An Introduction to Multilevel Modeling for Anesthesiologists

In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by p...

Full description

Saved in:
Bibliographic Details
Published inAnesthesia and analgesia Vol. 113; no. 4; pp. 877 - 887
Main Authors GLASER, Dale, HASTINGS, Randolph H
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.
AbstractList In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.
Author HASTINGS, Randolph H
GLASER, Dale
Author_xml – sequence: 1
  givenname: Dale
  surname: GLASER
  fullname: GLASER, Dale
  organization: School of Nursing, University of San Diego, VA San Diego Healthcare System, San Diego, California, United States
– sequence: 2
  givenname: Randolph H
  surname: HASTINGS
  fullname: HASTINGS, Randolph H
  organization: Anesthesiology Service, VA San Diego Healthcare System, San Diego, California, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25330785$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21680861$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtLxDAQgIOsuA_9ByK9iKeueTRtAl7Ksj5gVy96Lmk6WSvZZG1awX9vZFcFTzPDfPPgm6KR8w4QOid4Tihh1-Xjco5rTBgwIiiRQmFyhCaE0zwtuBQjNMEYs5RKKcdoGsJbLAkW-QkaU5KLmJEJuild8uD6zjeD7lvvkt4n68H2rYUPsMnaN2Bbt0mM75LSQehfIbTe-k0b-nCKjo2yAc4OcYZebpfPi_t09XT3sChXqWaC9qnKKIEc1xyoNEIJo00DnGuZQ6Mgq4kwFDg1OssKTinVwtQ89mShcK00YzN0td-76_z7EJ-otm3QYK1y4IdQCZkJkuWMRDLbk7rzIXRgql3XblX3WRFcfWurorbqv7Y4dnE4MNRbaH6HfjxF4PIAqKCVNZ1yug1_HGcMF4KzL2C-eIs
CODEN AACRAT
CitedBy_id crossref_primary_10_1007_s10877_014_9582_6
crossref_primary_10_1016_j_ijantimicag_2023_106817
crossref_primary_10_14367_kjhep_2020_37_3_39
crossref_primary_10_1080_19496591_2017_1338573
crossref_primary_10_1371_journal_pone_0300294
crossref_primary_10_1097_ALN_0000000000000360
crossref_primary_10_1080_09500693_2023_2230534
crossref_primary_10_1016_j_conbuildmat_2017_12_039
crossref_primary_10_1213_ANE_0000000000005884
crossref_primary_10_1213_ANE_0000000000001341
crossref_primary_10_1097_ALN_0000000000000617
crossref_primary_10_1097_CORR_0000000000000729
crossref_primary_10_1213_ANE_0000000000000033
crossref_primary_10_1213_ANE_0000000000006696
crossref_primary_10_20879_kjjcs_2021_65_2_002
crossref_primary_10_1213_ANE_0b013e31828b3813
crossref_primary_10_5114_hpr_2020_99002
crossref_primary_10_1213_ANE_0b013e31822ddc69
crossref_primary_10_1016_j_outlook_2017_07_005
crossref_primary_10_1080_07420528_2017_1373118
crossref_primary_10_1002_pst_1787
crossref_primary_10_1016_j_apmr_2012_11_018
crossref_primary_10_1016_j_puhe_2024_01_015
crossref_primary_10_1021_acs_analchem_8b04033
crossref_primary_10_1213_ANE_0000000000000679
crossref_primary_10_1016_j_agee_2015_04_011
crossref_primary_10_1038_s41598_024_65497_0
Cites_doi 10.1037/1082-989X.7.2.147
10.1007/BF02294359
10.2307/2983404
10.1213/ANE.0b013e3181fe758b
10.1016/j.jsp.2009.09.002
10.1159/000131102
10.2307/2983328
10.1080/01621459.1993.10594284
10.2307/2529876
10.1097/ALN.0b013e3181b786d4
10.1097/01.psy.0000221275.75056.d8
10.1093/biomet/78.1.45
10.1186/1471-2253-10-5
10.1037/0022-3514.83.1.126
10.1037/0033-2909.119.1.138
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1213/ANE.0b013e3182198a01
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1526-7598
EndPage 887
ExternalDocumentID 10_1213_ANE_0b013e3182198a01
21680861
25330785
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-D
.55
.GJ
.XZ
.Z2
01R
026
08R
0R~
1CY
1J1
23M
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAXR
AAGIX
AAHPQ
AAJCS
AAMOA
AAMTA
AAPBV
AAQKA
AAQQT
AARTV
AASOK
AAUGY
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABKPX
ABOCM
ABPPZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLED
ACWDW
ACWRI
ACXNZ
ADBBV
ADFPA
ADGGA
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFDTB
AFFNX
AFMFG
AFUWQ
AGINI
AHOMT
AHRYX
AHVBC
AHXIK
AIJEX
AJIOK
AJNWD
AJNYG
AJRGT
AKALU
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
HZ~
IKREB
IKYAY
IN~
IPNFZ
IQODW
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
L7B
M18
MZP
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB4
OCUKA
ODA
ODMTH
OHYEH
OJAPA
OK1
OL1
OLG
OLH
OLL
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PONUX
R58
RIG
RLZ
S4R
S4S
TEORI
TR2
TSPGW
TWZ
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YQJ
ZA5
ZFV
ZGI
ZXP
ZZMQN
AAAAV
AAIQE
AASCR
AAUEB
ABJNI
ABVCZ
ACLDA
ACXJB
ADHPY
AFEXH
AFSOK
AHQNM
AINUH
AJZMW
CGR
CUY
CVF
ECM
EIF
ERAAH
HLJTE
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c382t-a421e60b5e29f8a8fcfde55c96edae4b18f2e52fc4475222c8fb56ed97a0bac33
ISSN 0003-2999
IngestDate Fri Oct 25 05:41:44 EDT 2024
Fri Aug 23 02:45:25 EDT 2024
Tue Oct 15 23:41:50 EDT 2024
Sun Oct 22 16:07:35 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Anesthesia
Modeling
Anesthesiologist
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-a421e60b5e29f8a8fcfde55c96edae4b18f2e52fc4475222c8fb56ed97a0bac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
OpenAccessLink https://doi.org/10.1213/ane.0b013e3182198a01
PMID 21680861
PQID 894814631
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_894814631
crossref_primary_10_1213_ANE_0b013e3182198a01
pubmed_primary_21680861
pascalfrancis_primary_25330785
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Anesthesia and analgesia
PublicationTitleAlternate Anesth Analg
PublicationYear 2011
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References Holden (R28-33-20210902) 2008; 28
Goldstein (R25-33-20210902) 1996; 159
Laird (R18-33-20210902) 1982; 38
Akaike (R23-33-20210902) 1987; 52
Peugh (R29-33-20210902) 2010; 48
Hofmann (R17-33-20210902) 1998; 24
Kenny (R3-33-20210902) 2002; 83
Schafer (R8-33-20210902) 2002; 7
Stuttmann (R13-33-20210902) 2010; 10
Wong (R11-33-20210902) 2011; 113
Enders (R15-33-20210902) 2006; 68
Alharbi (R12-33-20210902) 2009; 111
Goldstein (R26-33-20210902) 1991; 78
Rodriguez (R24-33-20210902) 1995; 158
Breslow (R27-33-20210902) 1993; 88
Kenny (R2-33-20210902) 1996; 119
References_xml – volume: 7
  start-page: 147
  year: 2002
  ident: R8-33-20210902
  article-title: Missing data: our view of the state of the art.
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.7.2.147
  contributor:
    fullname: Schafer
– volume: 52
  start-page: 317
  year: 1987
  ident: R23-33-20210902
  article-title: Factor analysis and AIC.
  publication-title: Psychometrika
  doi: 10.1007/BF02294359
  contributor:
    fullname: Akaike
– volume: 158
  start-page: 73
  year: 1995
  ident: R24-33-20210902
  article-title: An assessment of estimation procedures for multilevel models with binary responses.
  publication-title: J R Stat Soc A
  doi: 10.2307/2983404
  contributor:
    fullname: Rodriguez
– volume: 113
  start-page: 862
  year: 2011
  ident: R11-33-20210902
  article-title: The effect of cross-training with adjustable airway model anatomies on laryngoscopy skill transfer.
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3181fe758b
  contributor:
    fullname: Wong
– volume: 48
  start-page: 85
  year: 2010
  ident: R29-33-20210902
  article-title: A practical guide to multilevel modeling.
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2009.09.002
  contributor:
    fullname: Peugh
– volume: 28
  start-page: 792
  year: 2008
  ident: R28-33-20210902
  article-title: Analyzing change: a primer on multilevel models with applications to nephrology.
  publication-title: Am J Nephrol
  doi: 10.1159/000131102
  contributor:
    fullname: Holden
– volume: 159
  start-page: 505
  year: 1996
  ident: R25-33-20210902
  article-title: Improved approximations for multilevel models with binary responses.
  publication-title: J R Stat Soc A
  doi: 10.2307/2983328
  contributor:
    fullname: Goldstein
– volume: 88
  start-page: 9
  year: 1993
  ident: R27-33-20210902
  article-title: Approximate inference in generalized linear mixed models.
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594284
  contributor:
    fullname: Breslow
– volume: 38
  start-page: 963
  year: 1982
  ident: R18-33-20210902
  article-title: Random-effects models for longitudinal data.
  publication-title: Biometrics
  doi: 10.2307/2529876
  contributor:
    fullname: Laird
– volume: 111
  start-page: 734
  year: 2009
  ident: R12-33-20210902
  article-title: A population-based analysis of outpatient colonoscopy in adults assisted by an anesthesiologist.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3181b786d4
  contributor:
    fullname: Alharbi
– volume: 68
  start-page: 427
  year: 2006
  ident: R15-33-20210902
  article-title: A primer on the use of modern missing-data methods in psychosomatic medicine research.
  publication-title: Psychosom Med
  doi: 10.1097/01.psy.0000221275.75056.d8
  contributor:
    fullname: Enders
– volume: 78
  start-page: 45
  year: 1991
  ident: R26-33-20210902
  article-title: Nonlinear multilevel models, with an application to discrete response data.
  publication-title: Biometrika
  doi: 10.1093/biomet/78.1.45
  contributor:
    fullname: Goldstein
– volume: 10
  start-page: 5
  year: 2010
  ident: R13-33-20210902
  article-title: Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial.
  publication-title: BMC Anesthesiol
  doi: 10.1186/1471-2253-10-5
  contributor:
    fullname: Stuttmann
– volume: 24
  start-page: 623
  year: 1998
  ident: R17-33-20210902
  article-title: Centering decisions in hierarchical linear models: implications for research in organizations.
  publication-title: J Manage
  contributor:
    fullname: Hofmann
– volume: 83
  start-page: 126
  year: 2002
  ident: R3-33-20210902
  article-title: The statistical analysis of data from small groups.
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.83.1.126
  contributor:
    fullname: Kenny
– volume: 119
  start-page: 138
  year: 1996
  ident: R2-33-20210902
  article-title: A general procedure for the estimation of interdependence.
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.119.1.138
  contributor:
    fullname: Kenny
SSID ssj0001086
Score 2.2275293
SecondaryResourceType review_article
Snippet In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 877
SubjectTerms Anesthesia
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Anesthesiology - statistics & numerical data
Biological and medical sciences
Cluster Analysis
Data Interpretation, Statistical
Humans
Least-Squares Analysis
Linear Models
Medical sciences
Models, Statistical
Nonlinear Dynamics
Software
Title An Introduction to Multilevel Modeling for Anesthesiologists
URI https://www.ncbi.nlm.nih.gov/pubmed/21680861
https://search.proquest.com/docview/894814631
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdbdymM0tJ1S7_QoVd3kWw5MvQS2rRldOklgdzMkyzRQUjC7F721_fJku30i3bFYAcbPZP3Ez-9J78PQk4MsAQKBlFs036UaPRZFRRpBCBhECsuCu2-6P4ep9fT5NdMzLqugHV2SaVO9b8X80o-gireQ1xdlux_INsKxRv4G_HFMyKM53dhPHRhipWv2epgRDuyDhCcu0gg3-SmC5RE-r8zZZ2dgtCW61bpsHkIoXara_5R_mkZ-wpNbA_tBcy7mQCli5n2WzU4bjlf3YVch6LdF20C0nAVCNTH02ggfE_olht9omiYBMka08nQfSUsmn7VfMbHnNV1IcajbsMVKVJC8-b18tfj2_xyenOTT0azyWfyhSNzOMq6mnUxO64tVMh_RMk_X5L7yL74uoISp7r1PUpedyJqY2KyTbaCF0CHHtId8sksdsnZcEHX4aTVknZw0gZOinDSZ3B-I9PL0eT8OgrNLSIdS15FkHBm0r4ShmdWgrTaFkYInaWmAJMoJi03glvtKjKiEaelVQKfZQPoK9BxvEc2FsuF-UFo5nxuyGyMRxJrpVhtluMFxRWC9UjUqCRf-RomufP9UIU5qjB_qsIeOX6kt3YQd6HIAyl6hDaKzJGN3Ccm_NvL-zKXrvhPksYo47tXcDeYuS4vKdt_e_AB2eym6CHZqP7emyO0_Sp1XM-HB565XSw
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+introduction+to+multilevel+modeling+for+anesthesiologists&rft.jtitle=Anesthesia+and+analgesia&rft.au=Glaser%2C+Dale&rft.au=Hastings%2C+Randolph+H&rft.date=2011-10-01&rft.eissn=1526-7598&rft.volume=113&rft.issue=4&rft.spage=877&rft.epage=887&rft_id=info:doi/10.1213%2FANE.0b013e3182198a01&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2999&client=summon