Materials and structures for the electron transport layer of efficient and stable perovskite solar cells

The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electr...

Full description

Saved in:
Bibliographic Details
Published inScience China. Chemistry Vol. 62; no. 7; pp. 800 - 809
Main Authors Zheng, Shizhao, Wang, Gaopeng, Liu, Tongfa, Lou, Lingyun, Xiao, Shuang, Yang, Shihe
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.
AbstractList The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.
Author Yang, Shihe
Lou, Lingyun
Zheng, Shizhao
Liu, Tongfa
Xiao, Shuang
Wang, Gaopeng
Author_xml – sequence: 1
  givenname: Shizhao
  surname: Zheng
  fullname: Zheng, Shizhao
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
– sequence: 2
  givenname: Gaopeng
  surname: Wang
  fullname: Wang, Gaopeng
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
– sequence: 3
  givenname: Tongfa
  surname: Liu
  fullname: Liu, Tongfa
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
– sequence: 4
  givenname: Lingyun
  surname: Lou
  fullname: Lou, Lingyun
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
– sequence: 5
  givenname: Shuang
  surname: Xiao
  fullname: Xiao, Shuang
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
– sequence: 6
  givenname: Shihe
  surname: Yang
  fullname: Yang, Shihe
  email: chsyang@pku.edu.cn
  organization: Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
BookMark eNp9kE1LAzEQhoNUsGp_gLeA59VM9iO7Ryl-QcWLnkOaztqta7JOskL_vSktCILOZeYwz7zDc8omzjtk7ALEFQihrgNAIatMQJM1RdVkcMSmUO-GWolJmitVZEo2cMJmIWxEqjwXUpVTtn4yEakzfeDGrXiINNo4EgbeeuJxjRx7tJG845GMC4OnyHuzReK-5di2ne3QxQNslj3yAcl_hfcuIg--N8Qt9n04Z8dtSsHZoZ-x17vbl_lDtni-f5zfLDKb1zJmxsrSVoDSKoO5BFXXZa6KphQCixqwtKpsQBRYVIUobb4EuUK7VKq0YFTd5mfscn93IP85Yoh640dyKVInAXWVN0qKtAX7LUs-BMJWD9R9GNpqEHrnVO-d6uRU75xqSIz6xdgumth5l8x0_b-k3JMhpbg3pJ-f_oa-AYxAjYg
CitedBy_id crossref_primary_10_1007_s12034_023_03126_8
crossref_primary_10_1016_j_solener_2020_04_024
crossref_primary_10_1364_AO_437702
crossref_primary_10_1016_j_ccr_2023_215502
crossref_primary_10_1016_j_egyr_2022_10_019
crossref_primary_10_1109_TED_2022_3162552
crossref_primary_10_1088_1361_6528_ad0d22
crossref_primary_10_1039_D1MA00778E
crossref_primary_10_1088_1757_899X_928_7_072044
crossref_primary_10_3390_nano14231867
crossref_primary_10_1016_j_nxnano_2024_100064
crossref_primary_10_1021_acs_jpclett_4c00675
crossref_primary_10_1016_j_jmat_2021_04_002
crossref_primary_10_1016_j_cclet_2020_05_016
crossref_primary_10_1016_j_orgel_2020_105959
crossref_primary_10_3389_fbioe_2022_900269
crossref_primary_10_7498_aps_71_20211930
crossref_primary_10_1002_admi_201901777
crossref_primary_10_1088_1742_6596_1999_1_012049
crossref_primary_10_1002_smll_201907290
crossref_primary_10_1007_s11426_020_9866_6
crossref_primary_10_1016_j_mseb_2022_116146
crossref_primary_10_1021_acsami_1c05284
crossref_primary_10_1088_2515_7655_acc4e9
crossref_primary_10_1007_s11082_024_07357_9
crossref_primary_10_1016_j_heliyon_2023_e20603
crossref_primary_10_1016_j_physb_2024_416472
crossref_primary_10_1021_acsami_3c08655
crossref_primary_10_3390_en13225907
crossref_primary_10_1021_acsami_0c11731
crossref_primary_10_3390_coatings15020132
crossref_primary_10_3390_ma16196410
crossref_primary_10_1016_j_matchemphys_2020_123436
crossref_primary_10_1039_D1RA08680D
crossref_primary_10_1051_epjap_2023230023
crossref_primary_10_1246_bcsj_20200331
crossref_primary_10_1007_s11426_023_1596_9
crossref_primary_10_1002_solr_201900278
crossref_primary_10_1016_j_jmst_2024_07_022
crossref_primary_10_3390_en14237870
crossref_primary_10_1002_solr_202000605
crossref_primary_10_1002_er_8707
crossref_primary_10_1007_s10854_020_04766_w
crossref_primary_10_1002_solr_202300074
crossref_primary_10_1016_j_spmi_2020_106463
crossref_primary_10_3390_ma16186170
crossref_primary_10_1080_00268976_2025_2480833
crossref_primary_10_1016_j_solener_2020_08_090
crossref_primary_10_1016_j_optmat_2022_112438
crossref_primary_10_1016_j_solener_2024_113051
crossref_primary_10_1021_acs_energyfuels_3c03719
crossref_primary_10_1007_s10854_023_10417_7
crossref_primary_10_1016_j_solener_2023_04_011
crossref_primary_10_1088_1757_899X_928_7_072091
crossref_primary_10_1002_admi_202201292
crossref_primary_10_1016_j_chemosphere_2022_136667
crossref_primary_10_1088_1361_6463_ab7f73
crossref_primary_10_1016_j_mtelec_2023_100029
crossref_primary_10_1039_C9CC06345E
crossref_primary_10_1016_j_jechem_2024_02_035
crossref_primary_10_1002_ese3_1878
crossref_primary_10_1007_s11426_020_9951_1
crossref_primary_10_1002_pssa_202000238
crossref_primary_10_1016_j_heliyon_2024_e29091
crossref_primary_10_1002_solr_202101101
Cites_doi 10.1002/advs.201800159
10.1021/cm504558g
10.1016/j.solmat.2016.10.002
10.1126/science.1254050
10.3866/PKU.WHXB201803131
10.1016/j.scib.2018.02.004
10.1002/aenm.201402321
10.1039/C8TA06081A
10.1021/acsami.8b19036
10.1039/C5TA03765D
10.1002/aenm.201500568
10.1038/nenergy.2016.177
10.1016/j.solmat.2018.11.029
10.1021/jacs.5b01994
10.1002/solr.201700245
10.1021/acsami.8b05560
10.1039/C4TA04988H
10.1039/C8TC02766H
10.1002/celc.201701054
10.1038/ncomms3885
10.1002/adfm.201500616
10.1038/ncomms12806
10.1016/j.nanoen.2018.04.068
10.1039/C8TA09362H
10.1002/aenm.201702872
10.1021/acs.jpcc.7b11245
10.1002/adma.201505241
10.1039/C3NR05884K
10.1002/adfm.201401658
10.1002/adma.201301327
10.1038/srep00591
10.1002/adfm.201800346
10.1126/science.1228604
10.1002/solr.201700046
10.1016/j.nanoen.2016.04.057
10.1063/1.4916345
10.1039/C5TA01207D
10.1039/C8TA00492G
10.1039/c4ta01786b
10.1002/aenm.201700522
10.1002/aenm.201802646
10.1002/aenm.201700476
10.1039/C7TA04851C
10.1039/C5NR03476K
10.1039/C4RA11155A
10.1002/aenm.201800249
10.1002/cssc.201701160
10.1016/j.electacta.2018.10.138
10.1002/anie.201604399
10.1021/ja809598r
10.1021/acsami.8b12675
10.1016/j.orgel.2018.09.004
10.1038/nphoton.2013.342
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11426-019-9469-1
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1869-1870
EndPage 809
ExternalDocumentID 10_1007_s11426_019_9469_1
GroupedDBID -58
-5G
-BR
-EM
-SB
-S~
-Y2
-~C
.VR
06C
06D
0R~
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
5XA
5XC
88I
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9N
PDBOC
PF0
PT4
Q--
QOR
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U1G
U2A
U5L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7S
Z7V
Z7X
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c382t-ac25c61e2c7ae32178853749500e481e5c759104e46405c3b12decb775c1a78f3
IEDL.DBID U2A
ISSN 1674-7291
IngestDate Fri Jul 25 11:10:28 EDT 2025
Thu Apr 24 22:51:49 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Fri Feb 21 02:35:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords organic molecules
multilayer
electron transport layer
metal oxide
perovskite solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-ac25c61e2c7ae32178853749500e481e5c759104e46405c3b12decb775c1a78f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918639720
PQPubID 2044427
PageCount 10
ParticipantIDs proquest_journals_2918639720
crossref_primary_10_1007_s11426_019_9469_1
crossref_citationtrail_10_1007_s11426_019_9469_1
springer_journals_10_1007_s11426_019_9469_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Chemistry
PublicationTitleAbbrev Sci. China Chem
PublicationYear 2019
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References RahmanNUKhanWULiWKhanSKhanJZhengSSuTZhaoJAldredMPChiZJ Mater Chem A2019732232910.1039/C8TA09362H1:CAS:528:DC%2BC1cXitlShsbnE
SongJZhengEBianJWangXFTianWSanehiraYMiyasakaTJ Mater Chem A20153108371084410.1039/C5TA01207D1:CAS:528:DC%2BC2MXmt1Sks7Y%3D
JengJYChiangYFLeeMHPengSRGuoTFChenPWenTCAdv Mater2013253727373210.1002/adma.2013013271:CAS:528:DC%2BC3sXpsV2rtrY%3D23775589
PathakSKAbateARuckdeschelPRooseBGödelKCVaynzofYSanthalaAWatanabeSIHollmanDJNoelNSepeAWiesnerUFriendRSnaithHJSteinerUAdv Funct Mater2014246046605510.1002/adfm.2014016581:CAS:528:DC%2BC2cXhtFyqur%2FM
WangKShiYLiBZhaoLWangWWangXBaiXWangSHaoCMaTAdv Mater2016281891189710.1002/adma.2015052411:CAS:528:DC%2BC2MXitVyqtL3J26708492
TavakoliMMSalibaMYadavPHolzheyPHagfeldtAZakeeruddinSMGrätzelMAdv Energy Mater20199180264610.1002/aenm.2018026461:CAS:528:DC%2BC1cXitFOisLfE
LiJFZhangZLGaoHPZhangYMaoYLJ Mater Chem A20153194761948210.1039/C5TA03765D1:CAS:528:DC%2BC2MXhtlCgsLbJ
JiangKWuFZhuLYanHACS Appl Mater Interfaces201810365493655510.1021/acsami.8b126751:CAS:528:DC%2BC1cXhslOqsrfM30256089
KeWFangGLiuQXiongLQinPTaoHWangJLeiHLiBWanJYangGYanYJ Am Chem Soc20151376730673310.1021/jacs.5b019941:CAS:528:DC%2BC2MXosFaku7Y%3D25987132
ZhengSLiWSuTXieFChenJYangZZhangYLiuSAldredMPWongKYXuJChiZSol RRL20182170024510.1002/solr.2017002451:CAS:528:DC%2BC1cXhtFeju7jN
KimHSLeeCRImJHLeeKBMoehlTMarchioroAMoonSJHumphry-BakerRYumJHMoserJEGrätzelMParkNGSci Rep2012259110.1038/srep005911:CAS:528:DC%2BC3sXhtlCru78%3D229129193423636
LeeJWLeeTYYooPJGrätzelMMhaisalkarSParkNGJ Mater Chem A201429251925910.1039/c4ta01786b1:CAS:528:DC%2BC2cXovVKktrk%3D
LeeJWLeeSHKoHSKwonJParkJHKangSMAhnNChoiMKimJKParkNGJ Mater Chem A201539179918610.1039/C4TA04988H1:CAS:528:DC%2BC2cXhvF2ktbzO
MaliSSShimCSParkHKHeoJPatilPSHongCKChem Mater2015271541155110.1021/cm504558g1:CAS:528:DC%2BC2MXitlKksbk%3D
JungSKHeoJHLeeDWLeeSCLeeSHYoonWYunHImSHKimJHKwonOPAdv Funct Mater201828180034610.1002/adfm.2018003461:CAS:528:DC%2BC1cXlslKqsL8%3D
XingYSunCYipHLBazanGCHuangFCaoYNano Energy20162671510.1016/j.nanoen.2016.04.0571:CAS:528:DC%2BC28XnvFKku7w%3D
WangRQiaoJHeBTangXWuFZhuLJ Mater Chem C201868429843410.1039/C8TC02766H1:CAS:528:DC%2BC1cXhtlOrtb%2FO
ChengMLiYLiuPZhangFHajianAWangHLiJWangLKlooLYangXSunLSol RRL20171170004610.1002/solr.2017000461:CAS:528:DC%2BC1cXjsV2gsrs%3D
HanGSChungHSKimDHKimBJLeeJWParkNGChoISLeeJKLeeSJungHSNanoscale20157152841529010.1039/C5NR03476K1:CAS:528:DC%2BC2MXhtlOrtLjO26324759
ZhaoDZhuZKuoMYChuehCCJenAKYAngew Chem Int Ed2016558999900310.1002/anie.2016043991:CAS:528:DC%2BC28Xpt1KisLw%3D
GhenoAThu PhamTTDi BinCBoucléJRatierBVedraineSSol Energy Mater Sol Cells201716134735410.1016/j.solmat.2016.10.0021:CAS:528:DC%2BC28XitVOksL%2FM
ZhangJTanCHDuTMorbidoniMLinCTXuSDurrantJRMcLachlanMASci Bull20186334334810.1016/j.scib.2018.02.0041:CAS:528:DC%2BC1cXhtVGjsbbK
JiangQZhangLWangHYangXMengJLiuHYinZWuJZhangXYouJNat Energy201621617710.1038/nenergy.2016.1771:CAS:528:DC%2BC2sXjtVKit7g%3D
ZhangXBaoZTaoXSunHChenWZhouXRSC Adv20144640016400510.1039/C4RA11155A1:CAS:528:DC%2BC2cXhvF2ksb3J
YuHZhangQHanCZhuXSunXYangQYangHDengLZhaoFWangKHuBOrg Electron20186313714210.1016/j.orgel.2018.09.0041:CAS:528:DC%2BC1cXhslejsb%2FP
WanLLiXSongCHeYZhangWSol Energy Mater Sol Cells201919143744310.1016/j.solmat.2018.11.0291:CAS:528:DC%2BC1cXisVygt77J
LiuDKellyTLNat Photon2013813313810.1038/nphoton.2013.3421:CAS:528:DC%2BC3sXhvFOlsbbP
WuFGaoWYuHZhuLLiLYangCJ Mater Chem A201864443444810.1039/C8TA00492G1:CAS:528:DC%2BC1cXislSlsLc%3D
LeeMMTeuscherJMiyasakaTMurakamiTNSnaithHJScience201233864364710.1126/science.12286041:CAS:528:DC%2BC38XhsFygtbrL23042296
LeijtensTEperonGEPathakSAbateALeeMMSnaithHJNat Commun20134288510.1038/ncomms38851:CAS:528:DC%2BC2cXhs1OntLg%3D24301460
JiangYLiJXiongSJiangFLiuTQinFHuLZhouYJ Mater Chem A20175176321763910.1039/C7TA04851C1:CAS:528:DC%2BC2sXht1ektr3K
WuWQHuangFChenDChengYBCarusoRAAdv Funct Mater2015253264327210.1002/adfm.2015006161:CAS:528:DC%2BC2MXmsF2mt7k%3D
KojimaATeshimaKShiraiYMiyasakaTJ Am Chem Soc20091316050605110.1021/ja809598r1:CAS:528:DC%2BD1MXksV2iurc%3D19366264
JiangKWuFYuHYaoYZhangGZhuLYanHJ Mater Chem A20186168681687310.1039/C8TA06081A1:CAS:528:DC%2BC1cXhsVSrtLjK
ZhangJHultqvistAZhangTJiangLRuanCYangLChengYEdoffMJohanssonEMJChemSusChem2017103810381710.1002/cssc.2017011601:CAS:528:DC%2BC2sXhsFClurbJ28857493
ZhouHChenQLiGLuoSSongTDuanHSHongZYouJLiuYYangYScience201434554254610.1126/science.12540501:CAS:528:DC%2BC2cXht1aksrrO25082698
National Renewable Energy Laboratory. Best research: cell efficiency. https://doi.org/www.nrel.gov/pv/cell-efficiency.html, 2019
AkbulatovAFFrolovaLAGriffinMPGearbaIRDolocanAVanden BoutDATsarevSKatzEAShestakovAFStevensonKJTroshinPAAdv Energy Mater20177170047610.1002/aenm.2017004761:CAS:528:DC%2BC2sXptlCgt7k%3D
WuSHLinMYChangSHTuWCChuCWChangYCJ Phys Chem C201812223624410.1021/acs.jpcc.7b112451:CAS:528:DC%2BC2sXhvFGjt7nP
WangNZhaoKDingTLiuWAhmedASWangZTianMSunXWZhangQAdv Energy Mater20177170052210.1002/aenm.2017005221:CAS:528:DC%2BC2sXns1Wjsrk%3D
QinPDomanskiALChandiranAKBergerRButtHJDarMIMoehlTTetreaultNGaoPAhmadSNazeeruddinMKGrätzelMNanoscale201461508151410.1039/C3NR05884K1:CAS:528:DC%2BC2cXotFSjug%3D%3D24322660
TianLHuZLiuXLiuZGuoPXuBXueQYipHLHuangFCaoYACS Appl Mater Interfaces2019115289529710.1021/acsami.8b190361:CAS:528:DC%2BC1MXptlGktQ%3D%3D30632738
LiangPWChuehCCWilliamsSTJenAKYAdv Energy Mater20155140232110.1002/aenm.2014023211:CAS:528:DC%2BC2MXosFCgtLk%3D
NohYWLeeJHJinISParkSHJungJWElectrochim Acta201929433734410.1016/j.electacta.2018.10.1381:CAS:528:DC%2BC1cXhvF2lu77I
SongSHillRChoiKWojciechowskiKBarlowSLeisenJSnaithHJMarderSRParkTNano Energy20184932433210.1016/j.nanoen.2018.04.0681:CAS:528:DC%2BC1cXptVWmu70%3D
KimHIKimMJChoiKLimCKimYHKwonSKParkTAdv Energy Mater20188170287210.1002/aenm.2017028721:CAS:528:DC%2BC1cXisFCmur0%3D
WangJQinMTaoHKeWChenZWanJQinPXiongLLeiHYuHFangGAppl Phys Lett201510612110410.1063/1.49163451:CAS:528:DC%2BC2MXkvFGns70%3D
HouQRenJChenHYangPShaoQZhaoMZhaoXHeHWangNLuoQGuoZChemElectroChem2018572673110.1002/celc.2017010541:CAS:528:DC%2BC1cXhsl2htLs%3D
MahmoodKSwainBSAmassianAAdv Energy Mater20155150056810.1002/aenm.2015005681:CAS:528:DC%2BC2MXhtVaqtrrO
BaiYDongQShaoYDengYWangQShenLWangDWeiWHuangJNat Commun201671280610.1038/ncomms128061:CAS:528:DC%2BC28Xhs1emtLnE277031365059465
WangYYueYYangXHanLAdv Energy Mater20188180024910.1002/aenm.2018002491:CAS:528:DC%2BC1cXhtVWmsbrJ
ChenRWangWBuTLKuZLZhongJPengYXiaoSYouWHuangFChengYFuZActa Phys-Chim Sin201935401407
ZhangWWangYCLiXSongCWanLUsmanKFangJAdv Sci20185180015910.1002/advs.2018001591:CAS:528:DC%2BC1cXhtlCnt7bP
XuJFangMChenJZhangBYaoJDaiSACS Appl Mater Interfaces201810205782059010.1021/acsami.8b055601:CAS:528:DC%2BC1cXhtVWntL%2FE29798671
W Ke (9469_CR15) 2015; 137
K Jiang (9469_CR32) 2018; 6
R Wang (9469_CR38) 2018; 6
NU Rahman (9469_CR50) 2019; 7
Q Jiang (9469_CR16) 2016; 2
HI Kim (9469_CR43) 2018; 8
SS Mali (9469_CR8) 2015; 27
R Chen (9469_CR29) 2019; 35
Q Hou (9469_CR52) 2018; 5
PW Liang (9469_CR27) 2015; 5
JW Lee (9469_CR11) 2015; 3
Y Jiang (9469_CR40) 2017; 5
JW Lee (9469_CR7) 2014; 2
J Zhang (9469_CR12) 2017; 10
J Song (9469_CR14) 2015; 3
SK Pathak (9469_CR22) 2014; 24
M Cheng (9469_CR33) 2017; 1
N Wang (9469_CR36) 2017; 7
A Kojima (9469_CR1) 2009; 131
K Mahmood (9469_CR25) 2015; 5
MM Lee (9469_CR3) 2012; 338
W Zhang (9469_CR5) 2018; 5
F Wu (9469_CR37) 2018; 6
Y Xing (9469_CR28) 2016; 26
X Zhang (9469_CR24) 2014; 4
SK Jung (9469_CR34) 2018; 28
S Song (9469_CR46) 2018; 49
AF Akbulatov (9469_CR31) 2017; 7
L Tian (9469_CR44) 2019; 11
WQ Wu (9469_CR10) 2015; 25
Y Wang (9469_CR6) 2018; 8
A Gheno (9469_CR18) 2017; 161
J Zhang (9469_CR53) 2018; 63
J Wang (9469_CR23) 2015; 106
T Leijtens (9469_CR21) 2013; 4
YW Noh (9469_CR47) 2019; 294
Y Bai (9469_CR30) 2016; 7
S Zheng (9469_CR51) 2018; 2
9469_CR4
JY Jeng (9469_CR26) 2013; 25
J Xu (9469_CR54) 2018; 10
L Wan (9469_CR39) 2019; 191
JF Li (9469_CR9) 2015; 3
P Qin (9469_CR20) 2014; 6
D Zhao (9469_CR35) 2016; 55
D Liu (9469_CR13) 2013; 8
K Wang (9469_CR19) 2016; 28
MM Tavakoli (9469_CR48) 2019; 9
GS Han (9469_CR17) 2015; 7
H Yu (9469_CR41) 2018; 63
K Jiang (9469_CR42) 2018; 10
H Zhou (9469_CR45) 2014; 345
SH Wu (9469_CR49) 2018; 122
HS Kim (9469_CR2) 2012; 2
References_xml – reference: ZhouHChenQLiGLuoSSongTDuanHSHongZYouJLiuYYangYScience201434554254610.1126/science.12540501:CAS:528:DC%2BC2cXht1aksrrO25082698
– reference: XingYSunCYipHLBazanGCHuangFCaoYNano Energy20162671510.1016/j.nanoen.2016.04.0571:CAS:528:DC%2BC28XnvFKku7w%3D
– reference: SongSHillRChoiKWojciechowskiKBarlowSLeisenJSnaithHJMarderSRParkTNano Energy20184932433210.1016/j.nanoen.2018.04.0681:CAS:528:DC%2BC1cXptVWmu70%3D
– reference: SongJZhengEBianJWangXFTianWSanehiraYMiyasakaTJ Mater Chem A20153108371084410.1039/C5TA01207D1:CAS:528:DC%2BC2MXmt1Sks7Y%3D
– reference: ZhangJHultqvistAZhangTJiangLRuanCYangLChengYEdoffMJohanssonEMJChemSusChem2017103810381710.1002/cssc.2017011601:CAS:528:DC%2BC2sXhsFClurbJ28857493
– reference: ZhangJTanCHDuTMorbidoniMLinCTXuSDurrantJRMcLachlanMASci Bull20186334334810.1016/j.scib.2018.02.0041:CAS:528:DC%2BC1cXhtVGjsbbK
– reference: JiangYLiJXiongSJiangFLiuTQinFHuLZhouYJ Mater Chem A20175176321763910.1039/C7TA04851C1:CAS:528:DC%2BC2sXht1ektr3K
– reference: WuSHLinMYChangSHTuWCChuCWChangYCJ Phys Chem C201812223624410.1021/acs.jpcc.7b112451:CAS:528:DC%2BC2sXhvFGjt7nP
– reference: WuWQHuangFChenDChengYBCarusoRAAdv Funct Mater2015253264327210.1002/adfm.2015006161:CAS:528:DC%2BC2MXmsF2mt7k%3D
– reference: WangNZhaoKDingTLiuWAhmedASWangZTianMSunXWZhangQAdv Energy Mater20177170052210.1002/aenm.2017005221:CAS:528:DC%2BC2sXns1Wjsrk%3D
– reference: KeWFangGLiuQXiongLQinPTaoHWangJLeiHLiBWanJYangGYanYJ Am Chem Soc20151376730673310.1021/jacs.5b019941:CAS:528:DC%2BC2MXosFaku7Y%3D25987132
– reference: LeeJWLeeSHKoHSKwonJParkJHKangSMAhnNChoiMKimJKParkNGJ Mater Chem A201539179918610.1039/C4TA04988H1:CAS:528:DC%2BC2cXhvF2ktbzO
– reference: MahmoodKSwainBSAmassianAAdv Energy Mater20155150056810.1002/aenm.2015005681:CAS:528:DC%2BC2MXhtVaqtrrO
– reference: QinPDomanskiALChandiranAKBergerRButtHJDarMIMoehlTTetreaultNGaoPAhmadSNazeeruddinMKGrätzelMNanoscale201461508151410.1039/C3NR05884K1:CAS:528:DC%2BC2cXotFSjug%3D%3D24322660
– reference: JiangKWuFZhuLYanHACS Appl Mater Interfaces201810365493655510.1021/acsami.8b126751:CAS:528:DC%2BC1cXhslOqsrfM30256089
– reference: National Renewable Energy Laboratory. Best research: cell efficiency. https://doi.org/www.nrel.gov/pv/cell-efficiency.html, 2019
– reference: JiangQZhangLWangHYangXMengJLiuHYinZWuJZhangXYouJNat Energy201621617710.1038/nenergy.2016.1771:CAS:528:DC%2BC2sXjtVKit7g%3D
– reference: ZhengSLiWSuTXieFChenJYangZZhangYLiuSAldredMPWongKYXuJChiZSol RRL20182170024510.1002/solr.2017002451:CAS:528:DC%2BC1cXhtFeju7jN
– reference: ZhangWWangYCLiXSongCWanLUsmanKFangJAdv Sci20185180015910.1002/advs.2018001591:CAS:528:DC%2BC1cXhtlCnt7bP
– reference: LiJFZhangZLGaoHPZhangYMaoYLJ Mater Chem A20153194761948210.1039/C5TA03765D1:CAS:528:DC%2BC2MXhtlCgsLbJ
– reference: ChenRWangWBuTLKuZLZhongJPengYXiaoSYouWHuangFChengYFuZActa Phys-Chim Sin201935401407
– reference: WanLLiXSongCHeYZhangWSol Energy Mater Sol Cells201919143744310.1016/j.solmat.2018.11.0291:CAS:528:DC%2BC1cXisVygt77J
– reference: LiuDKellyTLNat Photon2013813313810.1038/nphoton.2013.3421:CAS:528:DC%2BC3sXhvFOlsbbP
– reference: PathakSKAbateARuckdeschelPRooseBGödelKCVaynzofYSanthalaAWatanabeSIHollmanDJNoelNSepeAWiesnerUFriendRSnaithHJSteinerUAdv Funct Mater2014246046605510.1002/adfm.2014016581:CAS:528:DC%2BC2cXhtFyqur%2FM
– reference: XuJFangMChenJZhangBYaoJDaiSACS Appl Mater Interfaces201810205782059010.1021/acsami.8b055601:CAS:528:DC%2BC1cXhtVWntL%2FE29798671
– reference: LiangPWChuehCCWilliamsSTJenAKYAdv Energy Mater20155140232110.1002/aenm.2014023211:CAS:528:DC%2BC2MXosFCgtLk%3D
– reference: WangJQinMTaoHKeWChenZWanJQinPXiongLLeiHYuHFangGAppl Phys Lett201510612110410.1063/1.49163451:CAS:528:DC%2BC2MXkvFGns70%3D
– reference: JiangKWuFYuHYaoYZhangGZhuLYanHJ Mater Chem A20186168681687310.1039/C8TA06081A1:CAS:528:DC%2BC1cXhsVSrtLjK
– reference: KimHSLeeCRImJHLeeKBMoehlTMarchioroAMoonSJHumphry-BakerRYumJHMoserJEGrätzelMParkNGSci Rep2012259110.1038/srep005911:CAS:528:DC%2BC3sXhtlCru78%3D229129193423636
– reference: WuFGaoWYuHZhuLLiLYangCJ Mater Chem A201864443444810.1039/C8TA00492G1:CAS:528:DC%2BC1cXislSlsLc%3D
– reference: HouQRenJChenHYangPShaoQZhaoMZhaoXHeHWangNLuoQGuoZChemElectroChem2018572673110.1002/celc.2017010541:CAS:528:DC%2BC1cXhsl2htLs%3D
– reference: NohYWLeeJHJinISParkSHJungJWElectrochim Acta201929433734410.1016/j.electacta.2018.10.1381:CAS:528:DC%2BC1cXhvF2lu77I
– reference: ChengMLiYLiuPZhangFHajianAWangHLiJWangLKlooLYangXSunLSol RRL20171170004610.1002/solr.2017000461:CAS:528:DC%2BC1cXjsV2gsrs%3D
– reference: YuHZhangQHanCZhuXSunXYangQYangHDengLZhaoFWangKHuBOrg Electron20186313714210.1016/j.orgel.2018.09.0041:CAS:528:DC%2BC1cXhslejsb%2FP
– reference: WangRQiaoJHeBTangXWuFZhuLJ Mater Chem C201868429843410.1039/C8TC02766H1:CAS:528:DC%2BC1cXhtlOrtb%2FO
– reference: TavakoliMMSalibaMYadavPHolzheyPHagfeldtAZakeeruddinSMGrätzelMAdv Energy Mater20199180264610.1002/aenm.2018026461:CAS:528:DC%2BC1cXitFOisLfE
– reference: HanGSChungHSKimDHKimBJLeeJWParkNGChoISLeeJKLeeSJungHSNanoscale20157152841529010.1039/C5NR03476K1:CAS:528:DC%2BC2MXhtlOrtLjO26324759
– reference: AkbulatovAFFrolovaLAGriffinMPGearbaIRDolocanAVanden BoutDATsarevSKatzEAShestakovAFStevensonKJTroshinPAAdv Energy Mater20177170047610.1002/aenm.2017004761:CAS:528:DC%2BC2sXptlCgt7k%3D
– reference: TianLHuZLiuXLiuZGuoPXuBXueQYipHLHuangFCaoYACS Appl Mater Interfaces2019115289529710.1021/acsami.8b190361:CAS:528:DC%2BC1MXptlGktQ%3D%3D30632738
– reference: KojimaATeshimaKShiraiYMiyasakaTJ Am Chem Soc20091316050605110.1021/ja809598r1:CAS:528:DC%2BD1MXksV2iurc%3D19366264
– reference: BaiYDongQShaoYDengYWangQShenLWangDWeiWHuangJNat Commun201671280610.1038/ncomms128061:CAS:528:DC%2BC28Xhs1emtLnE277031365059465
– reference: LeeJWLeeTYYooPJGrätzelMMhaisalkarSParkNGJ Mater Chem A201429251925910.1039/c4ta01786b1:CAS:528:DC%2BC2cXovVKktrk%3D
– reference: JengJYChiangYFLeeMHPengSRGuoTFChenPWenTCAdv Mater2013253727373210.1002/adma.2013013271:CAS:528:DC%2BC3sXpsV2rtrY%3D23775589
– reference: WangKShiYLiBZhaoLWangWWangXBaiXWangSHaoCMaTAdv Mater2016281891189710.1002/adma.2015052411:CAS:528:DC%2BC2MXitVyqtL3J26708492
– reference: LeijtensTEperonGEPathakSAbateALeeMMSnaithHJNat Commun20134288510.1038/ncomms38851:CAS:528:DC%2BC2cXhs1OntLg%3D24301460
– reference: MaliSSShimCSParkHKHeoJPatilPSHongCKChem Mater2015271541155110.1021/cm504558g1:CAS:528:DC%2BC2MXitlKksbk%3D
– reference: JungSKHeoJHLeeDWLeeSCLeeSHYoonWYunHImSHKimJHKwonOPAdv Funct Mater201828180034610.1002/adfm.2018003461:CAS:528:DC%2BC1cXlslKqsL8%3D
– reference: KimHIKimMJChoiKLimCKimYHKwonSKParkTAdv Energy Mater20188170287210.1002/aenm.2017028721:CAS:528:DC%2BC1cXisFCmur0%3D
– reference: ZhangXBaoZTaoXSunHChenWZhouXRSC Adv20144640016400510.1039/C4RA11155A1:CAS:528:DC%2BC2cXhvF2ksb3J
– reference: ZhaoDZhuZKuoMYChuehCCJenAKYAngew Chem Int Ed2016558999900310.1002/anie.2016043991:CAS:528:DC%2BC28Xpt1KisLw%3D
– reference: RahmanNUKhanWULiWKhanSKhanJZhengSSuTZhaoJAldredMPChiZJ Mater Chem A2019732232910.1039/C8TA09362H1:CAS:528:DC%2BC1cXitlShsbnE
– reference: WangYYueYYangXHanLAdv Energy Mater20188180024910.1002/aenm.2018002491:CAS:528:DC%2BC1cXhtVWmsbrJ
– reference: LeeMMTeuscherJMiyasakaTMurakamiTNSnaithHJScience201233864364710.1126/science.12286041:CAS:528:DC%2BC38XhsFygtbrL23042296
– reference: GhenoAThu PhamTTDi BinCBoucléJRatierBVedraineSSol Energy Mater Sol Cells201716134735410.1016/j.solmat.2016.10.0021:CAS:528:DC%2BC28XitVOksL%2FM
– volume: 5
  start-page: 1800159
  year: 2018
  ident: 9469_CR5
  publication-title: Adv Sci
  doi: 10.1002/advs.201800159
– volume: 27
  start-page: 1541
  year: 2015
  ident: 9469_CR8
  publication-title: Chem Mater
  doi: 10.1021/cm504558g
– volume: 161
  start-page: 347
  year: 2017
  ident: 9469_CR18
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2016.10.002
– volume: 345
  start-page: 542
  year: 2014
  ident: 9469_CR45
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 35
  start-page: 401
  year: 2019
  ident: 9469_CR29
  publication-title: Acta Phys-Chim Sin
  doi: 10.3866/PKU.WHXB201803131
– volume: 63
  start-page: 343
  year: 2018
  ident: 9469_CR53
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2018.02.004
– volume: 5
  start-page: 1402321
  year: 2015
  ident: 9469_CR27
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201402321
– volume: 6
  start-page: 16868
  year: 2018
  ident: 9469_CR32
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA06081A
– volume: 11
  start-page: 5289
  year: 2019
  ident: 9469_CR44
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b19036
– volume: 3
  start-page: 19476
  year: 2015
  ident: 9469_CR9
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA03765D
– volume: 5
  start-page: 1500568
  year: 2015
  ident: 9469_CR25
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500568
– volume: 2
  start-page: 16177
  year: 2016
  ident: 9469_CR16
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.177
– volume: 191
  start-page: 437
  year: 2019
  ident: 9469_CR39
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2018.11.029
– volume: 137
  start-page: 6730
  year: 2015
  ident: 9469_CR15
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b01994
– volume: 2
  start-page: 1700245
  year: 2018
  ident: 9469_CR51
  publication-title: Sol RRL
  doi: 10.1002/solr.201700245
– volume: 10
  start-page: 20578
  year: 2018
  ident: 9469_CR54
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b05560
– volume: 3
  start-page: 9179
  year: 2015
  ident: 9469_CR11
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA04988H
– volume: 6
  start-page: 8429
  year: 2018
  ident: 9469_CR38
  publication-title: J Mater Chem C
  doi: 10.1039/C8TC02766H
– volume: 5
  start-page: 726
  year: 2018
  ident: 9469_CR52
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701054
– volume: 4
  start-page: 2885
  year: 2013
  ident: 9469_CR21
  publication-title: Nat Commun
  doi: 10.1038/ncomms3885
– volume: 25
  start-page: 3264
  year: 2015
  ident: 9469_CR10
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201500616
– volume: 7
  start-page: 12806
  year: 2016
  ident: 9469_CR30
  publication-title: Nat Commun
  doi: 10.1038/ncomms12806
– volume: 49
  start-page: 324
  year: 2018
  ident: 9469_CR46
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.068
– volume: 7
  start-page: 322
  year: 2019
  ident: 9469_CR50
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA09362H
– volume: 8
  start-page: 1702872
  year: 2018
  ident: 9469_CR43
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201702872
– volume: 122
  start-page: 236
  year: 2018
  ident: 9469_CR49
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b11245
– ident: 9469_CR4
– volume: 28
  start-page: 1891
  year: 2016
  ident: 9469_CR19
  publication-title: Adv Mater
  doi: 10.1002/adma.201505241
– volume: 6
  start-page: 1508
  year: 2014
  ident: 9469_CR20
  publication-title: Nanoscale
  doi: 10.1039/C3NR05884K
– volume: 24
  start-page: 6046
  year: 2014
  ident: 9469_CR22
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401658
– volume: 25
  start-page: 3727
  year: 2013
  ident: 9469_CR26
  publication-title: Adv Mater
  doi: 10.1002/adma.201301327
– volume: 2
  start-page: 591
  year: 2012
  ident: 9469_CR2
  publication-title: Sci Rep
  doi: 10.1038/srep00591
– volume: 28
  start-page: 1800346
  year: 2018
  ident: 9469_CR34
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201800346
– volume: 338
  start-page: 643
  year: 2012
  ident: 9469_CR3
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 1
  start-page: 1700046
  year: 2017
  ident: 9469_CR33
  publication-title: Sol RRL
  doi: 10.1002/solr.201700046
– volume: 26
  start-page: 7
  year: 2016
  ident: 9469_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.057
– volume: 106
  start-page: 121104
  year: 2015
  ident: 9469_CR23
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4916345
– volume: 3
  start-page: 10837
  year: 2015
  ident: 9469_CR14
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA01207D
– volume: 6
  start-page: 4443
  year: 2018
  ident: 9469_CR37
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA00492G
– volume: 2
  start-page: 9251
  year: 2014
  ident: 9469_CR7
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta01786b
– volume: 7
  start-page: 1700522
  year: 2017
  ident: 9469_CR36
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201700522
– volume: 9
  start-page: 1802646
  year: 2019
  ident: 9469_CR48
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802646
– volume: 7
  start-page: 1700476
  year: 2017
  ident: 9469_CR31
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201700476
– volume: 5
  start-page: 17632
  year: 2017
  ident: 9469_CR40
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA04851C
– volume: 7
  start-page: 15284
  year: 2015
  ident: 9469_CR17
  publication-title: Nanoscale
  doi: 10.1039/C5NR03476K
– volume: 4
  start-page: 64001
  year: 2014
  ident: 9469_CR24
  publication-title: RSC Adv
  doi: 10.1039/C4RA11155A
– volume: 8
  start-page: 1800249
  year: 2018
  ident: 9469_CR6
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201800249
– volume: 10
  start-page: 3810
  year: 2017
  ident: 9469_CR12
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701160
– volume: 294
  start-page: 337
  year: 2019
  ident: 9469_CR47
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.10.138
– volume: 55
  start-page: 8999
  year: 2016
  ident: 9469_CR35
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201604399
– volume: 131
  start-page: 6050
  year: 2009
  ident: 9469_CR1
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809598r
– volume: 10
  start-page: 36549
  year: 2018
  ident: 9469_CR42
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b12675
– volume: 63
  start-page: 137
  year: 2018
  ident: 9469_CR41
  publication-title: Org Electron
  doi: 10.1016/j.orgel.2018.09.004
– volume: 8
  start-page: 133
  year: 2013
  ident: 9469_CR13
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2013.342
SSID ssj0000330275
Score 2.4399343
SecondaryResourceType review_article
Snippet The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 800
SubjectTerms Alignment
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Efficiency
Electrolytes
Electron mobility
Electron transport
Energy levels
Interfacial energy
Metal oxides
Mini Reviews
Morphology
Multilayers
Nanoparticles
Nanowires
Organic chemistry
Perovskites
Photovoltaic cells
Solar cells
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aHvQifmK1Sg6elGCyX0lPoqWlCBYRC70tSTaLh7Kt7Orvd2ab7aJgz7ubw8xs5s1M8h4hN7FLImRRZ4A-HQMEbpjmLmdGGpVYI5U2NdvnNJnMoud5PPcNt9Ifq2z2xHqjzpYWe-T3wUAoHEIF_GH1yVA1CqerXkJjl3RhC1ZQfHWfRtPXt02XhYf1XA6rrgQPHsIqzWizvj8nIEFBNT1ApfkBE7-TU4s4_wxJ69wzPiQHHjTSx7WXj8iOK47J3rDRajshHy-6WocS1UVG16SwX1BJU8CkFDAebeRuaNWwmdOFBrhNlzl1NY0EZB__Md6mokgg_l1ib5eWWP5SbPGXp2Q2Hr0PJ8xrKDAbqqBi2gaxTYQLrNQuhPpDQX6W4BPOXaSEi62MATFELkoAutnQiCBz4CMZW6GlysMz0imWhTsn1PEkh2SWGKXziEeRGUiRSRxESiOzUPcIb4yXWk8wjjoXi7SlRkZ7p2DvFO2dih653XyyWrNrbHu533gk9T9ambZh0SN3jZfax_8udrF9sUuyH_D6ehdER590wG3uCtBHZa59iP0AAJvVmg
  priority: 102
  providerName: ProQuest
Title Materials and structures for the electron transport layer of efficient and stable perovskite solar cells
URI https://link.springer.com/article/10.1007/s11426-019-9469-1
https://www.proquest.com/docview/2918639720
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB6YQJZs52FnLFUfAlEhRKUyRbbjiKFqkRL4_ZyTmAgESEwZYnu4u-S-u_N9h9BlZOPQsagTQJ-WAALXRFGbEy20jI0WUumK7XMezxbh7TJaNn3chb_t7kuS1Z-6bXZj4E0g9E3cWPiEQMjTjVzoDka84MPPxAoNqlKcC7Rid9eQJ8xXM3865as_akHmt7po5W4m-2ivwYl4WCv2AG3Z9SHaGfnxbEfo5V6VtfVgtc5wzQP7BsEzBhiKAdZhP-EGl57AHK8UIGy8ybGtmCPA4TSbXQMVdpzh74VL5-LCRbzYZfWLY7SYjJ9GM9KMTSAmkLwkyvDIxMxyI5QNIOSQ4JIFqIFSG0pmIyMiAAmhDWNAaybQjGcW1CIiw5SQeXCCOuvN2p4ibGmcg_-KtVR5SMNQJ4JlwtUehRZZoHqIeuGlpuEUd6MtVmnLhuzknYK8UyfvlPXQ1eeW15pQ46_Ffa-RtPm2ihQUKl05ktMeuvZaal__etjZv1afo11OqwYvMJY-6oAW7QXgj1IP0LacTAeoO5w-343heTOePzwOKiv8AAUJ1Nc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPcClaksRW2jrQ7m0srAdJ3YOVVXRbpfycQKJW7AdRxzQLigLqH-qv7EzScyqSHDjnNiyZsaeNx7PG4BPeSw0sahzRJ-RIwL33InYcG-8LYI31vmO7fO4mJzq32f52RL8TbUw9KwynYndQV3PAt2R76pSWkpCKfHt6ppT1yjKrqYWGr1ZHMQ_dxiytV_3f6B-d5Qa_zzZm_ChqwAPmVVz7oLKQyGjCsbFDBG5RY9lcJVCRG1lzIPJ0YfqqAsEMyHzUtURV23yIJ2xTYbzLsMLnWUl7Sg7_nV_pyOyLgtIMV5BzxxxzSmR2lXrSXSHGLuX1Ne-5PJ_V7jAtw9Ssp2nG7-ClwNEZd97m3oNS3H6Blb3Ume4dbg4cvPecJmb1qynoL3BuJ0hAmaIKFlqrsPmiTudXToE92zWsNiRVqCvGwZT7RYjuvLblm6SWUvBNqOEQvsWTp9FthuwMp1N4yawKIoGXWfhrWu00NqXRtaG0p7GmzpzIxBJeFUY6Mypq8ZltSBiJnlXKO-K5F3JEXy-H3LVc3k89fN20kg1bOu2WhjhCL4kLS0-PzrZu6cn-wirk5Ojw-pw__hgC9aU6ArL0FK2YQVVGN8j7pn7D52xMTh_buv-B7gkD2k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQX0RP3E6NQ8-KWVJmybp45iO-TV8cLC3kqQpPoxu0Orf76VtNhQVfG4S6N2197u73O8QuootZ45FPQD0aQNA4DpQxOaBFlpyo4VUumb7nPDxlD3M4lk757T0t919SbLpaXAsTUXVX2Z5f934RsGzQBicuBHxSQDhzyb8jakz62k4WCVZSFSX5VzQxd29wzChvrL50ylffdMacH6rkdauZ7SHdlvMiAeNkvfRhi0O0PbQj2o7RG_PqmosCasiww0n7DsE0hggKQaIh_20G1x5MnM8V4C28SLHtmaRgJdvN7tmKuz4wz9Kl9rFpYt-scvwl0doOrp7HY6DdoRCYCIZVoEyYWw4taERykYQfkhwzwJUQohlktrYiBgAA7OMA3IzkaZhZkFFIjZUCZlHx6hTLAp7grAlPAdfxrVUOSOM6UTQTLg6pNAii1QXES-81LT84m7MxTxdMyM7eacg79TJO6VddL3asmzINf5a3PMaSdvvrExBodKVJkPSRTdeS-vHvx52-q_Vl2jr5XaUPt1PHs_QTkjqvi-wmx7qgELtOcCSSl_UpvcJV6zX8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+and+structures+for+the+electron+transport+layer+of+efficient+and+stable+perovskite+solar+cells&rft.jtitle=Science+China.+Chemistry&rft.au=Zheng%2C+Shizhao&rft.au=Wang%2C+Gaopeng&rft.au=Liu%2C+Tongfa&rft.au=Lou%2C+Lingyun&rft.date=2019-07-01&rft.pub=Science+China+Press&rft.issn=1674-7291&rft.eissn=1869-1870&rft.volume=62&rft.issue=7&rft.spage=800&rft.epage=809&rft_id=info:doi/10.1007%2Fs11426-019-9469-1&rft.externalDocID=10_1007_s11426_019_9469_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7291&client=summon