Energy methods for fatigue damage modelling of laminates

The initiation and growth of damage in composite materials are phenomena that precede the catastrophic failure event where a material sample or component fragments or separates into two pieces. During fatigue loading, the damage grows stably due to cyclic stressing and leads to a gradual deteriorati...

Full description

Saved in:
Bibliographic Details
Published inComposites science and technology Vol. 68; no. 13; pp. 2601 - 2615
Main Author McCartney, L.N.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0266-3538
1879-1050
DOI10.1016/j.compscitech.2008.04.044

Cover

Abstract The initiation and growth of damage in composite materials are phenomena that precede the catastrophic failure event where a material sample or component fragments or separates into two pieces. During fatigue loading, the damage grows stably due to cyclic stressing and leads to a gradual deterioration of mechanical properties and ultimately to failure. For cross-ply laminates, the estimation is necessary of effective stress intensity factors or energy release rates, for statically loaded ply cracks in 90° plies that are bridged by the uncracked 0° plies, particularly when considering the early stages of property degradation. Such relations are used in conjunction with a fatigue crack growth law to predict the progressive development of damage during fatigue. For fatigue loading this paper justifies, on the basis of detailed physical modelling based on energy methods rather than empiricism, the use of the stress range intensity factor as the correlating parameter for fatigue crack growth data, rather than energy release rates or differences of energy release rate. Use is made of an accurate stress transfer model for multiple-ply cross-ply laminates to predict the dependence of energy release rates and stress intensity factors for long bridged ply cracks on the applied stress and ply crack separation. Two methods of analysis are considered. The first uses a method that can be extended to deal with small laminate defects where the energy release rate and stress intensity factor depend on the size of the defect, but the laminate is subject only to a uniaxial load. The second method applies to multi-axial loading, but assumes that the stress intensity factor or energy release rate is independent of the defect size. Both methods are, however, shown to lead to the same energy release rate and stress intensity factor for long ply cracks subject to uniaxial loading. The two methods also take full account of the effects of thermal residual stresses through the use of a crack closure concept. Simplifying assumptions are made when developing a model that predicts the degradation of most of the thermoelastic constants of a fatigue damaged cross-ply laminate as a function of the number of fatigue cycles. Such data are needed to predict the fatigue behaviour of structures having complex stress states using finite element analysis. Preliminary work carried out to validate the fatigue model, based on simplifying assumptions, has led to pessimistic predictions of performance that have the advantage that they can be exploited in the form of conservative design methods.
AbstractList The initiation and growth of damage in composite materials are phenomena that precede the catastrophic failure event where a material sample or component fragments or separates into two pieces. During fatigue loading, the damage grows stably due to cyclic stressing and leads to a gradual deterioration of mechanical properties and ultimately to failure. For cross-ply laminates, the estimation is necessary of effective stress intensity factors or energy release rates, for statically loaded ply cracks in 90 deg plies that are bridged by the uncracked 0 deg plies, particularly when considering the early stages of property degradation. Such relations are used in conjunction with a fatigue crack growth law to predict the progressive development of damage during fatigue. For fatigue loading this paper justifies, on the basis of detailed physical modelling based on energy methods rather than empiricism, the use of the stress range intensity factor as the correlating parameter for fatigue crack growth data, rather than energy release rates or differences of energy release rate. Use is made of an accurate stress transfer model for multiple-ply cross-ply laminates to predict the dependence of energy release rates and stress intensity factors for long bridged ply cracks on the applied stress and ply crack separation. Two methods of analysis are considered. The first uses a method that can be extended to deal with small laminate defects where the energy release rate and stress intensity factor depend on the size of the defect, but the laminate is subject only to a uniaxial load. The second method applies to multi-axial loading, but assumes that the stress intensity factor or energy release rate is independent of the defect size. Both methods are, however, shown to lead to the same energy release rate and stress intensity factor for long ply cracks subject to uniaxial loading. The two methods also take full account of the effects of thermal residual stresses through the use of a crack closure concept. Simplifying assumptions are made when developing a model that predicts the degradation of most of the thermoelastic constants of a fatigue damaged cross-ply laminate as a function of the number of fatigue cycles. Such data are needed to predict the fatigue behaviour of structures having complex stress states using finite element analysis. Preliminary work carried out to validate the fatigue model, based on simplifying assumptions, has led to pessimistic predictions of performance that have the advantage that they can be exploited in the form of conservative design methods.
The initiation and growth of damage in composite materials are phenomena that precede the catastrophic failure event where a material sample or component fragments or separates into two pieces. During fatigue loading, the damage grows stably due to cyclic stressing and leads to a gradual deterioration of mechanical properties and ultimately to failure. For cross-ply laminates, the estimation is necessary of effective stress intensity factors or energy release rates, for statically loaded ply cracks in 90° plies that are bridged by the uncracked 0° plies, particularly when considering the early stages of property degradation. Such relations are used in conjunction with a fatigue crack growth law to predict the progressive development of damage during fatigue. For fatigue loading this paper justifies, on the basis of detailed physical modelling based on energy methods rather than empiricism, the use of the stress range intensity factor as the correlating parameter for fatigue crack growth data, rather than energy release rates or differences of energy release rate. Use is made of an accurate stress transfer model for multiple-ply cross-ply laminates to predict the dependence of energy release rates and stress intensity factors for long bridged ply cracks on the applied stress and ply crack separation. Two methods of analysis are considered. The first uses a method that can be extended to deal with small laminate defects where the energy release rate and stress intensity factor depend on the size of the defect, but the laminate is subject only to a uniaxial load. The second method applies to multi-axial loading, but assumes that the stress intensity factor or energy release rate is independent of the defect size. Both methods are, however, shown to lead to the same energy release rate and stress intensity factor for long ply cracks subject to uniaxial loading. The two methods also take full account of the effects of thermal residual stresses through the use of a crack closure concept. Simplifying assumptions are made when developing a model that predicts the degradation of most of the thermoelastic constants of a fatigue damaged cross-ply laminate as a function of the number of fatigue cycles. Such data are needed to predict the fatigue behaviour of structures having complex stress states using finite element analysis. Preliminary work carried out to validate the fatigue model, based on simplifying assumptions, has led to pessimistic predictions of performance that have the advantage that they can be exploited in the form of conservative design methods.
Author McCartney, L.N.
Author_xml – sequence: 1
  givenname: L.N.
  surname: McCartney
  fullname: McCartney, L.N.
  email: neil.mccartney@npl.co.uk
  organization: NPL Materials Centre, National Physical Laboratory, Building F9 – A6, Hampton Road, Teddington, Middx TW11 OLW, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20810240$$DView record in Pascal Francis
BookMark eNqNkE1LJDEURYMo2Dr-h3Lh7Kp9-ahUspKhcUZBmM3MOqRTL22aqqRNqgf895OmRcSVcOFtzr08zgU5jSkiIdcUlhSovN0uXZp2xYUZ3fOSAagliBpxQhZU9bql0MEpWQCTsuUdV-fkopQtAPSdZgui7iPmzWsz4fychtL4lBtv57DZYzPYyW6wmdKA4xjipkm-Ge0Uop2xfCNn3o4Fr97uJfn78_7P6qF9-v3rcfXjqXVcsbnVlg9MM60RuBMarJS06yVHNoBce99zq3qxZs47ryWAWNOe9qDEoFSHSvNL8v24u8vpZY9lNlMorj5kI6Z9MbzTfSc7qODNG2iLs6PPNrpQzC6HyeZXw0BRYOLA6SPnciolo39HKJiDU7M1H5yag1MDokbU7t2nboWqrRTnbMP4pYXVcQGrs38Bs6kURodDyOhmM6TwhZX_TU2cBw
CODEN CSTCEH
CitedBy_id crossref_primary_10_1016_j_compositesa_2011_05_014
crossref_primary_10_1088_1757_899X_1293_1_012001
crossref_primary_10_1177_0021998314561068
crossref_primary_10_1016_j_ijfatigue_2011_01_001
crossref_primary_10_1177_0954406217739040
crossref_primary_10_1115_1_4029691
crossref_primary_10_1007_s00107_019_01399_7
crossref_primary_10_1016_j_compstruct_2016_11_054
crossref_primary_10_1016_j_ijfatigue_2018_08_016
crossref_primary_10_3390_ma17122982
crossref_primary_10_1016_j_matpr_2017_11_479
crossref_primary_10_1016_j_compstruct_2021_114196
crossref_primary_10_1016_j_ijfatigue_2021_106456
crossref_primary_10_3390_polym14132662
crossref_primary_10_1016_j_compositesb_2014_02_020
Cites_doi 10.1520/STP18220S
10.1016/0022-5096(60)90013-2
10.1520/CTR10092J
10.1243/146442003322256187
10.1007/BF00032534
10.1007/BF00018241
10.1016/0266-3538(85)90060-0
10.1007/BF00013005
10.1098/rspa.1981.0163
10.1016/S0266-3538(96)00142-X
10.1007/BF00032546
10.1016/S0266-3538(00)00086-5
10.1007/BF00036985
10.1098/rspa.1991.0024
10.1520/CTR10091J
ContentType Journal Article
Conference Proceeding
Copyright 2008
2009 INIST-CNRS
Copyright_xml – notice: 2008
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2008.04.044
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Applied Sciences
Physics
EISSN 1879-1050
EndPage 2615
ExternalDocumentID 20810240
10_1016_j_compscitech_2008_04_044
S0266353808001632
GroupedDBID --K
--M
.-4
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
T9H
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8FD
JG9
ID FETCH-LOGICAL-c382t-9a3d29299e03c490a6615763e2d06bff73a874b2cfcf96004b1717084d885e893
IEDL.DBID .~1
ISSN 0266-3538
IngestDate Fri Sep 05 10:31:44 EDT 2025
Mon Jul 21 09:12:55 EDT 2025
Tue Jul 01 02:19:58 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:32:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Composites
Thermoelastic constants
Multiaxial loading
Thermal residual stresses
Damage
B. Fatigue
A. Laminates
Thermal stress
Theoretical study
Mechanical properties
Thermomechanical properties
Multiaxial stress
Modeling
Composite material
Fatigue crack
Finite element method
Stress intensity factor
Fatigue strength
Thermoelasticity
Residual stress
Damaging
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-9a3d29299e03c490a6615763e2d06bff73a874b2cfcf96004b1717084d885e893
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35975650
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_35975650
pascalfrancis_primary_20810240
crossref_primary_10_1016_j_compscitech_2008_04_044
crossref_citationtrail_10_1016_j_compscitech_2008_04_044
elsevier_sciencedirect_doi_10_1016_j_compscitech_2008_04_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Composites science and technology
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dugdale (bib18) 1960; 8
Lindley, McCartney (bib15) 1981
McCartney LN. Stress transfer mechanics: models that should be the basis of life prediction methodology, ASTM STP 1253 on Life Prediction Methodology for Titanium Matrix Composites, 1996, p. 85–113.
McCartney LN. Interaction of transverse cracks of finite size in a cross-ply laminate. Proceedings of 10th International Conference on Composite Material, vol. 1. Whistler, Canada, August 1995. p. 399–406.
Ogin, Smith, Beaumont (bib4) 1985; 24
Kashtalyan, Soutis (bib10) 2003
McCartney (bib26) 1976; 12
Nairn, Hu (bib25) 1992; 57
McCartney (bib27) 1978; 14
McCartney (bib20) 1988; 37
(bib1) 2003
McCartney (bib12) 1992; 14
Talreja (bib3) 1987
Broughton WR, Lodeiro MJ. Fatigue testing of composite laminates, NPL Report CMMT(A)252, November 2000.
Talreja (bib2) 1981; A378
McCartney LN. Physically based damage models for laminated composites, Proc Instn Mech Engrs 2003, 217, Part L: J. Materials: Design and Applications, p. 163–99.
Beaumont (bib7) 2003
McCartney LN. Model of composite degradation due to environmentally assisted fatigue damage, NPL Report MATC(A)26, May 2001.
Software system ‘PREDICT’ which is a specific module of CoDA (see
Harris (bib6) 2003
McCartney (bib22) 2000; 60
McCartney (bib16) 1998; 58
Soden PD, Hinton MJ, Kaddour AS. Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates, Comp Sci Tech 1998;58(7):1011–22, and other papers in the same special issue. Part B of the exercise is published in Comp Sci Tech 2002;62(12 and 13) and Part C is published in Comp Sci Tech 2004;64(3 and 4).
.
McCartney (bib19) 1980; 16
Ladeveze, Lubineau (bib9) 2003
Boniface, Ogin, Smith (bib5) 1991; A432
Martin (bib8) 2003
McCartney (bib13) 1992; 14
10.1016/j.compscitech.2008.04.044_bib28
McCartney (10.1016/j.compscitech.2008.04.044_bib20) 1988; 37
Boniface (10.1016/j.compscitech.2008.04.044_bib5) 1991; A432
Lindley (10.1016/j.compscitech.2008.04.044_bib15) 1981
Ladeveze (10.1016/j.compscitech.2008.04.044_bib9) 2003
Ogin (10.1016/j.compscitech.2008.04.044_bib4) 1985; 24
Martin (10.1016/j.compscitech.2008.04.044_bib8) 2003
10.1016/j.compscitech.2008.04.044_bib11
10.1016/j.compscitech.2008.04.044_bib14
McCartney (10.1016/j.compscitech.2008.04.044_bib19) 1980; 16
Nairn (10.1016/j.compscitech.2008.04.044_bib25) 1992; 57
McCartney (10.1016/j.compscitech.2008.04.044_bib26) 1976; 12
10.1016/j.compscitech.2008.04.044_bib17
(10.1016/j.compscitech.2008.04.044_bib1) 2003
McCartney (10.1016/j.compscitech.2008.04.044_bib27) 1978; 14
Kashtalyan (10.1016/j.compscitech.2008.04.044_bib10) 2003
Harris (10.1016/j.compscitech.2008.04.044_bib6) 2003
McCartney (10.1016/j.compscitech.2008.04.044_bib13) 1992; 14
McCartney (10.1016/j.compscitech.2008.04.044_bib16) 1998; 58
McCartney (10.1016/j.compscitech.2008.04.044_bib12) 1992; 14
Dugdale (10.1016/j.compscitech.2008.04.044_bib18) 1960; 8
Talreja (10.1016/j.compscitech.2008.04.044_bib2) 1981; A378
Talreja (10.1016/j.compscitech.2008.04.044_bib3) 1987
Beaumont (10.1016/j.compscitech.2008.04.044_bib7) 2003
10.1016/j.compscitech.2008.04.044_bib21
McCartney (10.1016/j.compscitech.2008.04.044_bib22) 2000; 60
10.1016/j.compscitech.2008.04.044_bib23
10.1016/j.compscitech.2008.04.044_bib24
References_xml – year: 2003
  ident: bib10
  article-title: Analysis of matrix crack induced delamination in composite laminates under static and fatigue loading
  publication-title: Fatigue in composite materials
– volume: 8
  start-page: 100
  year: 1960
  ident: bib18
  publication-title: J Mech Phys Solids
– volume: 16
  start-page: 375
  year: 1980
  end-page: 382
  ident: bib19
  article-title: Derivation of crack growth laws for linear viscoelastic solids based upon the concept of a fracture process zone
  publication-title: Int J Fract
– volume: 14
  start-page: 213
  year: 1978
  ident: bib27
  article-title: A theoretical explanation of the delaying effects of overloads on fatigue crack propagation
  publication-title: Int J Fract
– volume: 14
  start-page: 133
  year: 1992
  end-page: 146
  ident: bib12
  article-title: Mechanics for the growth of bridged cracks in composite materials: I – basic principles
  publication-title: J Comp Tech Res
– volume: 60
  start-page: 2255
  year: 2000
  end-page: 2279
  ident: bib22
  article-title: Model to predict effects of triaxial loading on ply cracking in general symmetric laminates
  publication-title: Comp Sci Tech
– reference: Software system ‘PREDICT’ which is a specific module of CoDA (see <
– year: 1987
  ident: bib3
  article-title: Fatigue of composite materials
– volume: A432
  start-page: 427
  year: 1991
  end-page: 444
  ident: bib5
  article-title: Strain energy release rates and the fatigue growth of matrix cracks in model arrays in composite laminates
  publication-title: Proc Roy Soc Lond
– reference: McCartney LN. Model of composite degradation due to environmentally assisted fatigue damage, NPL Report MATC(A)26, May 2001.
– reference: >).
– reference: McCartney LN. Physically based damage models for laminated composites, Proc Instn Mech Engrs 2003, 217, Part L: J. Materials: Design and Applications, p. 163–99.
– volume: 12
  start-page: 273
  year: 1976
  ident: bib26
  article-title: The effect of periodic–random loading on fatigue crack growth
  publication-title: Int J Fract
– year: 2003
  ident: bib7
  article-title: Physical modelling of damage development in structural composite materials under stress
  publication-title: Fatigue in composite materials
– year: 2003
  ident: bib1
  publication-title: Fatigue in composite materials
– reference: Broughton WR, Lodeiro MJ. Fatigue testing of composite laminates, NPL Report CMMT(A)252, November 2000.
– reference: McCartney LN. Stress transfer mechanics: models that should be the basis of life prediction methodology, ASTM STP 1253 on Life Prediction Methodology for Titanium Matrix Composites, 1996, p. 85–113.
– volume: 37
  start-page: 279
  year: 1988
  end-page: 301
  ident: bib20
  article-title: Crack growth predictions for viscoelastic materials exhibiting non-uniform craze deformation
  publication-title: Int J Fract
– reference: Soden PD, Hinton MJ, Kaddour AS. Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates, Comp Sci Tech 1998;58(7):1011–22, and other papers in the same special issue. Part B of the exercise is published in Comp Sci Tech 2002;62(12 and 13) and Part C is published in Comp Sci Tech 2004;64(3 and 4).
– year: 2003
  ident: bib6
  article-title: A historical review of the fatigue behaviour of fibre-reinforced plastics
  publication-title: Fatigue in composite materials
– year: 1981
  ident: bib15
  article-title: Mechanics and mechanisms of fatigue crack growth
  publication-title: Developments in Fracture Mechanics-2
– volume: 14
  start-page: 147
  year: 1992
  end-page: 154
  ident: bib13
  article-title: Mechanics for the growth of bridged cracks in composite materials: II – applications
  publication-title: J Comp Tech Res
– year: 2003
  ident: bib8
  article-title: Delamination fatigue
  publication-title: Fatigue in composite materials
– reference: McCartney LN. Interaction of transverse cracks of finite size in a cross-ply laminate. Proceedings of 10th International Conference on Composite Material, vol. 1. Whistler, Canada, August 1995. p. 399–406.
– volume: 57
  start-page: 1
  year: 1992
  end-page: 24
  ident: bib25
  article-title: The initiation and growth of delaminations induced by matrix microcracks in laminated composites
  publication-title: Int J Fract
– volume: A378
  start-page: 461
  year: 1981
  end-page: 475
  ident: bib2
  article-title: Fatigue of composite materials: damage mechanisms and fatigue life diagrams
  publication-title: Proc Roy Soc Lond
– volume: 58
  start-page: 1069
  year: 1998
  end-page: 1081
  ident: bib16
  article-title: Predicting transverse crack formation in cross-ply laminates
  publication-title: Comp Sci Tech
– year: 2003
  ident: bib9
  article-title: A computational mesodamage model for life prediction for laminates
  publication-title: Fatigue in composite materials
– volume: 24
  start-page: 47
  year: 1985
  end-page: 59
  ident: bib4
  article-title: A stress intensity factor approach to fatigue growth of transverse ply cracks
  publication-title: Comp Sci Tech
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib9
  article-title: A computational mesodamage model for life prediction for laminates
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib6
  article-title: A historical review of the fatigue behaviour of fibre-reinforced plastics
– ident: 10.1016/j.compscitech.2008.04.044_bib14
  doi: 10.1520/STP18220S
– year: 1981
  ident: 10.1016/j.compscitech.2008.04.044_bib15
  article-title: Mechanics and mechanisms of fatigue crack growth
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib8
  article-title: Delamination fatigue
– volume: 8
  start-page: 100
  year: 1960
  ident: 10.1016/j.compscitech.2008.04.044_bib18
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(60)90013-2
– ident: 10.1016/j.compscitech.2008.04.044_bib23
– ident: 10.1016/j.compscitech.2008.04.044_bib21
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib10
  article-title: Analysis of matrix crack induced delamination in composite laminates under static and fatigue loading
– volume: 14
  start-page: 147
  year: 1992
  ident: 10.1016/j.compscitech.2008.04.044_bib13
  article-title: Mechanics for the growth of bridged cracks in composite materials: II – applications
  publication-title: J Comp Tech Res
  doi: 10.1520/CTR10092J
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib7
  article-title: Physical modelling of damage development in structural composite materials under stress
– year: 2003
  ident: 10.1016/j.compscitech.2008.04.044_bib1
– ident: 10.1016/j.compscitech.2008.04.044_bib17
  doi: 10.1243/146442003322256187
– ident: 10.1016/j.compscitech.2008.04.044_bib11
– volume: 37
  start-page: 279
  year: 1988
  ident: 10.1016/j.compscitech.2008.04.044_bib20
  article-title: Crack growth predictions for viscoelastic materials exhibiting non-uniform craze deformation
  publication-title: Int J Fract
  doi: 10.1007/BF00032534
– volume: 16
  start-page: 375
  year: 1980
  ident: 10.1016/j.compscitech.2008.04.044_bib19
  article-title: Derivation of crack growth laws for linear viscoelastic solids based upon the concept of a fracture process zone
  publication-title: Int J Fract
  doi: 10.1007/BF00018241
– volume: 24
  start-page: 47
  year: 1985
  ident: 10.1016/j.compscitech.2008.04.044_bib4
  article-title: A stress intensity factor approach to fatigue growth of transverse ply cracks
  publication-title: Comp Sci Tech
  doi: 10.1016/0266-3538(85)90060-0
– year: 1987
  ident: 10.1016/j.compscitech.2008.04.044_bib3
– volume: 57
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.compscitech.2008.04.044_bib25
  article-title: The initiation and growth of delaminations induced by matrix microcracks in laminated composites
  publication-title: Int J Fract
  doi: 10.1007/BF00013005
– volume: A378
  start-page: 461
  year: 1981
  ident: 10.1016/j.compscitech.2008.04.044_bib2
  article-title: Fatigue of composite materials: damage mechanisms and fatigue life diagrams
  publication-title: Proc Roy Soc Lond
  doi: 10.1098/rspa.1981.0163
– volume: 58
  start-page: 1069
  year: 1998
  ident: 10.1016/j.compscitech.2008.04.044_bib16
  article-title: Predicting transverse crack formation in cross-ply laminates
  publication-title: Comp Sci Tech
  doi: 10.1016/S0266-3538(96)00142-X
– volume: 14
  start-page: 213
  issue: 2
  year: 1978
  ident: 10.1016/j.compscitech.2008.04.044_bib27
  article-title: A theoretical explanation of the delaying effects of overloads on fatigue crack propagation
  publication-title: Int J Fract
  doi: 10.1007/BF00032546
– volume: 60
  start-page: 2255
  year: 2000
  ident: 10.1016/j.compscitech.2008.04.044_bib22
  article-title: Model to predict effects of triaxial loading on ply cracking in general symmetric laminates
  publication-title: Comp Sci Tech
  doi: 10.1016/S0266-3538(00)00086-5
– volume: 12
  start-page: 273
  issue: 2
  year: 1976
  ident: 10.1016/j.compscitech.2008.04.044_bib26
  article-title: The effect of periodic–random loading on fatigue crack growth
  publication-title: Int J Fract
  doi: 10.1007/BF00036985
– volume: A432
  start-page: 427
  year: 1991
  ident: 10.1016/j.compscitech.2008.04.044_bib5
  article-title: Strain energy release rates and the fatigue growth of matrix cracks in model arrays in composite laminates
  publication-title: Proc Roy Soc Lond
  doi: 10.1098/rspa.1991.0024
– ident: 10.1016/j.compscitech.2008.04.044_bib24
– volume: 14
  start-page: 133
  year: 1992
  ident: 10.1016/j.compscitech.2008.04.044_bib12
  article-title: Mechanics for the growth of bridged cracks in composite materials: I – basic principles
  publication-title: J Comp Tech Res
  doi: 10.1520/CTR10091J
– ident: 10.1016/j.compscitech.2008.04.044_bib28
SSID ssj0007592
Score 2.0508292
Snippet The initiation and growth of damage in composite materials are phenomena that precede the catastrophic failure event where a material sample or component...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2601
SubjectTerms A. Laminates
Applied sciences
B. Fatigue
Composites
Damage
Exact sciences and technology
Forms of application and semi-finished materials
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Laminates
Multiaxial loading
Physics
Polymer industry, paints, wood
Solid mechanics
Structural and continuum mechanics
Technology of polymers
Thermal residual stresses
Thermoelastic constants
Title Energy methods for fatigue damage modelling of laminates
URI https://dx.doi.org/10.1016/j.compscitech.2008.04.044
https://www.proquest.com/docview/35975650
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GBD8Q0ak4P2YEX-uyJl1T8GWMjamwFx3sraRtIhPtht1e_du9tOk-EEEQ8lSSJtyld7-jd_cDuJVe4JkqGUdJL3Z4Eksnki3pMIZgQnm-oU4z2RbD9mDEH8feuALdshbGpFVa21_Y9Nxa2ydNK83mbDJpPmP0gN6SmcaIuBszdphz39z1u69Vmofv5cTIZrJjZm_DzSrHy6Rt47tNu1SbVslx8N981P5MZig5XVBe_LDeuUvqH8KBxZKkUxz3CCoqrcFOWWqc1WBvrdvgMYheXudHCtLojCBcJRoV87pQJJEfaFhIzotjCtTJVBO8K5PUQNETGPV7L92BY4kTnJgJd-4EkiUu4p5AURbzgEp0whhXMOUmtB1p7TMpfB65sY41RjCURy2M6qjgiRCeQgRzCtV0mqozIIFAgBa7ikodca7bMkJEKZKEYpjhy1ZSB1GKKoxtV3FDbvEeluljb-GalC3rJcfB6-Aul86K1hp_WXRf6iPcuCchuoC_LG9s6HC5sYvQyLR7q8N1qdQQPzTz90SmarrIQoahF6Jfev6_E1zArlu21G1dQnX-uVBXiGvmUSO_uA3Y6jw8DYbfXUT4JA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GBKeI6FScH1sEX-vaJl1T8EXGxtS5FzfYW0nbRCbaDbu9-rd76cc-EGEg5KkkTbhL735Hf3cHcCscz9FZMoYUTmiwKBRGICxhUIpgQjqubp2m2RaDVm_EnsbOuATtIhdG0ypz25_Z9NRa50-auTSbs8mk-YrRA3pLqgsj4m4U7fAOc6ireX133yueh-uknZH1bENP34WbFclL87bx5bpeas6rZDjYX07qYCYSFJ3Kel78Mt-pT-oewWEOJslDdt5jKMm4CpUi1zipwv5aucET4J000Y9kXaMTgniVKNTM20KSSHyiZSFpYxydoU6miuBlmcQai57CqNsZtntG3jnBCCm354YnaGQj8PGkSUPmmQK9MAYWVNqR2QqUcqngLgvsUIUKQxiTBRaGdSZnEeeORAhzBuV4GstzIB5HhBba0hQqYEy1RICQkkeRiXGGK6yoBrwQlR_mZcV1d4sPv-CPvftrUs7bXjIcrAb2cuksq62xzaL7Qh_-xkXx0Qdss7y-ocPlxjZiI13vrQaNQqk-fmn694mI5XSR-BRjL4S_5sX_TtCASm_40vf7j4PnS9izi_q61hWU518LeY0gZx7U00v8AxEu-bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Composites+science+and+technology&rft.atitle=Energy+methods+for+fatigue+damage+modelling+of+laminates&rft.au=MCCARTNEY%2C+L.+N&rft.date=2008-10-01&rft.pub=Elsevier&rft.issn=0266-3538&rft.volume=68&rft.issue=13&rft.spage=2601&rft.epage=2615&rft_id=info:doi/10.1016%2Fj.compscitech.2008.04.044&rft.externalDBID=n%2Fa&rft.externalDocID=20810240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon