Drivers of persistent changes in the global methane cycle under aggressive mitigation action
To achieve the Paris climate agreement goals, methane (CH 4 ) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario...
Saved in:
Published in | NPJ climate and atmospheric science Vol. 8; no. 1; pp. 136 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To achieve the Paris climate agreement goals, methane (CH
4
) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH
4
) yr
–1
at pre-industrial to 221 Tg(CH
4
) yr
–1
in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with
R
2
= 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system. |
---|---|
AbstractList | To achieve the Paris climate agreement goals, methane (CH
4
) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH
4
) yr
–1
at pre-industrial to 221 Tg(CH
4
) yr
–1
in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with
R
2
= 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system. Abstract To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH4) yr–1 at pre-industrial to 221 Tg(CH4) yr–1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R 2 = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system. To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH4) yr–1 at pre-industrial to 221 Tg(CH4) yr–1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R2 = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system. |
ArticleNumber | 136 |
Author | Jones, Chris D. O’Connor, Fiona M. Wiltshire, Andy J. Griffiths, Paul T. Folberth, Gerd A. Gedney, Nicola |
Author_xml | – sequence: 1 givenname: Gerd A. orcidid: 0000-0002-1075-440X surname: Folberth fullname: Folberth, Gerd A. email: gerd.folberth@metoffice.gov.uk organization: Met Office Hadley Centre – sequence: 2 givenname: Chris D. surname: Jones fullname: Jones, Chris D. organization: Met Office Hadley Centre, School of Geographical Sciences, University of Bristol – sequence: 3 givenname: Fiona M. orcidid: 0000-0003-2893-4828 surname: O’Connor fullname: O’Connor, Fiona M. organization: Met Office Hadley Centre, Department of Mathematics & Statistics, Global Systems Institute, University of Exeter – sequence: 4 givenname: Nicola surname: Gedney fullname: Gedney, Nicola organization: Met Office Hadley Centre, Joint Centre for Hydrometeorological Research – sequence: 5 givenname: Paul T. orcidid: 0000-0002-1089-340X surname: Griffiths fullname: Griffiths, Paul T. organization: National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Research Institute for Global Change, Japan Agency for Marine-Earth Sciences and Tech. (JAMSTEC) – sequence: 6 givenname: Andy J. surname: Wiltshire fullname: Wiltshire, Andy J. organization: Met Office Hadley Centre, Department of Geography, Faculty of Environment Science and Economy, University of Exeter |
BookMark | eNp9kUtrVTEUhYO0YG37BxwFHB_N6-YxlKq1UHCiMyHksXOay70n1yRXaH-9aU-pjhytzWatL5usN-hkKQsg9JaS95Rw_aEJKimbCBMTIVqq6eEVOmPcqIkrxk7-mV-jy9a2hBDGCDNKnqGfn2r-DbXhkvBhaG4dlo7DnVtmaDgvuN8BnnfFux3eQx97wOE-7AAflwgVu3mu0NqA4H3ueXY9lwW78CgX6DS5XYPLZz1HP758_n71dbr9dn1z9fF2ClyzPnnBI4-GbVzccEWSJslvhA6BC-JkDE5Q0CkIZkIQinvFmTbJqSRhjAn4ObpZubG4rT3UvHf13haX7dOi1Nm62vM42oKPOnrtvOFU6EhcMN4nD0JqQ6iMg_VuZR1q-XWE1u22HOsyzrecaimVMMYMF1tdoZbWKqSXVymxj6XYtRQ7SrFPpdiHEeJrqA3z-N76F_2f1B8jupMT |
Cites_doi | 10.1017/9781009157896 10.1029/91JD01247 10.1029/2018MS001370 10.5194/gmd-13-1223-2020 10.1038/s41598-020-68246-1 10.5194/gmd-4-701-2011 10.5194/acp-14-12665-2014 10.1029/2019MS001739 10.5194/gmd-16-3083-2023 10.5194/acp-20-9525-2020 10.5194/acp-13-2563-2013 10.1038/s43247-023-00969-1 10.1029/2018GB006065 10.5194/acp-21-4187-2021 10.5194/gmd-9-2415-2016 10.1126/science.1240162 10.5194/acp-10-7017-2010 10.1098/rsta.2021.0104 10.5194/gmd-7-41-2014 10.5194/gmd-10-3329-2017 10.1016/j.gloenvcha.2016.05.009 10.5194/gmd-9-3461-2016 10.1017/9781009157896.006 10.5194/acp-21-1105-2021 10.1029/2021MS002982 10.1111/gcb.12131 10.1038/ngeo1955 10.1038/s41558-018-0072-6 10.1002/2017MS001196 10.1088/1748-9326/ab2726 10.1029/2019MS001946 10.5194/acp-20-12905-2020 10.1029/2012GL051440 10.5194/acp-13-5277-2013 10.1002/2017MS001115 10.1029/2018GL079826 10.5194/gmd-9-1937-2016 10.1002/2016GL068825 10.1007/s10584-019-02437-2 10.5194/gmd-12-1443-2019 10.1038/s41467-024-47436-9 10.1289/ehp.1104301 10.5194/bg-19-5779-2022 10.5194/acp-21-1211-2021 10.5194/gmd-6-1767-2013 10.5194/bg-10-753-2013 10.5194/gmd-13-6383-2020 10.5194/gmd-11-2857-2018 10.1016/j.atmosenv.2010.04.032 10.1029/2022JG006793 10.1029/2022MS002991 10.1029/2022EF002687 10.1098/rsta.2020.0454 10.5194/gmd-14-437-2021 10.1038/s41586-023-06344-6 10.5194/essd-12-1561-2020 10.5194/gmd-11-369-2018 10.1029/2019MS001933 |
ContentType | Journal Article |
Copyright | Crown and Paul T. Griffiths 2025 Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: Crown and Paul T. Griffiths 2025 – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1038/s41612-024-00867-z |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2397-3722 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_ebd8db8ab93148d0ac9bbfbe4689016d 10_1038_s41612_024_00867_z |
GrantInformation_xml | – fundername: Met Office Hadley Centre Climate Programme funded by DSIT EU Horizon project ESM2025 (Grant 101003536) – fundername: Met Office Hadley Centre Climate Programme funded by DSIT Met Office Climate Science for Service Partnership (CSSP) Brazil supported by DSIT |
GroupedDBID | 0R~ AAJSJ AASML ACGFS ADBBV AEUYN AFKRA AFPKN AJTQC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR C6C CCPQU EBLON EBS EDH GROUPED_DOAJ HCIFZ M~E NAO NO~ OK1 PATMY PCBAR PHGZT PIMPY PYCSY RNT SNYQT AAFWJ AAYXX CITATION PHGZM AARCD ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c382t-b43d3d925ad5370f80fb548cc340a6dca41e8fc429cc473b73289fa7f6e732fe3 |
IEDL.DBID | C6C |
ISSN | 2397-3722 |
IngestDate | Wed Aug 27 01:20:37 EDT 2025 Wed Aug 13 06:10:08 EDT 2025 Tue Jul 01 05:14:23 EDT 2025 Sun Apr 06 01:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-b43d3d925ad5370f80fb548cc340a6dca41e8fc429cc473b73289fa7f6e732fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2893-4828 0000-0002-1089-340X 0000-0002-1075-440X |
OpenAccessLink | https://www.nature.com/articles/s41612-024-00867-z |
PQID | 3186674999 |
PQPubID | 4669727 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebd8db8ab93148d0ac9bbfbe4689016d proquest_journals_3186674999 crossref_primary_10_1038_s41612_024_00867_z springer_journals_10_1038_s41612_024_00867_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-05 |
PublicationDateYYYYMMDD | 2025-04-05 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ climate and atmospheric science |
PublicationTitleAbbrev | npj Clim Atmos Sci |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | K Riahi (867_CR54) 2017; 42 DL Finney (867_CR58) 2014; 14 AB Harper (867_CR43) 2018; 11 G Rocher-Ros (867_CR19) 2023; 621 S Kirschke (867_CR63) 2013; 6 MJE van Marle (867_CR51) 2017; 10 JK Shoemaker (867_CR11) 2013; 342 MS Johnson (867_CR31) 2022; 127 J Weber (867_CR57) 2023; 16 M Harmsen (867_CR13) 2020; 163 Y Zhao (867_CR2) 2020; 20 AT Archibald (867_CR30) 2020; 13 JP Mulcahy (867_CR40) 2020; 13 MJ Gidden (867_CR27) 2019; 12 SusanC Anenberg (867_CR14) 2012; 120 J-F Lamarque (867_CR56) 2010; 10 DL Finney (867_CR60) 2018; 8 V Naik (867_CR3) 2013; 13 E Matthews (867_CR18) 2020; 10 I Fung (867_CR52) 1991; 96 867_CR36 PT Griffiths (867_CR6) 2021; 21 A Voulgarakis (867_CR33) 2013; 13 DS Stevenson (867_CR34) 2020; 20 FM O’Connor (867_CR7) 2022; 14 MJ Prather (867_CR32) 2012; 39 AB Harper (867_CR42) 2016; 9 SD Bridgham (867_CR48) 2013; 19 A Yool (867_CR45) 2013; 6 RJ Parker (867_CR61) 2022; 19 GA Folberth (867_CR29) 2022; 14 JR Melton (867_CR62) 2013; 10 867_CR49 AA Sellar (867_CR28) 2019; 11 FM O’Connor (867_CR9) 2021; 21 T Kuhlbrodt (867_CR38) 2018; 10 867_CR12 AL Ganesan (867_CR4) 2019; 33 867_CR5 CD Holmes (867_CR10) 2018; 10 O Boucher (867_CR21) 2010; 44 CD Holmes (867_CR55) 2018; 10 C Mathison (867_CR44) 2021; 14 DB Clark (867_CR41) 2011; 4 867_CR15 M Saunois (867_CR17) 2020; 12 RB Skeie (867_CR35) 2023; 4 A Yool (867_CR53) 2020; 12 ST Turnock (867_CR16) 2022; 10 V Eyring (867_CR46) 2016; 9 DL Finney (867_CR59) 2016; 43 BC O’Neill (867_CR47) 2016; 9 867_CR1 867_CR24 867_CR23 867_CR22 AA Sellar (867_CR37) 2020; 12 KD Williams (867_CR39) 2018; 10 FM O’Connor (867_CR50) 2014; 7 G Thornhill (867_CR20) 2021; 21 RM Hoesly (867_CR25) 2018; 11 CJ Smith (867_CR8) 2018; 45 867_CR26 |
References_xml | – ident: 867_CR1 doi: 10.1017/9781009157896 – volume: 96 start-page: 13,033 year: 1991 ident: 867_CR52 publication-title: J. Geophys. Res. doi: 10.1029/91JD01247 – volume: 10 start-page: 2865 year: 2018 ident: 867_CR38 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2018MS001370 – volume: 13 start-page: 1223 year: 2020 ident: 867_CR30 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-1223-2020 – volume: 10 year: 2020 ident: 867_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-020-68246-1 – volume: 4 start-page: 701 year: 2011 ident: 867_CR41 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-4-701-2011 – volume: 14 start-page: 12665 year: 2014 ident: 867_CR58 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-12665-2014 – volume: 11 start-page: 4513 year: 2019 ident: 867_CR28 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001739 – volume: 16 start-page: 3083 year: 2023 ident: 867_CR57 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-16-3083-2023 – volume: 20 start-page: 9525 year: 2020 ident: 867_CR2 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-9525-2020 – volume: 13 start-page: 2563 year: 2013 ident: 867_CR33 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-2563-2013 – ident: 867_CR26 – volume: 4 start-page: 317 year: 2023 ident: 867_CR35 publication-title: Commun. Earth Environ. doi: 10.1038/s43247-023-00969-1 – volume: 33 start-page: 1475 year: 2019 ident: 867_CR4 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2018GB006065 – ident: 867_CR12 – volume: 21 start-page: 4187 year: 2021 ident: 867_CR6 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-4187-2021 – volume: 9 start-page: 2415 year: 2016 ident: 867_CR42 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-2415-2016 – volume: 342 start-page: 1323 year: 2013 ident: 867_CR11 publication-title: Science doi: 10.1126/science.1240162 – volume: 10 start-page: 7017 year: 2010 ident: 867_CR56 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-7017-2010 – ident: 867_CR22 doi: 10.1098/rsta.2021.0104 – volume: 7 start-page: 41 year: 2014 ident: 867_CR50 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-41-2014 – volume: 10 start-page: 3,329 year: 2017 ident: 867_CR51 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-3329-2017 – volume: 42 start-page: 153 year: 2017 ident: 867_CR54 publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2016.05.009 – ident: 867_CR5 – volume: 9 start-page: 3461 year: 2016 ident: 867_CR47 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3461-2016 – ident: 867_CR24 doi: 10.1017/9781009157896.006 – volume: 21 start-page: 1105 year: 2021 ident: 867_CR20 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-1105-2021 – volume: 14 start-page: e2021MS002982 year: 2022 ident: 867_CR29 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2021MS002982 – volume: 19 start-page: 1325 year: 2013 ident: 867_CR48 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12131 – ident: 867_CR15 – volume: 6 start-page: 813 year: 2013 ident: 867_CR63 publication-title: Nat. Geosci. doi: 10.1038/ngeo1955 – volume: 8 start-page: 210 year: 2018 ident: 867_CR60 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0072-6 – volume: 10 start-page: 1087 year: 2018 ident: 867_CR55 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001196 – ident: 867_CR49 doi: 10.1088/1748-9326/ab2726 – volume: 12 start-page: e2019MS001946 year: 2020 ident: 867_CR37 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001946 – volume: 20 start-page: 12905 year: 2020 ident: 867_CR34 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-12905-2020 – volume: 39 start-page: L09803 year: 2012 ident: 867_CR32 publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL051440 – volume: 13 start-page: 5277 year: 2013 ident: 867_CR3 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-5277-2013 – volume: 10 start-page: 357 year: 2018 ident: 867_CR39 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001115 – volume: 45 start-page: 12,023 year: 2018 ident: 867_CR8 publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079826 – volume: 9 start-page: 1937 year: 2016 ident: 867_CR46 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 43 start-page: 5492 year: 2016 ident: 867_CR59 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL068825 – volume: 163 start-page: 1409 year: 2020 ident: 867_CR13 publication-title: Clim. Change doi: 10.1007/s10584-019-02437-2 – volume: 12 start-page: 1443 year: 2019 ident: 867_CR27 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-1443-2019 – ident: 867_CR36 doi: 10.1038/s41467-024-47436-9 – volume: 120 start-page: 831 year: 2012 ident: 867_CR14 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104301 – volume: 19 start-page: 5779 year: 2022 ident: 867_CR61 publication-title: Biogeosciences doi: 10.5194/bg-19-5779-2022 – volume: 21 start-page: 1211 year: 2021 ident: 867_CR9 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-1211-2021 – volume: 10 start-page: 1087 year: 2018 ident: 867_CR10 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001196 – volume: 6 start-page: 1767 year: 2013 ident: 867_CR45 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-1767-2013 – volume: 10 start-page: 753 year: 2013 ident: 867_CR62 publication-title: Biogeosciences doi: 10.5194/bg-10-753-2013 – volume: 13 start-page: 6383 year: 2020 ident: 867_CR40 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-6383-2020 – volume: 11 start-page: 2857 year: 2018 ident: 867_CR43 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-2857-2018 – volume: 44 start-page: 3343 year: 2010 ident: 867_CR21 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.04.032 – volume: 127 start-page: e2022JG006793 year: 2022 ident: 867_CR31 publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2022JG006793 – volume: 14 start-page: e2022MS002991 year: 2022 ident: 867_CR7 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS002991 – volume: 10 start-page: e2022EF002687 year: 2022 ident: 867_CR16 publication-title: Earth’s. Future doi: 10.1029/2022EF002687 – ident: 867_CR23 doi: 10.1098/rsta.2020.0454 – volume: 14 start-page: 437 year: 2021 ident: 867_CR44 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-14-437-2021 – volume: 621 start-page: 530 year: 2023 ident: 867_CR19 publication-title: Nature doi: 10.1038/s41586-023-06344-6 – volume: 12 start-page: 1561 year: 2020 ident: 867_CR17 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1561-2020 – volume: 11 start-page: 369 year: 2018 ident: 867_CR25 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-369-2018 – volume: 12 start-page: e2019MS001933 year: 2020 ident: 867_CR53 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001933 |
SSID | ssj0002202976 |
Score | 2.2945645 |
Snippet | To achieve the Paris climate agreement goals, methane (CH
4
) emission mitigation plays a key role. Therefore, a better understanding of the global methane... To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle... Abstract To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 136 |
SubjectTerms | 21st century 704/106/35/824 704/106/694/1108 704/106/694/682 704/47 Aerosols Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Biogeochemistry Carbon dioxide Climate change Climate Change/Climate Change Impacts Climatology Earth Earth and Environmental Science Earth Sciences Emissions Global warming Greenhouse gases Methane Net Primary Productivity Oxidation Paris Agreement Simulation Wetlands |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy_iE-uLHMSLBrtJ2qZHX8sirCcXPAghT1nRruyuB_31TpKuuoJ48dY2JYRv0s43SeYbhA4pVUZ1a0MctZRwVXNSV4YTWypbCJgQLu7gD27K_pBf3xV330p9hTNhSR44AXfqtBVWC6VrBszd5srUWnvteCnAlZU2_H3B530Lph6jqEsoylS2WTI5E6fTwOQpAZdEAo2vyPuCJ4qC_Qss88fGaPQ3vVW00hJFfJYGuIaWXLOOsgFw3PEkLoXjI3zxNALCGe820P3lJJ6xwGOPX8IqGNivmeGU2TvFowYD18NJAASHwtGqcdi8Qec4JJJNsHqIsTd0gp9HSXpj3OCU-LCJhr2r24s-aWsnEMMEnRHNmWW2pgVAzqrci9xrCE6MYTxXpTWKd53wBryRMbxiOmj21F5VvnRw6R3bQp1m3LhthJmxuSkKE5ghVy4XlWfKc93t2soXNc3Q8RxH-ZIkMmTc2mZCJtQloC4j6vI9Q-cB6s83g7x1fABGl63R5V9Gz9De3FCy_eamkgXtvipEcBk6mRvvq_n3Ie38x5B20TINpYHDoZ5iD3Vmk1e3D3xlpg_i1PwAYsHpyA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSx0xEA-tXryU1lpcqyUH8VKD-5LsbvYkahURlFIqeCiEfMqDdve57_VQ_3pnsnmKBb3tF2GZSTK_mcn8hpBdzo0zk9axwD1n0rSStY2TzNfGVwomREgZ_Mur-vxaXtxUNzngNs_HKpd7Ytqofe8wRn4gkJmtQXx-OLtj2DUKs6u5hcZbsgpbsALna_X49Or7j8coC-fYnKnO1TKlUAdzRPScgWliCOcbdv_MIiXi_mdo878EabI7Z-_JuwwY6dGo4Q_kTejWSXEJWLcfUkic7tGT31MAnunuI_n1bUhnLWgf6QyjYaDHbkHHCt85nXYUMB8diUAoNpA2XaDuHwxOsaBsoOY2-eAwCP0zHSk4-o6OBRAb5Prs9OfJOcs9FJgTii-YlcIL3_IKRC-aMqoyWnBSnBOyNLV3Rk6Cig6sknOyERa5e9pomlgHuIxBfCIrXd-FTUKF86WrKocIUZpQqiYKE6WdTHwTq5YX5OtSjno2UmXolOIWSo9S1yB1naSu7wtyjKJ-_BJprtODfrjVedXoYL3yVhnbCnDbfGlca220QdYKcEztC7K9VJTOa2-un2ZKQfaXynt6_fIvbb0-2meyxrH5Lx7bqbbJymL4G3YAkSzslzztHgDtseE3 priority: 102 providerName: ProQuest |
Title | Drivers of persistent changes in the global methane cycle under aggressive mitigation action |
URI | https://link.springer.com/article/10.1038/s41612-024-00867-z https://www.proquest.com/docview/3186674999 https://doaj.org/article/ebd8db8ab93148d0ac9bbfbe4689016d |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuPRStZSqAbryoeqlWM3aTuIcly0IrQRCFCQOSJafaKU2Qdntofz6jp2ECgSHnvJyLGvGyXxjz3wD8JkxbfW0ttQzx6jQtaB1ZQV1pXaFxAnh0w7-6Vl5ciUW18X1BrAxFyYF7SdKy_SbHqPDvq0iEGcULQqNKLyi969gK1K3x1k9L-cP6yqMxXJM5ZAfk3P5zKuPbFCi6n-EL59siSZLc_wW3gwQkcz6Qb2DDd9sQ3aK6Lbt0iI4-ULmP5cINdPVe7j53qXoCtIGchfXv1BzzZr0Ob0rsmwIojzSU3-QWDJaN57YP9g5iSlkHdG3yevGTsivZU-60TakT3nYgavjo8v5CR2qJlDLJVtTI7jjrmYFCptXeZB5MOiWWMtFrktntZh6GSzaIWtFxU1k66mDrkLp8TR4_gE2m7bxH4Fw63JbFDZiQqF9LqvAdRBmOnVVKGqWwddRjuquJ8dQaVObS9VLXaHUVZK6us_gMIr6oWUktk432u5WDYpW3jjpjNSm5uiouVzb2phgvCglIpfSZbA_KkoNX9tK8cjaV0XfLYODUXn_Hr88pN3_a74Hr1ks_xsDd4p92Fx3v_0nxCRrM4Gt2WzxY4HHw6Oz84tJmpST5OH_BRqO4g4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiKdIKeADcAGrWdt5HRCiL21pd4VQK_WAZPysVoJkyS5C7Y_iNzJ2klZFgltveWkUjcf2NzOe-QBeMqaMGleGOmYZFaoStCqMoDZXNivRIFzM4E9n-eREfDzNTtfg91ALE45VDmtiXKhtY0KMfIuHzmxFwOfvFz9oYI0K2dWBQqMzi0N3_gtdtuW7g10c31eM7e8d70xozypADS_ZimrBLbcVy_BneJH6MvUaYbsxXKQqt0aJsSu9wXXaGFFwHbrZVF4VPnd46R1HubdgXXB0ZUawvr03-_T5MqrDWCCDyvvqnJSXW8vgQTCKWyEN7kNBL67tgJEo4Bq6_SshG_e5_Xtwtweo5ENnUfdhzdUPIJkitm7aGIInr8nOtzkC3Xj3EL7stvFsB2k8WYToG9pNvSJdRfGSzGuCGJN0jUdIIKxWtSPmHIWTUMDWEnUWfX4UQr7Pu5YfTU26gotHcHIj2n0Mo7qp3RMg3NjUZJkJiFQol5aF58oLPR7bwmcVS-DNoEe56FpzyJhS56XstC5R6zJqXV4ksB1UffllaKsdHzTtmexnqXTallaXSlcc3USbKlNp7bUTeYm4KbcJbA4DJfu5vpRXlpnA22Hwrl7_-5c2_i_tBdyeHE-P5NHB7PAp3GGBeDgcGco2YbRqf7pniIZW-nlvggS-3rTV_wGM1h69 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiEuFeUhQh_4gLiAIWs7jnMsW1bl0YoDlXpAsvysVirJKrsc6K9n7CRFRXDglsSOZc04mW_smW8AXjBmnJk1jgbmGRWmEbSpnaBeGl8pXBAhn-CfnsmTc_HxorrYAjnlwuSg_UxpmX_TU3TY23UC4oyiRaEJhdf0-s3KxztwF_F2mZyuuZzf7K0wlkoyyTFHpuTqL6_fskOZrv8WxvzjWDRbm8UD2BlhIjkaJrYLW6F9CMUpItyuzxvh5CWZXy0Rbua7R_DtuM8RFqSLZJX2wFB77YYMeb1rsmwJIj0y0H-QVDbatIG4nzg4SWlkPTGX2fPGQcj35UC80bVkSHt4DOeL91_nJ3SsnEAdV2xDreCe-4ZVKHBel1GV0aJr4hwXpZHeGTELKjq0Rc6JmtvE2NNEU0cZ8DIG_gS2264NT4Fw50tXVS7hQmFCqerITRR2NvN1rBpWwKtJjno1EGTofLDNlR6krlHqOktdXxfwLon6pmcit84Puv5Sj8rWwXrlrTK24eis-dK4xtpog5AK0Yv0BexPitLjF7fWPDH31cl_K-D1pLzfzf-e0rP_6_4c7n05XujPH84-7cF9lqoBpzieah-2N_2PcIAQZWMP83r8BaQM4es |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+of+persistent+changes+in+the+global+methane+cycle+under+aggressive+mitigation+action&rft.jtitle=NPJ+climate+and+atmospheric+science&rft.au=Folberth%2C+Gerd+A.&rft.au=Jones%2C+Chris+D.&rft.au=O%E2%80%99Connor%2C+Fiona+M.&rft.au=Gedney%2C+Nicola&rft.date=2025-04-05&rft.issn=2397-3722&rft.eissn=2397-3722&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41612-024-00867-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41612_024_00867_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3722&client=summon |