A Residual-Corrected Hybrid ARIMA–CNN–LSTM Framework for High-Accuracy Tobacco Sales Forecasting in Regulated Markets

As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutiona...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 18; no. 1; pp. 1 - 25
Main Authors Huang, Shiyu, Zhou, Lili
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 27.07.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( R 2 : 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies.
AbstractList As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( R 2 : 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies.
As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( R2: 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies.
Abstract As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact on the national economy. The ARIMA model is reliable in learning linear or regular relationships, while the deep learn, such as convolutional neural network (CNN) and long short-term memory network (LSTM), is superior when capturing and learning nonlinear relationships. Combining time-series forecasting models with deep learning technologies, the hybrid architecture could integrate advantages and optimize forecasting effect. In this paper, leveraging 2023 daily sales data from a Southern Chinese tobacco company, this study proposes a new hybrid deep learning framework that integrates ARIMA, CNN, and LSTM models to address these inherent limitations and enhance prediction accuracy. This architecture decomposes forecasting tasks into linear trend analysis and nonlinear residual learning. The ARIMA component learns the linear relationship, and the CNN–LSTM component plays the role in the residual-driven correction. They enable synergistic capture of temporal dependencies and localized anomalies and enhancing the fitting effect. This hybrid model's optimization primarily relies on the residual-driven correction mechanism in the CNN–LSTM component, which significantly enhanced the model interpretability ( $${R}^{2}$$ R 2 : 0.95, enhance 10.5% compare with ARIMA model, enhance 13.1% compare with CNN-LSTM model). This research not only advances hybrid deep learning methods, but also provides a scalable solution for precise predictions in dynamic markets. This excellent forecasting results could also be practiced in inventory optimization and policy impact studies.
ArticleNumber 194
Author Zhou, Lili
Huang, Shiyu
Author_xml – sequence: 1
  givenname: Shiyu
  surname: Huang
  fullname: Huang, Shiyu
  email: hsy20968820505@163.com
  organization: School of Business Administration, South China University of Technology
– sequence: 2
  givenname: Lili
  surname: Zhou
  fullname: Zhou, Lili
  organization: Guangdong Maoming Tobacco Monopoly Bureau
BookMark eNp9kc1u1DAUhS1UJErpC7CyxDrgvyT2MhoxzEgzRWqHtXXj3IRM07jYiarZ8Q68IU9St0GFFRtf6-qc71zpvCVnox-RkPecfeSMlZ-iUtwUGRN5xpiRLFOvyDnXZZ4VWsuzf_5vyGWMR8aY4Ioxpc7JqaLXGPtmhiFb-RDQTdjQzakOfUOr6-2--v3z1-rqKr27m8OergPc4YMPt7T1gW767ntWOTcHcCd68DU45-kNDBjp2icYxKkfO9qPKaWbB3iC7yHc4hTfkdctDBEv_8wL8m39-bDaZLuvX7arapc5qcWU1YXURraK14isBq5abCVDUwgBqs1zDkJpMLyA3GhtmCwUIoh0Scl1nRt5QbYLt_FwtPehv4Nwsh56-7zwobMQpt4NaHPIUYEUWrFScY6QUmqWhjPONaxJrA8L6z74HzPGyR79HMZ0vpVCSlMaIcukEovKBR9jwPYllTP71JhdGrOpMfvcmFXJJBdTTOKxw_AX_R_XI4lRmxo
Cites_doi 10.1016/j.energy.2023.127701
10.1016/j.jhydrol.2023.130141
10.3390/jpm12040509
10.37727/jkdas.2019.21.3.1319
10.1007/978-981-19-5868-7_9
10.1002/for.3073
10.1093/ntr/ntx237
10.3390/en17225670
10.4103/0970-9290.99061
10.1145/3641181.3641190
10.1016/j.neunet.2020.07.025
10.4103/ijmr.IJMR_2063_17
10.1002/hpja.764
10.1136/jech-2020-216070
10.3390/app13063828
10.1016/j.proenv.2011.12.061
10.1016/j.sbi.2022.102518
10.1016/j.energy.2023.127430
10.1515/nleng-2022-0025
10.1136/jech-2016-208141
10.1088/2631-8695/ad6ca7
10.1007/s11042-023-17468-2
10.1111/bioe.12619
10.3390/s23041783
10.1016/j.asoc.2023.111112
10.15439/2024F7263
10.3390/app14219848
10.1109/ACCESS.2024.3514093
10.17269/s41997-019-00203-6
10.3390/computers13010025
10.1088/1402-4896/ad5649
10.1109/ACCESS.2024.3394843
10.1109/ACCESS.2024.3502542
10.3390/s24227249
10.1186/s43067-023-00128-8
10.1186/s40537-023-00820-6
10.1109/TITS.2022.3205676
10.4103/ijcm.ijcm_827_24
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1007/s44196-025-00930-4
DatabaseName Springer Nature OA/Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Public Health
EISSN 1875-6883
EndPage 25
ExternalDocumentID oai_doaj_org_article_5a5e4a328407411ea962b0ea9c9ccd0d
10_1007_s44196_025_00930_4
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HZ~
J~4
O9-
OK1
SOJ
TFW
TR2
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c382t-b63893f41bee0ba14fef30e9622a4f551a248a916a598890364eea2bac718b593
IEDL.DBID DOA
ISSN 1875-6883
1875-6891
IngestDate Wed Aug 27 01:19:20 EDT 2025
Fri Aug 01 05:20:47 EDT 2025
Thu Jul 31 00:35:12 EDT 2025
Mon Jul 28 01:58:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hybrid deep learning
Time series analysis
ARIMA
Tobacco sales forecasting
Residual correction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b63893f41bee0ba14fef30e9622a4f551a248a916a598890364eea2bac718b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5a5e4a328407411ea962b0ea9c9ccd0d
PQID 3233979237
PQPubID 4869256
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_5a5e4a328407411ea962b0ea9c9ccd0d
proquest_journals_3233979237
crossref_primary_10_1007_s44196_025_00930_4
springer_journals_10_1007_s44196_025_00930_4
PublicationCentury 2000
PublicationDate 2025-07-27
PublicationDateYYYYMMDD 2025-07-27
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-27
  day: 27
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References R Kalyanpur (930_CR1) 2012; 23
A Tiane (930_CR21) 2024; 12
L Yang (930_CR26) 2014; 50
I Mutambik (930_CR35) 2024; 14
O Adeniyi (930_CR36) 2023; 13
Y-H Luo (930_CR29) 2009; 26
R Masters (930_CR9) 2017; 71
H Murfi (930_CR15) 2024; 151
S Goel (930_CR5) 2024; 49
B Capps (930_CR7) 2020; 34
KW Ng (930_CR12) 2023; 625
KE Pasch (930_CR2) 2018; 20
TDC Moraes (930_CR44) 2024; 43
KG Bujagouni (930_CR31) 2024; 99
930_CR17
AL Golande (930_CR41) 2023; 10
A Akgul (930_CR20) 2024; 32
KJD Steer (930_CR6) 2019; 110
BA Demiss (930_CR14) 2024; 6
F Hajimohammadali (930_CR19) 2024; 17
BC Ujah-Ogbuagu (930_CR40) 2024; 11
M Hensher (930_CR11) 2023; 34
C Tian (930_CR37) 2020; 131
RS Jebur (930_CR38) 2023; 83
DM Ahmed (930_CR13) 2022; 2022
M Neshat (930_CR32) 2023; 278
H Elubeyd (930_CR18) 2023; 13
E Ileberi (930_CR23) 2024; 12
DJ Diaz (930_CR34) 2023; 78
G Sunilkumar (930_CR39) 2024; 12
A Andueza (930_CR3) 2023; 8
M Altun (930_CR30) 2023; 23
S Ghimire (930_CR43) 2023; 275
Z Sun (930_CR16) 2022; 11
R Korbmacher (930_CR42) 2022; 23
930_CR25
D Shipton (930_CR10) 2021; 75
KT Woo (930_CR8) 2019; 21
930_CR22
A Yadav (930_CR4) 2018; 148
B Saravi (930_CR33) 2022; 12
V Singh (930_CR24) 2024; 24
930_CR28
930_CR27
References_xml – volume: 8
  start-page: 73
  issue: 1
  year: 2023
  ident: 930_CR3
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– volume: 278
  start-page: 127701
  year: 2023
  ident: 930_CR32
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127701
– volume: 625
  start-page: 130141
  year: 2023
  ident: 930_CR12
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130141
– volume: 12
  start-page: 509
  issue: 4
  year: 2022
  ident: 930_CR33
  publication-title: J. Personal. Med.
  doi: 10.3390/jpm12040509
– volume: 21
  start-page: 1319
  issue: 3
  year: 2019
  ident: 930_CR8
  publication-title: J. Korean Data Anal. Soc.
  doi: 10.37727/jkdas.2019.21.3.1319
– ident: 930_CR27
  doi: 10.1007/978-981-19-5868-7_9
– volume: 43
  start-page: 1278
  issue: 5
  year: 2024
  ident: 930_CR44
  publication-title: J. Forecast.
  doi: 10.1002/for.3073
– volume: 20
  start-page: 962
  issue: 8
  year: 2018
  ident: 930_CR2
  publication-title: Nicotine Tob. Res.
  doi: 10.1093/ntr/ntx237
– volume: 17
  start-page: 5670
  issue: 22
  year: 2024
  ident: 930_CR19
  publication-title: Energies
  doi: 10.3390/en17225670
– volume: 23
  start-page: 123
  issue: 1
  year: 2012
  ident: 930_CR1
  publication-title: Indian J. Dent. Res.: off. Publ. Indian Soc. Dent. Res.
  doi: 10.4103/0970-9290.99061
– ident: 930_CR17
  doi: 10.1145/3641181.3641190
– volume: 131
  start-page: 251
  year: 2020
  ident: 930_CR37
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– volume: 148
  start-page: 25
  issue: 1
  year: 2018
  ident: 930_CR4
  publication-title: Indian J. Med. Res.
  doi: 10.4103/ijmr.IJMR_2063_17
– volume: 34
  start-page: 651
  issue: 3
  year: 2023
  ident: 930_CR11
  publication-title: Health Promot. J. Austr.
  doi: 10.1002/hpja.764
– volume: 75
  start-page: 1129
  issue: 11
  year: 2021
  ident: 930_CR10
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech-2020-216070
– volume: 13
  start-page: 3828
  issue: 6
  year: 2023
  ident: 930_CR18
  publication-title: Appl. Sci.-Basel
  doi: 10.3390/app13063828
– ident: 930_CR25
  doi: 10.1016/j.proenv.2011.12.061
– volume: 78
  start-page: 102518
  year: 2023
  ident: 930_CR34
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2022.102518
– volume: 275
  start-page: 127430
  year: 2023
  ident: 930_CR43
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127430
– volume: 11
  start-page: 223
  issue: 1
  year: 2022
  ident: 930_CR16
  publication-title: Nonlinear Engineering, Modeling and Application
  doi: 10.1515/nleng-2022-0025
– volume: 2022
  start-page: 6596397
  year: 2022
  ident: 930_CR13
  publication-title: Appl. Computat. Intell. Soft Comput.
– volume: 32
  start-page: 2430001
  issue: 03
  year: 2024
  ident: 930_CR20
  publication-title: Fractals-Complex Geometry Patterns Scaling Nat. Soc.
– volume: 71
  start-page: 827
  issue: 8
  year: 2017
  ident: 930_CR9
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech-2016-208141
– volume: 50
  start-page: 215
  year: 2014
  ident: 930_CR26
  publication-title: Advances in Education Research
– volume: 6
  start-page: 032102
  issue: 3
  year: 2024
  ident: 930_CR14
  publication-title: Eng. Res. Express
  doi: 10.1088/2631-8695/ad6ca7
– volume: 83
  start-page: 58181
  year: 2023
  ident: 930_CR38
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17468-2
– ident: 930_CR28
– volume: 26
  start-page: 2664
  issue: 7
  year: 2009
  ident: 930_CR29
  publication-title: Appl. Res. Comput.
– volume: 34
  start-page: 114
  issue: 1
  year: 2020
  ident: 930_CR7
  publication-title: Bioethics
  doi: 10.1111/bioe.12619
– volume: 23
  start-page: 1783
  issue: 4
  year: 2023
  ident: 930_CR30
  publication-title: Sensors
  doi: 10.3390/s23041783
– volume: 151
  start-page: 111112
  year: 2024
  ident: 930_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.111112
– ident: 930_CR22
  doi: 10.15439/2024F7263
– volume: 14
  start-page: 9848
  issue: 21
  year: 2024
  ident: 930_CR35
  publication-title: Appl. Sci.-Basel
  doi: 10.3390/app14219848
– volume: 12
  start-page: 193365
  year: 2024
  ident: 930_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3514093
– volume: 110
  start-page: 633
  issue: 5
  year: 2019
  ident: 930_CR6
  publication-title: Can. J. Public Health-Revue Canadienne De Sante Publique
  doi: 10.17269/s41997-019-00203-6
– volume: 13
  start-page: 25
  issue: 1
  year: 2023
  ident: 930_CR36
  publication-title: Computers
  doi: 10.3390/computers13010025
– volume: 99
  start-page: 076017
  issue: 7
  year: 2024
  ident: 930_CR31
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad5649
– volume: 12
  start-page: 70334
  year: 2024
  ident: 930_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3394843
– volume: 12
  start-page: 175829
  year: 2024
  ident: 930_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3502542
– volume: 24
  start-page: 7249
  issue: 22
  year: 2024
  ident: 930_CR24
  publication-title: Sensors
  doi: 10.3390/s24227249
– volume: 11
  start-page: 7
  year: 2024
  ident: 930_CR40
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1186/s43067-023-00128-8
– volume: 10
  start-page: 139
  issue: 1
  year: 2023
  ident: 930_CR41
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00820-6
– volume: 23
  start-page: 24126
  issue: 12
  year: 2022
  ident: 930_CR42
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3205676
– volume: 49
  start-page: S228
  issue: Suppl 2
  year: 2024
  ident: 930_CR5
  publication-title: Indian J. Community Med.: Off. Publ. Indian Assoc. Prev. Soc. Med.
  doi: 10.4103/ijcm.ijcm_827_24
SSID ssj0002140044
ssib050732782
Score 2.3567212
Snippet As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a significant impact...
Abstract As a common consumer product threatening public health, tobacco not only hinders the development of national public health, but also plays a...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
ARIMA
Artificial Intelligence
Artificial neural networks
Autoregressive moving-average models
Computational Intelligence
Control
Deep learning
Engineering
Forecasting
Hybrid deep learning
Machine learning
Mathematical Logic and Foundations
Mechatronics
Optimization
Public health
Residual correction
Robotics
Sales
Time series analysis
Tobacco
Tobacco sales forecasting
Trend analysis
SummonAdditionalLinks – databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDDwKCAKBXlgA0uuYzfOGCqqgmiH0krdLNtxEEuLmjJ04z_wD_klnN2kPAQDSyIljm3l7nzf6V4IXfCcgVKILTFxyxKeGUm0AXmk0tGEtrSMQ7mmXr_VHfG7sRiXSWFFFe1euSTDSb1KdgPFHQJmBfFmOCV8HW0KsN09X7fLHAd__rKm50teZsj8_uk3LRSK9X9DmD-cokHXdPbQTgkScbqk6j5ac5Ma2q0aMOBSHmto-0s1wQO0SPHAFSG5irR90w0LaBJ3Fz4nC6eD2176_vrW7vfhev8w7OFOFZeFAbhiH_BBUmtfZtou8BDE3NopfgD9UWDfv9PqwkdI46cJrBL618PkvZAzXRyiUedm2O6SsrMCsZFkc2ICTsl50zhHjW7y3OURdUmLMc1zAFGacakBOWqRSJl4X6VzmsHKoMqMSKIjtDGZTtwxwhlMwE0swezKeJQnOpcuA5BijRVCUl5Hl9WfVs_LAhpqVSo50EUBXVSgi4LR154Yq5G--HV4MJ09qlKWlNDCcR2BYvV4qOk07NtQuNnE2oxmddSoSKlKiSxUxCLvwmRRXEdXFXk_X_-9pZP_DT9FWywwWkxY3EAb89mLOwPcMjfngU0_AA-m5VA
  priority: 102
  providerName: Springer Nature
Title A Residual-Corrected Hybrid ARIMA–CNN–LSTM Framework for High-Accuracy Tobacco Sales Forecasting in Regulated Markets
URI https://link.springer.com/article/10.1007/s44196-025-00930-4
https://www.proquest.com/docview/3233979237
https://doaj.org/article/5a5e4a328407411ea962b0ea9c9ccd0d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWAiYU3ojwqD2xg4ThO4owhoiqIdIAisVm240gsBTXt0I1_4A_5Eq6dpDwkxMKSSIllW_de-xzL94HQKa8YgEJiiE5iQ3ipBVEa1iMVlqY0ViLx6ZqKUTx84DeP0eOXUl_OJ6xJD9wI7iJSkeUqhF3UgV9gVRozTeFlUmNKWrrdFzDvy2HK7cEscLbJ2ygZHysHuO_9bSPiTvGU8G9I5BP2f2OZPy5GPd4MttBGSxRx1kxwG63YyQ7a7Iow4HZN7qJFhu9s7UOqSO5KbRjgkHi4cJFYOLu7LrL317d8NILn7f24wIPOGwsDXcXOzYNkxsynyizwGBa3Mc_4HlCjxq5qp1G184vGTxMYxVeth84LHyld76GHwdU4H5K2ngIxoWAzoj07qXigraVaBbyyVUgtCJQpXgF1UowLBXxRRakQqbuhtFYxGBkATEdpuI_WJs8Te4BwCR1wnQg4bJU8rFJVCVsCNTHaRJGgvIfOOtnKlyZthlwmSPaakKAJ6TUhofWlE_-ypUt57T-AIcjWEORfhtBDx53yZLsOaxmy0F1csjDpofNOoZ-_f5_S4X9M6QitM29wCWHJMVqbTef2BDjMTPfRas64e8Z535vuB6KT7p0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7aFwoC0PsYUWH3orFl7HSZxjiLpa2s0eYJG4WbbjSFwWRHYPe-M_8A_5JR2bZHkIDr0kkjOxrcyM5nPmBfBT1ByNQmqpSRNLRWUk1Qb1kUnHMpZomYZyTeUkGV2IP5fxZVsmx-fCvPLfHzdorkOYbEz94ZtRsQYfcUj68L0iKVb_U_jAS6No82LefvWF7Qkl-l_gyleu0GBhhl9gs4WGJH_k5Vf44GZb8Llru0BaLdyCjWc1BLdhmZMz14SUKlr4VhsWMSQZLX0mFsnPTsv84e6-mEzwOj6flmTYRWMRhKvEh3nQ3NrFrbZLMkXltvaanKPVaIjv2ml14-OiydUMVwld63HyMmRKNztwMfw9LUa07adAbST5nJqATmoxMM4xoweidnXEXJZwrkWN0ElzITXiRR1nUmbeQ-mc5rgyGjATZ9Eu9GbXM7cHpMIJhEklHrYqEdWZrqWrEJpYY-NYMtGHX92XVjePZTPUqkBy4ItCvqjAF4XUJ54ZK0pf8joMoCSoVoNUrGMndITm1KOggdO4b8PwZjNrK1b14aBjpWr1sFERj7zjkkdpH4469j49fn9L3_6P_BA-jablWI1PJ3_3YZ0HoUspTw-gN79duO-IXObmRxDZf-1P5GE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT9swFH_amIS2wzbY0MrY5gM3sHAdJ3GOWbaqbLRCUCRulu04iEuKmnLoje_AN-ST7NlNOkBw4JJIiWNb_vnp_Zz3D2BXVByVQmqpSRNLRWkk1QblkUnHMpZomYZ0TaNxMjwTf87j83tR_MHbvTNJLmMafJamen5wVVYHq8A3VOLBeTam_kjOqHgNb_CkEgy1RVKs_rLwvt-joo2WefrTBxopJO5_wDYfGUiD3hl8hPctYST5EuENeOXqTfjQFWMgrWxuwrt7mQU_wSInJ64JgVa08AU4LDJLMlz4-CySnxyO8rub22I8xuvR6WREBp2PFkESS7zzB82tvZ5puyATFHlrp-QUdUlDfC1PqxvvLU0uaxwl1LLHzkchfrr5DGeD35NiSNsqC9RGks-pCZylEn3jHDO6LypXRcxlCedaVEioNBdS49LqOJMy83ZL5zTHkVGtmTiLtmCtntbuC5ASOxAmlXgEK0VUZbqSrkTCYo2NY8lED_a6lVZXy2QaapU2OeCiEBcVcFHY-qcHY9XSJ8IOD6azC9XKlYp17ISOUMl6btR3GudtGN5sZm3Jyh7sdFCqVjobFfHImzN5lPZgv4P3_-vnp7T9suY_YP3410AdHY7_foW3POy5lPJ0B9bms2v3DenM3HwPO_YfnSTsqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Residual-Corrected+Hybrid+ARIMA%E2%80%93CNN%E2%80%93LSTM+Framework+for+High-Accuracy+Tobacco+Sales+Forecasting+in+Regulated+Markets&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Huang%2C+Shiyu&rft.au=Zhou%2C+Lili&rft.date=2025-07-27&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00930-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44196_025_00930_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon