Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production
Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about deve...
Saved in:
Published in | Biomass & bioenergy Vol. 105; pp. 197 - 206 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0961-9534 1873-2909 |
DOI | 10.1016/j.biombioe.2017.07.008 |
Cover
Abstract | Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed.
•Hydrotreatment of vegetable oils and subsequent reactions are described.•A review of the effect of reaction parameters on the selectivity of the process is presented.•Heterogenous catalysts have reportedly showed to offer large advantages and so they have been more used in current studies.•Several initiatives and companies around the world are working to boost commercial production of hydrotreated vegetable oils as renewable biojet fuels for the transport sector. |
---|---|
AbstractList | Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed. Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed. •Hydrotreatment of vegetable oils and subsequent reactions are described.•A review of the effect of reaction parameters on the selectivity of the process is presented.•Heterogenous catalysts have reportedly showed to offer large advantages and so they have been more used in current studies.•Several initiatives and companies around the world are working to boost commercial production of hydrotreated vegetable oils as renewable biojet fuels for the transport sector. |
Author | Castillo, Edgar Fernando Vásquez, Maria Cecilia Silva, Electo Eduardo |
Author_xml | – sequence: 1 givenname: Maria Cecilia surname: Vásquez fullname: Vásquez, Maria Cecilia email: mariacvas@gmail.com organization: NEST – Excellence Group in Thermal Power and Distributed Generation, Institute of Mechanical Engineering, Federal University of Itajubá, Av. BPS 1303, Itajubá, Minas Geráis CEP: 37500-903, Brazil – sequence: 2 givenname: Electo Eduardo surname: Silva fullname: Silva, Electo Eduardo organization: NEST – Excellence Group in Thermal Power and Distributed Generation, Institute of Mechanical Engineering, Federal University of Itajubá, Av. BPS 1303, Itajubá, Minas Geráis CEP: 37500-903, Brazil – sequence: 3 givenname: Edgar Fernando orcidid: 0000-0003-0286-1931 surname: Castillo fullname: Castillo, Edgar Fernando organization: Colombian Petroleum Institute ICP-Ecopetrol, Autopista Bucaramanga-Piedecuesta Kilómetro 7, Piedecuesta, Colombia |
BookMark | eNqFkM1KLDEQhYMoOP68gmTppsdKp3s6LS4UuVcFwY2uQzqp1gyZZEwyI769aUY3boQKKUidcyrfEdn3wSMhZwzmDNjiYjkfbFiVg_MaWDeHUiD2yIyJjld1D_0-mUG_YFXf8uaQHKW0BGANNGxG_P2niSFHVHmFPtMw0i2-YlaDQxqsS5f0hkbcWvyY3vIb0oz6zQcXXi0mqryhNidqcIsurCePRMcQ6RIzLTuNG3R0HYPZ6GyDPyEHo3IJT7_vY_Ly_9_z7X31-HT3cHvzWGku6lwJxYzqNVeGGdbVgnFsG90BYmnQcD2KblACNDDQmoMYoIaWo-qYWgyt4MfkfOdbot83mLJc2aTROeUxbJKsAaARNXRtGV3sRnUMKUUc5TralYqfkoGcAMul_AEsJ8ASSsGUcfVLqG1W0y9zVNb9Lb_eybFwKHyjTNqi12hsRJ2lCfYviy-L66Aj |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_133586 crossref_primary_10_1016_j_cattod_2020_11_017 crossref_primary_10_1016_j_mcat_2022_112131 crossref_primary_10_1016_j_enconman_2019_112015 crossref_primary_10_1016_j_cep_2021_108482 crossref_primary_10_1021_acssuschemeng_8b02939 crossref_primary_10_1080_19397038_2021_1978589 crossref_primary_10_1007_s12398_020_00278_6 crossref_primary_10_1016_j_enconman_2024_118811 crossref_primary_10_1016_j_rser_2018_11_033 crossref_primary_10_1021_acs_energyfuels_2c03250 crossref_primary_10_1016_j_renene_2019_09_015 crossref_primary_10_1080_00032719_2021_1975731 crossref_primary_10_1016_j_enconman_2021_114974 crossref_primary_10_1016_j_fuel_2022_125688 crossref_primary_10_1016_j_fuel_2023_128437 crossref_primary_10_1016_j_biombioe_2023_106732 crossref_primary_10_1021_acs_energyfuels_0c00120 crossref_primary_10_1016_j_jclepro_2020_119957 crossref_primary_10_1002_ente_202100221 crossref_primary_10_1016_j_fuel_2020_117890 crossref_primary_10_1016_j_jaap_2019_03_005 crossref_primary_10_1021_acs_iecr_1c02023 crossref_primary_10_3390_su142315734 crossref_primary_10_1016_j_enconman_2024_119354 crossref_primary_10_1039_D1SE00540E crossref_primary_10_1080_00207233_2024_2314860 crossref_primary_10_1021_acs_iecr_1c02560 crossref_primary_10_1007_s12155_025_10821_3 crossref_primary_10_1016_j_clce_2024_100127 crossref_primary_10_1007_s13399_021_02064_x crossref_primary_10_1016_j_micromeso_2019_109705 crossref_primary_10_1595_205651321X16024905831259 crossref_primary_10_1016_j_fuel_2018_04_167 crossref_primary_10_1016_j_fuel_2024_131058 crossref_primary_10_1007_s12649_020_00977_8 crossref_primary_10_1016_j_cattod_2018_04_028 crossref_primary_10_1007_s13399_022_02769_7 crossref_primary_10_1021_acs_energyfuels_3c02598 crossref_primary_10_1007_s13399_020_01046_9 crossref_primary_10_1049_rpg2_12388 crossref_primary_10_2174_1570193X16666190122164046 crossref_primary_10_1016_j_mcat_2021_111469 crossref_primary_10_3390_molecules25040802 crossref_primary_10_1016_j_paerosci_2024_101054 crossref_primary_10_1002_cssc_202001641 crossref_primary_10_3390_en15093173 crossref_primary_10_1007_s13399_021_01389_x crossref_primary_10_1002_cssc_202002209 crossref_primary_10_1002_slct_202201736 crossref_primary_10_1016_j_foodchem_2024_142700 crossref_primary_10_1016_j_fuel_2020_117350 crossref_primary_10_1039_D1MA00538C crossref_primary_10_3390_en16166100 crossref_primary_10_1002_cjce_25255 crossref_primary_10_1016_j_ecmx_2024_100675 crossref_primary_10_3390_pr11030935 crossref_primary_10_1016_j_cej_2019_03_063 crossref_primary_10_1016_j_fuel_2025_134645 crossref_primary_10_1016_j_cherd_2022_10_025 crossref_primary_10_1016_j_cep_2020_108250 crossref_primary_10_1016_j_jclepro_2021_126426 crossref_primary_10_1007_s13399_024_06473_6 crossref_primary_10_48072_2525_7579_rog_2022_182 crossref_primary_10_1016_j_bej_2018_12_003 crossref_primary_10_1016_j_energy_2023_127648 crossref_primary_10_1016_j_cej_2022_139215 crossref_primary_10_1016_j_fuel_2022_123137 crossref_primary_10_1039_D4EW00278D crossref_primary_10_3390_catal9020123 crossref_primary_10_1016_j_fuel_2020_117065 crossref_primary_10_1016_j_fuproc_2021_106820 crossref_primary_10_1016_j_fuel_2023_130390 crossref_primary_10_1016_j_enconman_2024_119264 crossref_primary_10_1186_s40538_024_00710_w crossref_primary_10_1016_j_fuproc_2017_09_026 crossref_primary_10_3390_su131810210 crossref_primary_10_1016_j_fuel_2019_01_179 crossref_primary_10_1016_j_fuel_2021_121673 crossref_primary_10_3390_ijms241914863 crossref_primary_10_1080_15435075_2019_1671406 crossref_primary_10_1038_s41570_022_00411_8 crossref_primary_10_1016_j_rser_2020_110396 crossref_primary_10_1021_acs_energyfuels_1c02547 crossref_primary_10_1016_j_jclepro_2018_10_147 crossref_primary_10_1016_j_rser_2020_110605 crossref_primary_10_1039_D4SE00302K crossref_primary_10_1627_jpi_62_329 crossref_primary_10_1007_s43153_020_00067_1 crossref_primary_10_1016_j_jece_2020_104477 crossref_primary_10_3390_en16020828 crossref_primary_10_1021_acs_energyfuels_3c05177 crossref_primary_10_3389_fenrg_2020_00110 crossref_primary_10_1016_j_apenergy_2021_116687 crossref_primary_10_1016_j_cej_2020_125202 crossref_primary_10_1016_j_jclepro_2020_125778 crossref_primary_10_1016_j_jclepro_2021_127937 crossref_primary_10_1016_j_mcat_2021_111492 crossref_primary_10_1016_j_enconman_2024_118461 crossref_primary_10_1627_jpi_62_157 crossref_primary_10_1016_j_egyr_2022_12_014 crossref_primary_10_1016_j_rineng_2021_100258 crossref_primary_10_1039_C9SE00788A crossref_primary_10_1016_j_ccst_2023_100158 crossref_primary_10_1016_j_rser_2019_04_057 crossref_primary_10_1038_s41598_023_40500_2 crossref_primary_10_1016_j_apenergy_2021_117817 crossref_primary_10_1021_acssuschemeng_2c05297 crossref_primary_10_1016_j_rser_2021_111269 crossref_primary_10_1088_1755_1315_897_1_012012 crossref_primary_10_3390_en12163196 crossref_primary_10_1016_j_chemosphere_2023_138447 crossref_primary_10_2139_ssrn_4159271 crossref_primary_10_1007_s10973_023_11941_8 crossref_primary_10_1021_acs_energyfuels_0c00274 crossref_primary_10_1016_j_apenergy_2018_07_061 crossref_primary_10_1021_acs_energyfuels_3c04992 crossref_primary_10_1007_s10098_018_1561_z crossref_primary_10_1016_j_cep_2019_107629 crossref_primary_10_1016_j_envpol_2019_113772 crossref_primary_10_1016_j_biombioe_2019_105371 crossref_primary_10_1016_j_biombioe_2021_106081 crossref_primary_10_1016_j_fuel_2020_118255 crossref_primary_10_1016_j_jclepro_2022_133431 crossref_primary_10_1039_D2RA04057C crossref_primary_10_1016_j_jclepro_2023_138141 crossref_primary_10_1016_j_renene_2019_10_125 crossref_primary_10_1016_j_biombioe_2025_107689 crossref_primary_10_1016_j_rser_2021_111398 crossref_primary_10_1016_j_fuel_2022_125065 crossref_primary_10_1016_j_jaap_2019_104690 crossref_primary_10_1016_j_indcrop_2023_117999 crossref_primary_10_9767_bcrec_15_2_7136_415_431 crossref_primary_10_1016_j_jclepro_2019_117796 crossref_primary_10_1007_s12155_024_10760_5 crossref_primary_10_1016_j_matpr_2021_09_385 crossref_primary_10_1002_er_5506 crossref_primary_10_1039_D1RE00475A crossref_primary_10_1007_s13399_021_01789_z crossref_primary_10_1002_app_55938 crossref_primary_10_1039_C9GC02404B crossref_primary_10_1016_j_jiec_2018_03_041 crossref_primary_10_1021_acs_iecr_0c01254 crossref_primary_10_1134_S1070427218120017 crossref_primary_10_1007_s42452_022_04991_4 crossref_primary_10_1016_j_jiec_2023_08_020 crossref_primary_10_1016_j_cep_2017_12_009 crossref_primary_10_1016_j_gee_2022_03_001 crossref_primary_10_1016_j_ecmx_2021_100125 crossref_primary_10_1007_s12161_021_01980_y |
Cites_doi | 10.1016/j.fuproc.2013.04.018 10.1007/s11746-002-0569-4 10.1016/j.apenergy.2014.08.065 10.1016/j.jiec.2015.03.030 10.1016/j.fuel.2016.06.055 10.1039/b817625f 10.1016/j.fuel.2015.05.020 10.1038/474S09a 10.1016/j.rser.2012.04.028 10.1016/j.rser.2014.10.095 10.1016/j.fuproc.2015.10.024 10.1016/j.apcata.2011.02.025 10.1016/j.apcata.2014.11.007 10.1016/j.rser.2017.05.108 10.1016/j.scitotenv.2014.02.003 10.1002/bbb.1613 10.1021/ef3006405 10.1016/j.fuproc.2016.05.028 10.1016/j.cep.2013.09.013 10.1016/j.fuel.2012.03.040 10.1002/bbb.1488 10.1016/j.fuel.2011.10.057 10.1016/j.cattod.2012.11.008 10.1016/j.foodchem.2004.03.005 10.1002/ceat.201400648 10.1007/s12649-010-9032-8 10.1016/j.biortech.2015.02.056 10.1016/j.rser.2014.10.099 10.1016/j.rser.2015.09.016 10.1016/j.fuel.2017.01.097 10.1021/es1019178 10.1007/BF02641690 10.1016/j.apcata.2007.07.002 10.1016/j.rser.2017.01.018 10.1016/j.esd.2015.11.003 10.1016/j.cattod.2005.08.007 10.1039/C2CY20415K 10.1021/ef200889e 10.1016/j.biortech.2016.05.090 10.1039/c2ee21231e 10.1021/ef5023362 10.1016/j.fuel.2014.04.055 10.1002/bbb.1746 10.1016/j.cej.2012.02.027 10.1016/j.biombioe.2014.01.035 10.1007/BF02612307 10.1016/S1872-5813(16)30007-X 10.1016/j.biortech.2013.07.153 10.1002/ejlt.200300866 10.1002/cssc.201600144 10.1007/s10563-012-9148-x 10.1016/j.micromeso.2006.12.012 10.1016/j.rser.2013.01.026 10.1016/j.fuel.2015.09.081 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biombioe.2017.07.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
EndPage | 206 |
ExternalDocumentID | 10_1016_j_biombioe_2017_07_008 S0961953417302295 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c382t-8a1da9c3ad1d172813e54c70ee3e5ed3cf87ba80c010cc308b02053ea71a6b583 |
IEDL.DBID | AIKHN |
ISSN | 0961-9534 |
IngestDate | Fri Sep 05 10:57:39 EDT 2025 Tue Jul 01 01:49:46 EDT 2025 Thu Apr 24 22:56:39 EDT 2025 Fri Feb 23 02:27:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vegetable oils Aviation biofuel Hydroprocessing Hydrotreating catalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-8a1da9c3ad1d172813e54c70ee3e5ed3cf87ba80c010cc308b02053ea71a6b583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0286-1931 |
PQID | 2000482075 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000482075 crossref_primary_10_1016_j_biombioe_2017_07_008 crossref_citationtrail_10_1016_j_biombioe_2017_07_008 elsevier_sciencedirect_doi_10_1016_j_biombioe_2017_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hari, Yaakob, Binitha (bib2) 2015; 42 Verma, Rana, Kumar, Sibi, Sinha (bib44) 2015; 490 Guillén, Ruiz (bib39) 2003; 105 Morgan, Santillan-Jimenez, Harman-Ware, Ji, Grubb, Crocker (bib41) 2012; 189–190 Diederichs, Ali Mandegari, Farzad, G??rgens (bib14) 2016; 216 Neste Corporation (bib71) 2017 Galadima, Muraza (bib26) 2015; 29 Zhao, Wei, Julson, Qiao, Dubey, Anderson (bib48) 2015; 32 Baka (bib62) 2010; 44 Nylund, Erkkilä, Ahtiainen, Murtonen, Saikkonen, Amberla, Aatola (bib58) 2011 (accessed 1 November 2016). Commercial Aviation Alternative Fuels Initiative, (n.d.). U.S.D. of Energy (bib12) 2017 UPM Biofuels, (n.d.). Wang, Tao, Markham, Zhang, Tan, Batan, Biddy, Wang, Tao, Zhang, Tan, Warner, Biddy (bib55) 2016 Rogers, Zheng (bib42) 2016; 9 Chiaramonti, Prussi, Buffi, Tacconi (bib11) 2014; 136 Sinha, Anand, Rana, Kumar, Farooqui, Sibi, Kumar, Joshi (bib4) 2013; 17 De Sousa, Cardoso, Pasa (bib47) 2016; 143 Liu, Sotelo-Boyás, Murata, Minowa, Sakanishi (bib51) 2011; 25 Jȩczmionek, Porzycka-Semczuk (bib34) 2014; 131 Neste, (n.d.). Kubičková, Kubička (bib22) 2010; 1 . Mohammad, Kandaramath Hari, Yaakob, Chandra Sharma, Sopian (bib21) 2013; 22 Kiatkittipong, Phimsen, Kiatkittipong, Wongsakulphasatch, Laosiripojana, Assabumrungrat (bib32) 2013; 116 De Jong, Hoefnagels, Faaij, Slade, Mawhood, Junginger (bib10) 2015; 9 Axens, (n.d.). (accessed 16 October 2016). Aatola, Larmi, Sarjovaara, Mikkonen (bib70) 2008 Cox, Renouf, Dargan, Turner, Klein-Marcuschamer (bib60) 2014; 8 Wang, Tao (bib9) 2016; 53 Han, Elgowainy, Cai, Wang (bib61) 2013; 150 European Biofuels Technology Platform, (n.d.). Zaccheria, Psaro, Ravasio (bib37) 2009; 11 Mawhood, Gaziz, De Jong, Hoefnagels, Slade (bib13) 2012; 6 Al-sabawi, Chen (bib33) 2012; 26 Anand, Farooqui, Kumar, Joshi, Kumar, Sibi, Singh, Sinha (bib45) 2016; 151 Shahinuzzaman, Yaakob, Ahmed (bib25) 2016 Choudhary, Phillips (bib30) 2011; 397 Climate-KIC (bib64) 2015 Liu, Zhu, Guan, He, Li (bib50) 2015; 183 BiofuelsDigets (bib78) 2017 U.S. Energy Information Administration, U.S. Energy Information Administration, (2016). Chuck (bib54) 2016 (accessed 14 October 2016). Karatzos, Van Dyk (bib7) 2017 Huber, O'Connor, Corma (bib52) 2007; 329 Hancsók, Krár, Magyar, Boda, Holló, Kalló (bib18) 2007; 101 Kaewmeesri, Srifa, Itthibenchapong, Faungnawakij (bib36) 2015; 29 Gan, Man, Tan, NorAini, Nazimah (bib40) 2005; 89 SkyNRG Nordic, (n.d.). Pattanaik, Misra (bib23) 2017; 73 Hilbers, Sprakel, van den Enk, Zaalberg, van den Berg, van der Ham (bib68) 2015; 38 Hermida, Abdullah, Mohamed (bib24) 2015; 42 Furimsky (bib20) 2013; 217 Hui, Kumar, Sung, Edwards, Gardner (bib57) 2012; 98 (accessed 11 November 2016). Sourelis (bib29) 1956; 33 Chu, Vanderghem, MacLean, Saville (bib43) 2017; 196 Li, Mupondwa (bib59) 2014; 481 International Air Transport Association, (2015). Sau, Basak, Manna, Santra, Verma (bib27) 2005; 109 Gutiérrez-Antonio, Gómez-Castro, de Lira-Flores, Hernández (bib8) 2017; 79 Holmgren, Gosling, Marinangeli, Marker, Faraci, Perego (bib17) 2007; 86 Initiative Towards sustAinable Kerosene for Aviation, (n.d.). Melero, Iglesias, Garcia (bib35) 2012; 5 International Energy Agency, Status of Advanced Biofuels Demonstration Facilities in 2012, 2013. Haldor Topsøe, (2015). Knothe (bib38) 2002; 79 Garraín, Herrera, Lechón, Lago (bib80) 2014; 63 Eller, Varga, Hancsók (bib16) 2016; 182 Project Solaris, (n.d.). GREENEA (bib73) 2015 Xiu, Shahbazi (bib1) 2012; 16 Renewable Energy Group, (n.d.). Satyarthi, Chiranjeevi, Gokak, Viswanathan (bib79) 2013; 3 (accessed 30 October 2016). LUO, CAO, LI, GUO, ZHAO (bib53) 2016; 44 (accessed 13 October 2016). Silva, Fortes, De Sousa, Pasa (bib46) 2016; 164 Savage (bib3) 2011; 474 Hong, Soerawidjaja, Reksowardojo, Fujita, Duniani, Pham (bib56) 2013; 74 Veriansyah, Han, Kim, Hong, Kim, Lim, Shu, Oh, Kim (bib31) 2012; 94 Choi, Hwang, Han, Lee, Yun, Lee (bib49) 2015; 158 Rathore, Newalkar, Badoni (bib72) 2016; 31 Hughes (bib28) 1953; 30 Wang (10.1016/j.biombioe.2017.07.008_bib9) 2016; 53 Pattanaik (10.1016/j.biombioe.2017.07.008_bib23) 2017; 73 Sau (10.1016/j.biombioe.2017.07.008_bib27) 2005; 109 Han (10.1016/j.biombioe.2017.07.008_bib61) 2013; 150 Neste Corporation (10.1016/j.biombioe.2017.07.008_bib71) 2017 Holmgren (10.1016/j.biombioe.2017.07.008_bib17) 2007; 86 U.S.D. of Energy (10.1016/j.biombioe.2017.07.008_bib12) 2017 Morgan (10.1016/j.biombioe.2017.07.008_bib41) 2012; 189–190 10.1016/j.biombioe.2017.07.008_bib66 10.1016/j.biombioe.2017.07.008_bib65 Baka (10.1016/j.biombioe.2017.07.008_bib62) 2010; 44 10.1016/j.biombioe.2017.07.008_bib63 10.1016/j.biombioe.2017.07.008_bib69 Wang (10.1016/j.biombioe.2017.07.008_bib55) 2016 10.1016/j.biombioe.2017.07.008_bib67 Furimsky (10.1016/j.biombioe.2017.07.008_bib20) 2013; 217 Kubičková (10.1016/j.biombioe.2017.07.008_bib22) 2010; 1 Jȩczmionek (10.1016/j.biombioe.2017.07.008_bib34) 2014; 131 Hermida (10.1016/j.biombioe.2017.07.008_bib24) 2015; 42 Zhao (10.1016/j.biombioe.2017.07.008_bib48) 2015; 32 10.1016/j.biombioe.2017.07.008_bib5 Chuck (10.1016/j.biombioe.2017.07.008_bib54) 2016 10.1016/j.biombioe.2017.07.008_bib6 Hui (10.1016/j.biombioe.2017.07.008_bib57) 2012; 98 LUO (10.1016/j.biombioe.2017.07.008_bib53) 2016; 44 Choi (10.1016/j.biombioe.2017.07.008_bib49) 2015; 158 Nylund (10.1016/j.biombioe.2017.07.008_bib58) 2011 Diederichs (10.1016/j.biombioe.2017.07.008_bib14) 2016; 216 Knothe (10.1016/j.biombioe.2017.07.008_bib38) 2002; 79 Guillén (10.1016/j.biombioe.2017.07.008_bib39) 2003; 105 Savage (10.1016/j.biombioe.2017.07.008_bib3) 2011; 474 Mohammad (10.1016/j.biombioe.2017.07.008_bib21) 2013; 22 10.1016/j.biombioe.2017.07.008_bib77 10.1016/j.biombioe.2017.07.008_bib76 10.1016/j.biombioe.2017.07.008_bib75 De Jong (10.1016/j.biombioe.2017.07.008_bib10) 2015; 9 10.1016/j.biombioe.2017.07.008_bib74 Sinha (10.1016/j.biombioe.2017.07.008_bib4) 2013; 17 Liu (10.1016/j.biombioe.2017.07.008_bib51) 2011; 25 Satyarthi (10.1016/j.biombioe.2017.07.008_bib79) 2013; 3 Chiaramonti (10.1016/j.biombioe.2017.07.008_bib11) 2014; 136 BiofuelsDigets (10.1016/j.biombioe.2017.07.008_bib78) 2017 Chu (10.1016/j.biombioe.2017.07.008_bib43) 2017; 196 Garraín (10.1016/j.biombioe.2017.07.008_bib80) 2014; 63 Hughes (10.1016/j.biombioe.2017.07.008_bib28) 1953; 30 Kiatkittipong (10.1016/j.biombioe.2017.07.008_bib32) 2013; 116 Hari (10.1016/j.biombioe.2017.07.008_bib2) 2015; 42 Hancsók (10.1016/j.biombioe.2017.07.008_bib18) 2007; 101 Hilbers (10.1016/j.biombioe.2017.07.008_bib68) 2015; 38 Aatola (10.1016/j.biombioe.2017.07.008_bib70) 2008 GREENEA (10.1016/j.biombioe.2017.07.008_bib73) 2015 Eller (10.1016/j.biombioe.2017.07.008_bib16) 2016; 182 Al-sabawi (10.1016/j.biombioe.2017.07.008_bib33) 2012; 26 Rathore (10.1016/j.biombioe.2017.07.008_bib72) 2016; 31 Shahinuzzaman (10.1016/j.biombioe.2017.07.008_bib25) 2016 Sourelis (10.1016/j.biombioe.2017.07.008_bib29) 1956; 33 Gan (10.1016/j.biombioe.2017.07.008_bib40) 2005; 89 Verma (10.1016/j.biombioe.2017.07.008_bib44) 2015; 490 Mawhood (10.1016/j.biombioe.2017.07.008_bib13) 2012; 6 Climate-KIC (10.1016/j.biombioe.2017.07.008_bib64) 2015 Silva (10.1016/j.biombioe.2017.07.008_bib46) 2016; 164 Anand (10.1016/j.biombioe.2017.07.008_bib45) 2016; 151 De Sousa (10.1016/j.biombioe.2017.07.008_bib47) 2016; 143 10.1016/j.biombioe.2017.07.008_bib19 Melero (10.1016/j.biombioe.2017.07.008_bib35) 2012; 5 Galadima (10.1016/j.biombioe.2017.07.008_bib26) 2015; 29 Veriansyah (10.1016/j.biombioe.2017.07.008_bib31) 2012; 94 Huber (10.1016/j.biombioe.2017.07.008_bib52) 2007; 329 Cox (10.1016/j.biombioe.2017.07.008_bib60) 2014; 8 Xiu (10.1016/j.biombioe.2017.07.008_bib1) 2012; 16 Hong (10.1016/j.biombioe.2017.07.008_bib56) 2013; 74 10.1016/j.biombioe.2017.07.008_bib15 Kaewmeesri (10.1016/j.biombioe.2017.07.008_bib36) 2015; 29 Rogers (10.1016/j.biombioe.2017.07.008_bib42) 2016; 9 Liu (10.1016/j.biombioe.2017.07.008_bib50) 2015; 183 Karatzos (10.1016/j.biombioe.2017.07.008_bib7) 2017 Zaccheria (10.1016/j.biombioe.2017.07.008_bib37) 2009; 11 Li (10.1016/j.biombioe.2017.07.008_bib59) 2014; 481 Choudhary (10.1016/j.biombioe.2017.07.008_bib30) 2011; 397 Gutiérrez-Antonio (10.1016/j.biombioe.2017.07.008_bib8) 2017; 79 |
References_xml | – reference: Commercial Aviation Alternative Fuels Initiative, (n.d.). – volume: 79 start-page: 709 year: 2017 end-page: 729 ident: bib8 article-title: A review on the production processes of renewable jet fuel publication-title: Renew. Sustain. Energy Rev. – volume: 329 start-page: 120 year: 2007 end-page: 129 ident: bib52 article-title: Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures publication-title: Appl. Catal. A Gen. – reference: SkyNRG Nordic, (n.d.). – reference: Neste, (n.d.). – volume: 196 start-page: 298 year: 2017 end-page: 305 ident: bib43 article-title: Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels publication-title: Fuel – volume: 44 start-page: 8684 year: 2010 end-page: 8691 ident: bib62 article-title: Greenhouse gas emissions and land use change from jatropha curcas -based jet fuel in Brazil publication-title: Environ. Sci. Technol. – reference: Haldor Topsøe, (2015). – volume: 136 start-page: 767 year: 2014 end-page: 774 ident: bib11 article-title: Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels publication-title: Appl. Energy – reference: (accessed 14 October 2016). – volume: 397 start-page: 1 year: 2011 end-page: 12 ident: bib30 article-title: Renewable fuels via catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. – volume: 25 start-page: 4675 year: 2011 end-page: 4685 ident: bib51 article-title: Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids publication-title: Energy Fuels – volume: 9 start-page: 778 year: 2015 end-page: 800 ident: bib10 article-title: The feasibility of short-term production strategies for renewable jet fuels - a comprehensive techno-economic comparison publication-title: Biofuels, Bioprod. Biorefining – volume: 9 start-page: 1750 year: 2016 end-page: 1772 ident: bib42 article-title: Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights publication-title: Chem. Sus. Chem. – volume: 189–190 start-page: 346 year: 2012 end-page: 355 ident: bib41 article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts publication-title: Chem. Eng. J. – year: 2017 ident: bib78 article-title: Ground Delay: where Are the Sustainable Aviation Fuels? – volume: 26 start-page: 5373 year: 2012 end-page: 5399 ident: bib33 article-title: Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks a Review.pdf publication-title: Energy & Fuels – volume: 8 start-page: 579 year: 2014 end-page: 593 ident: bib60 article-title: Environmental life cycle assessment ( LCA ) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses publication-title: Biofuels Bioprod. Biorefining – volume: 44 start-page: 76 year: 2016 end-page: 83 ident: bib53 article-title: Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil publication-title: J. Fuel Chem. Technol. – year: 2015 ident: bib73 article-title: Is HVO the Holy Grail of the World Biodiesel Market? – volume: 29 start-page: 833 year: 2015 end-page: 840 ident: bib36 article-title: Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content publication-title: Energy Fuels – volume: 32 start-page: 300 year: 2015 end-page: 312 ident: bib48 article-title: Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel publication-title: N. Biotechnol. – reference: (accessed 30 October 2016). – year: 2011 ident: bib58 article-title: Optimized Usage of NExBTL Renewable Diesel Fuel OPTIBIO – reference: International Air Transport Association, (2015). – start-page: 12 year: 2008 ident: bib70 article-title: Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE technical paper 2008-01-2500 publication-title: SAE Tech. Pap. – volume: 42 start-page: 1234 year: 2015 end-page: 1244 ident: bib2 article-title: Aviation biofuel from renewable resources: routes, opportunities and challenges publication-title: Renew. Sustain. Energy Rev. – reference: International Energy Agency, Status of Advanced Biofuels Demonstration Facilities in 2012, 2013. – reference: European Biofuels Technology Platform, (n.d.). – volume: 109 start-page: 112 year: 2005 end-page: 119 ident: bib27 article-title: Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions publication-title: Catal. Today – volume: 79 start-page: 847 year: 2002 end-page: 854 ident: bib38 article-title: Structure indices in FA chemistry. How relevant is the iodine value? publication-title: J. Am. Oil Chem. Soc. – volume: 11 start-page: 462 year: 2009 ident: bib37 article-title: Selective hydrogenation of alternative oils: a useful tool for the production of biofuels publication-title: Green Chem. – start-page: 344 year: 2017 end-page: 362 ident: bib7 article-title: Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I publication-title: Biofuels, Bioprod. Biorefining – volume: 217 start-page: 13 year: 2013 end-page: 56 ident: bib20 article-title: Hydroprocessing challenges in biofuels production publication-title: Catal. Today – reference: Project Solaris, (n.d.). – volume: 183 start-page: 93 year: 2015 end-page: 100 ident: bib50 article-title: Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts publication-title: Bioresour. Technol. – reference: (accessed 1 November 2016). – volume: 16 start-page: 4406 year: 2012 end-page: 4414 ident: bib1 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sustain. Energy Rev. – volume: 182 start-page: 713 year: 2016 end-page: 720 ident: bib16 article-title: Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking publication-title: Fuel – volume: 94 start-page: 578 year: 2012 end-page: 585 ident: bib31 article-title: Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts publication-title: Fuel – volume: 53 start-page: 801 year: 2016 end-page: 822 ident: bib9 article-title: Bio-jet fuel conversion technologies publication-title: Renew. Sustain. Energy Rev. – volume: 86 start-page: 67 year: 2007 end-page: 72 ident: bib17 article-title: New developments in renewable fuels offer more choices publication-title: Hydrocarb. Process – volume: 1 start-page: 293 year: 2010 end-page: 308 ident: bib22 article-title: Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review publication-title: Waste Biomass Valorization – volume: 490 start-page: 108 year: 2015 end-page: 116 ident: bib44 article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11 publication-title: Appl. Catal. A Gen. – volume: 29 start-page: 12 year: 2015 end-page: 23 ident: bib26 article-title: Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: a review publication-title: J. Ind. Eng. Chem. – volume: 105 start-page: 688 year: 2003 end-page: 696 ident: bib39 article-title: Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils publication-title: Eur. J. Lipid Sci. Technol. – volume: 3 start-page: 70 year: 2013 end-page: 80 ident: bib79 article-title: An overview of catalytic conversion of vegetable oils/fats into middle distillates publication-title: Catal. Sci. Technol. – reference: Renewable Energy Group, (n.d.). – reference: U.S. Energy Information Administration, U.S. Energy Information Administration, (2016). – reference: (accessed 11 November 2016). – volume: 38 start-page: 651 year: 2015 end-page: 657 ident: bib68 article-title: Green diesel from hydrotreated vegetable oil process design study publication-title: Chem. Eng. Technol. – reference: Initiative Towards sustAinable Kerosene for Aviation, (n.d.). – reference: (accessed 16 October 2016). – year: 2016 ident: bib54 article-title: Biofuels for Aviation. Feedstocks, Technology and Implementation – volume: 5 start-page: 7393 year: 2012 ident: bib35 article-title: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges publication-title: Energy Environ. Sci. – volume: 131 start-page: 1 year: 2014 end-page: 5 ident: bib34 article-title: Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects - theoretical considerations publication-title: Fuel – year: 2017 ident: bib12 article-title: Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps – volume: 30 start-page: 506 year: 1953 end-page: 515 ident: bib28 article-title: Hydrogenation of fatty oils publication-title: J. Am. Oil Chem. Soc. – volume: 164 start-page: 329 year: 2016 end-page: 338 ident: bib46 article-title: Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C publication-title: Fuel – volume: 6 start-page: 246 year: 2012 end-page: 256 ident: bib13 article-title: Production pathways for renewable jet fuel: a review of commercialization status and future prospects publication-title: Biofuels, Bioprod. Biorefining – reference: UPM Biofuels, (n.d.). – year: 2016 ident: bib55 article-title: Review of Biojet Fuel Conversion Technologies – volume: 89 start-page: 507 year: 2005 end-page: 518 ident: bib40 article-title: Characterisation of vegetable oils by surface acoustic wave sensing electronic nose publication-title: Food Chem. – volume: 42 start-page: 1223 year: 2015 end-page: 1233 ident: bib24 article-title: Deoxygenation of fatty acid to produce diesel-like hydrocarbons: a review of process conditions, reaction kinetics and mechanism publication-title: Renew. Sustain. Energy Rev. – volume: 98 start-page: 176 year: 2012 end-page: 182 ident: bib57 article-title: Experimental studies on the combustion characteristics of alternative jet fuels publication-title: Fuel – volume: 17 start-page: 1 year: 2013 end-page: 13 ident: bib4 article-title: Development of hydroprocessing route to transportation fuels from non-edible plant-oils publication-title: Catal. Surv. Asia – volume: 143 start-page: 35 year: 2016 end-page: 42 ident: bib47 article-title: Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C publication-title: Fuel Process. Technol. – start-page: 1 year: 2016 end-page: 10 ident: bib25 article-title: Non-sulphide zeolite catalyst for bio-jet-fuel conversion publication-title: Renew. Sustain. Energy Rev. – volume: 22 start-page: 121 year: 2013 end-page: 132 ident: bib21 article-title: Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 24 year: 2016 end-page: 49 ident: bib72 article-title: Processing of vegetable oil for biofuel production through conventional and non-conventional routes publication-title: Energy sustain. Dev. – volume: 481 start-page: 17 year: 2014 end-page: 26 ident: bib59 article-title: Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies publication-title: Sci. Total Environ. – year: 2017 ident: bib71 article-title: Neste MY Renewable Jet Fuel Offers Airlines an Easy Way to Reduce Greenhouse Gas Emissions – volume: 150 start-page: 447 year: 2013 end-page: 456 ident: bib61 article-title: Life-cycle analysis of bio-based aviation fuels publication-title: Bioresour. Technol. – reference: . – volume: 158 start-page: 98 year: 2015 end-page: 104 ident: bib49 article-title: The direct production of jet-fuel from non-edible oil in a single-step process publication-title: Fuel – volume: 474 start-page: S9 year: 2011 end-page: S11 ident: bib3 article-title: The ideal biofuel publication-title: Nature – reference: (accessed 13 October 2016). – volume: 74 start-page: 124 year: 2013 end-page: 130 ident: bib56 article-title: A study on developing aviation biofuel for the Tropics: production process - experimental and theoretical evaluation of their blends with fossil kerosene publication-title: Chem. Eng. Process. Process Intensif. – volume: 33 start-page: 488 year: 1956 end-page: 494 ident: bib29 article-title: The hydrogenation process publication-title: J. Am. Oil Chem. Soc. – year: 2015 ident: bib64 article-title: RENJET – Renewable Jet Fuel Supply Chain and Flight Operations – volume: 116 start-page: 16 year: 2013 end-page: 26 ident: bib32 article-title: Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil publication-title: Fuel Process. Technol. – volume: 216 start-page: 331 year: 2016 end-page: 339 ident: bib14 article-title: Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice publication-title: Bioresour. Technol. – reference: Axens, (n.d.). – volume: 101 start-page: 148 year: 2007 end-page: 152 ident: bib18 article-title: Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3 publication-title: Microporous Mesoporous Mater – volume: 63 start-page: 239 year: 2014 end-page: 249 ident: bib80 article-title: Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit publication-title: Biomass Bioenergy – volume: 73 start-page: 545 year: 2017 end-page: 557 ident: bib23 article-title: Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: a review publication-title: Renew. Sustain. Energy Rev. – volume: 151 start-page: 50 year: 2016 end-page: 58 ident: bib45 article-title: Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production publication-title: Fuel Process. Technol. – volume: 116 start-page: 16 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib32 article-title: Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.04.018 – volume: 79 start-page: 847 year: 2002 ident: 10.1016/j.biombioe.2017.07.008_bib38 article-title: Structure indices in FA chemistry. How relevant is the iodine value? publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-002-0569-4 – volume: 136 start-page: 767 year: 2014 ident: 10.1016/j.biombioe.2017.07.008_bib11 article-title: Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.08.065 – volume: 29 start-page: 12 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib26 article-title: Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: a review publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.030 – volume: 6 start-page: 246 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib13 article-title: Production pathways for renewable jet fuel: a review of commercialization status and future prospects publication-title: Biofuels, Bioprod. Biorefining – volume: 182 start-page: 713 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib16 article-title: Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking publication-title: Fuel doi: 10.1016/j.fuel.2016.06.055 – volume: 11 start-page: 462 year: 2009 ident: 10.1016/j.biombioe.2017.07.008_bib37 article-title: Selective hydrogenation of alternative oils: a useful tool for the production of biofuels publication-title: Green Chem. doi: 10.1039/b817625f – volume: 158 start-page: 98 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib49 article-title: The direct production of jet-fuel from non-edible oil in a single-step process publication-title: Fuel doi: 10.1016/j.fuel.2015.05.020 – volume: 474 start-page: S9 year: 2011 ident: 10.1016/j.biombioe.2017.07.008_bib3 article-title: The ideal biofuel publication-title: Nature doi: 10.1038/474S09a – ident: 10.1016/j.biombioe.2017.07.008_bib69 – volume: 16 start-page: 4406 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib1 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.04.028 – volume: 42 start-page: 1234 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib2 article-title: Aviation biofuel from renewable resources: routes, opportunities and challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.10.095 – volume: 143 start-page: 35 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib47 article-title: Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.10.024 – ident: 10.1016/j.biombioe.2017.07.008_bib66 – volume: 397 start-page: 1 year: 2011 ident: 10.1016/j.biombioe.2017.07.008_bib30 article-title: Renewable fuels via catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2011.02.025 – volume: 490 start-page: 108 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib44 article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.11.007 – volume: 79 start-page: 709 year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib8 article-title: A review on the production processes of renewable jet fuel publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.108 – volume: 481 start-page: 17 year: 2014 ident: 10.1016/j.biombioe.2017.07.008_bib59 article-title: Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.02.003 – volume: 9 start-page: 778 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib10 article-title: The feasibility of short-term production strategies for renewable jet fuels - a comprehensive techno-economic comparison publication-title: Biofuels, Bioprod. Biorefining doi: 10.1002/bbb.1613 – volume: 26 start-page: 5373 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib33 article-title: Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks a Review.pdf publication-title: Energy & Fuels doi: 10.1021/ef3006405 – volume: 86 start-page: 67 year: 2007 ident: 10.1016/j.biombioe.2017.07.008_bib17 article-title: New developments in renewable fuels offer more choices publication-title: Hydrocarb. Process – volume: 151 start-page: 50 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib45 article-title: Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.05.028 – volume: 74 start-page: 124 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib56 article-title: A study on developing aviation biofuel for the Tropics: production process - experimental and theoretical evaluation of their blends with fossil kerosene publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2013.09.013 – ident: 10.1016/j.biombioe.2017.07.008_bib76 – volume: 98 start-page: 176 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib57 article-title: Experimental studies on the combustion characteristics of alternative jet fuels publication-title: Fuel doi: 10.1016/j.fuel.2012.03.040 – volume: 8 start-page: 579 year: 2014 ident: 10.1016/j.biombioe.2017.07.008_bib60 article-title: Environmental life cycle assessment ( LCA ) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.1488 – volume: 94 start-page: 578 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib31 article-title: Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts publication-title: Fuel doi: 10.1016/j.fuel.2011.10.057 – year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib64 – volume: 217 start-page: 13 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib20 article-title: Hydroprocessing challenges in biofuels production publication-title: Catal. Today doi: 10.1016/j.cattod.2012.11.008 – volume: 89 start-page: 507 year: 2005 ident: 10.1016/j.biombioe.2017.07.008_bib40 article-title: Characterisation of vegetable oils by surface acoustic wave sensing electronic nose publication-title: Food Chem. doi: 10.1016/j.foodchem.2004.03.005 – volume: 38 start-page: 651 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib68 article-title: Green diesel from hydrotreated vegetable oil process design study publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201400648 – volume: 1 start-page: 293 year: 2010 ident: 10.1016/j.biombioe.2017.07.008_bib22 article-title: Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review publication-title: Waste Biomass Valorization doi: 10.1007/s12649-010-9032-8 – year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib73 – volume: 32 start-page: 300 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib48 article-title: Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel publication-title: N. Biotechnol. – volume: 183 start-page: 93 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib50 article-title: Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.056 – volume: 42 start-page: 1223 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib24 article-title: Deoxygenation of fatty acid to produce diesel-like hydrocarbons: a review of process conditions, reaction kinetics and mechanism publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.10.099 – volume: 53 start-page: 801 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib9 article-title: Bio-jet fuel conversion technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.016 – ident: 10.1016/j.biombioe.2017.07.008_bib65 – volume: 196 start-page: 298 year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib43 article-title: Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels publication-title: Fuel doi: 10.1016/j.fuel.2017.01.097 – volume: 44 start-page: 8684 year: 2010 ident: 10.1016/j.biombioe.2017.07.008_bib62 article-title: Greenhouse gas emissions and land use change from jatropha curcas -based jet fuel in Brazil publication-title: Environ. Sci. Technol. doi: 10.1021/es1019178 – volume: 30 start-page: 506 year: 1953 ident: 10.1016/j.biombioe.2017.07.008_bib28 article-title: Hydrogenation of fatty oils publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02641690 – volume: 329 start-page: 120 year: 2007 ident: 10.1016/j.biombioe.2017.07.008_bib52 article-title: Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2007.07.002 – ident: 10.1016/j.biombioe.2017.07.008_bib75 – volume: 73 start-page: 545 year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib23 article-title: Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.018 – volume: 31 start-page: 24 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib72 article-title: Processing of vegetable oil for biofuel production through conventional and non-conventional routes publication-title: Energy sustain. Dev. doi: 10.1016/j.esd.2015.11.003 – volume: 109 start-page: 112 year: 2005 ident: 10.1016/j.biombioe.2017.07.008_bib27 article-title: Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions publication-title: Catal. Today doi: 10.1016/j.cattod.2005.08.007 – year: 2011 ident: 10.1016/j.biombioe.2017.07.008_bib58 – volume: 3 start-page: 70 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib79 article-title: An overview of catalytic conversion of vegetable oils/fats into middle distillates publication-title: Catal. Sci. Technol. doi: 10.1039/C2CY20415K – volume: 25 start-page: 4675 year: 2011 ident: 10.1016/j.biombioe.2017.07.008_bib51 article-title: Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids publication-title: Energy Fuels doi: 10.1021/ef200889e – volume: 216 start-page: 331 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib14 article-title: Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.090 – volume: 5 start-page: 7393 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib35 article-title: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21231e – year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib54 – ident: 10.1016/j.biombioe.2017.07.008_bib6 – volume: 29 start-page: 833 year: 2015 ident: 10.1016/j.biombioe.2017.07.008_bib36 article-title: Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content publication-title: Energy Fuels doi: 10.1021/ef5023362 – ident: 10.1016/j.biombioe.2017.07.008_bib19 – ident: 10.1016/j.biombioe.2017.07.008_bib15 – start-page: 12 year: 2008 ident: 10.1016/j.biombioe.2017.07.008_bib70 article-title: Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE technical paper 2008-01-2500 publication-title: SAE Tech. Pap. – volume: 131 start-page: 1 year: 2014 ident: 10.1016/j.biombioe.2017.07.008_bib34 article-title: Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects - theoretical considerations publication-title: Fuel doi: 10.1016/j.fuel.2014.04.055 – ident: 10.1016/j.biombioe.2017.07.008_bib74 – start-page: 344 year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib7 article-title: Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I publication-title: Biofuels, Bioprod. Biorefining doi: 10.1002/bbb.1746 – year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib55 – year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib71 – volume: 189–190 start-page: 346 year: 2012 ident: 10.1016/j.biombioe.2017.07.008_bib41 article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.02.027 – volume: 63 start-page: 239 year: 2014 ident: 10.1016/j.biombioe.2017.07.008_bib80 article-title: Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.01.035 – volume: 33 start-page: 488 year: 1956 ident: 10.1016/j.biombioe.2017.07.008_bib29 article-title: The hydrogenation process publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02612307 – volume: 44 start-page: 76 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib53 article-title: Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(16)30007-X – volume: 150 start-page: 447 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib61 article-title: Life-cycle analysis of bio-based aviation fuels publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.153 – ident: 10.1016/j.biombioe.2017.07.008_bib5 – volume: 105 start-page: 688 year: 2003 ident: 10.1016/j.biombioe.2017.07.008_bib39 article-title: Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200300866 – ident: 10.1016/j.biombioe.2017.07.008_bib63 – volume: 9 start-page: 1750 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib42 article-title: Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201600144 – year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib12 – ident: 10.1016/j.biombioe.2017.07.008_bib67 – volume: 17 start-page: 1 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib4 article-title: Development of hydroprocessing route to transportation fuels from non-edible plant-oils publication-title: Catal. Surv. Asia doi: 10.1007/s10563-012-9148-x – volume: 101 start-page: 148 year: 2007 ident: 10.1016/j.biombioe.2017.07.008_bib18 article-title: Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2006.12.012 – volume: 22 start-page: 121 year: 2013 ident: 10.1016/j.biombioe.2017.07.008_bib21 article-title: Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.01.026 – year: 2017 ident: 10.1016/j.biombioe.2017.07.008_bib78 – start-page: 1 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib25 article-title: Non-sulphide zeolite catalyst for bio-jet-fuel conversion publication-title: Renew. Sustain. Energy Rev. – ident: 10.1016/j.biombioe.2017.07.008_bib77 – volume: 164 start-page: 329 year: 2016 ident: 10.1016/j.biombioe.2017.07.008_bib46 article-title: Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C publication-title: Fuel doi: 10.1016/j.fuel.2015.09.081 |
SSID | ssj0014041 |
Score | 2.580738 |
SecondaryResourceType | review_article |
Snippet | Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 197 |
SubjectTerms | activated carbon aviation Aviation biofuel biofuels business enterprises Camelina catalysts crops decarboxylation feedstocks fuel production Hydroprocessing Hydrotreating catalysts Jatropha kerosene lipids nickel palladium soil degradation temperature vegetable oil Vegetable oils |
Title | Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production |
URI | https://dx.doi.org/10.1016/j.biombioe.2017.07.008 https://www.proquest.com/docview/2000482075 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB90vehB1Kc8P4ngtW7bJG3qbRFlVfTiE7yVNEkfuyztYruCF_92Z7bt-oHgwUOhX1PaTDL5pTO_GYAThLAyzwLp-SaPPKFC56nEt16IY4lSmsUiInLy7V00fBDXj_JxCc47LgyFVba2v7Hpc2vdnum3rdmfjkb9eypWkki0wthJqSj1MqyEPIlkD1YGVzfDu4UzQfjzApZ0P3krxQei8PiUWO64UcbMIJ7n8aRKk9_PUV-s9XwKutyA9RY7skHzepuw5IotWPuQUXALdi7eiWt4aztyqz9QDF_sU7kIK2dlzp7df1cTc4qVo0l1xgas4bHQNYSFrO7-uuNimunCslFdMfseZFQxBLxs7GqGX5bP3IRNm_SxqOpteLi8-Hc-9NpaC57hKqw9pQOrE8O1DSyVrAq4k8LEvnO44yw3uYozrXyDCjSG-ypDnCm503Ggo0wqvgO9oizcX2CISFSmOLG5jLAGMYZWQgthcGlo0EDsguxaNzVtInKqhzFJu4izcdppJSWtpD75yFGuv5CbNqk4fpRIOuWlnzpVivPFj7LHnbZTHHHkRtGFK2cVFe5Esxci1tr7xfP3YZWOmrjAA-jVTzN3iPimzo5g-fQ1OGp78Rv4A_xL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D-pB_MRvI3ita5dkzbwNUaZuXlTwFtIklY3RjrUTvPi3-14_5geCBw-F0jSlzUtefmne7_0IOQMIK-IoEJ5v4rbHZct5suNbrwVjCVOahbyN5OTBfbv3xG-fxfMCuay5MBhWWfn-0qcX3rq60qxaszkZDpsPKFbSEeCFoZOiKPUiWeKChRjXd_4-j_PA9DGFbB7cjXuV_AtNeHSOHHc4MF9mEBZZPFFn8vcZ6oevLiag63WyViFH2i1fboMsuGSTrH7JJ7hJdq4-aWtwazVusy2S9N7sNJ0HldM0pq_uxeXIm6LpcJxd0C4tWSxYBqCQ5vU_d1hKU51YOswzaj9DjDIKcJeOXE7hy-KZG9NJmTwWDL1Nnq6vHi97XqW04BkmW7kndWB1xzBtA4uCVQFzgpvQdw5OnGUmlmGkpW_AfMYwX0aAMgVzOgx0OxKS7ZBGkiZul1DAIzKSDLlchlsDCENLrjk3sDA04B72iKhbV5kqDTmqYYxVHW82UrVVFFpF-bhDDvWa83qTMhHHnzU6tfHUty6lYLb4s-5pbW0F4w03UXTi0lmGsp3g9FqAtPb_8fwTstx7HPRV_-b-7oCsYEkZIXhIGvl05o4A6eTRcdGTPwAgOf0W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrotreatment+of+vegetable+oils%3A+A+review+of+the+technologies+and+its+developments+for+jet+biofuel+production&rft.jtitle=Biomass+%26+bioenergy&rft.au=V%C3%A1squez%2C+Maria+Cecilia&rft.au=Silva%2C+Electo+Eduardo&rft.au=Castillo%2C+Edgar+Fernando&rft.date=2017-10-01&rft.issn=0961-9534&rft.volume=105&rft.spage=197&rft.epage=206&rft_id=info:doi/10.1016%2Fj.biombioe.2017.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biombioe_2017_07_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |