Drivers of persistent changes in the global methane cycle under aggressive mitigation action

To achieve the Paris climate agreement goals, methane (CH 4 ) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario...

Full description

Saved in:
Bibliographic Details
Published inNPJ climate and atmospheric science Vol. 8; no. 1; pp. 136 - 12
Main Authors Folberth, Gerd A., Jones, Chris D., O’Connor, Fiona M., Gedney, Nicola, Griffiths, Paul T., Wiltshire, Andy J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To achieve the Paris climate agreement goals, methane (CH 4 ) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH 4 ) yr –1 at pre-industrial to 221 Tg(CH 4 ) yr –1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R 2  = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.
AbstractList To achieve the Paris climate agreement goals, methane (CH 4 ) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH 4 ) yr –1 at pre-industrial to 221 Tg(CH 4 ) yr –1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R 2  = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.
Abstract To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH4) yr–1 at pre-industrial to 221 Tg(CH4) yr–1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R 2 = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.
To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH4) yr–1 at pre-industrial to 221 Tg(CH4) yr–1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R2 = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.
ArticleNumber 136
Author Jones, Chris D.
O’Connor, Fiona M.
Wiltshire, Andy J.
Griffiths, Paul T.
Folberth, Gerd A.
Gedney, Nicola
Author_xml – sequence: 1
  givenname: Gerd A.
  orcidid: 0000-0002-1075-440X
  surname: Folberth
  fullname: Folberth, Gerd A.
  email: gerd.folberth@metoffice.gov.uk
  organization: Met Office Hadley Centre
– sequence: 2
  givenname: Chris D.
  surname: Jones
  fullname: Jones, Chris D.
  organization: Met Office Hadley Centre, School of Geographical Sciences, University of Bristol
– sequence: 3
  givenname: Fiona M.
  orcidid: 0000-0003-2893-4828
  surname: O’Connor
  fullname: O’Connor, Fiona M.
  organization: Met Office Hadley Centre, Department of Mathematics & Statistics, Global Systems Institute, University of Exeter
– sequence: 4
  givenname: Nicola
  surname: Gedney
  fullname: Gedney, Nicola
  organization: Met Office Hadley Centre, Joint Centre for Hydrometeorological Research
– sequence: 5
  givenname: Paul T.
  orcidid: 0000-0002-1089-340X
  surname: Griffiths
  fullname: Griffiths, Paul T.
  organization: National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Research Institute for Global Change, Japan Agency for Marine-Earth Sciences and Tech. (JAMSTEC)
– sequence: 6
  givenname: Andy J.
  surname: Wiltshire
  fullname: Wiltshire, Andy J.
  organization: Met Office Hadley Centre, Department of Geography, Faculty of Environment Science and Economy, University of Exeter
BookMark eNp9kUtrVTEUhYO0YG37BxwFHB_N6-YxlKq1UHCiMyHksXOay70n1yRXaH-9aU-pjhytzWatL5usN-hkKQsg9JaS95Rw_aEJKimbCBMTIVqq6eEVOmPcqIkrxk7-mV-jy9a2hBDGCDNKnqGfn2r-DbXhkvBhaG4dlo7DnVtmaDgvuN8BnnfFux3eQx97wOE-7AAflwgVu3mu0NqA4H3ueXY9lwW78CgX6DS5XYPLZz1HP758_n71dbr9dn1z9fF2ClyzPnnBI4-GbVzccEWSJslvhA6BC-JkDE5Q0CkIZkIQinvFmTbJqSRhjAn4ObpZubG4rT3UvHf13haX7dOi1Nm62vM42oKPOnrtvOFU6EhcMN4nD0JqQ6iMg_VuZR1q-XWE1u22HOsyzrecaimVMMYMF1tdoZbWKqSXVymxj6XYtRQ7SrFPpdiHEeJrqA3z-N76F_2f1B8jupMT
Cites_doi 10.1017/9781009157896
10.1029/91JD01247
10.1029/2018MS001370
10.5194/gmd-13-1223-2020
10.1038/s41598-020-68246-1
10.5194/gmd-4-701-2011
10.5194/acp-14-12665-2014
10.1029/2019MS001739
10.5194/gmd-16-3083-2023
10.5194/acp-20-9525-2020
10.5194/acp-13-2563-2013
10.1038/s43247-023-00969-1
10.1029/2018GB006065
10.5194/acp-21-4187-2021
10.5194/gmd-9-2415-2016
10.1126/science.1240162
10.5194/acp-10-7017-2010
10.1098/rsta.2021.0104
10.5194/gmd-7-41-2014
10.5194/gmd-10-3329-2017
10.1016/j.gloenvcha.2016.05.009
10.5194/gmd-9-3461-2016
10.1017/9781009157896.006
10.5194/acp-21-1105-2021
10.1029/2021MS002982
10.1111/gcb.12131
10.1038/ngeo1955
10.1038/s41558-018-0072-6
10.1002/2017MS001196
10.1088/1748-9326/ab2726
10.1029/2019MS001946
10.5194/acp-20-12905-2020
10.1029/2012GL051440
10.5194/acp-13-5277-2013
10.1002/2017MS001115
10.1029/2018GL079826
10.5194/gmd-9-1937-2016
10.1002/2016GL068825
10.1007/s10584-019-02437-2
10.5194/gmd-12-1443-2019
10.1038/s41467-024-47436-9
10.1289/ehp.1104301
10.5194/bg-19-5779-2022
10.5194/acp-21-1211-2021
10.5194/gmd-6-1767-2013
10.5194/bg-10-753-2013
10.5194/gmd-13-6383-2020
10.5194/gmd-11-2857-2018
10.1016/j.atmosenv.2010.04.032
10.1029/2022JG006793
10.1029/2022MS002991
10.1029/2022EF002687
10.1098/rsta.2020.0454
10.5194/gmd-14-437-2021
10.1038/s41586-023-06344-6
10.5194/essd-12-1561-2020
10.5194/gmd-11-369-2018
10.1029/2019MS001933
ContentType Journal Article
Copyright Crown and Paul T. Griffiths 2025
Copyright Nature Publishing Group 2025
Copyright_xml – notice: Crown and Paul T. Griffiths 2025
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1038/s41612-024-00867-z
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2397-3722
EndPage 12
ExternalDocumentID oai_doaj_org_article_ebd8db8ab93148d0ac9bbfbe4689016d
10_1038_s41612_024_00867_z
GrantInformation_xml – fundername: Met Office Hadley Centre Climate Programme funded by DSIT EU Horizon project ESM2025 (Grant 101003536)
– fundername: Met Office Hadley Centre Climate Programme funded by DSIT Met Office Climate Science for Service Partnership (CSSP) Brazil supported by DSIT
GroupedDBID 0R~
AAJSJ
AASML
ACGFS
ADBBV
AEUYN
AFKRA
AFPKN
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
HCIFZ
M~E
NAO
NO~
OK1
PATMY
PCBAR
PHGZT
PIMPY
PYCSY
RNT
SNYQT
AAFWJ
AAYXX
CITATION
PHGZM
AARCD
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c382t-b43d3d925ad5370f80fb548cc340a6dca41e8fc429cc473b73289fa7f6e732fe3
IEDL.DBID C6C
ISSN 2397-3722
IngestDate Wed Aug 27 01:20:37 EDT 2025
Wed Aug 13 06:10:08 EDT 2025
Tue Jul 01 05:14:23 EDT 2025
Sun Apr 06 01:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b43d3d925ad5370f80fb548cc340a6dca41e8fc429cc473b73289fa7f6e732fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2893-4828
0000-0002-1089-340X
0000-0002-1075-440X
OpenAccessLink https://www.nature.com/articles/s41612-024-00867-z
PQID 3186674999
PQPubID 4669727
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ebd8db8ab93148d0ac9bbfbe4689016d
proquest_journals_3186674999
crossref_primary_10_1038_s41612_024_00867_z
springer_journals_10_1038_s41612_024_00867_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-05
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ climate and atmospheric science
PublicationTitleAbbrev npj Clim Atmos Sci
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References K Riahi (867_CR54) 2017; 42
DL Finney (867_CR58) 2014; 14
AB Harper (867_CR43) 2018; 11
G Rocher-Ros (867_CR19) 2023; 621
S Kirschke (867_CR63) 2013; 6
MJE van Marle (867_CR51) 2017; 10
JK Shoemaker (867_CR11) 2013; 342
MS Johnson (867_CR31) 2022; 127
J Weber (867_CR57) 2023; 16
M Harmsen (867_CR13) 2020; 163
Y Zhao (867_CR2) 2020; 20
AT Archibald (867_CR30) 2020; 13
JP Mulcahy (867_CR40) 2020; 13
MJ Gidden (867_CR27) 2019; 12
SusanC Anenberg (867_CR14) 2012; 120
J-F Lamarque (867_CR56) 2010; 10
DL Finney (867_CR60) 2018; 8
V Naik (867_CR3) 2013; 13
E Matthews (867_CR18) 2020; 10
I Fung (867_CR52) 1991; 96
867_CR36
PT Griffiths (867_CR6) 2021; 21
A Voulgarakis (867_CR33) 2013; 13
DS Stevenson (867_CR34) 2020; 20
FM O’Connor (867_CR7) 2022; 14
MJ Prather (867_CR32) 2012; 39
AB Harper (867_CR42) 2016; 9
SD Bridgham (867_CR48) 2013; 19
A Yool (867_CR45) 2013; 6
RJ Parker (867_CR61) 2022; 19
GA Folberth (867_CR29) 2022; 14
JR Melton (867_CR62) 2013; 10
867_CR49
AA Sellar (867_CR28) 2019; 11
FM O’Connor (867_CR9) 2021; 21
T Kuhlbrodt (867_CR38) 2018; 10
867_CR12
AL Ganesan (867_CR4) 2019; 33
867_CR5
CD Holmes (867_CR10) 2018; 10
O Boucher (867_CR21) 2010; 44
CD Holmes (867_CR55) 2018; 10
C Mathison (867_CR44) 2021; 14
DB Clark (867_CR41) 2011; 4
867_CR15
M Saunois (867_CR17) 2020; 12
RB Skeie (867_CR35) 2023; 4
A Yool (867_CR53) 2020; 12
ST Turnock (867_CR16) 2022; 10
V Eyring (867_CR46) 2016; 9
DL Finney (867_CR59) 2016; 43
BC O’Neill (867_CR47) 2016; 9
867_CR1
867_CR24
867_CR23
867_CR22
AA Sellar (867_CR37) 2020; 12
KD Williams (867_CR39) 2018; 10
FM O’Connor (867_CR50) 2014; 7
G Thornhill (867_CR20) 2021; 21
RM Hoesly (867_CR25) 2018; 11
CJ Smith (867_CR8) 2018; 45
867_CR26
References_xml – ident: 867_CR1
  doi: 10.1017/9781009157896
– volume: 96
  start-page: 13,033
  year: 1991
  ident: 867_CR52
  publication-title: J. Geophys. Res.
  doi: 10.1029/91JD01247
– volume: 10
  start-page: 2865
  year: 2018
  ident: 867_CR38
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2018MS001370
– volume: 13
  start-page: 1223
  year: 2020
  ident: 867_CR30
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-1223-2020
– volume: 10
  year: 2020
  ident: 867_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68246-1
– volume: 4
  start-page: 701
  year: 2011
  ident: 867_CR41
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-4-701-2011
– volume: 14
  start-page: 12665
  year: 2014
  ident: 867_CR58
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-12665-2014
– volume: 11
  start-page: 4513
  year: 2019
  ident: 867_CR28
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001739
– volume: 16
  start-page: 3083
  year: 2023
  ident: 867_CR57
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-16-3083-2023
– volume: 20
  start-page: 9525
  year: 2020
  ident: 867_CR2
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-9525-2020
– volume: 13
  start-page: 2563
  year: 2013
  ident: 867_CR33
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-2563-2013
– ident: 867_CR26
– volume: 4
  start-page: 317
  year: 2023
  ident: 867_CR35
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00969-1
– volume: 33
  start-page: 1475
  year: 2019
  ident: 867_CR4
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2018GB006065
– ident: 867_CR12
– volume: 21
  start-page: 4187
  year: 2021
  ident: 867_CR6
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-4187-2021
– volume: 9
  start-page: 2415
  year: 2016
  ident: 867_CR42
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-2415-2016
– volume: 342
  start-page: 1323
  year: 2013
  ident: 867_CR11
  publication-title: Science
  doi: 10.1126/science.1240162
– volume: 10
  start-page: 7017
  year: 2010
  ident: 867_CR56
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-7017-2010
– ident: 867_CR22
  doi: 10.1098/rsta.2021.0104
– volume: 7
  start-page: 41
  year: 2014
  ident: 867_CR50
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-41-2014
– volume: 10
  start-page: 3,329
  year: 2017
  ident: 867_CR51
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-3329-2017
– volume: 42
  start-page: 153
  year: 2017
  ident: 867_CR54
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2016.05.009
– ident: 867_CR5
– volume: 9
  start-page: 3461
  year: 2016
  ident: 867_CR47
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3461-2016
– ident: 867_CR24
  doi: 10.1017/9781009157896.006
– volume: 21
  start-page: 1105
  year: 2021
  ident: 867_CR20
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-1105-2021
– volume: 14
  start-page: e2021MS002982
  year: 2022
  ident: 867_CR29
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2021MS002982
– volume: 19
  start-page: 1325
  year: 2013
  ident: 867_CR48
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12131
– ident: 867_CR15
– volume: 6
  start-page: 813
  year: 2013
  ident: 867_CR63
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1955
– volume: 8
  start-page: 210
  year: 2018
  ident: 867_CR60
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0072-6
– volume: 10
  start-page: 1087
  year: 2018
  ident: 867_CR55
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2017MS001196
– ident: 867_CR49
  doi: 10.1088/1748-9326/ab2726
– volume: 12
  start-page: e2019MS001946
  year: 2020
  ident: 867_CR37
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001946
– volume: 20
  start-page: 12905
  year: 2020
  ident: 867_CR34
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-12905-2020
– volume: 39
  start-page: L09803
  year: 2012
  ident: 867_CR32
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL051440
– volume: 13
  start-page: 5277
  year: 2013
  ident: 867_CR3
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-5277-2013
– volume: 10
  start-page: 357
  year: 2018
  ident: 867_CR39
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2017MS001115
– volume: 45
  start-page: 12,023
  year: 2018
  ident: 867_CR8
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL079826
– volume: 9
  start-page: 1937
  year: 2016
  ident: 867_CR46
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– volume: 43
  start-page: 5492
  year: 2016
  ident: 867_CR59
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068825
– volume: 163
  start-page: 1409
  year: 2020
  ident: 867_CR13
  publication-title: Clim. Change
  doi: 10.1007/s10584-019-02437-2
– volume: 12
  start-page: 1443
  year: 2019
  ident: 867_CR27
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-1443-2019
– ident: 867_CR36
  doi: 10.1038/s41467-024-47436-9
– volume: 120
  start-page: 831
  year: 2012
  ident: 867_CR14
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104301
– volume: 19
  start-page: 5779
  year: 2022
  ident: 867_CR61
  publication-title: Biogeosciences
  doi: 10.5194/bg-19-5779-2022
– volume: 21
  start-page: 1211
  year: 2021
  ident: 867_CR9
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-1211-2021
– volume: 10
  start-page: 1087
  year: 2018
  ident: 867_CR10
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2017MS001196
– volume: 6
  start-page: 1767
  year: 2013
  ident: 867_CR45
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-1767-2013
– volume: 10
  start-page: 753
  year: 2013
  ident: 867_CR62
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-753-2013
– volume: 13
  start-page: 6383
  year: 2020
  ident: 867_CR40
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-6383-2020
– volume: 11
  start-page: 2857
  year: 2018
  ident: 867_CR43
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-11-2857-2018
– volume: 44
  start-page: 3343
  year: 2010
  ident: 867_CR21
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.04.032
– volume: 127
  start-page: e2022JG006793
  year: 2022
  ident: 867_CR31
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2022JG006793
– volume: 14
  start-page: e2022MS002991
  year: 2022
  ident: 867_CR7
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS002991
– volume: 10
  start-page: e2022EF002687
  year: 2022
  ident: 867_CR16
  publication-title: Earth’s. Future
  doi: 10.1029/2022EF002687
– ident: 867_CR23
  doi: 10.1098/rsta.2020.0454
– volume: 14
  start-page: 437
  year: 2021
  ident: 867_CR44
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-437-2021
– volume: 621
  start-page: 530
  year: 2023
  ident: 867_CR19
  publication-title: Nature
  doi: 10.1038/s41586-023-06344-6
– volume: 12
  start-page: 1561
  year: 2020
  ident: 867_CR17
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1561-2020
– volume: 11
  start-page: 369
  year: 2018
  ident: 867_CR25
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-11-369-2018
– volume: 12
  start-page: e2019MS001933
  year: 2020
  ident: 867_CR53
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001933
SSID ssj0002202976
Score 2.2945645
Snippet To achieve the Paris climate agreement goals, methane (CH 4 ) emission mitigation plays a key role. Therefore, a better understanding of the global methane...
To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle...
Abstract To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 136
SubjectTerms 21st century
704/106/35/824
704/106/694/1108
704/106/694/682
704/47
Aerosols
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Biogeochemistry
Carbon dioxide
Climate change
Climate Change/Climate Change Impacts
Climatology
Earth
Earth and Environmental Science
Earth Sciences
Emissions
Global warming
Greenhouse gases
Methane
Net Primary Productivity
Oxidation
Paris Agreement
Simulation
Wetlands
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy_iE-uLHMSLBrtJ2qZHX8sirCcXPAghT1nRruyuB_31TpKuuoJ48dY2JYRv0s43SeYbhA4pVUZ1a0MctZRwVXNSV4YTWypbCJgQLu7gD27K_pBf3xV330p9hTNhSR44AXfqtBVWC6VrBszd5srUWnvteCnAlZU2_H3B530Lph6jqEsoylS2WTI5E6fTwOQpAZdEAo2vyPuCJ4qC_Qss88fGaPQ3vVW00hJFfJYGuIaWXLOOsgFw3PEkLoXjI3zxNALCGe820P3lJJ6xwGOPX8IqGNivmeGU2TvFowYD18NJAASHwtGqcdi8Qec4JJJNsHqIsTd0gp9HSXpj3OCU-LCJhr2r24s-aWsnEMMEnRHNmWW2pgVAzqrci9xrCE6MYTxXpTWKd53wBryRMbxiOmj21F5VvnRw6R3bQp1m3LhthJmxuSkKE5ghVy4XlWfKc93t2soXNc3Q8RxH-ZIkMmTc2mZCJtQloC4j6vI9Q-cB6s83g7x1fABGl63R5V9Gz9De3FCy_eamkgXtvipEcBk6mRvvq_n3Ie38x5B20TINpYHDoZ5iD3Vmk1e3D3xlpg_i1PwAYsHpyA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSx0xEA-tXryU1lpcqyUH8VKD-5LsbvYkahURlFIqeCiEfMqDdve57_VQ_3pnsnmKBb3tF2GZSTK_mcn8hpBdzo0zk9axwD1n0rSStY2TzNfGVwomREgZ_Mur-vxaXtxUNzngNs_HKpd7Ytqofe8wRn4gkJmtQXx-OLtj2DUKs6u5hcZbsgpbsALna_X49Or7j8coC-fYnKnO1TKlUAdzRPScgWliCOcbdv_MIiXi_mdo878EabI7Z-_JuwwY6dGo4Q_kTejWSXEJWLcfUkic7tGT31MAnunuI_n1bUhnLWgf6QyjYaDHbkHHCt85nXYUMB8diUAoNpA2XaDuHwxOsaBsoOY2-eAwCP0zHSk4-o6OBRAb5Prs9OfJOcs9FJgTii-YlcIL3_IKRC-aMqoyWnBSnBOyNLV3Rk6Cig6sknOyERa5e9pomlgHuIxBfCIrXd-FTUKF86WrKocIUZpQqiYKE6WdTHwTq5YX5OtSjno2UmXolOIWSo9S1yB1naSu7wtyjKJ-_BJprtODfrjVedXoYL3yVhnbCnDbfGlca220QdYKcEztC7K9VJTOa2-un2ZKQfaXynt6_fIvbb0-2meyxrH5Lx7bqbbJymL4G3YAkSzslzztHgDtseE3
  priority: 102
  providerName: ProQuest
Title Drivers of persistent changes in the global methane cycle under aggressive mitigation action
URI https://link.springer.com/article/10.1038/s41612-024-00867-z
https://www.proquest.com/docview/3186674999
https://doaj.org/article/ebd8db8ab93148d0ac9bbfbe4689016d
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuPRStZSqAbryoeqlWM3aTuIcly0IrQRCFCQOSJafaKU2Qdntofz6jp2ECgSHnvJyLGvGyXxjz3wD8JkxbfW0ttQzx6jQtaB1ZQV1pXaFxAnh0w7-6Vl5ciUW18X1BrAxFyYF7SdKy_SbHqPDvq0iEGcULQqNKLyi969gK1K3x1k9L-cP6yqMxXJM5ZAfk3P5zKuPbFCi6n-EL59siSZLc_wW3gwQkcz6Qb2DDd9sQ3aK6Lbt0iI4-ULmP5cINdPVe7j53qXoCtIGchfXv1BzzZr0Ob0rsmwIojzSU3-QWDJaN57YP9g5iSlkHdG3yevGTsivZU-60TakT3nYgavjo8v5CR2qJlDLJVtTI7jjrmYFCptXeZB5MOiWWMtFrktntZh6GSzaIWtFxU1k66mDrkLp8TR4_gE2m7bxH4Fw63JbFDZiQqF9LqvAdRBmOnVVKGqWwddRjuquJ8dQaVObS9VLXaHUVZK6us_gMIr6oWUktk432u5WDYpW3jjpjNSm5uiouVzb2phgvCglIpfSZbA_KkoNX9tK8cjaV0XfLYODUXn_Hr88pN3_a74Hr1ks_xsDd4p92Fx3v_0nxCRrM4Gt2WzxY4HHw6Oz84tJmpST5OH_BRqO4g4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiKdIKeADcAGrWdt5HRCiL21pd4VQK_WAZPysVoJkyS5C7Y_iNzJ2klZFgltveWkUjcf2NzOe-QBeMqaMGleGOmYZFaoStCqMoDZXNivRIFzM4E9n-eREfDzNTtfg91ALE45VDmtiXKhtY0KMfIuHzmxFwOfvFz9oYI0K2dWBQqMzi0N3_gtdtuW7g10c31eM7e8d70xozypADS_ZimrBLbcVy_BneJH6MvUaYbsxXKQqt0aJsSu9wXXaGFFwHbrZVF4VPnd46R1HubdgXXB0ZUawvr03-_T5MqrDWCCDyvvqnJSXW8vgQTCKWyEN7kNBL67tgJEo4Bq6_SshG_e5_Xtwtweo5ENnUfdhzdUPIJkitm7aGIInr8nOtzkC3Xj3EL7stvFsB2k8WYToG9pNvSJdRfGSzGuCGJN0jUdIIKxWtSPmHIWTUMDWEnUWfX4UQr7Pu5YfTU26gotHcHIj2n0Mo7qp3RMg3NjUZJkJiFQol5aF58oLPR7bwmcVS-DNoEe56FpzyJhS56XstC5R6zJqXV4ksB1UffllaKsdHzTtmexnqXTallaXSlcc3USbKlNp7bUTeYm4KbcJbA4DJfu5vpRXlpnA22Hwrl7_-5c2_i_tBdyeHE-P5NHB7PAp3GGBeDgcGco2YbRqf7pniIZW-nlvggS-3rTV_wGM1h69
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiEuFeUhQh_4gLiAIWs7jnMsW1bl0YoDlXpAsvysVirJKrsc6K9n7CRFRXDglsSOZc04mW_smW8AXjBmnJk1jgbmGRWmEbSpnaBeGl8pXBAhn-CfnsmTc_HxorrYAjnlwuSg_UxpmX_TU3TY23UC4oyiRaEJhdf0-s3KxztwF_F2mZyuuZzf7K0wlkoyyTFHpuTqL6_fskOZrv8WxvzjWDRbm8UD2BlhIjkaJrYLW6F9CMUpItyuzxvh5CWZXy0Rbua7R_DtuM8RFqSLZJX2wFB77YYMeb1rsmwJIj0y0H-QVDbatIG4nzg4SWlkPTGX2fPGQcj35UC80bVkSHt4DOeL91_nJ3SsnEAdV2xDreCe-4ZVKHBel1GV0aJr4hwXpZHeGTELKjq0Rc6JmtvE2NNEU0cZ8DIG_gS2264NT4Fw50tXVS7hQmFCqerITRR2NvN1rBpWwKtJjno1EGTofLDNlR6krlHqOktdXxfwLon6pmcit84Puv5Sj8rWwXrlrTK24eis-dK4xtpog5AK0Yv0BexPitLjF7fWPDH31cl_K-D1pLzfzf-e0rP_6_4c7n05XujPH84-7cF9lqoBpzieah-2N_2PcIAQZWMP83r8BaQM4es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+of+persistent+changes+in+the+global+methane+cycle+under+aggressive+mitigation+action&rft.jtitle=NPJ+climate+and+atmospheric+science&rft.au=Folberth%2C+Gerd+A.&rft.au=Jones%2C+Chris+D.&rft.au=O%E2%80%99Connor%2C+Fiona+M.&rft.au=Gedney%2C+Nicola&rft.date=2025-04-05&rft.issn=2397-3722&rft.eissn=2397-3722&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41612-024-00867-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41612_024_00867_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3722&client=summon