Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil

Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 17; no. 3; pp. 741 - 750
Main Authors Meier, Sebastián, Curaqueo, Gustavo, Khan, Naser, Bolan, Nanthi, Cea, Mara, Eugenia, González María, Cornejo, Pablo, Ok, Yong Sik, Borie, Fernando
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. Materials and methods A Cu-contaminated sandy soil (338 mg Cu kg −1 ) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg −1 ). The spiked soil was then amended with CMB (0, 5, and 10 % w/w ) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. Results and discussion The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg −1 , only when CMB dose was 10 %. Conclusions The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
AbstractList Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. Materials and methods A Cu-contaminated sandy soil (338 mg Cu kg-1) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg-1). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. Results and discussion The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg-1, only when CMB dose was 10 %. Conclusions The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. A Cu-contaminated sandy soil (338 mg Cu kg super(-1)) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg super(-1)). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg super(-1), only when CMB dose was 10 %. The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
PURPOSE: Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. MATERIALS AND METHODS: A Cu-contaminated sandy soil (338 mg Cu kg⁻¹) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg⁻¹). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. RESULTS AND DISCUSSION: The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg⁻¹, only when CMB dose was 10 %. CONCLUSIONS: The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. Materials and methods A Cu-contaminated sandy soil (338 mg Cu kg −1 ) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg −1 ). The spiked soil was then amended with CMB (0, 5, and 10 % w/w ) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. Results and discussion The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg −1 , only when CMB dose was 10 %. Conclusions The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
Author Curaqueo, Gustavo
Khan, Naser
Ok, Yong Sik
Eugenia, González María
Borie, Fernando
Meier, Sebastián
Cea, Mara
Cornejo, Pablo
Bolan, Nanthi
Author_xml – sequence: 1
  givenname: Sebastián
  surname: Meier
  fullname: Meier, Sebastián
  email: sebastian.meier@ufrontera.com, sebastian.meier@ufrontera.cl
  organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera
– sequence: 2
  givenname: Gustavo
  surname: Curaqueo
  fullname: Curaqueo, Gustavo
  organization: Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera
– sequence: 3
  givenname: Naser
  surname: Khan
  fullname: Khan, Naser
  organization: Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, School of Natural and Built Environments, University of South Australia
– sequence: 4
  givenname: Nanthi
  surname: Bolan
  fullname: Bolan, Nanthi
  organization: Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Global Institute for Environmental Remediation (GIER), The University of Newcastle
– sequence: 5
  givenname: Mara
  surname: Cea
  fullname: Cea, Mara
  organization: Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera
– sequence: 6
  givenname: González María
  surname: Eugenia
  fullname: Eugenia, González María
  organization: Núcleo de Investigación en Energías Renovables, Dirección de Investigación, Universidad Católica de Temuco
– sequence: 7
  givenname: Pablo
  surname: Cornejo
  fullname: Cornejo, Pablo
  organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera
– sequence: 8
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  organization: Korea Biochar Research Center & Department of Biological Environment, Kangwon National University
– sequence: 9
  givenname: Fernando
  surname: Borie
  fullname: Borie, Fernando
  organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera
BookMark eNqFkU9rFjEQxoNUaPvqB-htwYuX2Mnm3-YoL1qFgpeCxzCbZNvUfZPXZLfQb2_K9iAFKwzMhPk9w2Sec3KScgqEXDD4xAD0ZWWMq4ECk5T1UlH1hpwxxQTVYoCTVgtuWheGU3Je6z0A1619Rn7u76L7FRI9YFpLoD6U-BB8N8bs7rB0JfjVbW98wDjjGOe4PHZ56lw-HkPpYuqw1WnBQ0y4NLbmOL8jbyeca3j_nHfk5uuXm_03ev3j6vv-8zV1fOgXOjIFqueTRsAJDTiv1aBBMsld21aCnCYcPUDo0XswoxiF9L43g5GTAL4jH7exx5J_r6Eu9hCrC_OMKeS12h4AhBHKyP-ibNB64EJx3tAPL9D7vJbU_tEoZZQyvMWO6I1yJddawmRdXHCJ7RSlXcoysE_W2M0a26yxT9ZY1ZTshfJY4gHL46uaftPUxqbbUP7a6Z-iP9Y3oas
CitedBy_id crossref_primary_10_1016_S1002_0160_17_60490_9
crossref_primary_10_1007_s11270_022_05659_w
crossref_primary_10_1007_s42729_023_01445_7
crossref_primary_10_3390_ma16186314
crossref_primary_10_1007_s10098_022_02311_3
crossref_primary_10_1186_s13765_020_0493_6
crossref_primary_10_3390_su15118677
crossref_primary_10_3390_agriculture15050531
crossref_primary_10_1007_s42773_024_00321_6
crossref_primary_10_1007_s42729_021_00493_1
crossref_primary_10_1016_j_envpol_2023_121414
crossref_primary_10_1007_s10653_021_01157_w
crossref_primary_10_1016_j_ecoenv_2022_113165
crossref_primary_10_3389_fenvs_2023_1199923
crossref_primary_10_1016_j_envpol_2021_118655
crossref_primary_10_1016_j_apgeochem_2019_01_013
crossref_primary_10_1016_j_envpol_2017_04_048
crossref_primary_10_3390_su15129380
crossref_primary_10_1007_s42729_023_01201_x
crossref_primary_10_3390_stresses4010011
crossref_primary_10_3390_su13116262
crossref_primary_10_3390_agriculture13102003
crossref_primary_10_1016_j_chemosphere_2019_125608
crossref_primary_10_1007_s13399_020_01013_4
crossref_primary_10_1007_s42729_022_00968_9
crossref_primary_10_1016_j_scitotenv_2017_10_223
crossref_primary_10_3390_app11198914
crossref_primary_10_1080_00103624_2020_1798986
crossref_primary_10_3390_plants13172516
crossref_primary_10_1016_j_envpol_2020_114586
crossref_primary_10_3390_ijerph15030494
crossref_primary_10_3390_molecules25071617
crossref_primary_10_1007_s12011_020_02214_8
crossref_primary_10_3390_su16229749
crossref_primary_10_1016_j_scitotenv_2018_06_316
crossref_primary_10_3389_fenrg_2023_1092637
crossref_primary_10_1007_s11356_021_16061_0
crossref_primary_10_1016_j_ecoenv_2017_07_049
crossref_primary_10_1016_j_envpol_2023_122571
crossref_primary_10_1007_s11368_016_1610_3
crossref_primary_10_1007_s11356_022_22138_1
crossref_primary_10_1016_j_envres_2024_120170
crossref_primary_10_1016_j_jenvman_2018_09_006
crossref_primary_10_1007_s13399_020_01078_1
crossref_primary_10_1007_s11356_017_8981_x
crossref_primary_10_1007_s11368_016_1643_7
crossref_primary_10_1007_s11356_021_16631_2
crossref_primary_10_1007_s42773_019_00009_2
crossref_primary_10_1016_j_scitotenv_2022_158810
crossref_primary_10_1007_s11356_019_04448_z
crossref_primary_10_3390_molecules26185449
crossref_primary_10_1016_j_apgeochem_2018_12_003
crossref_primary_10_3390_min12010085
crossref_primary_10_1007_s42729_021_00591_0
crossref_primary_10_1007_s11356_018_04080_3
crossref_primary_10_1016_j_envsoft_2024_106060
crossref_primary_10_1007_s13530_023_00195_4
crossref_primary_10_1016_j_ecoenv_2017_07_071
crossref_primary_10_1016_j_biortech_2019_122318
crossref_primary_10_3390_ma16196392
crossref_primary_10_1680_jenge_18_00091
crossref_primary_10_2166_wst_2023_216
crossref_primary_10_19047_0136_1694_2023_115_160_198
crossref_primary_10_1007_s40098_023_00788_3
crossref_primary_10_1080_10643389_2017_1328918
crossref_primary_10_1007_s13399_021_01587_7
crossref_primary_10_1080_00103624_2019_1671444
crossref_primary_10_1007_s10653_021_00899_x
crossref_primary_10_1007_s11356_019_04477_8
crossref_primary_10_1007_s11356_024_35318_y
crossref_primary_10_1016_j_chemosphere_2023_139836
crossref_primary_10_3390_molecules25143167
crossref_primary_10_3390_toxics9080184
crossref_primary_10_1007_s10653_019_00431_2
crossref_primary_10_1007_s00128_024_03881_2
crossref_primary_10_1007_s13762_022_04320_7
crossref_primary_10_1016_j_envint_2019_03_031
crossref_primary_10_1007_s10653_019_00436_x
crossref_primary_10_1016_j_jclepro_2019_118319
crossref_primary_10_1016_j_sajb_2023_05_036
crossref_primary_10_1016_j_jece_2024_115291
crossref_primary_10_3390_agronomy11050993
Cites_doi 10.1016/j.soilbio.2011.04.022
10.1016/j.chemosphere.2010.05.020
10.1016/j.soilbio.2008.11.013
10.1111/j.1365-2486.2009.02044.x
10.1016/j.scitotenv.2012.02.061
10.1021/jf9044217
10.1016/j.soilbio.2012.10.031
10.1016/j.pedobi.2011.08.008
10.1166/jbmb.2013.1381
10.1016/j.envpol.2010.02.003
10.1021/ac50043a017
10.2136/sssaj1990.03615995005400040037x
10.1016/j.ecoenv.2011.08.029
10.1016/j.chemosphere.2013.09.077
10.1016/j.scitotenv.2011.12.009
10.4067/S0716-078X2004000100014
10.2134/agronj1969.00021962006100020025x
10.1007/s11104-011-0948-y
10.1016/j.apsoil.2011.10.018
10.1016/j.apsoil.2011.04.005
10.1071/SR10009
10.1016/j.scitotenv.2008.07.045
10.1016/0038-0717(90)90094-G
10.1016/j.chemosphere.2014.06.024
10.1016/j.chemosphere.2004.11.096
10.1007/s11104-007-9391-5
10.1080/10643389.2010.528518
10.1007/s11356-013-1964-7
10.1016/j.biombioe.2013.07.019
10.1016/S0008-6223(00)00048-8
10.1016/j.biortech.2014.05.029
10.1016/j.jhazmat.2011.04.025
10.1016/j.agee.2013.11.018
10.1016/j.jaap.2011.11.018
10.1002/Bbb.169
10.1007/s12665-015-4116-1
10.1371/journal.pone.0133424
10.1007/s10653-015-9694-z:1-12
10.1201/9781482274769
10.1007/s12665-015-4262-5:1-11
10.1016/j.biortech.2010.02.052
10.1002/jpln.201400092
10.1079/9780851990989.0000
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Journal of Soils and Sediments is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Journal of Soils and Sediments is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7U7
7S9
L.6
DOI 10.1007/s11368-015-1256-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Toxicology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Toxicology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
Toxicology Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 750
ExternalDocumentID 4315310741
10_1007_s11368_015_1256_6
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7U7
7S9
L.6
ID FETCH-LOGICAL-c382t-b160623f7a0afa90cd768705153c010505ffabd00e2add09b4b45dd29895f403
IEDL.DBID BENPR
ISSN 1439-0108
IngestDate Fri Jul 11 04:37:31 EDT 2025
Fri Jul 11 11:56:23 EDT 2025
Sat Jul 26 01:25:42 EDT 2025
Tue Jul 01 01:38:07 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Soil remediation
Phytoavailability
Black carbon
Heavy metals
Soil amendment
Charcoal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b160623f7a0afa90cd768705153c010505ffabd00e2add09b4b45dd29895f403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1869669369
PQPubID 54474
PageCount 10
ParticipantIDs proquest_miscellaneous_2000494695
proquest_miscellaneous_1877834633
proquest_journals_1869669369
crossref_citationtrail_10_1007_s11368_015_1256_6
crossref_primary_10_1007_s11368_015_1256_6
springer_journals_10_1007_s11368_015_1256_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Moon, Park, Chang (CR32) 2013; 20
McIntosh (CR26) 1969; 61
Lucchini, Quilliam, DeLuca (CR24) 2014; 184
Tan (CR41) 2005
CR19
Major, Lehmann, Rondon, Goodale (CR25) 2010; 16
Lu, Li, Fu (CR23) 2015; 119
Beesley, Moreno-Jimenez, Gomez-Eyles (CR3) 2010; 158
Sadzawka, Carrasco, Grez (CR37) 2006
Lehmann, Rillig, Thies (CR22) 2011; 43
Park, Choppala, Bolan (CR34) 2011; 348
Singh, Singh (CR38) 2005; 60
CR10
Meier, Alvear, Borie (CR28) 2012; 75
Klugh-Stewart, Cumming (CR18) 2009; 41
CR31
Sizmur, Wingate, Hutchings, Hodson (CR39) 2011; 54
Tessier, Campbell, Bisson (CR42) 1979; 51
Warnock, Lehmann, Kuyper, Rillig (CR45) 2007; 300
Meier, Azcón, Cartes (CR27) 2011; 48
Meier, Borie, Curaqueo (CR30) 2012; 61
Moreno-Castilla, Lopez-Ramon, Carrasco-Marín (CR33) 2000; 38
Uchimiya, Lima, Klasson, Wartelle (CR44) 2010; 80
Anderson, Domsch (CR2) 1990; 22
Uchimiya, Lima, Klasson (CR43) 2010; 58
Fox, Comerford (CR9) 1990; 54
Song, Guo (CR40) 2012; 94
Cornejo, Meier, Borie (CR7) 2008; 406
Rajapaksha, Ahmad, Vithanage (CR36) 2015
CR4
CR6
Jindo, Sanchez-Monedero, Hernandez (CR13) 2012; 416
Meier, Borie, Bolan, Cornejo (CR29) 2012; 42
Joseph, Camps-Arbestain, Lin (CR14) 2010; 48
Bolan, Kunhikrishnan, Choppala (CR5) 2012; 424
Karami, Clemente, Moreno-Jiménez (CR15) 2011; 191
Cornejo, Pérez-Tienda, Meier (CR8) 2013; 57
Ahmad, Lee, Lim (CR1) 2014; 95
Lee, Shah, Awad (CR20) 2015
Houben, Evrard, Sonnet (CR12) 2013; 57
Ginocchio, Baker (CR11) 2004; 77
Khan, Shea (CR16) 2013; 7
Leeper, Uren (CR21) 1993
Rajapaksha, Vithanage, Zhang (CR35) 2014; 166
Kim, Kim, Kim (CR17) 2015
P Cornejo (1256_CR7) 2008; 406
L Beesley (1256_CR3) 2010; 158
T Fox (1256_CR9) 1990; 54
SD Joseph (1256_CR14) 2010; 48
D Warnock (1256_CR45) 2007; 300
S Meier (1256_CR30) 2012; 61
AU Rajapaksha (1256_CR35) 2014; 166
1256_CR19
S Lee (1256_CR20) 2015
G Leeper (1256_CR21) 1993
A Sadzawka (1256_CR37) 2006
P Cornejo (1256_CR8) 2013; 57
D Houben (1256_CR12) 2013; 57
H Lu (1256_CR23) 2015; 119
1256_CR6
W Song (1256_CR40) 2012; 94
T Sizmur (1256_CR39) 2011; 54
1256_CR4
JL McIntosh (1256_CR26) 1969; 61
S Meier (1256_CR28) 2012; 75
N Khan (1256_CR16) 2013; 7
S Meier (1256_CR29) 2012; 42
1256_CR31
C Moreno-Castilla (1256_CR33) 2000; 38
1256_CR10
R Ginocchio (1256_CR11) 2004; 77
DH Moon (1256_CR32) 2013; 20
NS Bolan (1256_CR5) 2012; 424
N Karami (1256_CR15) 2011; 191
JH Park (1256_CR34) 2011; 348
K Klugh-Stewart (1256_CR18) 2009; 41
M Ahmad (1256_CR1) 2014; 95
J Singh (1256_CR38) 2005; 60
A Rajapaksha (1256_CR36) 2015
J Major (1256_CR25) 2010; 16
M Uchimiya (1256_CR43) 2010; 58
P Lucchini (1256_CR24) 2014; 184
KH Tan (1256_CR41) 2005
K Jindo (1256_CR13) 2012; 416
M Uchimiya (1256_CR44) 2010; 80
H-S Kim (1256_CR17) 2015
S Meier (1256_CR27) 2011; 48
T Anderson (1256_CR2) 1990; 22
J Lehmann (1256_CR22) 2011; 43
A Tessier (1256_CR42) 1979; 51
References_xml – volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: CR22
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– year: 2006
  ident: CR37
  publication-title: Métodos de análisis recomendados para los suelos de Chile
– volume: 80
  start-page: 935
  year: 2010
  end-page: 940
  ident: CR44
  article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.020
– volume: 41
  start-page: 367
  year: 2009
  end-page: 373
  ident: CR18
  article-title: Organic acid exudation by mycorrhizal L. (broomsedge) roots in response to aluminum
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.11.013
– volume: 16
  start-page: 1366
  year: 2010
  end-page: 1379
  ident: CR25
  article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2009.02044.x
– ident: CR4
– volume: 424
  start-page: 264
  year: 2012
  end-page: 270
  ident: CR5
  article-title: Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2012.02.061
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: CR43
  article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9044217
– volume: 57
  start-page: 925
  year: 2013
  end-page: 928
  ident: CR8
  article-title: Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.10.031
– volume: 54
  start-page: S211
  year: 2011
  end-page: S216
  ident: CR39
  article-title: L. does not impact on the remediation efficiency of compost and biochar amendments
  publication-title: Pedobiologia (Jena)
  doi: 10.1016/j.pedobi.2011.08.008
– ident: CR10
– volume: 7
  start-page: 715
  year: 2013
  end-page: 723
  ident: CR16
  article-title: Turf root enhancement by amendment of Jandakot sands of Western Australia with different rates of biochar
  publication-title: J Biobased Mater Bioenergy
  doi: 10.1166/jbmb.2013.1381
– volume: 158
  start-page: 2282
  year: 2010
  end-page: 2287
  ident: CR3
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.02.003
– ident: CR6
– volume: 51
  start-page: 844
  year: 1979
  end-page: 851
  ident: CR42
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal Chem
  doi: 10.1021/ac50043a017
– volume: 54
  start-page: 1139
  year: 1990
  end-page: 1144
  ident: CR9
  article-title: Low-molecular-weight organic acids in selected forest soils of the southeastern USA
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1990.03615995005400040037x
– year: 2015
  ident: CR20
  article-title: Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control
  publication-title: Environ Earth Sci
– volume: 75
  start-page: 8
  year: 2012
  end-page: 15
  ident: CR28
  article-title: Influence of copper on root exudate patterns in some metallophytes and agricultural plants
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2011.08.029
– volume: 95
  start-page: 433
  year: 2014
  end-page: 441
  ident: CR1
  article-title: Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.077
– volume: 416
  start-page: 476
  year: 2012
  end-page: 481
  ident: CR13
  article-title: Biochar influences the microbial community structure during manure composting with agricultural wastes
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.12.009
– volume: 77
  start-page: 185
  year: 2004
  end-page: 194
  ident: CR11
  article-title: Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region
  publication-title: Rev Chil Hist Nat
  doi: 10.4067/S0716-078X2004000100014
– volume: 61
  start-page: 259
  year: 1969
  end-page: 265
  ident: CR26
  article-title: Bray and Morgan soil test extractants modified for testing acid soils from different parent materials
  publication-title: Agron J
  doi: 10.2134/agronj1969.00021962006100020025x
– volume: 348
  start-page: 439
  year: 2011
  end-page: 451
  ident: CR34
  article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0948-y
– ident: CR19
– volume: 61
  start-page: 280
  year: 2012
  end-page: 287
  ident: CR30
  article-title: Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2011.10.018
– volume: 48
  start-page: 117
  year: 2011
  end-page: 124
  ident: CR27
  article-title: Alleviation of Cu toxicity in by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2011.04.005
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: CR14
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust J Soil Res
  doi: 10.1071/SR10009
– year: 2005
  ident: CR41
  publication-title: Soil sampling, preparation, and analysis
– ident: CR31
– volume: 406
  start-page: 154
  year: 2008
  end-page: 160
  ident: CR7
  article-title: Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2008.07.045
– volume: 22
  start-page: 251
  year: 1990
  end-page: 255
  ident: CR2
  article-title: Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(90)90094-G
– year: 2015
  ident: CR17
  article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce ( L.) in agricultural soil
  publication-title: Environ Earth Sci
– year: 2015
  ident: CR36
  article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil
  publication-title: Environ Geochem Health
– year: 1993
  ident: CR21
  publication-title: Soil science: an introduction
– volume: 119
  start-page: 209
  year: 2015
  end-page: 216
  ident: CR23
  article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.06.024
– volume: 60
  start-page: 32
  year: 2005
  end-page: 42
  ident: CR38
  article-title: Dehydrogenase and phosphomonoenterase activities in groundnut ( L.) field after diazinon, imidacloprid and lindane treatments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.11.096
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  ident: CR45
  article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– volume: 42
  start-page: 741
  year: 2012
  end-page: 775
  ident: CR29
  article-title: Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2010.528518
– volume: 20
  start-page: 8464
  year: 2013
  end-page: 8471
  ident: CR32
  article-title: Immobilization of lead in contaminated firing range soil using biochar
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-013-1964-7
– volume: 57
  start-page: 196
  year: 2013
  end-page: 204
  ident: CR12
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed ( L.)
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.07.019
– volume: 38
  start-page: 1995
  year: 2000
  end-page: 2001
  ident: CR33
  article-title: Changes in surface chemistry of activated carbons by wet oxidation
  publication-title: Carbon N Y
  doi: 10.1016/S0008-6223(00)00048-8
– volume: 166
  start-page: 303
  year: 2014
  end-page: 308
  ident: CR35
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.05.029
– volume: 191
  start-page: 41
  year: 2011
  end-page: 48
  ident: CR15
  article-title: Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.04.025
– volume: 184
  start-page: 149
  year: 2014
  end-page: 157
  ident: CR24
  article-title: Does biochar application alter heavy metal dynamics in agricultural soil?
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.11.018
– volume: 94
  start-page: 138
  year: 2012
  end-page: 145
  ident: CR40
  article-title: Quality variations of poultry litter biochar generated at different pyrolysis temperatures
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2011.11.018
– volume: 43
  start-page: 1812
  year: 2011
  ident: 1256_CR22
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.022
– ident: 1256_CR19
  doi: 10.1002/Bbb.169
– volume: 184
  start-page: 149
  year: 2014
  ident: 1256_CR24
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.11.018
– volume: 166
  start-page: 303
  year: 2014
  ident: 1256_CR35
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.05.029
– volume: 416
  start-page: 476
  year: 2012
  ident: 1256_CR13
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.12.009
– volume: 16
  start-page: 1366
  year: 2010
  ident: 1256_CR25
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2009.02044.x
– year: 2015
  ident: 1256_CR17
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4116-1
– volume-title: Soil science: an introduction
  year: 1993
  ident: 1256_CR21
– volume: 54
  start-page: S211
  year: 2011
  ident: 1256_CR39
  publication-title: Pedobiologia (Jena)
  doi: 10.1016/j.pedobi.2011.08.008
– volume: 424
  start-page: 264
  year: 2012
  ident: 1256_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2012.02.061
– volume: 80
  start-page: 935
  year: 2010
  ident: 1256_CR44
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.020
– volume: 75
  start-page: 8
  year: 2012
  ident: 1256_CR28
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2011.08.029
– volume: 54
  start-page: 1139
  year: 1990
  ident: 1256_CR9
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1990.03615995005400040037x
– volume: 77
  start-page: 185
  year: 2004
  ident: 1256_CR11
  publication-title: Rev Chil Hist Nat
  doi: 10.4067/S0716-078X2004000100014
– volume: 300
  start-page: 9
  year: 2007
  ident: 1256_CR45
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– ident: 1256_CR10
  doi: 10.1371/journal.pone.0133424
– volume: 57
  start-page: 925
  year: 2013
  ident: 1256_CR8
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.10.031
– year: 2015
  ident: 1256_CR36
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-015-9694-z:1-12
– volume: 51
  start-page: 844
  year: 1979
  ident: 1256_CR42
  publication-title: Anal Chem
  doi: 10.1021/ac50043a017
– volume: 57
  start-page: 196
  year: 2013
  ident: 1256_CR12
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.07.019
– volume: 348
  start-page: 439
  year: 2011
  ident: 1256_CR34
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0948-y
– volume-title: Métodos de análisis recomendados para los suelos de Chile
  year: 2006
  ident: 1256_CR37
– volume-title: Soil sampling, preparation, and analysis
  year: 2005
  ident: 1256_CR41
  doi: 10.1201/9781482274769
– volume: 7
  start-page: 715
  year: 2013
  ident: 1256_CR16
  publication-title: J Biobased Mater Bioenergy
  doi: 10.1166/jbmb.2013.1381
– year: 2015
  ident: 1256_CR20
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4262-5:1-11
– volume: 60
  start-page: 32
  year: 2005
  ident: 1256_CR38
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.11.096
– volume: 22
  start-page: 251
  year: 1990
  ident: 1256_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(90)90094-G
– volume: 119
  start-page: 209
  year: 2015
  ident: 1256_CR23
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.06.024
– volume: 61
  start-page: 259
  year: 1969
  ident: 1256_CR26
  publication-title: Agron J
  doi: 10.2134/agronj1969.00021962006100020025x
– volume: 48
  start-page: 117
  year: 2011
  ident: 1256_CR27
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2011.04.005
– volume: 191
  start-page: 41
  year: 2011
  ident: 1256_CR15
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.04.025
– volume: 94
  start-page: 138
  year: 2012
  ident: 1256_CR40
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2011.11.018
– volume: 61
  start-page: 280
  year: 2012
  ident: 1256_CR30
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2011.10.018
– volume: 41
  start-page: 367
  year: 2009
  ident: 1256_CR18
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.11.013
– ident: 1256_CR6
  doi: 10.1016/j.biortech.2010.02.052
– volume: 48
  start-page: 501
  year: 2010
  ident: 1256_CR14
  publication-title: Aust J Soil Res
  doi: 10.1071/SR10009
– volume: 95
  start-page: 433
  year: 2014
  ident: 1256_CR1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.077
– volume: 20
  start-page: 8464
  year: 2013
  ident: 1256_CR32
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-013-1964-7
– volume: 42
  start-page: 741
  year: 2012
  ident: 1256_CR29
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2010.528518
– volume: 158
  start-page: 2282
  year: 2010
  ident: 1256_CR3
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.02.003
– ident: 1256_CR31
  doi: 10.1002/jpln.201400092
– volume: 38
  start-page: 1995
  year: 2000
  ident: 1256_CR33
  publication-title: Carbon N Y
  doi: 10.1016/S0008-6223(00)00048-8
– volume: 58
  start-page: 5538
  year: 2010
  ident: 1256_CR43
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9044217
– volume: 406
  start-page: 154
  year: 2008
  ident: 1256_CR7
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2008.07.045
– ident: 1256_CR4
  doi: 10.1079/9780851990989.0000
SSID ssj0037161
Score 2.4542453
Snippet Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to...
Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to...
Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both...
PURPOSE: Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 741
SubjectTerms Bioavailability
biochar
Biochar for a Sustainable Environment
Bioremediation
Charcoal
Chickens
Copper
Earth and Environmental Science
Economic development
ecosystems
Environment
Environmental Physics
greenhouse production
hyperaccumulators
Land pollution
Manures
Microbial activity
Microorganisms
Nutrient availability
nutrients
Oenothera
Organic matter
phytomass
Plant biomass
Plant growth
polluted soils
Pore water
Poultry
roots
Sandy soils
shoots
Soil contaminants
Soil contamination
Soil pH
soil pore water
Soil Science & Conservation
Spatial distribution
toxicity
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itEsGTEkiTbHb3WMRSBD212NuS10qx7pa-wH9vZh-tihU8LjvJLpPHzDAz34fQTbttYu8GwPnmjAjpwx2tpCKhSbmyJjS6ANJ-epa9gXgcBsOqj3tWV7vXKcnipl43u7W5hMKrgHijLIncRjuBD92hjmvAOvX1y30AUERZ3tJ6YRrVqczfpvhujNYe5o-kaGFrugdov3IScadc1UO05bIjtNd5nVZAGe4YvUANxZvLyLuCVl9i_U5aOov1KIdGKjwFSNbyWS3VaFzCcX_gPMUmn0zcFI8yrDBUqiuohvGOJ57lo_EJ6ncf-vc9UpEkEMMjNie67UMQxtNQUZWqmBrrA4gQmFu4AfZLGqSp0pZSx_xVRmMttAisBeD1IBWUn6JGlmfuDGFjNbfcz2KcEEKxWERcCRqpkEqdBqyJaK2sxFQA4sBjMU7W0Meg38TrNwH9JrKJbldDJiV6xl_CrXoFkuogzRJgzJISWAeb6Hr12h8ByGuozOULkAmBLkRyvlmGlUg4Mg6a6K5e3S-f2fRT5_-SvkC7DMx-UaPWQo35dOEuvdMy11fFJv0E-lniUA
  priority: 102
  providerName: Springer Nature
Title Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil
URI https://link.springer.com/article/10.1007/s11368-015-1256-6
https://www.proquest.com/docview/1869669369
https://www.proquest.com/docview/1877834633
https://www.proquest.com/docview/2000494695
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7WU7oG1sWoFVnrQTkzXXdpzkhLqpgJiGEAKNnSJ_BVXrktIWJP77-SUOZUhwjGIn1rP9Pvyefz-Az6ORzYMbgPtbcCpVCHeMVpqmthTa2dSaBkj754k6upDHl8llPHBbxrLKTic2itrVFs_IvyJ1klJIP7c_v6bIGoXZ1UihsQH9oIKzrAf9b5OT07NOF4sQDTQhVzC7IWhmWZfXbC7PjYTCQq6EBiOvqPrfMq3dzUcZ0sbwHLyGzegxknE7xW_gha_ewqvx1SKiZvgt-IUFFX98Rf9qvPdLXVhWt94RM63xVhVZID5r-6xv9XTWYnPfkboktp7P_YJMK6IJlq1rLI0JXihZ1tPZOzg_mJx_P6KRMYFakfEVNaMQj3BRpprpUufMuhBNpEjjIixSYbKkLLVxjHke9BrLjTQycQ5R2JNSMvEeelVd-Q9ArDPCifAV66WUmucyE1qyTKdMmTLhA2CdsAob0cSR1GJWrHGQUb5FkG-B8i3UAPbuu8xbKI3nGu92M1DEXbUs1mtgAJ_uX4f9gEkOXfn6BtukyB2ihHi6DW9hcVSeDOBLN7sPfvPUoLafH9QOvORo9JsKtV3orRY3_mNwWVZmCP3x4e8fk2Fcn0PYuODjf9h46dQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEjwQVk4bUdZ3NAqECrLW1XCC2it8ivoBVLsuxui_qj-I_M5NEFpPbWYxTHicYz9jfx-PsAng8GPkMYQPGtJNcG0x1njeWpL5QNPvWuJtI-GpvRF_3xODnegN_dWRgqq-zmxHqiDpWnf-SvSTrJGJKfezv_yUk1inZXOwmNxi0O4tkvTNmWb_Y_4Pi-kHJvd_J-xFtVAe7VUK64GyBml6pIrbCFzYQPiLhTkjpRnuQiRVIU1gUhosTYF5nTTichEFN5UmihsNtrsKmVEbIHm-92x58-d1O_wuSjzvBwlcccXQy7bdT6rN5AGaobSzhiCsPNvwvhGt3-tyFbr3N7t-FWC1DZTuNRd2Ajlnfh5s63RUvSEe_BV6rf-B5L_sPSMWMe0ItPY2BuWtEhLrYgOtjm2p7a6ayhAj9jVcF8NZ_HBZuWzDKqkrdUiYOgly2r6ew-TK7ClA-gV1Zl3ALmg1NBYS8-aq2tzPRQWS2GNhXGFYnsg-iMlfuWvJw0NGb5mnaZ7JujfXOyb2768PL8kXnD3HFZ4-1uBPI2iJf52uX68Oz8NoYf7anYMlYn1CYlqRKj1MVtZMPCY7KkD6-60f3rNRd91MPLP-opXB9Njg7zw_3xwSO4IQlv1MVx29BbLU7iY0RLK_ek9VEG-RVHxR__DSMD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQWMBBeQVa_tOJsDQoV21VJYVaiI3iK_glZsk2V3W9Sfxr9jJo8uILW3HqM4TjSesb-Jx98H8HIw8BnCAIpvJbk2mO44ayxPfaFs8Kl3NZH257HZ-6o_HifHa_C7OwtDZZXdnFhP1KHy9I98i6STjCH5ua2iLYs43Bm9m_3kpCBFO62dnEbjIgfx_Bemb4u3-zs41q-kHO0efdjjrcIA92ool9wNEL9LVaRW2MJmwgdE3ynJnihP0pEiKQrrghBR4jwgMqedTkIg1vKk0EJhtzdgPaWkqAfr73fHh1-6ZUBhIlJne7jiY74uht2Wan1ub6AM1ZAlHPGF4ebfRXGFdP_bnK3XvNFduNOCVbbdeNc9WIvlfbi9_X3eEnbEB_CNajl-xJKfWDpyzAN69FkMzE0qOtDF5kQN21zbMzuZNrTg56wqmK9mszhnk5JZRhXzlqpyEACzRTWZPoSj6zDlI-iVVRkfA_PBqaCwFx-11lZmeqisFkObCuOKRPZBdMbKfUtkTnoa03xFwUz2zdG-Odk3N314ffHIrGHxuKrxZjcCeRvQi3zlfn14cXEbQ5H2V2wZq1Nqk5JsiVHq8jayYeQxWdKHN93o_vWayz5q4-qPeg43MRryT_vjgydwSxL0qOvkNqG3nJ_Gpwiclu5Z66IM8msOij-bzSc4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chicken-manure-derived+biochar+reduced+bioavailability+of+copper+in+a+contaminated+soil&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Meier%2C+Sebastian&rft.au=Curaqueo%2C+Gustavo&rft.au=Khan%2C+Naser&rft.au=Bolan%2C+Nanthi&rft.date=2017-03-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=17&rft.issue=3&rft.spage=741&rft.epage=750&rft_id=info:doi/10.1007%2Fs11368-015-1256-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon