Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers

Abstract This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates wit...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 96; no. 12; pp. 4325 - 4332
Main Authors Zhang, C, Zhao, X H, Yang, L, Chen, X Y, Jiang, R S, Jin, S H, Geng, Z Y
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.
AbstractList Abstract This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.
Author Zhang, C
Chen, X Y
Geng, Z Y
Yang, L
Zhao, X H
Jiang, R S
Jin, S H
Author_xml – sequence: 1
  givenname: C
  surname: Zhang
  fullname: Zhang, C
  email: cheng20050502@163.com
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 2
  givenname: X H
  surname: Zhao
  fullname: Zhao, X H
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 3
  givenname: L
  surname: Yang
  fullname: Yang, L
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 4
  givenname: X Y
  surname: Chen
  fullname: Chen, X Y
  email: cheng20050502@163.com
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 5
  givenname: R S
  surname: Jiang
  fullname: Jiang, R S
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 6
  givenname: S H
  surname: Jin
  fullname: Jin, S H
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
– sequence: 7
  givenname: Z Y
  surname: Geng
  fullname: Geng, Z Y
  email: ZCTGBZ@163.com
  organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29053872$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1rFTEQAPAgFftaPfgPSA4eFLq-ZLK72T2WUj-gIIiel3lJto1kk3WSLb5D_3fXvupBRE8Zwm-G-ThhRzFFx9hzKd4o1cF2ztvZfYe2fcQ2soGmUlLLI7YRQkHV6F4es5OcvwoBsm31E3YMvWhUp2HD7j65fOsIC6XAMQR367G4zG8cFp4LuZwrH-1inOV-mtHT5GLhaeQ-rq74iIFPieabFNL1_oxP3lAaQyI84xgt3yGRd3TPr8mX_RrxHSUfHOWn7PGIIbtnD-8p-_L28vPF--rq47sPF-dXlVnHK1WvGy1RWWUROoejNSg6A7q1nelVXVuUPWA9tg2Iuja26y20SkswZqfXf3XKXh3qzpS-LWvbw-SzcSFgdGnJAzRQKwDoxH-p7Jta6E7c0xcPdNlNzg4z-QlpP_za7gpeH8C6kpzJjb-JFMPPyw1zHg6XW-32D2t8weJTLIQ-_DXj5SEjLfM_Cv8A0BarTg
CitedBy_id crossref_primary_10_1080_00439339_2022_2014288
crossref_primary_10_1002_smtd_202400664
crossref_primary_10_1186_s40104_022_00734_y
crossref_primary_10_1016_j_ecoenv_2023_114851
crossref_primary_10_1186_s40104_020_00460_3
crossref_primary_10_1016_j_psj_2023_102713
crossref_primary_10_3389_fvets_2023_1137896
crossref_primary_10_1093_jas_skz373
crossref_primary_10_1016_j_psj_2020_01_021
crossref_primary_10_1016_j_fsi_2023_108537
crossref_primary_10_1111_jne_13424
crossref_primary_10_3390_ani11061591
crossref_primary_10_1002_jsfa_9084
crossref_primary_10_1016_j_psj_2023_103242
crossref_primary_10_2174_1389557520666191226111405
crossref_primary_10_1016_j_rvsc_2023_105057
crossref_primary_10_3390_nu17050837
crossref_primary_10_1016_j_jtherbio_2019_102415
crossref_primary_10_1139_cjas_2021_0015
crossref_primary_10_1016_j_psj_2020_08_019
crossref_primary_10_3390_ani10081391
crossref_primary_10_1186_s13567_020_00796_8
crossref_primary_10_3390_metabo12020142
crossref_primary_10_3390_nu15020450
crossref_primary_10_3390_microorganisms8121858
crossref_primary_10_1016_j_psj_2020_09_050
crossref_primary_10_1039_D2FO01813F
crossref_primary_10_1016_j_jtherbio_2019_102420
crossref_primary_10_1007_s11427_022_2320_y
crossref_primary_10_1002_jsfa_10835
crossref_primary_10_3390_ani10081266
crossref_primary_10_3389_fmicb_2021_706772
crossref_primary_10_3390_ani11051427
crossref_primary_10_1016_j_cbpa_2024_111724
crossref_primary_10_1016_j_psj_2021_101337
crossref_primary_10_1016_j_psj_2022_102323
crossref_primary_10_3390_ani12182426
crossref_primary_10_1080_1828051X_2024_2401444
crossref_primary_10_3390_microorganisms13020235
crossref_primary_10_5713_ab_20_0842
crossref_primary_10_1016_j_aninu_2021_09_008
crossref_primary_10_1017_S1751731118002884
crossref_primary_10_1139_cjas_2021_0025
crossref_primary_10_3382_ps_pez327
crossref_primary_10_3389_fanim_2022_880237
crossref_primary_10_3390_antiox10050686
crossref_primary_10_3390_microorganisms10030629
crossref_primary_10_3389_fmicb_2019_00903
crossref_primary_10_3390_ani10122407
crossref_primary_10_3382_ps_pez440
crossref_primary_10_1080_08820139_2022_2154162
crossref_primary_10_1039_C8FO02091D
crossref_primary_10_1080_10408398_2018_1486284
crossref_primary_10_1016_j_psj_2022_102215
crossref_primary_10_1016_j_psj_2024_104688
crossref_primary_10_1017_S0954422420000013
crossref_primary_10_1016_j_psj_2024_103983
crossref_primary_10_3389_fmicb_2022_1019130
crossref_primary_10_3168_jds_2023_24004
crossref_primary_10_3390_ani15010071
crossref_primary_10_1016_j_reprotox_2018_08_008
crossref_primary_10_3390_toxins17010016
crossref_primary_10_3390_ani14172585
crossref_primary_10_1055_a_1524_0358
crossref_primary_10_1016_j_anifeedsci_2021_115118
crossref_primary_10_3390_ani12030311
crossref_primary_10_5713_ab_21_0230
crossref_primary_10_1111_jpn_13496
crossref_primary_10_3389_fvets_2024_1470992
crossref_primary_10_3390_life13061287
crossref_primary_10_1016_j_psj_2024_103996
crossref_primary_10_1016_j_psj_2024_104203
crossref_primary_10_1016_j_psj_2024_104202
crossref_primary_10_3390_ani12192599
crossref_primary_10_1111_jpn_13492
crossref_primary_10_1111_asj_13357
crossref_primary_10_3389_fimmu_2023_1335359
crossref_primary_10_3382_ps_pez026
crossref_primary_10_3390_ani12091180
crossref_primary_10_1016_j_psj_2022_101705
crossref_primary_10_3390_ani13142396
crossref_primary_10_18311_jnr_2024_35974
crossref_primary_10_1016_j_psj_2025_104940
crossref_primary_10_3390_foods12132538
crossref_primary_10_1016_j_jtherbio_2021_103169
crossref_primary_10_2147_DDDT_S374439
crossref_primary_10_1016_j_psj_2023_103048
crossref_primary_10_1186_s40104_022_00822_z
crossref_primary_10_1016_j_psj_2024_103562
crossref_primary_10_1080_10495398_2019_1683022
crossref_primary_10_1002_jsfa_10192
crossref_primary_10_1111_jpn_13163
crossref_primary_10_3390_ani9121067
crossref_primary_10_3390_pharmaceutics16091208
crossref_primary_10_1016_j_psj_2024_104095
crossref_primary_10_1016_j_livsci_2019_09_008
crossref_primary_10_1016_j_jtherbio_2021_103167
crossref_primary_10_1016_j_jtherbio_2022_103440
crossref_primary_10_1016_j_jtherbio_2020_102619
crossref_primary_10_3390_ani13182975
crossref_primary_10_5536_KJPS_2024_51_2_73
crossref_primary_10_3390_ani15030290
crossref_primary_10_1016_j_scitotenv_2022_155300
crossref_primary_10_2478_aoas_2024_0110
crossref_primary_10_1016_j_jtherbio_2021_102915
crossref_primary_10_1016_j_psj_2019_12_014
crossref_primary_10_1007_s11250_023_03849_0
crossref_primary_10_3390_ani14131851
crossref_primary_10_1007_s11427_022_2246_4
crossref_primary_10_1016_j_japr_2023_100397
crossref_primary_10_1186_s42523_023_00244_w
crossref_primary_10_3390_molecules26010229
crossref_primary_10_1007_s00484_023_02589_y
crossref_primary_10_3390_microorganisms10020395
crossref_primary_10_1080_00439339_2022_2106344
crossref_primary_10_3389_fphys_2022_890520
crossref_primary_10_1152_japplphysiol_00072_2021
crossref_primary_10_1016_j_psj_2020_11_050
crossref_primary_10_3390_antiox11050871
crossref_primary_10_3382_ps_pey433
crossref_primary_10_3389_fvets_2022_850769
crossref_primary_10_5187_jast_2021_e48
crossref_primary_10_3389_fgene_2021_607719
crossref_primary_10_1071_AN19218
crossref_primary_10_1016_j_psj_2024_103825
crossref_primary_10_5187_jast_2022_e94
crossref_primary_10_3389_fmicb_2021_726878
crossref_primary_10_3390_ani11082279
crossref_primary_10_1051_e3sconf_202337400031
crossref_primary_10_3389_fnut_2022_821272
crossref_primary_10_3389_fvets_2020_00046
crossref_primary_10_1007_s11033_019_05090_1
crossref_primary_10_1016_j_psj_2023_103141
crossref_primary_10_1111_1541_4337_13149
crossref_primary_10_2174_1573397119666230911113134
crossref_primary_10_1186_s40104_024_01075_8
crossref_primary_10_1155_2023_3559234
crossref_primary_10_1016_j_aninu_2021_03_001
crossref_primary_10_3382_ps_pez235
crossref_primary_10_3389_fphys_2022_934660
crossref_primary_10_3389_fphys_2023_1169375
crossref_primary_10_3390_antibiotics10111285
crossref_primary_10_1016_j_scitotenv_2019_134399
crossref_primary_10_3390_ani9030107
crossref_primary_10_1007_s11356_020_11326_6
crossref_primary_10_1016_j_psj_2023_102968
crossref_primary_10_1039_D3FO01103H
crossref_primary_10_3389_fimmu_2019_02981
crossref_primary_10_1093_jas_skac417
crossref_primary_10_3382_ps_pez192
crossref_primary_10_1016_j_tjnut_2024_10_030
crossref_primary_10_1186_s40104_022_00783_3
crossref_primary_10_3390_ani12151889
crossref_primary_10_3390_cancers16040714
crossref_primary_10_1016_j_psj_2020_09_024
crossref_primary_10_1016_j_aninu_2020_12_010
crossref_primary_10_1016_j_psj_2023_103251
crossref_primary_10_1016_j_psj_2024_104362
crossref_primary_10_1186_s40104_021_00627_6
crossref_primary_10_1007_s11356_022_23385_y
crossref_primary_10_1039_D3FO01749D
crossref_primary_10_1111_asj_13679
crossref_primary_10_1590_1806_9061_2022_1668
Cites_doi 10.1017/S0007114514001846
10.1016/j.anifeedsci.2014.10.012
10.1021/jf803638d
10.1016/j.meatsci.2014.11.014
10.1023/A:1005565708038
10.1016/j.jnutbio.2015.01.002
10.3382/ps.2013-03455
10.1016/j.anifeedsci.2016.07.014
10.1039/C5FO01338K
10.3382/ps.2010-00812
10.1186/s12896-016-0255-z
10.3382/ps/pev216
10.3945/jn.110.135657
10.1016/j.anifeedsci.2015.07.001
10.1038/nri2653
10.3382/ps.2013-03029
10.1016/j.livsci.2015.11.026
10.1016/j.anifeedsci.2013.08.001
10.1016/j.nutres.2012.09.004
10.3382/ps/pex004
10.3390/ani3020356
10.3382/ps.2010-00889
10.1152/japplphysiol.00301.2010
10.3382/ps.2013-03423
10.1006/meth.2001.1262
10.1146/annurev-physiol-012110-142150
10.1371/journal.pone.0145236
10.15376/biores.10.1.196-209
10.1021/jf200120y
10.3382/ps/pev211
10.1371/journal.pone.0138975
10.1016/j.jff.2015.02.039
10.1016/j.semcdb.2014.09.003
ContentType Journal Article
Copyright 2017 Poultry Science Association Inc. 2017
2017 Poultry Science Association Inc.
Copyright_xml – notice: 2017 Poultry Science Association Inc. 2017
– notice: 2017 Poultry Science Association Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.3382/ps/pex266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3171
EndPage 4332
ExternalDocumentID 29053872
10_3382_ps_pex266
10.3382/ps/pex266
Genre Journal Article
GrantInformation_xml – fundername: Anhui Higher Institutions Natural Science Foundation
  grantid: KJ2016A240
– fundername: National Natural Science Foundation
  grantid: 31702129
  funderid: 10.13039/501100001809
GroupedDBID ---
0R~
0SF
123
18M
1TH
2WC
4.4
48X
53G
5RE
5VS
6I.
AAEDW
AAHBH
AAIMJ
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAXUO
ABCQX
ABEUO
ABIXL
ABJNI
ABQLI
ACGFO
ACGFS
ACIWK
ACLIJ
ACUFI
ADBBV
ADHKW
ADHZD
ADRIX
ADRTK
ADVLN
ADYVW
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEWNT
AEXQZ
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKRT
AGSYK
AHMBA
AIAGR
AITUG
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMRAJ
APIBT
ARIXL
AVWKF
AXUDD
AYOIW
BAWUL
BAYMD
BHONS
BQDIO
BSWAC
CDBKE
CKLRP
CS3
DAKXR
DIK
DILTD
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GJXCC
GROUPED_DOAJ
H13
HAR
HF~
INIJC
J21
KQ8
KSI
KSN
L7B
NCXOZ
NLBLG
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
P2P
PAFKI
PEELM
Q5Y
ROL
ROX
ROZ
RPM
RXO
SJN
TEORI
TLC
TPS
TR2
TWZ
W8F
WOQ
Y6R
YAYTL
YKOAZ
~KM
.GJ
29O
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
AAUQX
AAYWO
AAYXX
ABJCF
ABSMQ
ABUWG
ACVFH
ADCNI
AEUPX
AEUYN
AFJKZ
AFKRA
AFPUW
AIGII
AKBMS
AKYEP
APXCP
ASAOO
ATCPS
ATDFG
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CXTWN
DFGAJ
FYUFA
HCIFZ
HMCUK
H~9
L6V
M0K
M1P
M7S
MBTAY
OHT
PATMY
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
S0X
UKHRP
XOL
ZXP
AHVMP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c382t-97571a3d3da28eafdca08c276d8c9344da192a4f652044cd89d263712ccb7a4f3
ISSN 0032-5791
1525-3171
IngestDate Thu Jul 10 22:27:03 EDT 2025
Fri Jul 11 15:40:14 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Thu Apr 24 23:02:58 EDT 2025
Tue Jul 01 03:55:21 EDT 2025
Wed Aug 28 03:26:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords intestinal microfloras
intestinal function
heat stress
resveratrol
broiler
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
2017 Poultry Science Association Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-97571a3d3da28eafdca08c276d8c9344da192a4f652044cd89d263712ccb7a4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://academic.oup.com/ps/article-pdf/96/12/4325/22660895/pex266.pdf
PMID 29053872
PQID 1954078080
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2524322280
proquest_miscellaneous_1954078080
pubmed_primary_29053872
crossref_primary_10_3382_ps_pex266
crossref_citationtrail_10_3382_ps_pex266
oup_primary_10_3382_ps_pex266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171201
2017-12-00
2017-Dec-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 20171201
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Poultry science
PublicationTitleAlternate Poult Sci
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhang (10.3382/ps/pex266_bib36) 2017
Turner (10.3382/ps/pex266_bib27) 2009; 9
Song (10.3382/ps/pex266_bib24) 2014; 93
Lara (10.3382/ps/pex266_bib8) 2013; 3
Livak (10.3382/ps/pex266_bib15) 2001; 25
Larrosa (10.3382/ps/pex266_bib9) 2009; 57
Varasteh (10.3382/ps/pex266_bib29) 2015; 10
Liu (10.3382/ps/pex266_bib13) 2014; 93
Song (10.3382/ps/pex266_bib23) 2013; 185
Song (10.3382/ps/pex266_bib25) 2011; 59
Leon (10.3382/ps/pex266_bib10) 2010; 109
Chen (10.3382/ps/pex266_bib3) 2016
Li (10.3382/ps/pex266_bib11) 2015; 208
Chen (10.3382/ps/pex266_bib4) 2014; 10
Ulluwishewa (10.3382/ps/pex266_bib28) 2011; 141
Vicuna (10.3382/ps/pex266_bib30) 2015; 94
Liu (10.3382/ps/pex266_bib14) 2016; 16
Rezaei (10.3382/ps/pex266_bib20) 2015; 94
Zhang (10.3382/ps/pex266_bib34) 2015; 14
Abdelqader (10.3382/ps/pex266_bib1) 2016; 183
Tan (10.3382/ps/pex266_bib26) 2014; 112
Zhang (10.3382/ps/pex266_bib35) 2015; 102
Shao (10.3382/ps/pex266_bib21) 2013; 92
National Research Council (10.3382/ps/pex266_bib16) 1994
Etxeberria (10.3382/ps/pex266_bib5) 2015; 26
Shen (10.3382/ps/pex266_bib22) 2011; 73
Quinteiro-Filho (10.3382/ps/pex266_bib18) 2010; 89
Viveros (10.3382/ps/pex266_bib31) 2011; 90
Yi (10.3382/ps/pex266_bib33) 2016; 220
Goodrich (10.3382/ps/pex266_bib6) 2012; 32
He (10.3382/ps/pex266_bib7) 2016; 11
Yang (10.3382/ps/pex266_bib32) 2016
Quiros (10.3382/ps/pex266_bib19) 2014; 36
Nieto (10.3382/ps/pex266_bib17) 2000; 45
Al-Fataftah (10.3382/ps/pex266_bib2) 2014; 198
Liu (10.3382/ps/pex266_bib12) 2016; 7
References_xml – volume: 112
  start-page: 1098
  year: 2014
  ident: 10.3382/ps/pex266_bib26
  article-title: Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens.
  publication-title: Brit. J. Nutr.
  doi: 10.1017/S0007114514001846
– volume: 198
  start-page: 279
  year: 2014
  ident: 10.3382/ps/pex266_bib2
  article-title: Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition.
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2014.10.012
– volume: 57
  start-page: 2211
  year: 2009
  ident: 10.3382/ps/pex266_bib9
  article-title: Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model.
  publication-title: J. Agr. Food Chem.
  doi: 10.1021/jf803638d
– volume: 102
  start-page: 15
  year: 2015
  ident: 10.3382/ps/pex266_bib35
  article-title: Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status.
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2014.11.014
– year: 2016
  ident: 10.3382/ps/pex266_bib32
  article-title: Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 45
  start-page: 1820
  year: 2000
  ident: 10.3382/ps/pex266_bib17
  article-title: Experimental ulcerative colitis impairs antioxidant defense system in rat intestine.
  publication-title: Digest. Dis. Sci.
  doi: 10.1023/A:1005565708038
– volume: 26
  start-page: 651
  year: 2015
  ident: 10.3382/ps/pex266_bib5
  article-title: Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2015.01.002
– volume: 93
  start-page: 581
  year: 2014
  ident: 10.3382/ps/pex266_bib24
  article-title: Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress.
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2013-03455
– volume: 220
  start-page: 83
  year: 2016
  ident: 10.3382/ps/pex266_bib33
  article-title: N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers.
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2016.07.014
– volume: 7
  start-page: 1329
  year: 2016
  ident: 10.3382/ps/pex266_bib12
  article-title: Resveratrol modulates intestinal morphology and HSP70/90, NF-kappaB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress.
  publication-title: Food Funct.
  doi: 10.1039/C5FO01338K
– year: 1994
  ident: 10.3382/ps/pex266_bib16
– volume: 89
  start-page: 1905
  year: 2010
  ident: 10.3382/ps/pex266_bib18
  article-title: Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens.
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2010-00812
– volume: 16
  start-page: 25
  year: 2016
  ident: 10.3382/ps/pex266_bib14
  article-title: Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice.
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-016-0255-z
– volume: 94
  start-page: 2414
  year: 2015
  ident: 10.3382/ps/pex266_bib20
  article-title: Effect of oligosaccharides extract from palm kernel expeller on growth performance, gut microbiota and immune response in broiler chickens.
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pev216
– volume: 141
  start-page: 769
  year: 2011
  ident: 10.3382/ps/pex266_bib28
  article-title: Regulation of tight junction permeability by intestinal bacteria and dietary components.
  publication-title: J. Nutr.
  doi: 10.3945/jn.110.135657
– volume: 208
  start-page: 119
  year: 2015
  ident: 10.3382/ps/pex266_bib11
  article-title: Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers.
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2015.07.001
– volume: 9
  start-page: 799
  year: 2009
  ident: 10.3382/ps/pex266_bib27
  article-title: Intestinal mucosal barrier function in health and disease.
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2653
– volume: 92
  start-page: 1764
  year: 2013
  ident: 10.3382/ps/pex266_bib21
  article-title: beta-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2013-03029
– volume: 183
  start-page: 78
  year: 2016
  ident: 10.3382/ps/pex266_bib1
  article-title: Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers.
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2015.11.026
– volume: 185
  start-page: 175
  year: 2013
  ident: 10.3382/ps/pex266_bib23
  article-title: Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers.
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2013.08.001
– volume: 32
  start-page: 787
  year: 2012
  ident: 10.3382/ps/pex266_bib6
  article-title: Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: A secondary analysis of healthy Wistar Furth rats.
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2012.09.004
– year: 2017
  ident: 10.3382/ps/pex266_bib36
  article-title: Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pex004
– volume: 3
  start-page: 356
  year: 2013
  ident: 10.3382/ps/pex266_bib8
  article-title: Impact of heat stress on poultry production.
  publication-title: Animals
  doi: 10.3390/ani3020356
– volume: 90
  start-page: 566
  year: 2011
  ident: 10.3382/ps/pex266_bib31
  article-title: Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks.
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2010-00889
– volume: 109
  start-page: 1980
  year: 2010
  ident: 10.3382/ps/pex266_bib10
  article-title: Heat stroke: Role of the systemic inflammatory response.
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00301.2010
– volume: 93
  start-page: 54
  year: 2014
  ident: 10.3382/ps/pex266_bib13
  article-title: Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2013-03423
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.3382/ps/pex266_bib15
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method.
  publication-title: Methods.
  doi: 10.1006/meth.2001.1262
– volume: 73
  start-page: 283
  year: 2011
  ident: 10.3382/ps/pex266_bib22
  article-title: Tight junction pore and leak pathways: A dynamic duo.
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-012110-142150
– volume: 11
  start-page: e0145236
  year: 2016
  ident: 10.3382/ps/pex266_bib7
  article-title: Protective effects of ferulic acid against heat stress-induced intestinal epithelial barrier dysfunction in vitro and in vivo.
  publication-title: PloS One.
  doi: 10.1371/journal.pone.0145236
– volume: 10
  start-page: 196
  year: 2014
  ident: 10.3382/ps/pex266_bib4
  article-title: Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller.
  publication-title: Bioresources.
  doi: 10.15376/biores.10.1.196-209
– volume: 59
  start-page: 6227
  year: 2011
  ident: 10.3382/ps/pex266_bib25
  article-title: Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats.
  publication-title: J. Agr. Food Chem.
  doi: 10.1021/jf200120y
– volume: 94
  start-page: 2075
  year: 2015
  ident: 10.3382/ps/pex266_bib30
  article-title: Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks.
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pev211
– year: 2016
  ident: 10.3382/ps/pex266_bib3
  article-title: Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression
  publication-title: J. Anim. Physiol. Anim. Nutr.
– volume: 10
  start-page: e0138975
  year: 2015
  ident: 10.3382/ps/pex266_bib29
  article-title: Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides.
  publication-title: PloS One.
  doi: 10.1371/journal.pone.0138975
– volume: 14
  start-page: 590
  year: 2015
  ident: 10.3382/ps/pex266_bib34
  article-title: Effects of resveratrol on lipid metabolism in muscle and adipose tissues: A reevaluation in a pig model.
  publication-title: J. Funct. Foods.
  doi: 10.1016/j.jff.2015.02.039
– volume: 36
  start-page: 194
  year: 2014
  ident: 10.3382/ps/pex266_bib19
  article-title: RhoGTPases, actomyosin signaling and regulation of the epithelial apical junctional complex.
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.09.003
SSID ssj0021667
Score 2.5813332
Snippet Abstract This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat...
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress....
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4325
SubjectTerms Animals
average daily gain
Avian Proteins - genetics
Avian Proteins - metabolism
Bifidobacterium
blood serum
body weight
cadherins
Chickens - genetics
Chickens - physiology
Clostridium
dextran
diamine oxidase
Escherichia coli
feed intake
fluorescein
Gastrointestinal Microbiome - drug effects
gene expression
heat
heat stress
Heat Stress Disorders - drug therapy
Heat Stress Disorders - etiology
Heat Stress Disorders - veterinary
intestines
Intestines - drug effects
isothiocyanates
lactic acid
Lactobacillus
Male
males
microorganisms
occludins
Protective Agents - administration & dosage
Protective Agents - metabolism
Random Allocation
Resveratrol
RNA, Messenger - genetics
RNA, Messenger - metabolism
Salmonella
Stilbenes - administration & dosage
Stilbenes - metabolism
Tight Junction Proteins - genetics
Tight Junction Proteins - metabolism
villi
Title Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers
URI https://www.ncbi.nlm.nih.gov/pubmed/29053872
https://www.proquest.com/docview/1954078080
https://www.proquest.com/docview/2524322280
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIGHafwebMggHpC2sNR2nORxqpgmHhBCm1SeIsexUSWWVGk6DST-d-5iJ2lpQYOXKHLttsl9Pt_Zd98R8sYkuVVWqyBMmQ1ELkWQFkwEhtso0bFKQtNG-X6U55fiwzSajkbL1eySJn-nf2zNK_kfqUIbyBWzZP9Bsv2XQgPcg3zhChKG661k_NksrpEUGWPNsSbK9QwtRzT-Gp8EEoDLvcQjfsyGnNXdyT-SRMDcRkv0qoI33aesXGF8ngUfXnVhnbmq26J2jlcCbfZZeZTXFWgTfxDkTdtPWKG6_n7k19SNHenJSku7PzsdEiO--D79TvTEJ41M_frg9yVgrRtiPLyu5eDmxq4WV6drXfXaDlNsRXMK7hKg_SqMtGrbNDx41MgYi4ckZ3Nzw-QWHu3f1rc-6hD8HRyezReZG3qH3GXgXbBuk8f76WMpHdWqfwBHSIVDT-aLEzd0zYxZS43c8FBaS-Vij-x6F4OeOrw8ICNTPiT3T7_WnmbFPCI_V5BDB-RQRA5dRw4dkEMrSwfk0AE5x3TAzTEF1FCPGtqjBu5oh5rH5PLs_cXkPPCFOAIND90EaRzFY8ULXiiWGGULrcJEs1gWiU65EIUCP0EJKyMWCqGLBKa75PGYaZ3H0M6fkJ2yKs0zQmWkRCG4UsgUOdYq1THXIgqFNNoKw_fJ2-69Ztqz1GOxlG_ZhvT2yeu-69xRs2zrdAjC-dvnrzqxZaBY8bRMlaZaLjKkQgT7GTyqP_dhERN4VIl9njqZ9z_FUljfkpg9v83ffEHuDXPogOw09dIcgrXb5C9bbP4CdXKzsw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resveratrol+alleviates+heat+stress-induced+impairment+of+intestinal+morphology%2C+microflora%2C+and+barrier+integrity+in+broilers&rft.jtitle=Poultry+science&rft.au=Zhang%2C+C&rft.au=Zhao%2C+X+H&rft.au=Yang%2C+L&rft.au=Chen%2C+X+Y&rft.date=2017-12-01&rft.issn=0032-5791&rft.volume=96&rft.issue=12&rft.spage=4325&rft.epage=4332&rft_id=info:doi/10.3382%2Fps%2Fpex266&rft.externalDBID=n%2Fa&rft.externalDocID=10_3382_ps_pex266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon