Temporal modeling of EEG during self-paced hand movement and its application in onset detection

The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify E...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 8; no. 5; p. 056015
Main Authors Hasan, Bashar Awwad Shiekh, Gan, John Q
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2011
Subjects
Online AccessGet full text
ISSN1741-2552
1741-2560
1741-2552
DOI10.1088/1741-2560/8/5/056015

Cover

Abstract The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify EEG data into the movement or idle class. They are further used for building an onset detection system and tested on self-paced EEG signals recorded from five subjects. True-false rates ranging from 74% to 98% have been achieved on different subjects, with significant improvement over non-temporal methods. The effectiveness of the proposed methods suggests their potential use in self-paced brain-computer interfaces.
AbstractList The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify EEG data into the movement or idle class. They are further used for building an onset detection system and tested on self-paced EEG signals recorded from five subjects. True-false rates ranging from 74% to 98% have been achieved on different subjects, with significant improvement over non-temporal methods. The effectiveness of the proposed methods suggests their potential use in self-paced brain-computer interfaces.The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify EEG data into the movement or idle class. They are further used for building an onset detection system and tested on self-paced EEG signals recorded from five subjects. True-false rates ranging from 74% to 98% have been achieved on different subjects, with significant improvement over non-temporal methods. The effectiveness of the proposed methods suggests their potential use in self-paced brain-computer interfaces.
The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify EEG data into the movement or idle class. They are further used for building an onset detection system and tested on self-paced EEG signals recorded from five subjects. True-false rates ranging from 74% to 98% have been achieved on different subjects, with significant improvement over non-temporal methods. The effectiveness of the proposed methods suggests their potential use in self-paced brain-computer interfaces.
Author Hasan, Bashar Awwad Shiekh
Gan, John Q
Author_xml – sequence: 1
  fullname: Hasan, Bashar Awwad Shiekh
– sequence: 2
  fullname: Gan, John Q
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21926453$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtr3DAURkVJaB7tPyhBuy6Caz0sS86uhGkSCGQzWQuNdJ2q2JJjaQL997XjaTqE0Kzug_PdC-cEHYQYAKEvlHyjRKmSyooWTNSkVKUoydRQ8QEd79aCHez1R-gkpV-EcCob8hEdMdqwuhL8GOk19EMcTYf76KDz4QHHFq9WV9htx3lK0LXFYCw4_NMEN2FP0EPIeB58TtgMQ-etyT4G7AOOIUHGDjLYefUJHbamS_B5V0_R_Y_V-vK6uL27urn8fltYrlgulJWSUcO4tIxxUtfCNU1VWcpaa3gtTcvZxklo2oZvhFNGSOmYAwa0qV1d8VP0dbk7jPFxCynr3icLXWcCxG3SquGSEaJm8mxHbjc9OD2Mvjfjb_3XyQRUC2DHmNII7QtCiZ7V69mrntVrpYVe1E-xi1cx6_Ozljwa370XPl_CPg7_3i2kYHukHlw70eUb9P_u_wEgeKLg
CitedBy_id crossref_primary_10_1109_TBME_2019_2900206
crossref_primary_10_1109_TNSRE_2017_2754879
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1016_j_jphysparis_2017_03_002
Cites_doi 10.1016/S1388-2457(99)00141-8
10.1016/S0079-6123(06)59014-4
10.1109/10.871402
10.1109/TNSRE.2004.827220
10.1007/s11517-007-0197-7
10.1088/1741-2560/8/2/025013
10.1088/1741-2560/5/1/003
10.1016/j.neunet.2009.06.003
10.1109/3477.678624
10.1016/j.neunet.2009.07.020
10.1109/PROC.1982.12433
10.1016/S1388-2457(02)00057-3
10.1109/TNSRE.2003.814439
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2560/8/5/056015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 21926453
10_1088_1741_2560_8_5_056015
Genre Journal Article
GroupedDBID -
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AALHV
ABFLS
ABHWH
ABQJV
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
UNR
W28
XPP
---
AAJKP
AATNI
AAYXX
ABJNI
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
JCGBZ
PJBAE
02O
CEBXE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c382t-8c7721a237c2230665d9944c12fca367af32bd7e9f93b5d8a577d2de2e196d643
IEDL.DBID IOP
ISSN 1741-2552
1741-2560
IngestDate Thu Sep 04 15:10:58 EDT 2025
Mon Jul 21 05:47:56 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Tue Jul 01 01:58:34 EDT 2025
Mon May 13 13:00:36 EDT 2019
Tue Nov 10 14:17:22 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-8c7721a237c2230665d9944c12fca367af32bd7e9f93b5d8a577d2de2e196d643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21926453
PQID 893720084
PQPubID 23479
ParticipantIDs iop_primary_10_1088_1741_2560_8_5_056015
proquest_miscellaneous_893720084
pubmed_primary_21926453
crossref_citationtrail_10_1088_1741_2560_8_5_056015
crossref_primary_10_1088_1741_2560_8_5_056015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20111001
2011-10-01
2011-Oct
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 20111001
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bertsekas D P (22) 1999
Sha F Pereira F (24) 2003
28
29
Sugiura T (7) 2007; 4881
Awwad Shiekh Hasan B (13) 2011
Awwad Shiekh Hasan B (20) 2011; 8
Sutton C (26) 2007
Chiappa S (18) 2006
30
Shenoy P (8) 2005; 17
10
Pfurtscheller G (3) 2005
12
14
Stastny J (16) 2003; 12
Xu W Wu J (19) 2005
Bishop C M (25) 2006
Bai O (11) 2008; 5
McCallum A Lafferty J Pereira F (23) 2001
1
2
Clifford P (21) 1990
4
5
Fazli S Grozea C Danoczy M Blankertz B Muller K R Popescu F (15) 2008
Tsui C (27) 2009
9
Zhong S Ghosh J (17) 2002
Penny W D Roberts S J (6) 1998
References_xml – year: 2011
  ident: 13
– start-page: 282
  year: 2001
  ident: 23
  publication-title: 18th Int. Conf. on Machine Learning (ICML) Morgan Kaufmann
– ident: 4
  doi: 10.1016/S1388-2457(99)00141-8
– start-page: 16
  year: 2005
  ident: 19
  publication-title: The IASTED Int. Conf. on Biomedical Engineering (BioMED)
– ident: 5
  doi: 10.1016/S0079-6123(06)59014-4
– year: 2006
  ident: 18
– year: 2009
  ident: 27
– year: 2008
  ident: 15
  publication-title: 4th Int. Brain-Computer Interface Workshop and Training Course
– ident: 9
  doi: 10.1109/10.871402
– start-page: 19
  year: 1990
  ident: 21
  publication-title: Disorder in Physical Systems
– start-page: 213
  year: 2003
  ident: 24
  publication-title: Proc. HLTNAACL
– volume: 17
  start-page: 1265
  issn: 1049-5258
  year: 2005
  ident: 8
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 30
  doi: 10.1109/TNSRE.2004.827220
– volume: 4881
  start-page: 375
  year: 2007
  ident: 7
  publication-title: IDEAL
– ident: 10
  doi: 10.1007/s11517-007-0197-7
– volume: 12
  start-page: 51
  issn: 1210-2512
  year: 2003
  ident: 16
  publication-title: Radioengineering
– volume: 8
  start-page: 025013
  issn: 1741-2552
  year: 2011
  ident: 20
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025013
– start-page: 367
  year: 2005
  ident: 3
  publication-title: Motor Cortex in Voluntary Movements: A Distributed System for Distributed Functions
– volume: 5
  start-page: 24
  issn: 1741-2560
  year: 2008
  ident: 11
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/1/003
– year: 2007
  ident: 26
  publication-title: Introduction to Statistical Relational Learning
– year: 1999
  ident: 22
  publication-title: Nonlinear Programming
– ident: 12
  doi: 10.1016/j.neunet.2009.06.003
– start-page: 1154
  year: 2002
  ident: 17
  publication-title: IEEE Int. Joint Conf. on Neural Networks
– ident: 29
  doi: 10.1109/3477.678624
– year: 1998
  ident: 6
– ident: 14
  doi: 10.1016/j.neunet.2009.07.020
– ident: 28
  doi: 10.1109/PROC.1982.12433
– ident: 2
  doi: 10.1016/S1388-2457(02)00057-3
– year: 2006
  ident: 25
  publication-title: Pattern Recognition and Machine Learning
– ident: 1
  doi: 10.1109/TNSRE.2003.814439
SSID ssj0031790
Score 2.006944
Snippet The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 056015
SubjectTerms Adult
Algorithms
Brain - physiology
Data Interpretation, Statistical
Electroencephalography - methods
Electroencephalography - statistics & numerical data
Electromyography - methods
Electromyography - statistics & numerical data
Female
Hand - physiology
Humans
Linear Models
Male
Markov Chains
Models, Statistical
Movement - physiology
Random Allocation
Reproducibility of Results
Signal Processing, Computer-Assisted
User-Computer Interface
Title Temporal modeling of EEG during self-paced hand movement and its application in onset detection
URI http://iopscience.iop.org/1741-2552/8/5/056015
https://www.ncbi.nlm.nih.gov/pubmed/21926453
https://www.proquest.com/docview/893720084
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExf2pWzyASEu7mLHsXNEqGwSywEkblbiRaooaUXTA3w9YzuBIoToLYnGTuIZe954FiN0rLuZSQQ3xKaFIYmQBQE10iVaakk1aDwaOH17l149JTfP_PnbUByMxvXK34bL6MkHnUcA-NKO7PBO11sQPqccVL8X6Ov7h2bhZb7YVMx_jA2aTDmw8epnaXemkx-aaBFe9zfIDMrmYhXdNyk7McbkpT2tirb--F3Bcc7_WEMrNe7EZ1FQ1tGCLTfQ5lkJNvfrOz7BIRI0bLFvIvUY61UNcTgnB5QbHjnc71_imNSIJ3boCBjb1mC_8Q5koep4hf3NoJrgGbc4HpTYR2xX2NgqxH2VW-jpov94fkXqgxiIZpJWRGrA4L2cMqGpN1lSbrIsSXSPOp2zVOSO0cIIm7mMFdzInAthqLHUwvw2gHm20VI5Ku0uwszZQveskCbxxewdwFPhYA0B3Gi1ZKyFWMMUpesq5f6wjKEK3nIplR9H5VmppOIqjmMLka9W41il4x_6U2DLnKTHP0gjCaczJGpsXAvhRnYUTFDvdclLO5pOlAeEPsgkaaGdKFNfnYG2ADzK2d78n7OPlmkThdg7QEvV29QeAiyqiqMwGT4Ba7L7nQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SFEov6SN9bJ86hNKL1mvJsuRjSHeb9JHmkEBuwtYDQrfeJes9tL--I8lekkJooDcbRkaekWa-keYBsG8mlS2ksNSVjaWFVA1FMzKhRhnFDFo8FiX97aQ8Oi8-X4iLLTjc5MIslr3qH-NjKhScWNgHxKkMMXROg6XOVCaySXApRLa0fhvuCV5WoY3B8ffTQR3zUIIqZUWGUYIN-XO3fOmGfdrGOdwOPaMJmj0EO0w-RZ78GK-7Zmx-_1XX8T__7hHs9hCVHKQhj2HLtU9g76BF9_znL_KexKDReBq_B_oslbaak9hSB-0gWXgynX4iKf-RrNzcU_TLnSXhjB7JYoHyjoSXy25Frt2gk8uWhODujljXxRCx9imcz6Znh0e079lADVeso8ogXM9rxqVhwbspha2qojA586bmpaw9Z42VrvIVb4RVtZDSMuuYQ1VgER49g5120boXQLh3jcmdVLYIde89IlnpUd0gxHRGcT4CPkhKm76geeirMdfxYl0pHXipAy-10kInXo6AbkYtU0GPf9B_QFHdkXT_BmkiEewaiUZJjoAMC0rjXg4XNHXrFuuVDtgxxKMUI3ieFtrmY2hYELoK_vLu03kH908_zvTX45Mvr-ABG2IX89ew012t3RsEU13zNm6WPzQuC5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+modeling+of+EEG+during+self-paced+hand+movement+and+its+application+in+onset+detection&rft.jtitle=Journal+of+neural+engineering&rft.au=Hasan%2C+Bashar+Awwad+Shiekh&rft.au=Gan%2C+John+Q&rft.date=2011-10-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=8&rft.issue=5&rft.spage=056015&rft_id=info:doi/10.1088%2F1741-2560%2F8%2F5%2F056015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon