Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil
Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of...
Saved in:
Published in | Journal of soils and sediments Vol. 17; no. 3; pp. 741 - 750 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte
Oenothera picensis
in a Cu-contaminated soil.
Materials and methods
A Cu-contaminated sandy soil (338 mg Cu kg
−1
) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg
−1
). The spiked soil was then amended with CMB (0, 5, and 10 %
w/w
) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined.
Results and discussion
The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg
−1
, only when CMB dose was 10 %.
Conclusions
The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils. |
---|---|
AbstractList | Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. Materials and methods A Cu-contaminated sandy soil (338 mg Cu kg-1) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg-1). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. Results and discussion The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg-1, only when CMB dose was 10 %. Conclusions The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils. Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. A Cu-contaminated sandy soil (338 mg Cu kg super(-1)) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg super(-1)). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg super(-1), only when CMB dose was 10 %. The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils. PURPOSE: Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. MATERIALS AND METHODS: A Cu-contaminated sandy soil (338 mg Cu kg⁻¹) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg⁻¹). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. RESULTS AND DISCUSSION: The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg⁻¹, only when CMB dose was 10 %. CONCLUSIONS: The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils. Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil. Materials and methods A Cu-contaminated sandy soil (338 mg Cu kg −1 ) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg −1 ). The spiked soil was then amended with CMB (0, 5, and 10 % w/w ) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined. Results and discussion The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg −1 , only when CMB dose was 10 %. Conclusions The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils. |
Author | Curaqueo, Gustavo Khan, Naser Ok, Yong Sik Eugenia, González María Borie, Fernando Meier, Sebastián Cea, Mara Cornejo, Pablo Bolan, Nanthi |
Author_xml | – sequence: 1 givenname: Sebastián surname: Meier fullname: Meier, Sebastián email: sebastian.meier@ufrontera.com, sebastian.meier@ufrontera.cl organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera – sequence: 2 givenname: Gustavo surname: Curaqueo fullname: Curaqueo, Gustavo organization: Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera – sequence: 3 givenname: Naser surname: Khan fullname: Khan, Naser organization: Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, School of Natural and Built Environments, University of South Australia – sequence: 4 givenname: Nanthi surname: Bolan fullname: Bolan, Nanthi organization: Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Global Institute for Environmental Remediation (GIER), The University of Newcastle – sequence: 5 givenname: Mara surname: Cea fullname: Cea, Mara organization: Scientifical and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera – sequence: 6 givenname: González María surname: Eugenia fullname: Eugenia, González María organization: Núcleo de Investigación en Energías Renovables, Dirección de Investigación, Universidad Católica de Temuco – sequence: 7 givenname: Pablo surname: Cornejo fullname: Cornejo, Pablo organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera – sequence: 8 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik organization: Korea Biochar Research Center & Department of Biological Environment, Kangwon National University – sequence: 9 givenname: Fernando surname: Borie fullname: Borie, Fernando organization: Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera |
BookMark | eNqFkU9rFjEQxoNUaPvqB-htwYuX2Mnm3-YoL1qFgpeCxzCbZNvUfZPXZLfQb2_K9iAFKwzMhPk9w2Sec3KScgqEXDD4xAD0ZWWMq4ECk5T1UlH1hpwxxQTVYoCTVgtuWheGU3Je6z0A1619Rn7u76L7FRI9YFpLoD6U-BB8N8bs7rB0JfjVbW98wDjjGOe4PHZ56lw-HkPpYuqw1WnBQ0y4NLbmOL8jbyeca3j_nHfk5uuXm_03ev3j6vv-8zV1fOgXOjIFqueTRsAJDTiv1aBBMsld21aCnCYcPUDo0XswoxiF9L43g5GTAL4jH7exx5J_r6Eu9hCrC_OMKeS12h4AhBHKyP-ibNB64EJx3tAPL9D7vJbU_tEoZZQyvMWO6I1yJddawmRdXHCJ7RSlXcoysE_W2M0a26yxT9ZY1ZTshfJY4gHL46uaftPUxqbbUP7a6Z-iP9Y3oas |
CitedBy_id | crossref_primary_10_1016_S1002_0160_17_60490_9 crossref_primary_10_1007_s11270_022_05659_w crossref_primary_10_1007_s42729_023_01445_7 crossref_primary_10_3390_ma16186314 crossref_primary_10_1007_s10098_022_02311_3 crossref_primary_10_1186_s13765_020_0493_6 crossref_primary_10_3390_su15118677 crossref_primary_10_3390_agriculture15050531 crossref_primary_10_1007_s42773_024_00321_6 crossref_primary_10_1007_s42729_021_00493_1 crossref_primary_10_1016_j_envpol_2023_121414 crossref_primary_10_1007_s10653_021_01157_w crossref_primary_10_1016_j_ecoenv_2022_113165 crossref_primary_10_3389_fenvs_2023_1199923 crossref_primary_10_1016_j_envpol_2021_118655 crossref_primary_10_1016_j_apgeochem_2019_01_013 crossref_primary_10_1016_j_envpol_2017_04_048 crossref_primary_10_3390_su15129380 crossref_primary_10_1007_s42729_023_01201_x crossref_primary_10_3390_stresses4010011 crossref_primary_10_3390_su13116262 crossref_primary_10_3390_agriculture13102003 crossref_primary_10_1016_j_chemosphere_2019_125608 crossref_primary_10_1007_s13399_020_01013_4 crossref_primary_10_1007_s42729_022_00968_9 crossref_primary_10_1016_j_scitotenv_2017_10_223 crossref_primary_10_3390_app11198914 crossref_primary_10_1080_00103624_2020_1798986 crossref_primary_10_3390_plants13172516 crossref_primary_10_1016_j_envpol_2020_114586 crossref_primary_10_3390_ijerph15030494 crossref_primary_10_3390_molecules25071617 crossref_primary_10_1007_s12011_020_02214_8 crossref_primary_10_3390_su16229749 crossref_primary_10_1016_j_scitotenv_2018_06_316 crossref_primary_10_3389_fenrg_2023_1092637 crossref_primary_10_1007_s11356_021_16061_0 crossref_primary_10_1016_j_ecoenv_2017_07_049 crossref_primary_10_1016_j_envpol_2023_122571 crossref_primary_10_1007_s11368_016_1610_3 crossref_primary_10_1007_s11356_022_22138_1 crossref_primary_10_1016_j_envres_2024_120170 crossref_primary_10_1016_j_jenvman_2018_09_006 crossref_primary_10_1007_s13399_020_01078_1 crossref_primary_10_1007_s11356_017_8981_x crossref_primary_10_1007_s11368_016_1643_7 crossref_primary_10_1007_s11356_021_16631_2 crossref_primary_10_1007_s42773_019_00009_2 crossref_primary_10_1016_j_scitotenv_2022_158810 crossref_primary_10_1007_s11356_019_04448_z crossref_primary_10_3390_molecules26185449 crossref_primary_10_1016_j_apgeochem_2018_12_003 crossref_primary_10_3390_min12010085 crossref_primary_10_1007_s42729_021_00591_0 crossref_primary_10_1007_s11356_018_04080_3 crossref_primary_10_1016_j_envsoft_2024_106060 crossref_primary_10_1007_s13530_023_00195_4 crossref_primary_10_1016_j_ecoenv_2017_07_071 crossref_primary_10_1016_j_biortech_2019_122318 crossref_primary_10_3390_ma16196392 crossref_primary_10_1680_jenge_18_00091 crossref_primary_10_2166_wst_2023_216 crossref_primary_10_19047_0136_1694_2023_115_160_198 crossref_primary_10_1007_s40098_023_00788_3 crossref_primary_10_1080_10643389_2017_1328918 crossref_primary_10_1007_s13399_021_01587_7 crossref_primary_10_1080_00103624_2019_1671444 crossref_primary_10_1007_s10653_021_00899_x crossref_primary_10_1007_s11356_019_04477_8 crossref_primary_10_1007_s11356_024_35318_y crossref_primary_10_1016_j_chemosphere_2023_139836 crossref_primary_10_3390_molecules25143167 crossref_primary_10_3390_toxics9080184 crossref_primary_10_1007_s10653_019_00431_2 crossref_primary_10_1007_s00128_024_03881_2 crossref_primary_10_1007_s13762_022_04320_7 crossref_primary_10_1016_j_envint_2019_03_031 crossref_primary_10_1007_s10653_019_00436_x crossref_primary_10_1016_j_jclepro_2019_118319 crossref_primary_10_1016_j_sajb_2023_05_036 crossref_primary_10_1016_j_jece_2024_115291 crossref_primary_10_3390_agronomy11050993 |
Cites_doi | 10.1016/j.soilbio.2011.04.022 10.1016/j.chemosphere.2010.05.020 10.1016/j.soilbio.2008.11.013 10.1111/j.1365-2486.2009.02044.x 10.1016/j.scitotenv.2012.02.061 10.1021/jf9044217 10.1016/j.soilbio.2012.10.031 10.1016/j.pedobi.2011.08.008 10.1166/jbmb.2013.1381 10.1016/j.envpol.2010.02.003 10.1021/ac50043a017 10.2136/sssaj1990.03615995005400040037x 10.1016/j.ecoenv.2011.08.029 10.1016/j.chemosphere.2013.09.077 10.1016/j.scitotenv.2011.12.009 10.4067/S0716-078X2004000100014 10.2134/agronj1969.00021962006100020025x 10.1007/s11104-011-0948-y 10.1016/j.apsoil.2011.10.018 10.1016/j.apsoil.2011.04.005 10.1071/SR10009 10.1016/j.scitotenv.2008.07.045 10.1016/0038-0717(90)90094-G 10.1016/j.chemosphere.2014.06.024 10.1016/j.chemosphere.2004.11.096 10.1007/s11104-007-9391-5 10.1080/10643389.2010.528518 10.1007/s11356-013-1964-7 10.1016/j.biombioe.2013.07.019 10.1016/S0008-6223(00)00048-8 10.1016/j.biortech.2014.05.029 10.1016/j.jhazmat.2011.04.025 10.1016/j.agee.2013.11.018 10.1016/j.jaap.2011.11.018 10.1002/Bbb.169 10.1007/s12665-015-4116-1 10.1371/journal.pone.0133424 10.1007/s10653-015-9694-z:1-12 10.1201/9781482274769 10.1007/s12665-015-4262-5:1-11 10.1016/j.biortech.2010.02.052 10.1002/jpln.201400092 10.1079/9780851990989.0000 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 Journal of Soils and Sediments is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Journal of Soils and Sediments is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7U7 7S9 L.6 |
DOI | 10.1007/s11368-015-1256-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Toxicology Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Toxicology Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database Toxicology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 750 |
ExternalDocumentID | 4315310741 10_1007_s11368_015_1256_6 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7U7 7S9 L.6 |
ID | FETCH-LOGICAL-c382t-b160623f7a0afa90cd768705153c010505ffabd00e2add09b4b45dd29895f403 |
IEDL.DBID | BENPR |
ISSN | 1439-0108 |
IngestDate | Fri Jul 11 04:37:31 EDT 2025 Fri Jul 11 11:56:23 EDT 2025 Sat Jul 26 01:25:42 EDT 2025 Tue Jul 01 01:38:07 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 Fri Feb 21 02:33:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Soil remediation Phytoavailability Black carbon Heavy metals Soil amendment Charcoal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-b160623f7a0afa90cd768705153c010505ffabd00e2add09b4b45dd29895f403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1869669369 |
PQPubID | 54474 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000494695 proquest_miscellaneous_1877834633 proquest_journals_1869669369 crossref_citationtrail_10_1007_s11368_015_1256_6 crossref_primary_10_1007_s11368_015_1256_6 springer_journals_10_1007_s11368_015_1256_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170300 2017-3-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Moon, Park, Chang (CR32) 2013; 20 McIntosh (CR26) 1969; 61 Lucchini, Quilliam, DeLuca (CR24) 2014; 184 Tan (CR41) 2005 CR19 Major, Lehmann, Rondon, Goodale (CR25) 2010; 16 Lu, Li, Fu (CR23) 2015; 119 Beesley, Moreno-Jimenez, Gomez-Eyles (CR3) 2010; 158 Sadzawka, Carrasco, Grez (CR37) 2006 Lehmann, Rillig, Thies (CR22) 2011; 43 Park, Choppala, Bolan (CR34) 2011; 348 Singh, Singh (CR38) 2005; 60 CR10 Meier, Alvear, Borie (CR28) 2012; 75 Klugh-Stewart, Cumming (CR18) 2009; 41 CR31 Sizmur, Wingate, Hutchings, Hodson (CR39) 2011; 54 Tessier, Campbell, Bisson (CR42) 1979; 51 Warnock, Lehmann, Kuyper, Rillig (CR45) 2007; 300 Meier, Azcón, Cartes (CR27) 2011; 48 Meier, Borie, Curaqueo (CR30) 2012; 61 Moreno-Castilla, Lopez-Ramon, Carrasco-Marín (CR33) 2000; 38 Uchimiya, Lima, Klasson, Wartelle (CR44) 2010; 80 Anderson, Domsch (CR2) 1990; 22 Uchimiya, Lima, Klasson (CR43) 2010; 58 Fox, Comerford (CR9) 1990; 54 Song, Guo (CR40) 2012; 94 Cornejo, Meier, Borie (CR7) 2008; 406 Rajapaksha, Ahmad, Vithanage (CR36) 2015 CR4 CR6 Jindo, Sanchez-Monedero, Hernandez (CR13) 2012; 416 Meier, Borie, Bolan, Cornejo (CR29) 2012; 42 Joseph, Camps-Arbestain, Lin (CR14) 2010; 48 Bolan, Kunhikrishnan, Choppala (CR5) 2012; 424 Karami, Clemente, Moreno-Jiménez (CR15) 2011; 191 Cornejo, Pérez-Tienda, Meier (CR8) 2013; 57 Ahmad, Lee, Lim (CR1) 2014; 95 Lee, Shah, Awad (CR20) 2015 Houben, Evrard, Sonnet (CR12) 2013; 57 Ginocchio, Baker (CR11) 2004; 77 Khan, Shea (CR16) 2013; 7 Leeper, Uren (CR21) 1993 Rajapaksha, Vithanage, Zhang (CR35) 2014; 166 Kim, Kim, Kim (CR17) 2015 P Cornejo (1256_CR7) 2008; 406 L Beesley (1256_CR3) 2010; 158 T Fox (1256_CR9) 1990; 54 SD Joseph (1256_CR14) 2010; 48 D Warnock (1256_CR45) 2007; 300 S Meier (1256_CR30) 2012; 61 AU Rajapaksha (1256_CR35) 2014; 166 1256_CR19 S Lee (1256_CR20) 2015 G Leeper (1256_CR21) 1993 A Sadzawka (1256_CR37) 2006 P Cornejo (1256_CR8) 2013; 57 D Houben (1256_CR12) 2013; 57 H Lu (1256_CR23) 2015; 119 1256_CR6 W Song (1256_CR40) 2012; 94 T Sizmur (1256_CR39) 2011; 54 1256_CR4 JL McIntosh (1256_CR26) 1969; 61 S Meier (1256_CR28) 2012; 75 N Khan (1256_CR16) 2013; 7 S Meier (1256_CR29) 2012; 42 1256_CR31 C Moreno-Castilla (1256_CR33) 2000; 38 1256_CR10 R Ginocchio (1256_CR11) 2004; 77 DH Moon (1256_CR32) 2013; 20 NS Bolan (1256_CR5) 2012; 424 N Karami (1256_CR15) 2011; 191 JH Park (1256_CR34) 2011; 348 K Klugh-Stewart (1256_CR18) 2009; 41 M Ahmad (1256_CR1) 2014; 95 J Singh (1256_CR38) 2005; 60 A Rajapaksha (1256_CR36) 2015 J Major (1256_CR25) 2010; 16 M Uchimiya (1256_CR43) 2010; 58 P Lucchini (1256_CR24) 2014; 184 KH Tan (1256_CR41) 2005 K Jindo (1256_CR13) 2012; 416 M Uchimiya (1256_CR44) 2010; 80 H-S Kim (1256_CR17) 2015 S Meier (1256_CR27) 2011; 48 T Anderson (1256_CR2) 1990; 22 J Lehmann (1256_CR22) 2011; 43 A Tessier (1256_CR42) 1979; 51 |
References_xml | – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: CR22 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – year: 2006 ident: CR37 publication-title: Métodos de análisis recomendados para los suelos de Chile – volume: 80 start-page: 935 year: 2010 end-page: 940 ident: CR44 article-title: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.020 – volume: 41 start-page: 367 year: 2009 end-page: 373 ident: CR18 article-title: Organic acid exudation by mycorrhizal L. (broomsedge) roots in response to aluminum publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.11.013 – volume: 16 start-page: 1366 year: 2010 end-page: 1379 ident: CR25 article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2009.02044.x – ident: CR4 – volume: 424 start-page: 264 year: 2012 end-page: 270 ident: CR5 article-title: Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2012.02.061 – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: CR43 article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil publication-title: J Agric Food Chem doi: 10.1021/jf9044217 – volume: 57 start-page: 925 year: 2013 end-page: 928 ident: CR8 article-title: Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.031 – volume: 54 start-page: S211 year: 2011 end-page: S216 ident: CR39 article-title: L. does not impact on the remediation efficiency of compost and biochar amendments publication-title: Pedobiologia (Jena) doi: 10.1016/j.pedobi.2011.08.008 – ident: CR10 – volume: 7 start-page: 715 year: 2013 end-page: 723 ident: CR16 article-title: Turf root enhancement by amendment of Jandakot sands of Western Australia with different rates of biochar publication-title: J Biobased Mater Bioenergy doi: 10.1166/jbmb.2013.1381 – volume: 158 start-page: 2282 year: 2010 end-page: 2287 ident: CR3 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.02.003 – ident: CR6 – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: CR42 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal Chem doi: 10.1021/ac50043a017 – volume: 54 start-page: 1139 year: 1990 end-page: 1144 ident: CR9 article-title: Low-molecular-weight organic acids in selected forest soils of the southeastern USA publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1990.03615995005400040037x – year: 2015 ident: CR20 article-title: Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control publication-title: Environ Earth Sci – volume: 75 start-page: 8 year: 2012 end-page: 15 ident: CR28 article-title: Influence of copper on root exudate patterns in some metallophytes and agricultural plants publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2011.08.029 – volume: 95 start-page: 433 year: 2014 end-page: 441 ident: CR1 article-title: Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.077 – volume: 416 start-page: 476 year: 2012 end-page: 481 ident: CR13 article-title: Biochar influences the microbial community structure during manure composting with agricultural wastes publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.12.009 – volume: 77 start-page: 185 year: 2004 end-page: 194 ident: CR11 article-title: Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region publication-title: Rev Chil Hist Nat doi: 10.4067/S0716-078X2004000100014 – volume: 61 start-page: 259 year: 1969 end-page: 265 ident: CR26 article-title: Bray and Morgan soil test extractants modified for testing acid soils from different parent materials publication-title: Agron J doi: 10.2134/agronj1969.00021962006100020025x – volume: 348 start-page: 439 year: 2011 end-page: 451 ident: CR34 article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals publication-title: Plant Soil doi: 10.1007/s11104-011-0948-y – ident: CR19 – volume: 61 start-page: 280 year: 2012 end-page: 287 ident: CR30 article-title: Effects of arbuscular mycorrhizal inoculation on metallophyte and agricultural plants growing at increasing copper levels publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2011.10.018 – volume: 48 start-page: 117 year: 2011 end-page: 124 ident: CR27 article-title: Alleviation of Cu toxicity in by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2011.04.005 – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: CR14 article-title: An investigation into the reactions of biochar in soil publication-title: Aust J Soil Res doi: 10.1071/SR10009 – year: 2005 ident: CR41 publication-title: Soil sampling, preparation, and analysis – ident: CR31 – volume: 406 start-page: 154 year: 2008 end-page: 160 ident: CR7 article-title: Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2008.07.045 – volume: 22 start-page: 251 year: 1990 end-page: 255 ident: CR2 article-title: Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(90)90094-G – year: 2015 ident: CR17 article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce ( L.) in agricultural soil publication-title: Environ Earth Sci – year: 2015 ident: CR36 article-title: The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil publication-title: Environ Geochem Health – year: 1993 ident: CR21 publication-title: Soil science: an introduction – volume: 119 start-page: 209 year: 2015 end-page: 216 ident: CR23 article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.06.024 – volume: 60 start-page: 32 year: 2005 end-page: 42 ident: CR38 article-title: Dehydrogenase and phosphomonoenterase activities in groundnut ( L.) field after diazinon, imidacloprid and lindane treatments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.11.096 – volume: 300 start-page: 9 year: 2007 end-page: 20 ident: CR45 article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – volume: 42 start-page: 741 year: 2012 end-page: 775 ident: CR29 article-title: Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2010.528518 – volume: 20 start-page: 8464 year: 2013 end-page: 8471 ident: CR32 article-title: Immobilization of lead in contaminated firing range soil using biochar publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-013-1964-7 – volume: 57 start-page: 196 year: 2013 end-page: 204 ident: CR12 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed ( L.) publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.07.019 – volume: 38 start-page: 1995 year: 2000 end-page: 2001 ident: CR33 article-title: Changes in surface chemistry of activated carbons by wet oxidation publication-title: Carbon N Y doi: 10.1016/S0008-6223(00)00048-8 – volume: 166 start-page: 303 year: 2014 end-page: 308 ident: CR35 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.05.029 – volume: 191 start-page: 41 year: 2011 end-page: 48 ident: CR15 article-title: Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.04.025 – volume: 184 start-page: 149 year: 2014 end-page: 157 ident: CR24 article-title: Does biochar application alter heavy metal dynamics in agricultural soil? publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.11.018 – volume: 94 start-page: 138 year: 2012 end-page: 145 ident: CR40 article-title: Quality variations of poultry litter biochar generated at different pyrolysis temperatures publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2011.11.018 – volume: 43 start-page: 1812 year: 2011 ident: 1256_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.022 – ident: 1256_CR19 doi: 10.1002/Bbb.169 – volume: 184 start-page: 149 year: 2014 ident: 1256_CR24 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.11.018 – volume: 166 start-page: 303 year: 2014 ident: 1256_CR35 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.05.029 – volume: 416 start-page: 476 year: 2012 ident: 1256_CR13 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.12.009 – volume: 16 start-page: 1366 year: 2010 ident: 1256_CR25 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2009.02044.x – year: 2015 ident: 1256_CR17 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4116-1 – volume-title: Soil science: an introduction year: 1993 ident: 1256_CR21 – volume: 54 start-page: S211 year: 2011 ident: 1256_CR39 publication-title: Pedobiologia (Jena) doi: 10.1016/j.pedobi.2011.08.008 – volume: 424 start-page: 264 year: 2012 ident: 1256_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2012.02.061 – volume: 80 start-page: 935 year: 2010 ident: 1256_CR44 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.020 – volume: 75 start-page: 8 year: 2012 ident: 1256_CR28 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2011.08.029 – volume: 54 start-page: 1139 year: 1990 ident: 1256_CR9 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1990.03615995005400040037x – volume: 77 start-page: 185 year: 2004 ident: 1256_CR11 publication-title: Rev Chil Hist Nat doi: 10.4067/S0716-078X2004000100014 – volume: 300 start-page: 9 year: 2007 ident: 1256_CR45 publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – ident: 1256_CR10 doi: 10.1371/journal.pone.0133424 – volume: 57 start-page: 925 year: 2013 ident: 1256_CR8 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.10.031 – year: 2015 ident: 1256_CR36 publication-title: Environ Geochem Health doi: 10.1007/s10653-015-9694-z:1-12 – volume: 51 start-page: 844 year: 1979 ident: 1256_CR42 publication-title: Anal Chem doi: 10.1021/ac50043a017 – volume: 57 start-page: 196 year: 2013 ident: 1256_CR12 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.07.019 – volume: 348 start-page: 439 year: 2011 ident: 1256_CR34 publication-title: Plant Soil doi: 10.1007/s11104-011-0948-y – volume-title: Métodos de análisis recomendados para los suelos de Chile year: 2006 ident: 1256_CR37 – volume-title: Soil sampling, preparation, and analysis year: 2005 ident: 1256_CR41 doi: 10.1201/9781482274769 – volume: 7 start-page: 715 year: 2013 ident: 1256_CR16 publication-title: J Biobased Mater Bioenergy doi: 10.1166/jbmb.2013.1381 – year: 2015 ident: 1256_CR20 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4262-5:1-11 – volume: 60 start-page: 32 year: 2005 ident: 1256_CR38 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.11.096 – volume: 22 start-page: 251 year: 1990 ident: 1256_CR2 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(90)90094-G – volume: 119 start-page: 209 year: 2015 ident: 1256_CR23 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.06.024 – volume: 61 start-page: 259 year: 1969 ident: 1256_CR26 publication-title: Agron J doi: 10.2134/agronj1969.00021962006100020025x – volume: 48 start-page: 117 year: 2011 ident: 1256_CR27 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2011.04.005 – volume: 191 start-page: 41 year: 2011 ident: 1256_CR15 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.04.025 – volume: 94 start-page: 138 year: 2012 ident: 1256_CR40 publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2011.11.018 – volume: 61 start-page: 280 year: 2012 ident: 1256_CR30 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2011.10.018 – volume: 41 start-page: 367 year: 2009 ident: 1256_CR18 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.11.013 – ident: 1256_CR6 doi: 10.1016/j.biortech.2010.02.052 – volume: 48 start-page: 501 year: 2010 ident: 1256_CR14 publication-title: Aust J Soil Res doi: 10.1071/SR10009 – volume: 95 start-page: 433 year: 2014 ident: 1256_CR1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.077 – volume: 20 start-page: 8464 year: 2013 ident: 1256_CR32 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-013-1964-7 – volume: 42 start-page: 741 year: 2012 ident: 1256_CR29 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2010.528518 – volume: 158 start-page: 2282 year: 2010 ident: 1256_CR3 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.02.003 – ident: 1256_CR31 doi: 10.1002/jpln.201400092 – volume: 38 start-page: 1995 year: 2000 ident: 1256_CR33 publication-title: Carbon N Y doi: 10.1016/S0008-6223(00)00048-8 – volume: 58 start-page: 5538 year: 2010 ident: 1256_CR43 publication-title: J Agric Food Chem doi: 10.1021/jf9044217 – volume: 406 start-page: 154 year: 2008 ident: 1256_CR7 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2008.07.045 – ident: 1256_CR4 doi: 10.1079/9780851990989.0000 |
SSID | ssj0037161 |
Score | 2.4542453 |
Snippet | Purpose
Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to... Purpose Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to... Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both... PURPOSE: Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 741 |
SubjectTerms | Bioavailability biochar Biochar for a Sustainable Environment Bioremediation Charcoal Chickens Copper Earth and Environmental Science Economic development ecosystems Environment Environmental Physics greenhouse production hyperaccumulators Land pollution Manures Microbial activity Microorganisms Nutrient availability nutrients Oenothera Organic matter phytomass Plant biomass Plant growth polluted soils Pore water Poultry roots Sandy soils shoots Soil contaminants Soil contamination Soil pH soil pore water Soil Science & Conservation Spatial distribution toxicity |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itEsGTEkiTbHb3WMRSBD212NuS10qx7pa-wH9vZh-tihU8LjvJLpPHzDAz34fQTbttYu8GwPnmjAjpwx2tpCKhSbmyJjS6ANJ-epa9gXgcBsOqj3tWV7vXKcnipl43u7W5hMKrgHijLIncRjuBD92hjmvAOvX1y30AUERZ3tJ6YRrVqczfpvhujNYe5o-kaGFrugdov3IScadc1UO05bIjtNd5nVZAGe4YvUANxZvLyLuCVl9i_U5aOov1KIdGKjwFSNbyWS3VaFzCcX_gPMUmn0zcFI8yrDBUqiuohvGOJ57lo_EJ6ncf-vc9UpEkEMMjNie67UMQxtNQUZWqmBrrA4gQmFu4AfZLGqSp0pZSx_xVRmMttAisBeD1IBWUn6JGlmfuDGFjNbfcz2KcEEKxWERcCRqpkEqdBqyJaK2sxFQA4sBjMU7W0Meg38TrNwH9JrKJbldDJiV6xl_CrXoFkuogzRJgzJISWAeb6Hr12h8ByGuozOULkAmBLkRyvlmGlUg4Mg6a6K5e3S-f2fRT5_-SvkC7DMx-UaPWQo35dOEuvdMy11fFJv0E-lniUA priority: 102 providerName: Springer Nature |
Title | Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil |
URI | https://link.springer.com/article/10.1007/s11368-015-1256-6 https://www.proquest.com/docview/1869669369 https://www.proquest.com/docview/1877834633 https://www.proquest.com/docview/2000494695 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7WU7oG1sWoFVnrQTkzXXdpzkhLqpgJiGEAKNnSJ_BVXrktIWJP77-SUOZUhwjGIn1rP9Pvyefz-Az6ORzYMbgPtbcCpVCHeMVpqmthTa2dSaBkj754k6upDHl8llPHBbxrLKTic2itrVFs_IvyJ1klJIP7c_v6bIGoXZ1UihsQH9oIKzrAf9b5OT07NOF4sQDTQhVzC7IWhmWZfXbC7PjYTCQq6EBiOvqPrfMq3dzUcZ0sbwHLyGzegxknE7xW_gha_ewqvx1SKiZvgt-IUFFX98Rf9qvPdLXVhWt94RM63xVhVZID5r-6xv9XTWYnPfkboktp7P_YJMK6IJlq1rLI0JXihZ1tPZOzg_mJx_P6KRMYFakfEVNaMQj3BRpprpUufMuhBNpEjjIixSYbKkLLVxjHke9BrLjTQycQ5R2JNSMvEeelVd-Q9ArDPCifAV66WUmucyE1qyTKdMmTLhA2CdsAob0cSR1GJWrHGQUb5FkG-B8i3UAPbuu8xbKI3nGu92M1DEXbUs1mtgAJ_uX4f9gEkOXfn6BtukyB2ihHi6DW9hcVSeDOBLN7sPfvPUoLafH9QOvORo9JsKtV3orRY3_mNwWVZmCP3x4e8fk2Fcn0PYuODjf9h46dQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEjwQVk4bUdZ3NAqECrLW1XCC2it8ivoBVLsuxui_qj-I_M5NEFpPbWYxTHicYz9jfx-PsAng8GPkMYQPGtJNcG0x1njeWpL5QNPvWuJtI-GpvRF_3xODnegN_dWRgqq-zmxHqiDpWnf-SvSTrJGJKfezv_yUk1inZXOwmNxi0O4tkvTNmWb_Y_4Pi-kHJvd_J-xFtVAe7VUK64GyBml6pIrbCFzYQPiLhTkjpRnuQiRVIU1gUhosTYF5nTTichEFN5UmihsNtrsKmVEbIHm-92x58-d1O_wuSjzvBwlcccXQy7bdT6rN5AGaobSzhiCsPNvwvhGt3-tyFbr3N7t-FWC1DZTuNRd2Ajlnfh5s63RUvSEe_BV6rf-B5L_sPSMWMe0ItPY2BuWtEhLrYgOtjm2p7a6ayhAj9jVcF8NZ_HBZuWzDKqkrdUiYOgly2r6ew-TK7ClA-gV1Zl3ALmg1NBYS8-aq2tzPRQWS2GNhXGFYnsg-iMlfuWvJw0NGb5mnaZ7JujfXOyb2768PL8kXnD3HFZ4-1uBPI2iJf52uX68Oz8NoYf7anYMlYn1CYlqRKj1MVtZMPCY7KkD6-60f3rNRd91MPLP-opXB9Njg7zw_3xwSO4IQlv1MVx29BbLU7iY0RLK_ek9VEG-RVHxR__DSMD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQWMBBeQVa_tOJsDQoV21VJYVaiI3iK_glZsk2V3W9Sfxr9jJo8uILW3HqM4TjSesb-Jx98H8HIw8BnCAIpvJbk2mO44ayxPfaFs8Kl3NZH257HZ-6o_HifHa_C7OwtDZZXdnFhP1KHy9I98i6STjCH5ua2iLYs43Bm9m_3kpCBFO62dnEbjIgfx_Bemb4u3-zs41q-kHO0efdjjrcIA92ool9wNEL9LVaRW2MJmwgdE3ynJnihP0pEiKQrrghBR4jwgMqedTkIg1vKk0EJhtzdgPaWkqAfr73fHh1-6ZUBhIlJne7jiY74uht2Wan1ub6AM1ZAlHPGF4ebfRXGFdP_bnK3XvNFduNOCVbbdeNc9WIvlfbi9_X3eEnbEB_CNajl-xJKfWDpyzAN69FkMzE0qOtDF5kQN21zbMzuZNrTg56wqmK9mszhnk5JZRhXzlqpyEACzRTWZPoSj6zDlI-iVVRkfA_PBqaCwFx-11lZmeqisFkObCuOKRPZBdMbKfUtkTnoa03xFwUz2zdG-Odk3N314ffHIrGHxuKrxZjcCeRvQi3zlfn14cXEbQ5H2V2wZq1Nqk5JsiVHq8jayYeQxWdKHN93o_vWayz5q4-qPeg43MRryT_vjgydwSxL0qOvkNqG3nJ_Gpwiclu5Z66IM8msOij-bzSc4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chicken-manure-derived+biochar+reduced+bioavailability+of+copper+in+a+contaminated+soil&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Meier%2C+Sebastian&rft.au=Curaqueo%2C+Gustavo&rft.au=Khan%2C+Naser&rft.au=Bolan%2C+Nanthi&rft.date=2017-03-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=17&rft.issue=3&rft.spage=741&rft.epage=750&rft_id=info:doi/10.1007%2Fs11368-015-1256-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |