning Time series analysis ARIMA Tobacco sales forecasting Residual correction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-b63893f41bee0ba14fef30e9622a4f551a248a916a598890364eea2bac718b593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/5a5e4a328407411ea962b0ea9c9ccd0d |
PQID | 3233979237 |
PQPubID | 4869256 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a5e4a328407411ea962b0ea9c9ccd0d proquest_journals_3233979237 crossref_primary_10_1007_s44196_025_00930_4 springer_journals_10_1007_s44196_025_00930_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-27 |
PublicationDateYYYYMMDD | 2025-07-27 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | R Kalyanpur (930_CR1) 2012; 23 A Tiane (930_CR21) 2024; 12 L Yang (930_CR26) 2014; 50 I Mutambik (930_CR35) 2024; 14 O Adeniyi (930_CR36) 2023; 13 Y-H Luo (930_CR29) 2009; 26 R Masters (930_CR9) 2017; 71 H Murfi (930_CR15) 2024; 151 S Goel (930_CR5) 2024; 49 B Capps (930_CR7) 2020; 34 KW Ng (930_CR12) 2023; 625 KE Pasch (930_CR2) 2018; 20 TDC Moraes (930_CR44) 2024; 43 KG Bujagouni (930_CR31) 2024; 99 930_CR17 AL Golande (930_CR41) 2023; 10 A Akgul (930_CR20) 2024; 32 KJD Steer (930_CR6) 2019; 110 BA Demiss (930_CR14) 2024; 6 F Hajimohammadali (930_CR19) 2024; 17 BC Ujah-Ogbuagu (930_CR40) 2024; 11 M Hensher (930_CR11) 2023; 34 C Tian (930_CR37) 2020; 131 RS Jebur (930_CR38) 2023; 83 DM Ahmed (930_CR13) 2022; 2022 M Neshat (930_CR32) 2023; 278 H Elubeyd (930_CR18) 2023; 13 E Ileberi (930_CR23) 2024; 12 DJ Diaz (930_CR34) 2023; 78 G Sunilkumar (930_CR39) 2024; 12 A Andueza (930_CR3) 2023; 8 M Altun (930_CR30) 2023; 23 S Ghimire (930_CR43) 2023; 275 Z Sun (930_CR16) 2022; 11 R Korbmacher (930_CR42) 2022; 23 930_CR25 D Shipton (930_CR10) 2021; 75 KT Woo (930_CR8) 2019; 21 930_CR22 A Yadav (930_CR4) 2018; 148 B Saravi (930_CR33) 2022; 12 V Singh (930_CR24) 2024; 24 930_CR28 930_CR27 |
References_xml | – volume: 8 start-page: 73 issue: 1 year: 2023 ident: 930_CR3 publication-title: Int. J. Interact. Multimed. Artif. Intell. – volume: 278 start-page: 127701 year: 2023 ident: 930_CR32 publication-title: Energy doi: 10.1016/j.energy.2023.127701 – volume: 625 start-page: 130141 year: 2023 ident: 930_CR12 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130141 – volume: 12 start-page: 509 issue: 4 year: 2022 ident: 930_CR33 publication-title: J. Personal. Med. doi: 10.3390/jpm12040509 – volume: 21 start-page: 1319 issue: 3 year: 2019 ident: 930_CR8 publication-title: J. Korean Data Anal. Soc. doi: 10.37727/jkdas.2019.21.3.1319 – ident: 930_CR27 doi: 10.1007/978-981-19-5868-7_9 – volume: 43 start-page: 1278 issue: 5 year: 2024 ident: 930_CR44 publication-title: J. Forecast. doi: 10.1002/for.3073 – volume: 20 start-page: 962 issue: 8 year: 2018 ident: 930_CR2 publication-title: Nicotine Tob. Res. doi: 10.1093/ntr/ntx237 – volume: 17 start-page: 5670 issue: 22 year: 2024 ident: 930_CR19 publication-title: Energies doi: 10.3390/en17225670 – volume: 23 start-page: 123 issue: 1 year: 2012 ident: 930_CR1 publication-title: Indian J. Dent. Res.: off. Publ. Indian Soc. Dent. Res. doi: 10.4103/0970-9290.99061 – ident: 930_CR17 doi: 10.1145/3641181.3641190 – volume: 131 start-page: 251 year: 2020 ident: 930_CR37 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.025 – volume: 148 start-page: 25 issue: 1 year: 2018 ident: 930_CR4 publication-title: Indian J. Med. Res. doi: 10.4103/ijmr.IJMR_2063_17 – volume: 34 start-page: 651 issue: 3 year: 2023 ident: 930_CR11 publication-title: Health Promot. J. Austr. doi: 10.1002/hpja.764 – volume: 75 start-page: 1129 issue: 11 year: 2021 ident: 930_CR10 publication-title: J. Epidemiol. Community Health doi: 10.1136/jech-2020-216070 – volume: 13 start-page: 3828 issue: 6 year: 2023 ident: 930_CR18 publication-title: Appl. Sci.-Basel doi: 10.3390/app13063828 – ident: 930_CR25 doi: 10.1016/j.proenv.2011.12.061 – volume: 78 start-page: 102518 year: 2023 ident: 930_CR34 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2022.102518 – volume: 275 start-page: 127430 year: 2023 ident: 930_CR43 publication-title: Energy doi: 10.1016/j.energy.2023.127430 – volume: 11 start-page: 223 issue: 1 year: 2022 ident: 930_CR16 publication-title: Nonlinear Engineering, Modeling and Application doi: 10.1515/nleng-2022-0025 – volume: 2022 start-page: 6596397 year: 2022 ident: 930_CR13 publication-title: Appl. Computat. Intell. Soft Comput. – volume: 32 start-page: 2430001 issue: 03 year: 2024 ident: 930_CR20 publication-title: Fractals-Complex Geometry Patterns Scaling Nat. Soc. – volume: 71 start-page: 827 issue: 8 year: 2017 ident: 930_CR9 publication-title: J. Epidemiol. Community Health doi: 10.1136/jech-2016-208141 – volume: 50 start-page: 215 year: 2014 ident: 930_CR26 publication-title: Advances in Education Research – volume: 6 start-page: 032102 issue: 3 year: 2024 ident: 930_CR14 publication-title: Eng. Res. Express doi: 10.1088/2631-8695/ad6ca7 – volume: 83 start-page: 58181 year: 2023 ident: 930_CR38 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17468-2 – ident: 930_CR28 – volume: 26 start-page: 2664 issue: 7 year: 2009 ident: 930_CR29 publication-title: Appl. Res. Comput. – volume: 34 start-page: 114 issue: 1 year: 2020 ident: 930_CR7 publication-title: Bioethics doi: 10.1111/bioe.12619 – volume: 23 start-page: 1783 issue: 4 year: 2023 ident: 930_CR30 publication-title: Sensors doi: 10.3390/s23041783 – volume: 151 start-page: 111112 year: 2024 ident: 930_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.111112 – ident: 930_CR22 doi: 10.15439/2024F7263 – volume: 14 start-page: 9848 issue: 21 year: 2024 ident: 930_CR35 publication-title: Appl. Sci.-Basel doi: 10.3390/app14219848 – volume: 12 start-page: 193365 year: 2024 ident: 930_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3514093 – volume: 110 start-page: 633 issue: 5 year: 2019 ident: 930_CR6 publication-title: Can. J. Public Health-Revue Canadienne De Sante Publique doi: 10.17269/s41997-019-00203-6 – volume: 13 start-page: 25 issue: 1 year: 2023 ident: 930_CR36 publication-title: Computers doi: 10.3390/computers13010025 – volume: 99 start-page: 076017 issue: 7 year: 2024 ident: 930_CR31 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad5649 – volume: 12 start-page: 70334 year: 2024 ident: 930_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3394843 – volume: 12 start-page: 175829 year: 2024 ident: 930_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3502542 – volume: 24 start-page: 7249 issue: 22 year: 2024 ident: 930_CR24 publication-title: Sensors doi: 10.3390/s24227249 – volume: 11 start-page: 7 year: 2024 ident: 930_CR40 publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1186/s43067-023-00128-8 – volume: 10 start-page: 139 issue: 1 year: 2023 ident: 930_CR41 publication-title: J. Big Data doi: 10.1186/s40537-023-00820-6 – volume: 23 start-page: 24126 issue: 12 year: 2022 ident: 930_CR42 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3205676 – volume: 49 start-page: S228 issue: Suppl 2 year: 2024 ident: 930_CR5 publication-title: Indian J. Community Med.: Off. Publ. Indian Assoc. Prev. Soc. Med. doi: 10.4103/ijcm.ijcm_827_24 |
SSID | ssj0002140044 ssib050732782 |
Score | 2.3567212 |
Snippet | As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact... Abstract As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy ARIMA Artificial Intelligence Artificial neural networks Autoregressive moving-average models Computational Intelligence Control Deep learning Engineering Forecasting Hybrid deep learning Machine learning Mathematical Logic and Foundations Mechatronics Optimization Public health Residual correction Robotics Sales Time series analysis Tobacco Tobacco sales forecasting Trend analysis |
SummonAdditionalLinks | – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDDwKCAKBXlgA0uuYzfOGCqqgmiH0krdLNtxEEuLmjJ04z_wD_klnN2kPAQDSyIljm3l7nzf6V4IXfCcgVKILTFxyxKeGUm0AXmk0tGEtrSMQ7mmXr_VHfG7sRiXSWFFFe1euSTDSb1KdgPFHQJmBfFmOCV8HW0KsN09X7fLHAd__rKm50teZsj8_uk3LRSK9X9DmD-cokHXdPbQTgkScbqk6j5ac5Ma2q0aMOBSHmto-0s1wQO0SPHAFSG5irR90w0LaBJ3Fz4nC6eD2176_vrW7vfhev8w7OFOFZeFAbhiH_BBUmtfZtou8BDE3NopfgD9UWDfv9PqwkdI46cJrBL618PkvZAzXRyiUedm2O6SsrMCsZFkc2ICTsl50zhHjW7y3OURdUmLMc1zAFGacakBOWqRSJl4X6VzmsHKoMqMSKIjtDGZTtwxwhlMwE0swezKeJQnOpcuA5BijRVCUl5Hl9WfVs_LAhpqVSo50EUBXVSgi4LR154Yq5G--HV4MJ09qlKWlNDCcR2BYvV4qOk07NtQuNnE2oxmddSoSKlKiSxUxCLvwmRRXEdXFXk_X_-9pZP_DT9FWywwWkxY3EAb89mLOwPcMjfngU0_AA-m5VA priority: 102 providerName: Springer Nature |
Title | A Residual-Corrected Hybrid ARIMA–CNN–LSTM Framework for High-Accuracy Tobacco Sales Forecasting in Regulated Markets |
URI | https://link.springer.com/article/10.1007/s44196-025-00930-4 https://www.proquest.com/docview/3233979237 https://doaj.org/article/5a5e4a328407411ea962b0ea9c9ccd0d |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWAiYU3ojwqD2xg4ThO4owhoiqIdIAisVm240gsBTXt0I1_4A_5Eq6dpDwkxMKSSIllW_de-xzL94HQKa8YgEJiiE5iQ3ipBVEa1iMVlqY0ViLx6ZqKUTx84DeP0eOXUl_OJ6xJD9wI7iJSkeUqhF3UgV9gVRozTeFlUmNKWrrdFzDvy2HK7cEscLbJ2ygZHysHuO_9bSPiTvGU8G9I5BP2f2OZPy5GPd4MttBGSxRx1kxwG63YyQ7a7Iow4HZN7qJFhu9s7UOqSO5KbRjgkHi4cJFYOLu7LrL317d8NILn7f24wIPOGwsDXcXOzYNkxsynyizwGBa3Mc_4HlCjxq5qp1G184vGTxMYxVeth84LHyld76GHwdU4H5K2ngIxoWAzoj07qXigraVaBbyyVUgtCJQpXgF1UowLBXxRRakQqbuhtFYxGBkATEdpuI_WJs8Te4BwCR1wnQg4bJU8rFJVCVsCNTHaRJGgvIfOOtnKlyZthlwmSPaakKAJ6TUhofWlE_-ypUt57T-AIcjWEORfhtBDx53yZLsOaxmy0F1csjDpofNOoZ-_f5_S4X9M6QitM29wCWHJMVqbTef2BDjMTPfRas64e8Z535vuB6KT7p0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7aFwoC0PsYUWH3orFl7HSZxjiLpa2s0eYJG4WbbjSFwWRHYPe-M_8A_5JR2bZHkIDr0kkjOxrcyM5nPmBfBT1ByNQmqpSRNLRWUk1Qb1kUnHMpZomYZyTeUkGV2IP5fxZVsmx-fCvPLfHzdorkOYbEz94ZtRsQYfcUj68L0iKVb_U_jAS6No82LefvWF7Qkl-l_gyleu0GBhhl9gs4WGJH_k5Vf44GZb8Llru0BaLdyCjWc1BLdhmZMz14SUKlr4VhsWMSQZLX0mFsnPTsv84e6-mEzwOj6flmTYRWMRhKvEh3nQ3NrFrbZLMkXltvaanKPVaIjv2ml14-OiydUMVwld63HyMmRKNztwMfw9LUa07adAbST5nJqATmoxMM4xoweidnXEXJZwrkWN0ElzITXiRR1nUmbeQ-mc5rgyGjATZ9Eu9GbXM7cHpMIJhEklHrYqEdWZrqWrEJpYY-NYMtGHX92XVjePZTPUqkBy4ItCvqjAF4XUJ54ZK0pf8joMoCSoVoNUrGMndITm1KOggdO4b8PwZjNrK1b14aBjpWr1sFERj7zjkkdpH4469j49fn9L3_6P_BA-jablWI1PJ3_3YZ0HoUspTw-gN79duO-IXObmRxDZf-1P5GE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT9swFH_amIS2wzbY0MrY5gM3sHAdJ3GOWbaqbLRCUCRulu04iEuKmnLoje_AN-ST7NlNOkBw4JJIiWNb_vnp_Zz3D2BXVByVQmqpSRNLRWkk1QblkUnHMpZomYZ0TaNxMjwTf87j83tR_MHbvTNJLmMafJamen5wVVYHq8A3VOLBeTam_kjOqHgNb_CkEgy1RVKs_rLwvt-joo2WefrTBxopJO5_wDYfGUiD3hl8hPctYST5EuENeOXqTfjQFWMgrWxuwrt7mQU_wSInJ64JgVa08AU4LDJLMlz4-CySnxyO8rub22I8xuvR6WREBp2PFkESS7zzB82tvZ5puyATFHlrp-QUdUlDfC1PqxvvLU0uaxwl1LLHzkchfrr5DGeD35NiSNsqC9RGks-pCZylEn3jHDO6LypXRcxlCedaVEioNBdS49LqOJMy83ZL5zTHkVGtmTiLtmCtntbuC5ASOxAmlXgEK0VUZbqSrkTCYo2NY8lED_a6lVZXy2QaapU2OeCiEBcVcFHY-qcHY9XSJ8IOD6azC9XKlYp17ISOUMl6btR3GudtGN5sZm3Jyh7sdFCqVjobFfHImzN5lPZgv4P3_-vnp7T9suY_YP3410AdHY7_foW3POy5lPJ0B9bms2v3DenM3HwPO_YfnSTsqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Residual-Corrected+Hybrid+ARIMA%E2%80%93CNN%E2%80%93LSTM+Framework+for+High-Accuracy+Tobacco+Sales+Forecasting+in+Regulated+Markets&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Huang%2C+Shiyu&rft.au=Zhou%2C+Lili&rft.date=2025-07-27&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00930-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44196_025_00930_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |