Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers
Abstract This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates wit...
Saved in:
Published in | Poultry science Vol. 96; no. 12; pp. 4325 - 4332 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes. |
---|---|
AbstractList | Abstract
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes. This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes. This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes.This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress. Two-hundred-seventy 21-day-old Cobb male broilers were randomly allocated to 3 treatment groups, each of which included 6 replicates with 15 birds per replicate. The 3 treatment groups were as follows: the control group, in which birds were exposed to thermoneutral condition (22 ± 1°C), and the heat stress group and heat stress + resveratrol (400 mg/kg) group, in which birds were exposed to cyclic heat stress (33 ± 1°C for 10 h/d from 0800 to 1800 h and 22 ± 1°C for the remaining time. Compared with birds in the control group, birds in the heat stress group exhibited decreased (P < 0.05) final body weight, average daily gain, average daily feed intake, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, zona occludens-1, and E-cadherin, and increased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents and diamine oxidase activity, and populations of Salmonella, Escherichia coli, and Clostridium. Compared with birds in the heat stress group, birds in the heat stress + resveratrol group exhibited decreased (P < 0.05) crypt depth, serum D-lactic acid and fluorescein isothiocyanate dextran contents, and populations of Escherichia coli, and increased (P < 0.05) final body weight, villus height, villus height to crypt depth ratio, goblet cells numbers, populations of Lactobacillus and Bifidobacterium, and mRNA levels of mucin-2, claudin-1, occludin, and E-cadherin. Taken together, these results indicated for the first time that dietary addition of resveratrol was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by restoring the impaired villus-crypt structure, modifying the profiles of intestinal microfloras, and altering the mRNA expression of intestinal tight junctions- and adherence junctions-related genes. |
Author | Zhang, C Chen, X Y Geng, Z Y Yang, L Zhao, X H Jiang, R S Jin, S H |
Author_xml | – sequence: 1 givenname: C surname: Zhang fullname: Zhang, C email: cheng20050502@163.com organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 2 givenname: X H surname: Zhao fullname: Zhao, X H organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 3 givenname: L surname: Yang fullname: Yang, L organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 4 givenname: X Y surname: Chen fullname: Chen, X Y email: cheng20050502@163.com organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 5 givenname: R S surname: Jiang fullname: Jiang, R S organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 6 givenname: S H surname: Jin fullname: Jin, S H organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China – sequence: 7 givenname: Z Y surname: Geng fullname: Geng, Z Y email: ZCTGBZ@163.com organization: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29053872$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1rFTEQAPAgFftaPfgPSA4eFLq-ZLK72T2WUj-gIIiel3lJto1kk3WSLb5D_3fXvupBRE8Zwm-G-ThhRzFFx9hzKd4o1cF2ztvZfYe2fcQ2soGmUlLLI7YRQkHV6F4es5OcvwoBsm31E3YMvWhUp2HD7j65fOsIC6XAMQR367G4zG8cFp4LuZwrH-1inOV-mtHT5GLhaeQ-rq74iIFPieabFNL1_oxP3lAaQyI84xgt3yGRd3TPr8mX_RrxHSUfHOWn7PGIIbtnD-8p-_L28vPF--rq47sPF-dXlVnHK1WvGy1RWWUROoejNSg6A7q1nelVXVuUPWA9tg2Iuja26y20SkswZqfXf3XKXh3qzpS-LWvbw-SzcSFgdGnJAzRQKwDoxH-p7Jta6E7c0xcPdNlNzg4z-QlpP_za7gpeH8C6kpzJjb-JFMPPyw1zHg6XW-32D2t8weJTLIQ-_DXj5SEjLfM_Cv8A0BarTg |
CitedBy_id | crossref_primary_10_1080_00439339_2022_2014288 crossref_primary_10_1002_smtd_202400664 crossref_primary_10_1186_s40104_022_00734_y crossref_primary_10_1016_j_ecoenv_2023_114851 crossref_primary_10_1186_s40104_020_00460_3 crossref_primary_10_1016_j_psj_2023_102713 crossref_primary_10_3389_fvets_2023_1137896 crossref_primary_10_1093_jas_skz373 crossref_primary_10_1016_j_psj_2020_01_021 crossref_primary_10_1016_j_fsi_2023_108537 crossref_primary_10_1111_jne_13424 crossref_primary_10_3390_ani11061591 crossref_primary_10_1002_jsfa_9084 crossref_primary_10_1016_j_psj_2023_103242 crossref_primary_10_2174_1389557520666191226111405 crossref_primary_10_1016_j_rvsc_2023_105057 crossref_primary_10_3390_nu17050837 crossref_primary_10_1016_j_jtherbio_2019_102415 crossref_primary_10_1139_cjas_2021_0015 crossref_primary_10_1016_j_psj_2020_08_019 crossref_primary_10_3390_ani10081391 crossref_primary_10_1186_s13567_020_00796_8 crossref_primary_10_3390_metabo12020142 crossref_primary_10_3390_nu15020450 crossref_primary_10_3390_microorganisms8121858 crossref_primary_10_1016_j_psj_2020_09_050 crossref_primary_10_1039_D2FO01813F crossref_primary_10_1016_j_jtherbio_2019_102420 crossref_primary_10_1007_s11427_022_2320_y crossref_primary_10_1002_jsfa_10835 crossref_primary_10_3390_ani10081266 crossref_primary_10_3389_fmicb_2021_706772 crossref_primary_10_3390_ani11051427 crossref_primary_10_1016_j_cbpa_2024_111724 crossref_primary_10_1016_j_psj_2021_101337 crossref_primary_10_1016_j_psj_2022_102323 crossref_primary_10_3390_ani12182426 crossref_primary_10_1080_1828051X_2024_2401444 crossref_primary_10_3390_microorganisms13020235 crossref_primary_10_5713_ab_20_0842 crossref_primary_10_1016_j_aninu_2021_09_008 crossref_primary_10_1017_S1751731118002884 crossref_primary_10_1139_cjas_2021_0025 crossref_primary_10_3382_ps_pez327 crossref_primary_10_3389_fanim_2022_880237 crossref_primary_10_3390_antiox10050686 crossref_primary_10_3390_microorganisms10030629 crossref_primary_10_3389_fmicb_2019_00903 crossref_primary_10_3390_ani10122407 crossref_primary_10_3382_ps_pez440 crossref_primary_10_1080_08820139_2022_2154162 crossref_primary_10_1039_C8FO02091D crossref_primary_10_1080_10408398_2018_1486284 crossref_primary_10_1016_j_psj_2022_102215 crossref_primary_10_1016_j_psj_2024_104688 crossref_primary_10_1017_S0954422420000013 crossref_primary_10_1016_j_psj_2024_103983 crossref_primary_10_3389_fmicb_2022_1019130 crossref_primary_10_3168_jds_2023_24004 crossref_primary_10_3390_ani15010071 crossref_primary_10_1016_j_reprotox_2018_08_008 crossref_primary_10_3390_toxins17010016 crossref_primary_10_3390_ani14172585 crossref_primary_10_1055_a_1524_0358 crossref_primary_10_1016_j_anifeedsci_2021_115118 crossref_primary_10_3390_ani12030311 crossref_primary_10_5713_ab_21_0230 crossref_primary_10_1111_jpn_13496 crossref_primary_10_3389_fvets_2024_1470992 crossref_primary_10_3390_life13061287 crossref_primary_10_1016_j_psj_2024_103996 crossref_primary_10_1016_j_psj_2024_104203 crossref_primary_10_1016_j_psj_2024_104202 crossref_primary_10_3390_ani12192599 crossref_primary_10_1111_jpn_13492 crossref_primary_10_1111_asj_13357 crossref_primary_10_3389_fimmu_2023_1335359 crossref_primary_10_3382_ps_pez026 crossref_primary_10_3390_ani12091180 crossref_primary_10_1016_j_psj_2022_101705 crossref_primary_10_3390_ani13142396 crossref_primary_10_18311_jnr_2024_35974 crossref_primary_10_1016_j_psj_2025_104940 crossref_primary_10_3390_foods12132538 crossref_primary_10_1016_j_jtherbio_2021_103169 crossref_primary_10_2147_DDDT_S374439 crossref_primary_10_1016_j_psj_2023_103048 crossref_primary_10_1186_s40104_022_00822_z crossref_primary_10_1016_j_psj_2024_103562 crossref_primary_10_1080_10495398_2019_1683022 crossref_primary_10_1002_jsfa_10192 crossref_primary_10_1111_jpn_13163 crossref_primary_10_3390_ani9121067 crossref_primary_10_3390_pharmaceutics16091208 crossref_primary_10_1016_j_psj_2024_104095 crossref_primary_10_1016_j_livsci_2019_09_008 crossref_primary_10_1016_j_jtherbio_2021_103167 crossref_primary_10_1016_j_jtherbio_2022_103440 crossref_primary_10_1016_j_jtherbio_2020_102619 crossref_primary_10_3390_ani13182975 crossref_primary_10_5536_KJPS_2024_51_2_73 crossref_primary_10_3390_ani15030290 crossref_primary_10_1016_j_scitotenv_2022_155300 crossref_primary_10_2478_aoas_2024_0110 crossref_primary_10_1016_j_jtherbio_2021_102915 crossref_primary_10_1016_j_psj_2019_12_014 crossref_primary_10_1007_s11250_023_03849_0 crossref_primary_10_3390_ani14131851 crossref_primary_10_1007_s11427_022_2246_4 crossref_primary_10_1016_j_japr_2023_100397 crossref_primary_10_1186_s42523_023_00244_w crossref_primary_10_3390_molecules26010229 crossref_primary_10_1007_s00484_023_02589_y crossref_primary_10_3390_microorganisms10020395 crossref_primary_10_1080_00439339_2022_2106344 crossref_primary_10_3389_fphys_2022_890520 crossref_primary_10_1152_japplphysiol_00072_2021 crossref_primary_10_1016_j_psj_2020_11_050 crossref_primary_10_3390_antiox11050871 crossref_primary_10_3382_ps_pey433 crossref_primary_10_3389_fvets_2022_850769 crossref_primary_10_5187_jast_2021_e48 crossref_primary_10_3389_fgene_2021_607719 crossref_primary_10_1071_AN19218 crossref_primary_10_1016_j_psj_2024_103825 crossref_primary_10_5187_jast_2022_e94 crossref_primary_10_3389_fmicb_2021_726878 crossref_primary_10_3390_ani11082279 crossref_primary_10_1051_e3sconf_202337400031 crossref_primary_10_3389_fnut_2022_821272 crossref_primary_10_3389_fvets_2020_00046 crossref_primary_10_1007_s11033_019_05090_1 crossref_primary_10_1016_j_psj_2023_103141 crossref_primary_10_1111_1541_4337_13149 crossref_primary_10_2174_1573397119666230911113134 crossref_primary_10_1186_s40104_024_01075_8 crossref_primary_10_1155_2023_3559234 crossref_primary_10_1016_j_aninu_2021_03_001 crossref_primary_10_3382_ps_pez235 crossref_primary_10_3389_fphys_2022_934660 crossref_primary_10_3389_fphys_2023_1169375 crossref_primary_10_3390_antibiotics10111285 crossref_primary_10_1016_j_scitotenv_2019_134399 crossref_primary_10_3390_ani9030107 crossref_primary_10_1007_s11356_020_11326_6 crossref_primary_10_1016_j_psj_2023_102968 crossref_primary_10_1039_D3FO01103H crossref_primary_10_3389_fimmu_2019_02981 crossref_primary_10_1093_jas_skac417 crossref_primary_10_3382_ps_pez192 crossref_primary_10_1016_j_tjnut_2024_10_030 crossref_primary_10_1186_s40104_022_00783_3 crossref_primary_10_3390_ani12151889 crossref_primary_10_3390_cancers16040714 crossref_primary_10_1016_j_psj_2020_09_024 crossref_primary_10_1016_j_aninu_2020_12_010 crossref_primary_10_1016_j_psj_2023_103251 crossref_primary_10_1016_j_psj_2024_104362 crossref_primary_10_1186_s40104_021_00627_6 crossref_primary_10_1007_s11356_022_23385_y crossref_primary_10_1039_D3FO01749D crossref_primary_10_1111_asj_13679 crossref_primary_10_1590_1806_9061_2022_1668 |
Cites_doi | 10.1017/S0007114514001846 10.1016/j.anifeedsci.2014.10.012 10.1021/jf803638d 10.1016/j.meatsci.2014.11.014 10.1023/A:1005565708038 10.1016/j.jnutbio.2015.01.002 10.3382/ps.2013-03455 10.1016/j.anifeedsci.2016.07.014 10.1039/C5FO01338K 10.3382/ps.2010-00812 10.1186/s12896-016-0255-z 10.3382/ps/pev216 10.3945/jn.110.135657 10.1016/j.anifeedsci.2015.07.001 10.1038/nri2653 10.3382/ps.2013-03029 10.1016/j.livsci.2015.11.026 10.1016/j.anifeedsci.2013.08.001 10.1016/j.nutres.2012.09.004 10.3382/ps/pex004 10.3390/ani3020356 10.3382/ps.2010-00889 10.1152/japplphysiol.00301.2010 10.3382/ps.2013-03423 10.1006/meth.2001.1262 10.1146/annurev-physiol-012110-142150 10.1371/journal.pone.0145236 10.15376/biores.10.1.196-209 10.1021/jf200120y 10.3382/ps/pev211 10.1371/journal.pone.0138975 10.1016/j.jff.2015.02.039 10.1016/j.semcdb.2014.09.003 |
ContentType | Journal Article |
Copyright | 2017 Poultry Science Association Inc. 2017 2017 Poultry Science Association Inc. |
Copyright_xml | – notice: 2017 Poultry Science Association Inc. 2017 – notice: 2017 Poultry Science Association Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.3382/ps/pex266 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3171 |
EndPage | 4332 |
ExternalDocumentID | 29053872 10_3382_ps_pex266 10.3382/ps/pex266 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Anhui Higher Institutions Natural Science Foundation grantid: KJ2016A240 – fundername: National Natural Science Foundation grantid: 31702129 funderid: 10.13039/501100001809 |
GroupedDBID | --- 0R~ 0SF 123 18M 1TH 2WC 4.4 48X 53G 5RE 5VS 6I. AAEDW AAHBH AAIMJ AAJQQ AALRI AAMDB AAMVS AAOGV AAXUO ABCQX ABEUO ABIXL ABJNI ABQLI ACGFO ACGFS ACIWK ACLIJ ACUFI ADBBV ADHKW ADHZD ADRIX ADRTK ADVLN ADYVW AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AEWNT AEXQZ AFIYH AFOFC AFRAH AFXEN AGINJ AGKRT AGSYK AHMBA AIAGR AITUG AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC AMRAJ APIBT ARIXL AVWKF AXUDD AYOIW BAWUL BAYMD BHONS BQDIO BSWAC CDBKE CKLRP CS3 DAKXR DIK DILTD DU5 E3Z EBS EJD F5P F9R FDB GJXCC GROUPED_DOAJ H13 HAR HF~ INIJC J21 KQ8 KSI KSN L7B NCXOZ NLBLG NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD P2P PAFKI PEELM Q5Y ROL ROX ROZ RPM RXO SJN TEORI TLC TPS TR2 TWZ W8F WOQ Y6R YAYTL YKOAZ ~KM .GJ 29O 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 AAUQX AAYWO AAYXX ABJCF ABSMQ ABUWG ACVFH ADCNI AEUPX AEUYN AFJKZ AFKRA AFPUW AIGII AKBMS AKYEP APXCP ASAOO ATCPS ATDFG BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CXTWN DFGAJ FYUFA HCIFZ HMCUK H~9 L6V M0K M1P M7S MBTAY OHT PATMY PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS PYCSY Q2X S0X UKHRP XOL ZXP AHVMP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c382t-97571a3d3da28eafdca08c276d8c9344da192a4f652044cd89d263712ccb7a4f3 |
ISSN | 0032-5791 1525-3171 |
IngestDate | Thu Jul 10 22:27:03 EDT 2025 Fri Jul 11 15:40:14 EDT 2025 Wed Feb 19 02:31:30 EST 2025 Thu Apr 24 23:02:58 EDT 2025 Tue Jul 01 03:55:21 EDT 2025 Wed Aug 28 03:26:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | intestinal microfloras intestinal function heat stress resveratrol broiler |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 2017 Poultry Science Association Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c382t-97571a3d3da28eafdca08c276d8c9344da192a4f652044cd89d263712ccb7a4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://academic.oup.com/ps/article-pdf/96/12/4325/22660895/pex266.pdf |
PMID | 29053872 |
PQID | 1954078080 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2524322280 proquest_miscellaneous_1954078080 pubmed_primary_29053872 crossref_primary_10_3382_ps_pex266 crossref_citationtrail_10_3382_ps_pex266 oup_primary_10_3382_ps_pex266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171201 2017-12-00 2017-Dec-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 20171201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Poultry science |
PublicationTitleAlternate | Poult Sci |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Zhang (10.3382/ps/pex266_bib36) 2017 Turner (10.3382/ps/pex266_bib27) 2009; 9 Song (10.3382/ps/pex266_bib24) 2014; 93 Lara (10.3382/ps/pex266_bib8) 2013; 3 Livak (10.3382/ps/pex266_bib15) 2001; 25 Larrosa (10.3382/ps/pex266_bib9) 2009; 57 Varasteh (10.3382/ps/pex266_bib29) 2015; 10 Liu (10.3382/ps/pex266_bib13) 2014; 93 Song (10.3382/ps/pex266_bib23) 2013; 185 Song (10.3382/ps/pex266_bib25) 2011; 59 Leon (10.3382/ps/pex266_bib10) 2010; 109 Chen (10.3382/ps/pex266_bib3) 2016 Li (10.3382/ps/pex266_bib11) 2015; 208 Chen (10.3382/ps/pex266_bib4) 2014; 10 Ulluwishewa (10.3382/ps/pex266_bib28) 2011; 141 Vicuna (10.3382/ps/pex266_bib30) 2015; 94 Liu (10.3382/ps/pex266_bib14) 2016; 16 Rezaei (10.3382/ps/pex266_bib20) 2015; 94 Zhang (10.3382/ps/pex266_bib34) 2015; 14 Abdelqader (10.3382/ps/pex266_bib1) 2016; 183 Tan (10.3382/ps/pex266_bib26) 2014; 112 Zhang (10.3382/ps/pex266_bib35) 2015; 102 Shao (10.3382/ps/pex266_bib21) 2013; 92 National Research Council (10.3382/ps/pex266_bib16) 1994 Etxeberria (10.3382/ps/pex266_bib5) 2015; 26 Shen (10.3382/ps/pex266_bib22) 2011; 73 Quinteiro-Filho (10.3382/ps/pex266_bib18) 2010; 89 Viveros (10.3382/ps/pex266_bib31) 2011; 90 Yi (10.3382/ps/pex266_bib33) 2016; 220 Goodrich (10.3382/ps/pex266_bib6) 2012; 32 He (10.3382/ps/pex266_bib7) 2016; 11 Yang (10.3382/ps/pex266_bib32) 2016 Quiros (10.3382/ps/pex266_bib19) 2014; 36 Nieto (10.3382/ps/pex266_bib17) 2000; 45 Al-Fataftah (10.3382/ps/pex266_bib2) 2014; 198 Liu (10.3382/ps/pex266_bib12) 2016; 7 |
References_xml | – volume: 112 start-page: 1098 year: 2014 ident: 10.3382/ps/pex266_bib26 article-title: Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. publication-title: Brit. J. Nutr. doi: 10.1017/S0007114514001846 – volume: 198 start-page: 279 year: 2014 ident: 10.3382/ps/pex266_bib2 article-title: Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2014.10.012 – volume: 57 start-page: 2211 year: 2009 ident: 10.3382/ps/pex266_bib9 article-title: Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. publication-title: J. Agr. Food Chem. doi: 10.1021/jf803638d – volume: 102 start-page: 15 year: 2015 ident: 10.3382/ps/pex266_bib35 article-title: Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. publication-title: Meat Sci. doi: 10.1016/j.meatsci.2014.11.014 – year: 2016 ident: 10.3382/ps/pex266_bib32 article-title: Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective publication-title: Crit. Rev. Food Sci. Nutr. – volume: 45 start-page: 1820 year: 2000 ident: 10.3382/ps/pex266_bib17 article-title: Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. publication-title: Digest. Dis. Sci. doi: 10.1023/A:1005565708038 – volume: 26 start-page: 651 year: 2015 ident: 10.3382/ps/pex266_bib5 article-title: Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2015.01.002 – volume: 93 start-page: 581 year: 2014 ident: 10.3382/ps/pex266_bib24 article-title: Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. publication-title: Poult. Sci. doi: 10.3382/ps.2013-03455 – volume: 220 start-page: 83 year: 2016 ident: 10.3382/ps/pex266_bib33 article-title: N-acetylcysteine improves the growth performance and intestinal function in the heat-stressed broilers. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2016.07.014 – volume: 7 start-page: 1329 year: 2016 ident: 10.3382/ps/pex266_bib12 article-title: Resveratrol modulates intestinal morphology and HSP70/90, NF-kappaB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. publication-title: Food Funct. doi: 10.1039/C5FO01338K – year: 1994 ident: 10.3382/ps/pex266_bib16 – volume: 89 start-page: 1905 year: 2010 ident: 10.3382/ps/pex266_bib18 article-title: Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. publication-title: Poult. Sci. doi: 10.3382/ps.2010-00812 – volume: 16 start-page: 25 year: 2016 ident: 10.3382/ps/pex266_bib14 article-title: Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice. publication-title: BMC Biotechnol. doi: 10.1186/s12896-016-0255-z – volume: 94 start-page: 2414 year: 2015 ident: 10.3382/ps/pex266_bib20 article-title: Effect of oligosaccharides extract from palm kernel expeller on growth performance, gut microbiota and immune response in broiler chickens. publication-title: Poult. Sci. doi: 10.3382/ps/pev216 – volume: 141 start-page: 769 year: 2011 ident: 10.3382/ps/pex266_bib28 article-title: Regulation of tight junction permeability by intestinal bacteria and dietary components. publication-title: J. Nutr. doi: 10.3945/jn.110.135657 – volume: 208 start-page: 119 year: 2015 ident: 10.3382/ps/pex266_bib11 article-title: Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2015.07.001 – volume: 9 start-page: 799 year: 2009 ident: 10.3382/ps/pex266_bib27 article-title: Intestinal mucosal barrier function in health and disease. publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2653 – volume: 92 start-page: 1764 year: 2013 ident: 10.3382/ps/pex266_bib21 article-title: beta-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. publication-title: Poult. Sci. doi: 10.3382/ps.2013-03029 – volume: 183 start-page: 78 year: 2016 ident: 10.3382/ps/pex266_bib1 article-title: Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. publication-title: Livest. Sci. doi: 10.1016/j.livsci.2015.11.026 – volume: 185 start-page: 175 year: 2013 ident: 10.3382/ps/pex266_bib23 article-title: Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2013.08.001 – volume: 32 start-page: 787 year: 2012 ident: 10.3382/ps/pex266_bib6 article-title: Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: A secondary analysis of healthy Wistar Furth rats. publication-title: Nutr. Res. doi: 10.1016/j.nutres.2012.09.004 – year: 2017 ident: 10.3382/ps/pex266_bib36 article-title: Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status publication-title: Poult. Sci. doi: 10.3382/ps/pex004 – volume: 3 start-page: 356 year: 2013 ident: 10.3382/ps/pex266_bib8 article-title: Impact of heat stress on poultry production. publication-title: Animals doi: 10.3390/ani3020356 – volume: 90 start-page: 566 year: 2011 ident: 10.3382/ps/pex266_bib31 article-title: Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. publication-title: Poult. Sci. doi: 10.3382/ps.2010-00889 – volume: 109 start-page: 1980 year: 2010 ident: 10.3382/ps/pex266_bib10 article-title: Heat stroke: Role of the systemic inflammatory response. publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00301.2010 – volume: 93 start-page: 54 year: 2014 ident: 10.3382/ps/pex266_bib13 article-title: Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. publication-title: Poult. Sci. doi: 10.3382/ps.2013-03423 – volume: 25 start-page: 402 year: 2001 ident: 10.3382/ps/pex266_bib15 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. publication-title: Methods. doi: 10.1006/meth.2001.1262 – volume: 73 start-page: 283 year: 2011 ident: 10.3382/ps/pex266_bib22 article-title: Tight junction pore and leak pathways: A dynamic duo. publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-012110-142150 – volume: 11 start-page: e0145236 year: 2016 ident: 10.3382/ps/pex266_bib7 article-title: Protective effects of ferulic acid against heat stress-induced intestinal epithelial barrier dysfunction in vitro and in vivo. publication-title: PloS One. doi: 10.1371/journal.pone.0145236 – volume: 10 start-page: 196 year: 2014 ident: 10.3382/ps/pex266_bib4 article-title: Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller. publication-title: Bioresources. doi: 10.15376/biores.10.1.196-209 – volume: 59 start-page: 6227 year: 2011 ident: 10.3382/ps/pex266_bib25 article-title: Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. publication-title: J. Agr. Food Chem. doi: 10.1021/jf200120y – volume: 94 start-page: 2075 year: 2015 ident: 10.3382/ps/pex266_bib30 article-title: Effect of dexamethasone in feed on intestinal permeability, differential white blood cell counts, and immune organs in broiler chicks. publication-title: Poult. Sci. doi: 10.3382/ps/pev211 – year: 2016 ident: 10.3382/ps/pex266_bib3 article-title: Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression publication-title: J. Anim. Physiol. Anim. Nutr. – volume: 10 start-page: e0138975 year: 2015 ident: 10.3382/ps/pex266_bib29 article-title: Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. publication-title: PloS One. doi: 10.1371/journal.pone.0138975 – volume: 14 start-page: 590 year: 2015 ident: 10.3382/ps/pex266_bib34 article-title: Effects of resveratrol on lipid metabolism in muscle and adipose tissues: A reevaluation in a pig model. publication-title: J. Funct. Foods. doi: 10.1016/j.jff.2015.02.039 – volume: 36 start-page: 194 year: 2014 ident: 10.3382/ps/pex266_bib19 article-title: RhoGTPases, actomyosin signaling and regulation of the epithelial apical junctional complex. publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.09.003 |
SSID | ssj0021667 |
Score | 2.5813332 |
Snippet | Abstract
This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat... This study was to investigate the effect of resveratrol on intestinal morphology, microfloras, and barrier integrity of broilers subjected to heat stress.... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4325 |
SubjectTerms | Animals average daily gain Avian Proteins - genetics Avian Proteins - metabolism Bifidobacterium blood serum body weight cadherins Chickens - genetics Chickens - physiology Clostridium dextran diamine oxidase Escherichia coli feed intake fluorescein Gastrointestinal Microbiome - drug effects gene expression heat heat stress Heat Stress Disorders - drug therapy Heat Stress Disorders - etiology Heat Stress Disorders - veterinary intestines Intestines - drug effects isothiocyanates lactic acid Lactobacillus Male males microorganisms occludins Protective Agents - administration & dosage Protective Agents - metabolism Random Allocation Resveratrol RNA, Messenger - genetics RNA, Messenger - metabolism Salmonella Stilbenes - administration & dosage Stilbenes - metabolism Tight Junction Proteins - genetics Tight Junction Proteins - metabolism villi |
Title | Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29053872 https://www.proquest.com/docview/1954078080 https://www.proquest.com/docview/2524322280 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIGHafwebMggHpC2sNR2nORxqpgmHhBCm1SeIsexUSWWVGk6DST-d-5iJ2lpQYOXKHLttsl9Pt_Zd98R8sYkuVVWqyBMmQ1ELkWQFkwEhtso0bFKQtNG-X6U55fiwzSajkbL1eySJn-nf2zNK_kfqUIbyBWzZP9Bsv2XQgPcg3zhChKG661k_NksrpEUGWPNsSbK9QwtRzT-Gp8EEoDLvcQjfsyGnNXdyT-SRMDcRkv0qoI33aesXGF8ngUfXnVhnbmq26J2jlcCbfZZeZTXFWgTfxDkTdtPWKG6_n7k19SNHenJSku7PzsdEiO--D79TvTEJ41M_frg9yVgrRtiPLyu5eDmxq4WV6drXfXaDlNsRXMK7hKg_SqMtGrbNDx41MgYi4ckZ3Nzw-QWHu3f1rc-6hD8HRyezReZG3qH3GXgXbBuk8f76WMpHdWqfwBHSIVDT-aLEzd0zYxZS43c8FBaS-Vij-x6F4OeOrw8ICNTPiT3T7_WnmbFPCI_V5BDB-RQRA5dRw4dkEMrSwfk0AE5x3TAzTEF1FCPGtqjBu5oh5rH5PLs_cXkPPCFOAIND90EaRzFY8ULXiiWGGULrcJEs1gWiU65EIUCP0EJKyMWCqGLBKa75PGYaZ3H0M6fkJ2yKs0zQmWkRCG4UsgUOdYq1THXIgqFNNoKw_fJ2-69Ztqz1GOxlG_ZhvT2yeu-69xRs2zrdAjC-dvnrzqxZaBY8bRMlaZaLjKkQgT7GTyqP_dhERN4VIl9njqZ9z_FUljfkpg9v83ffEHuDXPogOw09dIcgrXb5C9bbP4CdXKzsw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resveratrol+alleviates+heat+stress-induced+impairment+of+intestinal+morphology%2C+microflora%2C+and+barrier+integrity+in+broilers&rft.jtitle=Poultry+science&rft.au=Zhang%2C+C&rft.au=Zhao%2C+X+H&rft.au=Yang%2C+L&rft.au=Chen%2C+X+Y&rft.date=2017-12-01&rft.issn=0032-5791&rft.volume=96&rft.issue=12&rft.spage=4325&rft.epage=4332&rft_id=info:doi/10.3382%2Fps%2Fpex266&rft.externalDBID=n%2Fa&rft.externalDocID=10_3382_ps_pex266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon |