Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production

Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about deve...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 105; pp. 197 - 206
Main Authors Vásquez, Maria Cecilia, Silva, Electo Eduardo, Castillo, Edgar Fernando
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2017
Subjects
Online AccessGet full text
ISSN0961-9534
1873-2909
DOI10.1016/j.biombioe.2017.07.008

Cover

Abstract Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed. •Hydrotreatment of vegetable oils and subsequent reactions are described.•A review of the effect of reaction parameters on the selectivity of the process is presented.•Heterogenous catalysts have reportedly showed to offer large advantages and so they have been more used in current studies.•Several initiatives and companies around the world are working to boost commercial production of hydrotreated vegetable oils as renewable biojet fuels for the transport sector.
AbstractList Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed.
Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for processing vegetable oils into biofuels, especially in the aviation industry. This study presents an evaluated review of recent literature about development, conversion routes, and role of processing conditions to maximize the production of renewable jet fuel. Reaction temperature and acidic strength of the catalyst had greater influence on the composition of final products. Decarboxylation and decarbonylation reactions are dominant during the production of aviation biofuel, because they are preferred over technological alternatives at higher temperatures. Nickel immobilized on a moderately acidic support and palladium on activated carbon catalysts has shown better yields of kerosene, under mild conditions. Continued and systematic efforts need to be made mainly over catalyst design to establish optimum and effective hydrotreating and hydrocracking processing alternative. Wide ranges of feedstocks have been studied for the production to jet biofuel. Jatropha and Camelina are promising options because they are crops for degraded soils; having in mind that in addition to sustainability and availability, costs is a main driver, and feedstock represents from 60 to 75% of final cost. Current initiatives and companies boosting jet biofuels production are also discussed. •Hydrotreatment of vegetable oils and subsequent reactions are described.•A review of the effect of reaction parameters on the selectivity of the process is presented.•Heterogenous catalysts have reportedly showed to offer large advantages and so they have been more used in current studies.•Several initiatives and companies around the world are working to boost commercial production of hydrotreated vegetable oils as renewable biojet fuels for the transport sector.
Author Castillo, Edgar Fernando
Vásquez, Maria Cecilia
Silva, Electo Eduardo
Author_xml – sequence: 1
  givenname: Maria Cecilia
  surname: Vásquez
  fullname: Vásquez, Maria Cecilia
  email: mariacvas@gmail.com
  organization: NEST – Excellence Group in Thermal Power and Distributed Generation, Institute of Mechanical Engineering, Federal University of Itajubá, Av. BPS 1303, Itajubá, Minas Geráis CEP: 37500-903, Brazil
– sequence: 2
  givenname: Electo Eduardo
  surname: Silva
  fullname: Silva, Electo Eduardo
  organization: NEST – Excellence Group in Thermal Power and Distributed Generation, Institute of Mechanical Engineering, Federal University of Itajubá, Av. BPS 1303, Itajubá, Minas Geráis CEP: 37500-903, Brazil
– sequence: 3
  givenname: Edgar Fernando
  orcidid: 0000-0003-0286-1931
  surname: Castillo
  fullname: Castillo, Edgar Fernando
  organization: Colombian Petroleum Institute ICP-Ecopetrol, Autopista Bucaramanga-Piedecuesta Kilómetro 7, Piedecuesta, Colombia
BookMark eNqFkM1KLDEQhYMoOP68gmTppsdKp3s6LS4UuVcFwY2uQzqp1gyZZEwyI769aUY3boQKKUidcyrfEdn3wSMhZwzmDNjiYjkfbFiVg_MaWDeHUiD2yIyJjld1D_0-mUG_YFXf8uaQHKW0BGANNGxG_P2niSFHVHmFPtMw0i2-YlaDQxqsS5f0hkbcWvyY3vIb0oz6zQcXXi0mqryhNidqcIsurCePRMcQ6RIzLTuNG3R0HYPZ6GyDPyEHo3IJT7_vY_Ly_9_z7X31-HT3cHvzWGku6lwJxYzqNVeGGdbVgnFsG90BYmnQcD2KblACNDDQmoMYoIaWo-qYWgyt4MfkfOdbot83mLJc2aTROeUxbJKsAaARNXRtGV3sRnUMKUUc5TralYqfkoGcAMul_AEsJ8ASSsGUcfVLqG1W0y9zVNb9Lb_eybFwKHyjTNqi12hsRJ2lCfYviy-L66Aj
CitedBy_id crossref_primary_10_1016_j_fuel_2024_133586
crossref_primary_10_1016_j_cattod_2020_11_017
crossref_primary_10_1016_j_mcat_2022_112131
crossref_primary_10_1016_j_enconman_2019_112015
crossref_primary_10_1016_j_cep_2021_108482
crossref_primary_10_1021_acssuschemeng_8b02939
crossref_primary_10_1080_19397038_2021_1978589
crossref_primary_10_1007_s12398_020_00278_6
crossref_primary_10_1016_j_enconman_2024_118811
crossref_primary_10_1016_j_rser_2018_11_033
crossref_primary_10_1021_acs_energyfuels_2c03250
crossref_primary_10_1016_j_renene_2019_09_015
crossref_primary_10_1080_00032719_2021_1975731
crossref_primary_10_1016_j_enconman_2021_114974
crossref_primary_10_1016_j_fuel_2022_125688
crossref_primary_10_1016_j_fuel_2023_128437
crossref_primary_10_1016_j_biombioe_2023_106732
crossref_primary_10_1021_acs_energyfuels_0c00120
crossref_primary_10_1016_j_jclepro_2020_119957
crossref_primary_10_1002_ente_202100221
crossref_primary_10_1016_j_fuel_2020_117890
crossref_primary_10_1016_j_jaap_2019_03_005
crossref_primary_10_1021_acs_iecr_1c02023
crossref_primary_10_3390_su142315734
crossref_primary_10_1016_j_enconman_2024_119354
crossref_primary_10_1039_D1SE00540E
crossref_primary_10_1080_00207233_2024_2314860
crossref_primary_10_1021_acs_iecr_1c02560
crossref_primary_10_1007_s12155_025_10821_3
crossref_primary_10_1016_j_clce_2024_100127
crossref_primary_10_1007_s13399_021_02064_x
crossref_primary_10_1016_j_micromeso_2019_109705
crossref_primary_10_1595_205651321X16024905831259
crossref_primary_10_1016_j_fuel_2018_04_167
crossref_primary_10_1016_j_fuel_2024_131058
crossref_primary_10_1007_s12649_020_00977_8
crossref_primary_10_1016_j_cattod_2018_04_028
crossref_primary_10_1007_s13399_022_02769_7
crossref_primary_10_1021_acs_energyfuels_3c02598
crossref_primary_10_1007_s13399_020_01046_9
crossref_primary_10_1049_rpg2_12388
crossref_primary_10_2174_1570193X16666190122164046
crossref_primary_10_1016_j_mcat_2021_111469
crossref_primary_10_3390_molecules25040802
crossref_primary_10_1016_j_paerosci_2024_101054
crossref_primary_10_1002_cssc_202001641
crossref_primary_10_3390_en15093173
crossref_primary_10_1007_s13399_021_01389_x
crossref_primary_10_1002_cssc_202002209
crossref_primary_10_1002_slct_202201736
crossref_primary_10_1016_j_foodchem_2024_142700
crossref_primary_10_1016_j_fuel_2020_117350
crossref_primary_10_1039_D1MA00538C
crossref_primary_10_3390_en16166100
crossref_primary_10_1002_cjce_25255
crossref_primary_10_1016_j_ecmx_2024_100675
crossref_primary_10_3390_pr11030935
crossref_primary_10_1016_j_cej_2019_03_063
crossref_primary_10_1016_j_fuel_2025_134645
crossref_primary_10_1016_j_cherd_2022_10_025
crossref_primary_10_1016_j_cep_2020_108250
crossref_primary_10_1016_j_jclepro_2021_126426
crossref_primary_10_1007_s13399_024_06473_6
crossref_primary_10_48072_2525_7579_rog_2022_182
crossref_primary_10_1016_j_bej_2018_12_003
crossref_primary_10_1016_j_energy_2023_127648
crossref_primary_10_1016_j_cej_2022_139215
crossref_primary_10_1016_j_fuel_2022_123137
crossref_primary_10_1039_D4EW00278D
crossref_primary_10_3390_catal9020123
crossref_primary_10_1016_j_fuel_2020_117065
crossref_primary_10_1016_j_fuproc_2021_106820
crossref_primary_10_1016_j_fuel_2023_130390
crossref_primary_10_1016_j_enconman_2024_119264
crossref_primary_10_1186_s40538_024_00710_w
crossref_primary_10_1016_j_fuproc_2017_09_026
crossref_primary_10_3390_su131810210
crossref_primary_10_1016_j_fuel_2019_01_179
crossref_primary_10_1016_j_fuel_2021_121673
crossref_primary_10_3390_ijms241914863
crossref_primary_10_1080_15435075_2019_1671406
crossref_primary_10_1038_s41570_022_00411_8
crossref_primary_10_1016_j_rser_2020_110396
crossref_primary_10_1021_acs_energyfuels_1c02547
crossref_primary_10_1016_j_jclepro_2018_10_147
crossref_primary_10_1016_j_rser_2020_110605
crossref_primary_10_1039_D4SE00302K
crossref_primary_10_1627_jpi_62_329
crossref_primary_10_1007_s43153_020_00067_1
crossref_primary_10_1016_j_jece_2020_104477
crossref_primary_10_3390_en16020828
crossref_primary_10_1021_acs_energyfuels_3c05177
crossref_primary_10_3389_fenrg_2020_00110
crossref_primary_10_1016_j_apenergy_2021_116687
crossref_primary_10_1016_j_cej_2020_125202
crossref_primary_10_1016_j_jclepro_2020_125778
crossref_primary_10_1016_j_jclepro_2021_127937
crossref_primary_10_1016_j_mcat_2021_111492
crossref_primary_10_1016_j_enconman_2024_118461
crossref_primary_10_1627_jpi_62_157
crossref_primary_10_1016_j_egyr_2022_12_014
crossref_primary_10_1016_j_rineng_2021_100258
crossref_primary_10_1039_C9SE00788A
crossref_primary_10_1016_j_ccst_2023_100158
crossref_primary_10_1016_j_rser_2019_04_057
crossref_primary_10_1038_s41598_023_40500_2
crossref_primary_10_1016_j_apenergy_2021_117817
crossref_primary_10_1021_acssuschemeng_2c05297
crossref_primary_10_1016_j_rser_2021_111269
crossref_primary_10_1088_1755_1315_897_1_012012
crossref_primary_10_3390_en12163196
crossref_primary_10_1016_j_chemosphere_2023_138447
crossref_primary_10_2139_ssrn_4159271
crossref_primary_10_1007_s10973_023_11941_8
crossref_primary_10_1021_acs_energyfuels_0c00274
crossref_primary_10_1016_j_apenergy_2018_07_061
crossref_primary_10_1021_acs_energyfuels_3c04992
crossref_primary_10_1007_s10098_018_1561_z
crossref_primary_10_1016_j_cep_2019_107629
crossref_primary_10_1016_j_envpol_2019_113772
crossref_primary_10_1016_j_biombioe_2019_105371
crossref_primary_10_1016_j_biombioe_2021_106081
crossref_primary_10_1016_j_fuel_2020_118255
crossref_primary_10_1016_j_jclepro_2022_133431
crossref_primary_10_1039_D2RA04057C
crossref_primary_10_1016_j_jclepro_2023_138141
crossref_primary_10_1016_j_renene_2019_10_125
crossref_primary_10_1016_j_biombioe_2025_107689
crossref_primary_10_1016_j_rser_2021_111398
crossref_primary_10_1016_j_fuel_2022_125065
crossref_primary_10_1016_j_jaap_2019_104690
crossref_primary_10_1016_j_indcrop_2023_117999
crossref_primary_10_9767_bcrec_15_2_7136_415_431
crossref_primary_10_1016_j_jclepro_2019_117796
crossref_primary_10_1007_s12155_024_10760_5
crossref_primary_10_1016_j_matpr_2021_09_385
crossref_primary_10_1002_er_5506
crossref_primary_10_1039_D1RE00475A
crossref_primary_10_1007_s13399_021_01789_z
crossref_primary_10_1002_app_55938
crossref_primary_10_1039_C9GC02404B
crossref_primary_10_1016_j_jiec_2018_03_041
crossref_primary_10_1021_acs_iecr_0c01254
crossref_primary_10_1134_S1070427218120017
crossref_primary_10_1007_s42452_022_04991_4
crossref_primary_10_1016_j_jiec_2023_08_020
crossref_primary_10_1016_j_cep_2017_12_009
crossref_primary_10_1016_j_gee_2022_03_001
crossref_primary_10_1016_j_ecmx_2021_100125
crossref_primary_10_1007_s12161_021_01980_y
Cites_doi 10.1016/j.fuproc.2013.04.018
10.1007/s11746-002-0569-4
10.1016/j.apenergy.2014.08.065
10.1016/j.jiec.2015.03.030
10.1016/j.fuel.2016.06.055
10.1039/b817625f
10.1016/j.fuel.2015.05.020
10.1038/474S09a
10.1016/j.rser.2012.04.028
10.1016/j.rser.2014.10.095
10.1016/j.fuproc.2015.10.024
10.1016/j.apcata.2011.02.025
10.1016/j.apcata.2014.11.007
10.1016/j.rser.2017.05.108
10.1016/j.scitotenv.2014.02.003
10.1002/bbb.1613
10.1021/ef3006405
10.1016/j.fuproc.2016.05.028
10.1016/j.cep.2013.09.013
10.1016/j.fuel.2012.03.040
10.1002/bbb.1488
10.1016/j.fuel.2011.10.057
10.1016/j.cattod.2012.11.008
10.1016/j.foodchem.2004.03.005
10.1002/ceat.201400648
10.1007/s12649-010-9032-8
10.1016/j.biortech.2015.02.056
10.1016/j.rser.2014.10.099
10.1016/j.rser.2015.09.016
10.1016/j.fuel.2017.01.097
10.1021/es1019178
10.1007/BF02641690
10.1016/j.apcata.2007.07.002
10.1016/j.rser.2017.01.018
10.1016/j.esd.2015.11.003
10.1016/j.cattod.2005.08.007
10.1039/C2CY20415K
10.1021/ef200889e
10.1016/j.biortech.2016.05.090
10.1039/c2ee21231e
10.1021/ef5023362
10.1016/j.fuel.2014.04.055
10.1002/bbb.1746
10.1016/j.cej.2012.02.027
10.1016/j.biombioe.2014.01.035
10.1007/BF02612307
10.1016/S1872-5813(16)30007-X
10.1016/j.biortech.2013.07.153
10.1002/ejlt.200300866
10.1002/cssc.201600144
10.1007/s10563-012-9148-x
10.1016/j.micromeso.2006.12.012
10.1016/j.rser.2013.01.026
10.1016/j.fuel.2015.09.081
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biombioe.2017.07.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2909
EndPage 206
ExternalDocumentID 10_1016_j_biombioe_2017_07_008
S0961953417302295
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c382t-8a1da9c3ad1d172813e54c70ee3e5ed3cf87ba80c010cc308b02053ea71a6b583
IEDL.DBID AIKHN
ISSN 0961-9534
IngestDate Fri Sep 05 10:57:39 EDT 2025
Tue Jul 01 01:49:46 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Fri Feb 23 02:27:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vegetable oils
Aviation biofuel
Hydroprocessing
Hydrotreating catalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-8a1da9c3ad1d172813e54c70ee3e5ed3cf87ba80c010cc308b02053ea71a6b583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0286-1931
PQID 2000482075
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2000482075
crossref_primary_10_1016_j_biombioe_2017_07_008
crossref_citationtrail_10_1016_j_biombioe_2017_07_008
elsevier_sciencedirect_doi_10_1016_j_biombioe_2017_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Biomass & bioenergy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hari, Yaakob, Binitha (bib2) 2015; 42
Verma, Rana, Kumar, Sibi, Sinha (bib44) 2015; 490
Guillén, Ruiz (bib39) 2003; 105
Morgan, Santillan-Jimenez, Harman-Ware, Ji, Grubb, Crocker (bib41) 2012; 189–190
Diederichs, Ali Mandegari, Farzad, G??rgens (bib14) 2016; 216
Neste Corporation (bib71) 2017
Galadima, Muraza (bib26) 2015; 29
Zhao, Wei, Julson, Qiao, Dubey, Anderson (bib48) 2015; 32
Baka (bib62) 2010; 44
Nylund, Erkkilä, Ahtiainen, Murtonen, Saikkonen, Amberla, Aatola (bib58) 2011
(accessed 1 November 2016).
Commercial Aviation Alternative Fuels Initiative, (n.d.).
U.S.D. of Energy (bib12) 2017
UPM Biofuels, (n.d.).
Wang, Tao, Markham, Zhang, Tan, Batan, Biddy, Wang, Tao, Zhang, Tan, Warner, Biddy (bib55) 2016
Rogers, Zheng (bib42) 2016; 9
Chiaramonti, Prussi, Buffi, Tacconi (bib11) 2014; 136
Sinha, Anand, Rana, Kumar, Farooqui, Sibi, Kumar, Joshi (bib4) 2013; 17
De Sousa, Cardoso, Pasa (bib47) 2016; 143
Liu, Sotelo-Boyás, Murata, Minowa, Sakanishi (bib51) 2011; 25
Jȩczmionek, Porzycka-Semczuk (bib34) 2014; 131
Neste, (n.d.).
Kubičková, Kubička (bib22) 2010; 1
.
Mohammad, Kandaramath Hari, Yaakob, Chandra Sharma, Sopian (bib21) 2013; 22
Kiatkittipong, Phimsen, Kiatkittipong, Wongsakulphasatch, Laosiripojana, Assabumrungrat (bib32) 2013; 116
De Jong, Hoefnagels, Faaij, Slade, Mawhood, Junginger (bib10) 2015; 9
Axens, (n.d.).
(accessed 16 October 2016).
Aatola, Larmi, Sarjovaara, Mikkonen (bib70) 2008
Cox, Renouf, Dargan, Turner, Klein-Marcuschamer (bib60) 2014; 8
Wang, Tao (bib9) 2016; 53
Han, Elgowainy, Cai, Wang (bib61) 2013; 150
European Biofuels Technology Platform, (n.d.).
Zaccheria, Psaro, Ravasio (bib37) 2009; 11
Mawhood, Gaziz, De Jong, Hoefnagels, Slade (bib13) 2012; 6
Al-sabawi, Chen (bib33) 2012; 26
Anand, Farooqui, Kumar, Joshi, Kumar, Sibi, Singh, Sinha (bib45) 2016; 151
Shahinuzzaman, Yaakob, Ahmed (bib25) 2016
Choudhary, Phillips (bib30) 2011; 397
Climate-KIC (bib64) 2015
Liu, Zhu, Guan, He, Li (bib50) 2015; 183
BiofuelsDigets (bib78) 2017
U.S. Energy Information Administration, U.S. Energy Information Administration, (2016).
Chuck (bib54) 2016
(accessed 14 October 2016).
Karatzos, Van Dyk (bib7) 2017
Huber, O'Connor, Corma (bib52) 2007; 329
Hancsók, Krár, Magyar, Boda, Holló, Kalló (bib18) 2007; 101
Kaewmeesri, Srifa, Itthibenchapong, Faungnawakij (bib36) 2015; 29
Gan, Man, Tan, NorAini, Nazimah (bib40) 2005; 89
SkyNRG Nordic, (n.d.).
Pattanaik, Misra (bib23) 2017; 73
Hilbers, Sprakel, van den Enk, Zaalberg, van den Berg, van der Ham (bib68) 2015; 38
Hermida, Abdullah, Mohamed (bib24) 2015; 42
Furimsky (bib20) 2013; 217
Hui, Kumar, Sung, Edwards, Gardner (bib57) 2012; 98
(accessed 11 November 2016).
Sourelis (bib29) 1956; 33
Chu, Vanderghem, MacLean, Saville (bib43) 2017; 196
Li, Mupondwa (bib59) 2014; 481
International Air Transport Association, (2015).
Sau, Basak, Manna, Santra, Verma (bib27) 2005; 109
Gutiérrez-Antonio, Gómez-Castro, de Lira-Flores, Hernández (bib8) 2017; 79
Holmgren, Gosling, Marinangeli, Marker, Faraci, Perego (bib17) 2007; 86
Initiative Towards sustAinable Kerosene for Aviation, (n.d.).
Melero, Iglesias, Garcia (bib35) 2012; 5
International Energy Agency, Status of Advanced Biofuels Demonstration Facilities in 2012, 2013.
Haldor Topsøe, (2015).
Knothe (bib38) 2002; 79
Garraín, Herrera, Lechón, Lago (bib80) 2014; 63
Eller, Varga, Hancsók (bib16) 2016; 182
Project Solaris, (n.d.).
GREENEA (bib73) 2015
Xiu, Shahbazi (bib1) 2012; 16
Renewable Energy Group, (n.d.).
Satyarthi, Chiranjeevi, Gokak, Viswanathan (bib79) 2013; 3
(accessed 30 October 2016).
LUO, CAO, LI, GUO, ZHAO (bib53) 2016; 44
(accessed 13 October 2016).
Silva, Fortes, De Sousa, Pasa (bib46) 2016; 164
Savage (bib3) 2011; 474
Hong, Soerawidjaja, Reksowardojo, Fujita, Duniani, Pham (bib56) 2013; 74
Veriansyah, Han, Kim, Hong, Kim, Lim, Shu, Oh, Kim (bib31) 2012; 94
Choi, Hwang, Han, Lee, Yun, Lee (bib49) 2015; 158
Rathore, Newalkar, Badoni (bib72) 2016; 31
Hughes (bib28) 1953; 30
Wang (10.1016/j.biombioe.2017.07.008_bib9) 2016; 53
Pattanaik (10.1016/j.biombioe.2017.07.008_bib23) 2017; 73
Sau (10.1016/j.biombioe.2017.07.008_bib27) 2005; 109
Han (10.1016/j.biombioe.2017.07.008_bib61) 2013; 150
Neste Corporation (10.1016/j.biombioe.2017.07.008_bib71) 2017
Holmgren (10.1016/j.biombioe.2017.07.008_bib17) 2007; 86
U.S.D. of Energy (10.1016/j.biombioe.2017.07.008_bib12) 2017
Morgan (10.1016/j.biombioe.2017.07.008_bib41) 2012; 189–190
10.1016/j.biombioe.2017.07.008_bib66
10.1016/j.biombioe.2017.07.008_bib65
Baka (10.1016/j.biombioe.2017.07.008_bib62) 2010; 44
10.1016/j.biombioe.2017.07.008_bib63
10.1016/j.biombioe.2017.07.008_bib69
Wang (10.1016/j.biombioe.2017.07.008_bib55) 2016
10.1016/j.biombioe.2017.07.008_bib67
Furimsky (10.1016/j.biombioe.2017.07.008_bib20) 2013; 217
Kubičková (10.1016/j.biombioe.2017.07.008_bib22) 2010; 1
Jȩczmionek (10.1016/j.biombioe.2017.07.008_bib34) 2014; 131
Hermida (10.1016/j.biombioe.2017.07.008_bib24) 2015; 42
Zhao (10.1016/j.biombioe.2017.07.008_bib48) 2015; 32
10.1016/j.biombioe.2017.07.008_bib5
Chuck (10.1016/j.biombioe.2017.07.008_bib54) 2016
10.1016/j.biombioe.2017.07.008_bib6
Hui (10.1016/j.biombioe.2017.07.008_bib57) 2012; 98
LUO (10.1016/j.biombioe.2017.07.008_bib53) 2016; 44
Choi (10.1016/j.biombioe.2017.07.008_bib49) 2015; 158
Nylund (10.1016/j.biombioe.2017.07.008_bib58) 2011
Diederichs (10.1016/j.biombioe.2017.07.008_bib14) 2016; 216
Knothe (10.1016/j.biombioe.2017.07.008_bib38) 2002; 79
Guillén (10.1016/j.biombioe.2017.07.008_bib39) 2003; 105
Savage (10.1016/j.biombioe.2017.07.008_bib3) 2011; 474
Mohammad (10.1016/j.biombioe.2017.07.008_bib21) 2013; 22
10.1016/j.biombioe.2017.07.008_bib77
10.1016/j.biombioe.2017.07.008_bib76
10.1016/j.biombioe.2017.07.008_bib75
De Jong (10.1016/j.biombioe.2017.07.008_bib10) 2015; 9
10.1016/j.biombioe.2017.07.008_bib74
Sinha (10.1016/j.biombioe.2017.07.008_bib4) 2013; 17
Liu (10.1016/j.biombioe.2017.07.008_bib51) 2011; 25
Satyarthi (10.1016/j.biombioe.2017.07.008_bib79) 2013; 3
Chiaramonti (10.1016/j.biombioe.2017.07.008_bib11) 2014; 136
BiofuelsDigets (10.1016/j.biombioe.2017.07.008_bib78) 2017
Chu (10.1016/j.biombioe.2017.07.008_bib43) 2017; 196
Garraín (10.1016/j.biombioe.2017.07.008_bib80) 2014; 63
Hughes (10.1016/j.biombioe.2017.07.008_bib28) 1953; 30
Kiatkittipong (10.1016/j.biombioe.2017.07.008_bib32) 2013; 116
Hari (10.1016/j.biombioe.2017.07.008_bib2) 2015; 42
Hancsók (10.1016/j.biombioe.2017.07.008_bib18) 2007; 101
Hilbers (10.1016/j.biombioe.2017.07.008_bib68) 2015; 38
Aatola (10.1016/j.biombioe.2017.07.008_bib70) 2008
GREENEA (10.1016/j.biombioe.2017.07.008_bib73) 2015
Eller (10.1016/j.biombioe.2017.07.008_bib16) 2016; 182
Al-sabawi (10.1016/j.biombioe.2017.07.008_bib33) 2012; 26
Rathore (10.1016/j.biombioe.2017.07.008_bib72) 2016; 31
Shahinuzzaman (10.1016/j.biombioe.2017.07.008_bib25) 2016
Sourelis (10.1016/j.biombioe.2017.07.008_bib29) 1956; 33
Gan (10.1016/j.biombioe.2017.07.008_bib40) 2005; 89
Verma (10.1016/j.biombioe.2017.07.008_bib44) 2015; 490
Mawhood (10.1016/j.biombioe.2017.07.008_bib13) 2012; 6
Climate-KIC (10.1016/j.biombioe.2017.07.008_bib64) 2015
Silva (10.1016/j.biombioe.2017.07.008_bib46) 2016; 164
Anand (10.1016/j.biombioe.2017.07.008_bib45) 2016; 151
De Sousa (10.1016/j.biombioe.2017.07.008_bib47) 2016; 143
10.1016/j.biombioe.2017.07.008_bib19
Melero (10.1016/j.biombioe.2017.07.008_bib35) 2012; 5
Galadima (10.1016/j.biombioe.2017.07.008_bib26) 2015; 29
Veriansyah (10.1016/j.biombioe.2017.07.008_bib31) 2012; 94
Huber (10.1016/j.biombioe.2017.07.008_bib52) 2007; 329
Cox (10.1016/j.biombioe.2017.07.008_bib60) 2014; 8
Xiu (10.1016/j.biombioe.2017.07.008_bib1) 2012; 16
Hong (10.1016/j.biombioe.2017.07.008_bib56) 2013; 74
10.1016/j.biombioe.2017.07.008_bib15
Kaewmeesri (10.1016/j.biombioe.2017.07.008_bib36) 2015; 29
Rogers (10.1016/j.biombioe.2017.07.008_bib42) 2016; 9
Liu (10.1016/j.biombioe.2017.07.008_bib50) 2015; 183
Karatzos (10.1016/j.biombioe.2017.07.008_bib7) 2017
Zaccheria (10.1016/j.biombioe.2017.07.008_bib37) 2009; 11
Li (10.1016/j.biombioe.2017.07.008_bib59) 2014; 481
Choudhary (10.1016/j.biombioe.2017.07.008_bib30) 2011; 397
Gutiérrez-Antonio (10.1016/j.biombioe.2017.07.008_bib8) 2017; 79
References_xml – reference: Commercial Aviation Alternative Fuels Initiative, (n.d.).
– volume: 79
  start-page: 709
  year: 2017
  end-page: 729
  ident: bib8
  article-title: A review on the production processes of renewable jet fuel
  publication-title: Renew. Sustain. Energy Rev.
– volume: 329
  start-page: 120
  year: 2007
  end-page: 129
  ident: bib52
  article-title: Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures
  publication-title: Appl. Catal. A Gen.
– reference: SkyNRG Nordic, (n.d.).
– reference: Neste, (n.d.).
– volume: 196
  start-page: 298
  year: 2017
  end-page: 305
  ident: bib43
  article-title: Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels
  publication-title: Fuel
– volume: 44
  start-page: 8684
  year: 2010
  end-page: 8691
  ident: bib62
  article-title: Greenhouse gas emissions and land use change from jatropha curcas -based jet fuel in Brazil
  publication-title: Environ. Sci. Technol.
– reference: Haldor Topsøe, (2015).
– volume: 136
  start-page: 767
  year: 2014
  end-page: 774
  ident: bib11
  article-title: Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels
  publication-title: Appl. Energy
– reference: (accessed 14 October 2016).
– volume: 397
  start-page: 1
  year: 2011
  end-page: 12
  ident: bib30
  article-title: Renewable fuels via catalytic hydrodeoxygenation
  publication-title: Appl. Catal. A Gen.
– volume: 25
  start-page: 4675
  year: 2011
  end-page: 4685
  ident: bib51
  article-title: Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids
  publication-title: Energy Fuels
– volume: 9
  start-page: 778
  year: 2015
  end-page: 800
  ident: bib10
  article-title: The feasibility of short-term production strategies for renewable jet fuels - a comprehensive techno-economic comparison
  publication-title: Biofuels, Bioprod. Biorefining
– volume: 9
  start-page: 1750
  year: 2016
  end-page: 1772
  ident: bib42
  article-title: Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights
  publication-title: Chem. Sus. Chem.
– volume: 189–190
  start-page: 346
  year: 2012
  end-page: 355
  ident: bib41
  article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts
  publication-title: Chem. Eng. J.
– year: 2017
  ident: bib78
  article-title: Ground Delay: where Are the Sustainable Aviation Fuels?
– volume: 26
  start-page: 5373
  year: 2012
  end-page: 5399
  ident: bib33
  article-title: Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks a Review.pdf
  publication-title: Energy & Fuels
– volume: 8
  start-page: 579
  year: 2014
  end-page: 593
  ident: bib60
  article-title: Environmental life cycle assessment ( LCA ) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses
  publication-title: Biofuels Bioprod. Biorefining
– volume: 44
  start-page: 76
  year: 2016
  end-page: 83
  ident: bib53
  article-title: Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil
  publication-title: J. Fuel Chem. Technol.
– year: 2015
  ident: bib73
  article-title: Is HVO the Holy Grail of the World Biodiesel Market?
– volume: 29
  start-page: 833
  year: 2015
  end-page: 840
  ident: bib36
  article-title: Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content
  publication-title: Energy Fuels
– volume: 32
  start-page: 300
  year: 2015
  end-page: 312
  ident: bib48
  article-title: Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel
  publication-title: N. Biotechnol.
– reference: (accessed 30 October 2016).
– year: 2011
  ident: bib58
  article-title: Optimized Usage of NExBTL Renewable Diesel Fuel OPTIBIO
– reference: International Air Transport Association, (2015).
– start-page: 12
  year: 2008
  ident: bib70
  article-title: Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE technical paper 2008-01-2500
  publication-title: SAE Tech. Pap.
– volume: 42
  start-page: 1234
  year: 2015
  end-page: 1244
  ident: bib2
  article-title: Aviation biofuel from renewable resources: routes, opportunities and challenges
  publication-title: Renew. Sustain. Energy Rev.
– reference: International Energy Agency, Status of Advanced Biofuels Demonstration Facilities in 2012, 2013.
– reference: European Biofuels Technology Platform, (n.d.).
– volume: 109
  start-page: 112
  year: 2005
  end-page: 119
  ident: bib27
  article-title: Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions
  publication-title: Catal. Today
– volume: 79
  start-page: 847
  year: 2002
  end-page: 854
  ident: bib38
  article-title: Structure indices in FA chemistry. How relevant is the iodine value?
  publication-title: J. Am. Oil Chem. Soc.
– volume: 11
  start-page: 462
  year: 2009
  ident: bib37
  article-title: Selective hydrogenation of alternative oils: a useful tool for the production of biofuels
  publication-title: Green Chem.
– start-page: 344
  year: 2017
  end-page: 362
  ident: bib7
  article-title: Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I
  publication-title: Biofuels, Bioprod. Biorefining
– volume: 217
  start-page: 13
  year: 2013
  end-page: 56
  ident: bib20
  article-title: Hydroprocessing challenges in biofuels production
  publication-title: Catal. Today
– reference: Project Solaris, (n.d.).
– volume: 183
  start-page: 93
  year: 2015
  end-page: 100
  ident: bib50
  article-title: Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts
  publication-title: Bioresour. Technol.
– reference: (accessed 1 November 2016).
– volume: 16
  start-page: 4406
  year: 2012
  end-page: 4414
  ident: bib1
  article-title: Bio-oil production and upgrading research: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 182
  start-page: 713
  year: 2016
  end-page: 720
  ident: bib16
  article-title: Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking
  publication-title: Fuel
– volume: 94
  start-page: 578
  year: 2012
  end-page: 585
  ident: bib31
  article-title: Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts
  publication-title: Fuel
– volume: 53
  start-page: 801
  year: 2016
  end-page: 822
  ident: bib9
  article-title: Bio-jet fuel conversion technologies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 86
  start-page: 67
  year: 2007
  end-page: 72
  ident: bib17
  article-title: New developments in renewable fuels offer more choices
  publication-title: Hydrocarb. Process
– volume: 1
  start-page: 293
  year: 2010
  end-page: 308
  ident: bib22
  article-title: Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review
  publication-title: Waste Biomass Valorization
– volume: 490
  start-page: 108
  year: 2015
  end-page: 116
  ident: bib44
  article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11
  publication-title: Appl. Catal. A Gen.
– volume: 29
  start-page: 12
  year: 2015
  end-page: 23
  ident: bib26
  article-title: Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: a review
  publication-title: J. Ind. Eng. Chem.
– volume: 105
  start-page: 688
  year: 2003
  end-page: 696
  ident: bib39
  article-title: Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 3
  start-page: 70
  year: 2013
  end-page: 80
  ident: bib79
  article-title: An overview of catalytic conversion of vegetable oils/fats into middle distillates
  publication-title: Catal. Sci. Technol.
– reference: Renewable Energy Group, (n.d.).
– reference: U.S. Energy Information Administration, U.S. Energy Information Administration, (2016).
– reference: (accessed 11 November 2016).
– volume: 38
  start-page: 651
  year: 2015
  end-page: 657
  ident: bib68
  article-title: Green diesel from hydrotreated vegetable oil process design study
  publication-title: Chem. Eng. Technol.
– reference: Initiative Towards sustAinable Kerosene for Aviation, (n.d.).
– reference: (accessed 16 October 2016).
– year: 2016
  ident: bib54
  article-title: Biofuels for Aviation. Feedstocks, Technology and Implementation
– volume: 5
  start-page: 7393
  year: 2012
  ident: bib35
  article-title: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges
  publication-title: Energy Environ. Sci.
– volume: 131
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib34
  article-title: Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects - theoretical considerations
  publication-title: Fuel
– year: 2017
  ident: bib12
  article-title: Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps
– volume: 30
  start-page: 506
  year: 1953
  end-page: 515
  ident: bib28
  article-title: Hydrogenation of fatty oils
  publication-title: J. Am. Oil Chem. Soc.
– volume: 164
  start-page: 329
  year: 2016
  end-page: 338
  ident: bib46
  article-title: Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C
  publication-title: Fuel
– volume: 6
  start-page: 246
  year: 2012
  end-page: 256
  ident: bib13
  article-title: Production pathways for renewable jet fuel: a review of commercialization status and future prospects
  publication-title: Biofuels, Bioprod. Biorefining
– reference: UPM Biofuels, (n.d.).
– year: 2016
  ident: bib55
  article-title: Review of Biojet Fuel Conversion Technologies
– volume: 89
  start-page: 507
  year: 2005
  end-page: 518
  ident: bib40
  article-title: Characterisation of vegetable oils by surface acoustic wave sensing electronic nose
  publication-title: Food Chem.
– volume: 42
  start-page: 1223
  year: 2015
  end-page: 1233
  ident: bib24
  article-title: Deoxygenation of fatty acid to produce diesel-like hydrocarbons: a review of process conditions, reaction kinetics and mechanism
  publication-title: Renew. Sustain. Energy Rev.
– volume: 98
  start-page: 176
  year: 2012
  end-page: 182
  ident: bib57
  article-title: Experimental studies on the combustion characteristics of alternative jet fuels
  publication-title: Fuel
– volume: 17
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib4
  article-title: Development of hydroprocessing route to transportation fuels from non-edible plant-oils
  publication-title: Catal. Surv. Asia
– volume: 143
  start-page: 35
  year: 2016
  end-page: 42
  ident: bib47
  article-title: Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C
  publication-title: Fuel Process. Technol.
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib25
  article-title: Non-sulphide zeolite catalyst for bio-jet-fuel conversion
  publication-title: Renew. Sustain. Energy Rev.
– volume: 22
  start-page: 121
  year: 2013
  end-page: 132
  ident: bib21
  article-title: Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 24
  year: 2016
  end-page: 49
  ident: bib72
  article-title: Processing of vegetable oil for biofuel production through conventional and non-conventional routes
  publication-title: Energy sustain. Dev.
– volume: 481
  start-page: 17
  year: 2014
  end-page: 26
  ident: bib59
  article-title: Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies
  publication-title: Sci. Total Environ.
– year: 2017
  ident: bib71
  article-title: Neste MY Renewable Jet Fuel Offers Airlines an Easy Way to Reduce Greenhouse Gas Emissions
– volume: 150
  start-page: 447
  year: 2013
  end-page: 456
  ident: bib61
  article-title: Life-cycle analysis of bio-based aviation fuels
  publication-title: Bioresour. Technol.
– reference: .
– volume: 158
  start-page: 98
  year: 2015
  end-page: 104
  ident: bib49
  article-title: The direct production of jet-fuel from non-edible oil in a single-step process
  publication-title: Fuel
– volume: 474
  start-page: S9
  year: 2011
  end-page: S11
  ident: bib3
  article-title: The ideal biofuel
  publication-title: Nature
– reference: (accessed 13 October 2016).
– volume: 74
  start-page: 124
  year: 2013
  end-page: 130
  ident: bib56
  article-title: A study on developing aviation biofuel for the Tropics: production process - experimental and theoretical evaluation of their blends with fossil kerosene
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 33
  start-page: 488
  year: 1956
  end-page: 494
  ident: bib29
  article-title: The hydrogenation process
  publication-title: J. Am. Oil Chem. Soc.
– year: 2015
  ident: bib64
  article-title: RENJET – Renewable Jet Fuel Supply Chain and Flight Operations
– volume: 116
  start-page: 16
  year: 2013
  end-page: 26
  ident: bib32
  article-title: Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil
  publication-title: Fuel Process. Technol.
– volume: 216
  start-page: 331
  year: 2016
  end-page: 339
  ident: bib14
  article-title: Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice
  publication-title: Bioresour. Technol.
– reference: Axens, (n.d.).
– volume: 101
  start-page: 148
  year: 2007
  end-page: 152
  ident: bib18
  article-title: Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3
  publication-title: Microporous Mesoporous Mater
– volume: 63
  start-page: 239
  year: 2014
  end-page: 249
  ident: bib80
  article-title: Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit
  publication-title: Biomass Bioenergy
– volume: 73
  start-page: 545
  year: 2017
  end-page: 557
  ident: bib23
  article-title: Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 151
  start-page: 50
  year: 2016
  end-page: 58
  ident: bib45
  article-title: Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production
  publication-title: Fuel Process. Technol.
– volume: 116
  start-page: 16
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib32
  article-title: Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.04.018
– volume: 79
  start-page: 847
  year: 2002
  ident: 10.1016/j.biombioe.2017.07.008_bib38
  article-title: Structure indices in FA chemistry. How relevant is the iodine value?
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-002-0569-4
– volume: 136
  start-page: 767
  year: 2014
  ident: 10.1016/j.biombioe.2017.07.008_bib11
  article-title: Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.065
– volume: 29
  start-page: 12
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib26
  article-title: Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: a review
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.030
– volume: 6
  start-page: 246
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib13
  article-title: Production pathways for renewable jet fuel: a review of commercialization status and future prospects
  publication-title: Biofuels, Bioprod. Biorefining
– volume: 182
  start-page: 713
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib16
  article-title: Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.06.055
– volume: 11
  start-page: 462
  year: 2009
  ident: 10.1016/j.biombioe.2017.07.008_bib37
  article-title: Selective hydrogenation of alternative oils: a useful tool for the production of biofuels
  publication-title: Green Chem.
  doi: 10.1039/b817625f
– volume: 158
  start-page: 98
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib49
  article-title: The direct production of jet-fuel from non-edible oil in a single-step process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.05.020
– volume: 474
  start-page: S9
  year: 2011
  ident: 10.1016/j.biombioe.2017.07.008_bib3
  article-title: The ideal biofuel
  publication-title: Nature
  doi: 10.1038/474S09a
– ident: 10.1016/j.biombioe.2017.07.008_bib69
– volume: 16
  start-page: 4406
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib1
  article-title: Bio-oil production and upgrading research: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.04.028
– volume: 42
  start-page: 1234
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib2
  article-title: Aviation biofuel from renewable resources: routes, opportunities and challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.10.095
– volume: 143
  start-page: 35
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib47
  article-title: Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.10.024
– ident: 10.1016/j.biombioe.2017.07.008_bib66
– volume: 397
  start-page: 1
  year: 2011
  ident: 10.1016/j.biombioe.2017.07.008_bib30
  article-title: Renewable fuels via catalytic hydrodeoxygenation
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2011.02.025
– volume: 490
  start-page: 108
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib44
  article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.11.007
– volume: 79
  start-page: 709
  year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib8
  article-title: A review on the production processes of renewable jet fuel
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.108
– volume: 481
  start-page: 17
  year: 2014
  ident: 10.1016/j.biombioe.2017.07.008_bib59
  article-title: Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.02.003
– volume: 9
  start-page: 778
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib10
  article-title: The feasibility of short-term production strategies for renewable jet fuels - a comprehensive techno-economic comparison
  publication-title: Biofuels, Bioprod. Biorefining
  doi: 10.1002/bbb.1613
– volume: 26
  start-page: 5373
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib33
  article-title: Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks a Review.pdf
  publication-title: Energy & Fuels
  doi: 10.1021/ef3006405
– volume: 86
  start-page: 67
  year: 2007
  ident: 10.1016/j.biombioe.2017.07.008_bib17
  article-title: New developments in renewable fuels offer more choices
  publication-title: Hydrocarb. Process
– volume: 151
  start-page: 50
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib45
  article-title: Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.05.028
– volume: 74
  start-page: 124
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib56
  article-title: A study on developing aviation biofuel for the Tropics: production process - experimental and theoretical evaluation of their blends with fossil kerosene
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2013.09.013
– ident: 10.1016/j.biombioe.2017.07.008_bib76
– volume: 98
  start-page: 176
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib57
  article-title: Experimental studies on the combustion characteristics of alternative jet fuels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.03.040
– volume: 8
  start-page: 579
  year: 2014
  ident: 10.1016/j.biombioe.2017.07.008_bib60
  article-title: Environmental life cycle assessment ( LCA ) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.1488
– volume: 94
  start-page: 578
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib31
  article-title: Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.10.057
– year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib64
– volume: 217
  start-page: 13
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib20
  article-title: Hydroprocessing challenges in biofuels production
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2012.11.008
– volume: 89
  start-page: 507
  year: 2005
  ident: 10.1016/j.biombioe.2017.07.008_bib40
  article-title: Characterisation of vegetable oils by surface acoustic wave sensing electronic nose
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2004.03.005
– volume: 38
  start-page: 651
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib68
  article-title: Green diesel from hydrotreated vegetable oil process design study
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201400648
– volume: 1
  start-page: 293
  year: 2010
  ident: 10.1016/j.biombioe.2017.07.008_bib22
  article-title: Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-010-9032-8
– year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib73
– volume: 32
  start-page: 300
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib48
  article-title: Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel
  publication-title: N. Biotechnol.
– volume: 183
  start-page: 93
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib50
  article-title: Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.056
– volume: 42
  start-page: 1223
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib24
  article-title: Deoxygenation of fatty acid to produce diesel-like hydrocarbons: a review of process conditions, reaction kinetics and mechanism
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.10.099
– volume: 53
  start-page: 801
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib9
  article-title: Bio-jet fuel conversion technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.016
– ident: 10.1016/j.biombioe.2017.07.008_bib65
– volume: 196
  start-page: 298
  year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib43
  article-title: Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.01.097
– volume: 44
  start-page: 8684
  year: 2010
  ident: 10.1016/j.biombioe.2017.07.008_bib62
  article-title: Greenhouse gas emissions and land use change from jatropha curcas -based jet fuel in Brazil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1019178
– volume: 30
  start-page: 506
  year: 1953
  ident: 10.1016/j.biombioe.2017.07.008_bib28
  article-title: Hydrogenation of fatty oils
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02641690
– volume: 329
  start-page: 120
  year: 2007
  ident: 10.1016/j.biombioe.2017.07.008_bib52
  article-title: Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2007.07.002
– ident: 10.1016/j.biombioe.2017.07.008_bib75
– volume: 73
  start-page: 545
  year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib23
  article-title: Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.018
– volume: 31
  start-page: 24
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib72
  article-title: Processing of vegetable oil for biofuel production through conventional and non-conventional routes
  publication-title: Energy sustain. Dev.
  doi: 10.1016/j.esd.2015.11.003
– volume: 109
  start-page: 112
  year: 2005
  ident: 10.1016/j.biombioe.2017.07.008_bib27
  article-title: Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.08.007
– year: 2011
  ident: 10.1016/j.biombioe.2017.07.008_bib58
– volume: 3
  start-page: 70
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib79
  article-title: An overview of catalytic conversion of vegetable oils/fats into middle distillates
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C2CY20415K
– volume: 25
  start-page: 4675
  year: 2011
  ident: 10.1016/j.biombioe.2017.07.008_bib51
  article-title: Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids
  publication-title: Energy Fuels
  doi: 10.1021/ef200889e
– volume: 216
  start-page: 331
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib14
  article-title: Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.090
– volume: 5
  start-page: 7393
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib35
  article-title: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21231e
– year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib54
– ident: 10.1016/j.biombioe.2017.07.008_bib6
– volume: 29
  start-page: 833
  year: 2015
  ident: 10.1016/j.biombioe.2017.07.008_bib36
  article-title: Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content
  publication-title: Energy Fuels
  doi: 10.1021/ef5023362
– ident: 10.1016/j.biombioe.2017.07.008_bib19
– ident: 10.1016/j.biombioe.2017.07.008_bib15
– start-page: 12
  year: 2008
  ident: 10.1016/j.biombioe.2017.07.008_bib70
  article-title: Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE technical paper 2008-01-2500
  publication-title: SAE Tech. Pap.
– volume: 131
  start-page: 1
  year: 2014
  ident: 10.1016/j.biombioe.2017.07.008_bib34
  article-title: Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects - theoretical considerations
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.04.055
– ident: 10.1016/j.biombioe.2017.07.008_bib74
– start-page: 344
  year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib7
  article-title: Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I
  publication-title: Biofuels, Bioprod. Biorefining
  doi: 10.1002/bbb.1746
– year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib55
– year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib71
– volume: 189–190
  start-page: 346
  year: 2012
  ident: 10.1016/j.biombioe.2017.07.008_bib41
  article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.02.027
– volume: 63
  start-page: 239
  year: 2014
  ident: 10.1016/j.biombioe.2017.07.008_bib80
  article-title: Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.01.035
– volume: 33
  start-page: 488
  year: 1956
  ident: 10.1016/j.biombioe.2017.07.008_bib29
  article-title: The hydrogenation process
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02612307
– volume: 44
  start-page: 76
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib53
  article-title: Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil
  publication-title: J. Fuel Chem. Technol.
  doi: 10.1016/S1872-5813(16)30007-X
– volume: 150
  start-page: 447
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib61
  article-title: Life-cycle analysis of bio-based aviation fuels
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.153
– ident: 10.1016/j.biombioe.2017.07.008_bib5
– volume: 105
  start-page: 688
  year: 2003
  ident: 10.1016/j.biombioe.2017.07.008_bib39
  article-title: Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200300866
– ident: 10.1016/j.biombioe.2017.07.008_bib63
– volume: 9
  start-page: 1750
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib42
  article-title: Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201600144
– year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib12
– ident: 10.1016/j.biombioe.2017.07.008_bib67
– volume: 17
  start-page: 1
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib4
  article-title: Development of hydroprocessing route to transportation fuels from non-edible plant-oils
  publication-title: Catal. Surv. Asia
  doi: 10.1007/s10563-012-9148-x
– volume: 101
  start-page: 148
  year: 2007
  ident: 10.1016/j.biombioe.2017.07.008_bib18
  article-title: Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2006.12.012
– volume: 22
  start-page: 121
  year: 2013
  ident: 10.1016/j.biombioe.2017.07.008_bib21
  article-title: Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.01.026
– year: 2017
  ident: 10.1016/j.biombioe.2017.07.008_bib78
– start-page: 1
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib25
  article-title: Non-sulphide zeolite catalyst for bio-jet-fuel conversion
  publication-title: Renew. Sustain. Energy Rev.
– ident: 10.1016/j.biombioe.2017.07.008_bib77
– volume: 164
  start-page: 329
  year: 2016
  ident: 10.1016/j.biombioe.2017.07.008_bib46
  article-title: Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.09.081
SSID ssj0014041
Score 2.580738
SecondaryResourceType review_article
Snippet Hydroprocessing of oils and fats has been a subject of extended research works and discussions over time. It has proved to be an effective pathway for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms activated carbon
aviation
Aviation biofuel
biofuels
business enterprises
Camelina
catalysts
crops
decarboxylation
feedstocks
fuel production
Hydroprocessing
Hydrotreating catalysts
Jatropha
kerosene
lipids
nickel
palladium
soil degradation
temperature
vegetable oil
Vegetable oils
Title Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production
URI https://dx.doi.org/10.1016/j.biombioe.2017.07.008
https://www.proquest.com/docview/2000482075
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB90vehB1Kc8P4ngtW7bJG3qbRFlVfTiE7yVNEkfuyztYruCF_92Z7bt-oHgwUOhX1PaTDL5pTO_GYAThLAyzwLp-SaPPKFC56nEt16IY4lSmsUiInLy7V00fBDXj_JxCc47LgyFVba2v7Hpc2vdnum3rdmfjkb9eypWkki0wthJqSj1MqyEPIlkD1YGVzfDu4UzQfjzApZ0P3krxQei8PiUWO64UcbMIJ7n8aRKk9_PUV-s9XwKutyA9RY7skHzepuw5IotWPuQUXALdi7eiWt4aztyqz9QDF_sU7kIK2dlzp7df1cTc4qVo0l1xgas4bHQNYSFrO7-uuNimunCslFdMfseZFQxBLxs7GqGX5bP3IRNm_SxqOpteLi8-Hc-9NpaC57hKqw9pQOrE8O1DSyVrAq4k8LEvnO44yw3uYozrXyDCjSG-ypDnCm503Ggo0wqvgO9oizcX2CISFSmOLG5jLAGMYZWQgthcGlo0EDsguxaNzVtInKqhzFJu4izcdppJSWtpD75yFGuv5CbNqk4fpRIOuWlnzpVivPFj7LHnbZTHHHkRtGFK2cVFe5Esxci1tr7xfP3YZWOmrjAA-jVTzN3iPimzo5g-fQ1OGp78Rv4A_xL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86D-pB_MRvI3ita5dkzbwNUaZuXlTwFtIklY3RjrUTvPi3-14_5geCBw-F0jSlzUtefmne7_0IOQMIK-IoEJ5v4rbHZct5suNbrwVjCVOahbyN5OTBfbv3xG-fxfMCuay5MBhWWfn-0qcX3rq60qxaszkZDpsPKFbSEeCFoZOiKPUiWeKChRjXd_4-j_PA9DGFbB7cjXuV_AtNeHSOHHc4MF9mEBZZPFFn8vcZ6oevLiag63WyViFH2i1fboMsuGSTrH7JJ7hJdq4-aWtwazVusy2S9N7sNJ0HldM0pq_uxeXIm6LpcJxd0C4tWSxYBqCQ5vU_d1hKU51YOswzaj9DjDIKcJeOXE7hy-KZG9NJmTwWDL1Nnq6vHi97XqW04BkmW7kndWB1xzBtA4uCVQFzgpvQdw5OnGUmlmGkpW_AfMYwX0aAMgVzOgx0OxKS7ZBGkiZul1DAIzKSDLlchlsDCENLrjk3sDA04B72iKhbV5kqDTmqYYxVHW82UrVVFFpF-bhDDvWa83qTMhHHnzU6tfHUty6lYLb4s-5pbW0F4w03UXTi0lmGsp3g9FqAtPb_8fwTstx7HPRV_-b-7oCsYEkZIXhIGvl05o4A6eTRcdGTPwAgOf0W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrotreatment+of+vegetable+oils%3A+A+review+of+the+technologies+and+its+developments+for+jet+biofuel+production&rft.jtitle=Biomass+%26+bioenergy&rft.au=V%C3%A1squez%2C+Maria+Cecilia&rft.au=Silva%2C+Electo+Eduardo&rft.au=Castillo%2C+Edgar+Fernando&rft.date=2017-10-01&rft.issn=0961-9534&rft.volume=105&rft.spage=197&rft.epage=206&rft_id=info:doi/10.1016%2Fj.biombioe.2017.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biombioe_2017_07_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon