Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering

The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was meas...

Full description

Saved in:
Bibliographic Details
Published inJournal of Wuhan University of Technology. Materials science edition Vol. 27; no. 1; pp. 92 - 95
Main Authors Qi, Xiaopeng, He, Fupo, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published Heidelberg Wuhan University of Technology 01.02.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede’s principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.
AbstractList The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.[PUBLICATION ABSTRACT]
The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.
Author He, Fupo
Qi, Xiaopeng
Ye, Jiandong
Author_xml – sequence: 1
  givenname: Xiaopeng
  surname: Qi
  fullname: Qi, Xiaopeng
  organization: School of Materials Science and Engineering, South China University of Technology, School of Material and Chemical Engineering, Jiangxi University of Science and Technology
– sequence: 2
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  organization: School of Materials Science and Engineering, South China University of Technology
– sequence: 3
  givenname: Jiandong
  surname: Ye
  fullname: Ye, Jiandong
  email: jdye@scut.edu.cn
  organization: School of Materials Science and Engineering, South China University of Technology
BookMark eNqFkc-OFCEQxolZE3dXH8AbiRcv7VYB3XQfzcZ_yRoveiYMU8yw6YYW6BgfxbeVyZhoNlFPUMXvq6Lqu2IXMUVi7DnCKwTQNwWxn_oOUHSgUHXDI3aJ0yRbJPVFuwNAJxTKJ-yqlHsABXIYLtmPj8HlVGreXN0ycRv3fCF3tDE4O_M1p5VyDVR48rxlXNgWvh5TWY-2Ene0UKw3B5ptDbHFaVlTCe2lOOt9mvf8W6hHnnJoHO35mlqT3-18ynzXJuE1lLIRp3hoZSiHeHjKHns7F3r267xmX96--Xz7vrv79O7D7eu7zslR1G6EYbcfbG-11laRtCCncadG3Y_Yq94TOKEdoCTvenCDQHTkFfRCebeTTl6zl-e6bdavG5VqllAczbONlLZiUDeN0FrC_1EhcByUFNjQFw_Q-7Tl2AYxiChAD6OYGoVn6uRByeTNmsNi83eDYE6-mrOvpvlqTr6aoWn0A40LtW0_xZptmP-pFGdlWU8LpvzHn_4q-gkWgbwA
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e37055
crossref_primary_10_3233_BME_221394
crossref_primary_10_1016_j_pmatsci_2018_01_001
Cites_doi 10.1002/jbm.a.30497
10.1126/science.8493529
10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0
10.1007/s10856-006-0029-6
10.1016/S0142-9612(99)00036-8
10.1016/j.biomaterials.2006.08.010
10.1002/jbm.a.10223
10.1126/science.1120937
10.1016/j.biomaterials.2004.01.041
10.1016/0142-9612(96)85561-X
10.1023/A:1008992900829
10.1002/jbm.a.31059
10.1016/j.biomaterials.2006.01.039
10.1002/jbm.10176
10.1002/jbm.a.30636
10.1016/j.matlet.2005.07.022
10.1016/S0142-9612(02)00153-9
10.1016/S0142-9612(02)00442-8
10.1016/j.biomaterials.2006.05.028
10.1016/S0142-9612(01)00401-X
10.1016/j.biomaterials.2006.03.001
ContentType Journal Article
Copyright Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2012
DBID AAYXX
CITATION
7SR
8AO
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7QP
7QQ
DOI 10.1007/s11595-012-0414-6
DatabaseName CrossRef
Engineered Materials Abstracts
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Pharma Collection
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
DatabaseTitleList ProQuest Materials Science Collection
Calcium & Calcified Tissue Abstracts
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1993-0437
EndPage 95
ExternalDocumentID 2788944481
10_1007_s11595_012_0414_6
Genre Feature
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
188
1N0
29L
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8AO
8FE
8FG
8RM
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CSCUP
CW9
CZ9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KC.
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U2A
UG4
UGNYK
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z5O
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7QP
7QQ
ID FETCH-LOGICAL-c382t-806bd6a5a777a4e3a0398b487581545fe0c27c013efc50c6211cef40524fcb3c3
IEDL.DBID U2A
ISSN 1000-2413
IngestDate Fri Jul 11 04:45:12 EDT 2025
Fri Jul 11 16:11:46 EDT 2025
Fri Jul 25 11:15:21 EDT 2025
Tue Jul 01 01:24:17 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Fri Feb 21 02:42:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gelatine
scaffold
mechanical properties
calcium phosphate cement
oriented pores
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-806bd6a5a777a4e3a0398b487581545fe0c27c013efc50c6211cef40524fcb3c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1112076829
PQPubID 1476361
PageCount 4
ParticipantIDs proquest_miscellaneous_1762127730
proquest_miscellaneous_1221864321
proquest_journals_1112076829
crossref_primary_10_1007_s11595_012_0414_6
crossref_citationtrail_10_1007_s11595_012_0414_6
springer_journals_10_1007_s11595_012_0414_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120200
2012-2-00
20120201
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 2
  year: 2012
  text: 20120200
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Wuhan
PublicationSubtitle Materials Science Edition
PublicationTitle Journal of Wuhan University of Technology. Materials science edition
PublicationTitleAbbrev J. Wuhan Univ. Technol.-Mat. Sci. Edit
PublicationYear 2012
Publisher Wuhan University of Technology
Springer Nature B.V
Publisher_xml – name: Wuhan University of Technology
– name: Springer Nature B.V
References Burguera, Xu, Takagi (CR7) 2005; 75A
Rezwan, Chen, Blaker (CR3) 2006; 27
Stokols, Tuszunski (CR20) 2004; 25
Gonten, Kelly, Antonucci (CR8) 2000; 11
Wang, Ye, Wang (CR16) 2008; 19
Wang, Ma, Wang (CR6) 2002; 23
Yang, Qu, Cui (CR17) 2006; 27
Langer, Vacanti (CR1) 1993; 260
Silva, Cyster, Barry (CR19) 2006; 27
Yang, Wang, Chen (CR4) 2005; 59
Kang, Tabata, Ikada (CR14) 1999; 20
Zhang, Zhang (CR11) 2002; 61
Xu, Weir, Burguera (CR9) 2006; 27
Sittinger, Bujia, Rotter (CR2) 1996; 17
Barraleta, Grovera, Gaunta (CR5) 2002; 23
Xu, Eichmiller, Giuseppetti (CR10) 2000; 52
Wang, Ye, Wang (CR15) 2007; 81
Chen, Boccaccini (CR21) 2006; 77
Mao, Zhao, Yao (CR12) 2003; 64A
Deville, Saiz, Nalla (CR18) 2006; 311
Mao, Zhao, Yin (CR13) 2003; 24
H. H. K. Xu (414_CR9) 2006; 27
J. S. Mao (414_CR13) 2003; 24
S. Stokols (414_CR20) 2004; 25
A. S. V. Gonten (414_CR8) 2000; 11
H. W. Kang (414_CR14) 1999; 20
Q. Z. Chen (414_CR21) 2006; 77
R. Langer (414_CR1) 1993; 260
K. Rezwan (414_CR3) 2006; 27
C. R. Yang (414_CR4) 2005; 59
J. S. Mao (414_CR12) 2003; 64A
S. Deville (414_CR18) 2006; 311
X. H. Wang (414_CR6) 2002; 23
Y. Zhang (414_CR11) 2002; 61
E. F. Burguera (414_CR7) 2005; 75A
J. E. Barraleta (414_CR5) 2002; 23
M. M. C. G. Silva (414_CR19) 2006; 27
H. H. K. Xu (414_CR10) 2000; 52
X. P. Wang (414_CR15) 2007; 81
M. Sittinger (414_CR2) 1996; 17
X. P. Wang (414_CR16) 2008; 19
F. Yang (414_CR17) 2006; 27
References_xml – volume: 75A
  start-page: 966
  year: 2005
  end-page: 975
  ident: CR7
  article-title: High Early Strength Calcium Phosphate Bone Cement: Effects of Dicalcium Phosphate Dihydrate and Absorbable Fibers[J]
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.30497
– volume: 260
  start-page: 920
  year: 1993
  end-page: 926
  ident: CR1
  article-title: Tissue Engineering[J]
  publication-title: Science
  doi: 10.1126/science.8493529
– volume: 59
  start-page: 3 635
  year: 2005
  end-page: 3 640
  ident: CR4
  article-title: Biomimetic Fabrication of BCP/COL/HCA Scaffolds for Bone Tissue Engineering[J]
  publication-title: Materials Letters
– volume: 52
  start-page: 107
  year: 2000
  end-page: 114
  ident: CR10
  article-title: Reinforcement of a Selfsetting Calcium Phosphate Cement with Different Fibers[J]
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0
– volume: 19
  start-page: 813
  year: 2008
  end-page: 816
  ident: CR16
  article-title: Hydration Mechanism of a Novel PCCP+DCPA Cement System[J]
  publication-title: J. Mater. Sci.: Mater. Med.
  doi: 10.1007/s10856-006-0029-6
– volume: 23
  start-page: 4 167
  year: 2002
  end-page: 4 176
  ident: CR6
  article-title: Bone Repair in Radii and Tibias of Rabbits with Phosphorylated Chitosan Reinforced Calcium Phosphate Cements[J]
  publication-title: Biomaterials
– volume: 20
  start-page: 1 339
  year: 1999
  end-page: 1 44
  ident: CR14
  article-title: Fabrication of Porous Gelatin Scaffolds for Tissue Engineering[J]
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00036-8
– volume: 27
  start-page: 5 909
  year: 2006
  end-page: 5 917
  ident: CR19
  article-title: The Effect of Anisotropic Architecture on Cell and Tissue Infiltration into Tissue Engineering Scaffolds[J]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.08.010
– volume: 64A
  start-page: 301
  issue: 2
  year: 2003
  end-page: 3 088
  ident: CR12
  article-title: Study of Novel Chitosan-Gelatin Artificial Skin [J]
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.10223
– volume: 24
  start-page: 1 067
  year: 2003
  end-page: 1 074
  ident: CR13
  article-title: Structure and Properties of Bilayer Chitosan-Gelatin Scaffolds[J]
  publication-title: Biomaterials
– volume: 311
  start-page: 515
  year: 2006
  end-page: 518
  ident: CR18
  article-title: Freezing as a Path to Build Complex Composites[J]
  publication-title: Science
  doi: 10.1126/science.1120937
– volume: 23
  start-page: 3 063
  year: 2002
  end-page: 3 072
  ident: CR5
  article-title: Preparation of Macroporous Calcium Phosphate Cement Tissue Engineering Scaffold[J]
  publication-title: Biomaterials
– volume: 25
  start-page: 5 839
  year: 2004
  end-page: 5 846
  ident: CR20
  article-title: The Fabrication and Characterization of Linearly Oriented Nerve Guidance Scaffolds for Spinal Cord Injury[J]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.01.041
– volume: 17
  start-page: 237
  year: 1996
  end-page: 242
  ident: CR2
  article-title: Tissue Engineering and Autologous Transplant Formation: Practical Approaches with Resorbable Biomaterials and New Cell Culture Techniques[J]
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)85561-X
– volume: 11
  start-page: 95
  year: 2000
  end-page: 100
  ident: CR8
  article-title: Load-bearing Behavior of a Simulated Craniofacial Structure Fabricated From a Hydroxyapatite Cement and Bioresorbable Fiber-mesh[J]
  publication-title: J. Mater. Sci.: Mater. Med.
  doi: 10.1023/A:1008992900829
– volume: 81
  start-page: 781
  year: 2007
  end-page: 790
  ident: CR15
  article-title: Control of Crystallinity of Hydrated Products in a Calcium Phosphate Bone Cement[J]
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31059
– volume: 27
  start-page: 4 923
  year: 2006
  end-page: 4 933
  ident: CR17
  article-title: Manufacturing and Morphology Structure of Polylactide-type Microtubules Orientation-Structured Scaffolds[J]
  publication-title: Biomaterials
– volume: 27
  start-page: 3 413
  year: 2006
  end-page: 3 431
  ident: CR3
  article-title: Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffold for Bone Tissue Engineering[J]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
– volume: 61
  start-page: 1
  year: 2002
  end-page: 8
  ident: CR11
  article-title: Three-dimensional Macroporous Calcium Phosphate Bioceramics with Nested Chitosan Sponges for Load-bearing Bone Implants[J]
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10176
– volume: 77
  start-page: 445
  year: 2006
  end-page: 457
  ident: CR21
  article-title: Poly (D,L-lactic acid) Coated 45S5 Bioglass-based Scaffolds: Processing and Characterization[J]
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.30636
– volume: 27
  start-page: 4 279
  year: 2006
  end-page: 4 287
  ident: CR9
  article-title: Injectable and Macroporous Calcium Phosphate Cement Scaffold[J]
  publication-title: Biomaterials
– volume: 11
  start-page: 95
  year: 2000
  ident: 414_CR8
  publication-title: J. Mater. Sci.: Mater. Med.
  doi: 10.1023/A:1008992900829
– volume: 27
  start-page: 3 413
  year: 2006
  ident: 414_CR3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
– volume: 59
  start-page: 3 635
  year: 2005
  ident: 414_CR4
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2005.07.022
– volume: 20
  start-page: 1 339
  year: 1999
  ident: 414_CR14
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00036-8
– volume: 77
  start-page: 445
  year: 2006
  ident: 414_CR21
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.30636
– volume: 17
  start-page: 237
  year: 1996
  ident: 414_CR2
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)85561-X
– volume: 61
  start-page: 1
  year: 2002
  ident: 414_CR11
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10176
– volume: 260
  start-page: 920
  year: 1993
  ident: 414_CR1
  publication-title: Science
  doi: 10.1126/science.8493529
– volume: 23
  start-page: 4 167
  year: 2002
  ident: 414_CR6
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00153-9
– volume: 311
  start-page: 515
  year: 2006
  ident: 414_CR18
  publication-title: Science
  doi: 10.1126/science.1120937
– volume: 64A
  start-page: 301
  issue: 2
  year: 2003
  ident: 414_CR12
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.10223
– volume: 19
  start-page: 813
  year: 2008
  ident: 414_CR16
  publication-title: J. Mater. Sci.: Mater. Med.
  doi: 10.1007/s10856-006-0029-6
– volume: 52
  start-page: 107
  year: 2000
  ident: 414_CR10
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0
– volume: 24
  start-page: 1 067
  year: 2003
  ident: 414_CR13
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00442-8
– volume: 27
  start-page: 4 923
  year: 2006
  ident: 414_CR17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.05.028
– volume: 75A
  start-page: 966
  year: 2005
  ident: 414_CR7
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.30497
– volume: 81
  start-page: 781
  year: 2007
  ident: 414_CR15
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31059
– volume: 25
  start-page: 5 839
  year: 2004
  ident: 414_CR20
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.01.041
– volume: 23
  start-page: 3 063
  year: 2002
  ident: 414_CR5
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00401-X
– volume: 27
  start-page: 4 279
  year: 2006
  ident: 414_CR9
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.03.001
– volume: 27
  start-page: 5 909
  year: 2006
  ident: 414_CR19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.08.010
SSID ssj0040366
Score 1.8737619
Snippet The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Bones
Calcium phosphate
Cements
Chemistry and Materials Science
Fracture mechanics
Materials Science
Mechanical properties
Porosity
Reinforcement
Scaffolds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-iOBJCbZp-jqJiiKCIqLgraSTRAVtq7v7Y_y3zmTbXRXc425TEvolM1_mydgBoErNZehEZqUTCoJUaKNTYcDlLjBBrH3W-81tcvWorp_ip9bg1m_DKjuZ6AW1qYFs5Md4JiV5jWR-0nwI6hpF3tW2hcYsm0cRnOHla_7s4vbuvpPFCuWzzy-i_GnyIHV-TZ88h5qcAtekCFSoRPJbM03o5h8PqVc8l8tsqWWM_HQE8QqbsdUqW_xRR3CNfd1QWN2oFOzw03JdGf5uKaeXIOANGdw_qXIqrx3Hf-B1-M6bl7rfvCDV5OBNhMfPPi6uwt8oIyiWy_I-aOfqN8PJXMtrqomMDJUjZ8dn4-mQ9_KyxhcHHkVuJ2tbZ4-XFw_nV6LtuSAgyuQAFVZSmkTHOk1TrWykgyjPSrrVZES2nA1ApkC2UwdxgEiHIViHrE8qB2UE0Qabq3DGTcaNjZQCh6TAgMqM03kSx3jbgkxBGUa6x4LuexfQFiSnvhhvxaSUMkFUIEQFQVQkPXY4fqUZVeOYNninA7FoD2a_mGyjHtsfP8YjRX4SXdl6iGMkNepSkQynjEElEsoU5WOPHXUb5Mc0_y1qa_qittmC9DuS4mV22BwiaXeR9QzKvXZrfwPwdwIS
  priority: 102
  providerName: ProQuest
Title Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering
URI https://link.springer.com/article/10.1007/s11595-012-0414-6
https://www.proquest.com/docview/1112076829
https://www.proquest.com/docview/1221864321
https://www.proquest.com/docview/1762127730
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yuDSH0iYp2Wa7KJBTi6kty6_jtuwmNCSEkoX0ZOSR1BQSe9nHj-m_zYzW3k1LGujJ2JIsoZFmvtE8BHCKJFILGbkgt9IFCsMs0EZngUFXuNCEifZR75dX6flEfbtNbts47nnn7d6ZJD2n3gS7keRlRzMZhCpSQboNuwmr7rSIJ3LYsV9FLNmHFHHINBuNOlPmc7_4UxhtEOZfRlEva8Zv4HULEsVwRdW3sGXrfdh7kjrwAH5fsifdKvvrcmaFro14sBzGy7MupnzGPuNkqaJxgr7gr-WDmN418-kdoUuB_lTw80_vClfTO7EFdt-yYo7auebeCD6hFQ2nQSZQKgimU9m6O4K6omqo4cITTtjN2A5hMh7dfD0P2msWAoxzuSAZlVYm1YnOskwrG-swLvKKFZmc8ZWzIcoM-bjUYRIScaMIrSOgJ5XDKsb4HezU1OMRCGNjpdARDjCocuN0kSYJKViYK6yiWPcg7Oa7xDYHOV-FcV9usicziUoiUckkKtMefFw3ma4ScLxUud8RsWz34px1HMn2Rln04GRdTLuITSO6ts2S6ki-m0vFMnqhDsmNSGbEEnvwqVsgT7r516De_1ftY3gl_QJlj5k-7BBh7QfCPYtqANv5-GwAu8OzHxcjen4ZXV1_H_jV_wgmDQFH
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEE91SwEjwQUUNbGd1wEhBCxb2u2plXoLztimSG0SurtC_BT-BL-RGe9mtyCxtx6zcWJnZzzzeZ4AL5BUaikTHxVO-khjnEfGmjyy6Esf2zg1Iet9fJSNTvTn0_R0A373uTAcVtnLxCCobYtsI9-jPSnZayTLt933iLtGsXe1b6ExZ4sD9_MHHdkmb_Y_EH1fSjn8ePx-FC26CkSoCjklkZzVNjOpyfPcaKdMrMqiZtxeMJzwLkaZI1sHPaYxfUuSoPOEa6T2WCtU9N4bcFMrVfKOKoafesmvSRuEbCbO1mZ_Ve9FDal6hBs4TE5GsU50lP2tB1fg9h9_bFBzw7twZ4FPxbs5Q92DDdfch60rVQsfwK8xB_HNC8_OLp0wjRUXjjOImeCiY_P-JddpFa0X9At-m12I7qyddGcEbAUGg-Te1xCF19A1SSSOHHNigsb79twKNg6LliswEx4WdEKge8vpCGWLuqUHp4FnhFut7SGcXAstHsFmQzNug7BOaY2eIIhFXVhvyixN6WyHhcY6UWYAcf9_V7gof85dOM6rVeFmJlFFJKqYRFU2gFfLR7p57Y91g3d7IlYLMTCpVkw7gOfL27SB2StjGtfOaIzktmBayWTNGFJZicxJGg_gdc8gV6b536J21i_qGdwaHY8Pq8P9o4PHcFsG7uRInV3YJKq6J4S3pvXTwOQCvlz3rvoD0eM82g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFB7QFBAbHm5EidQtInjvI4IWAEtiENX4hY5YxuQIInY3R_Tf9uZbLJLESBxTGzHVj575rPnYYADJJWaycB5qZXOU-gnnjY68Qy6zPnGj3QT9X51HZ8P1eVtdNveczrqvN07k-Q0poGzNJXjfm1cfx74RlqYnc6k56tAefEXWCJpHPC0HsrjThQrEs9NeBGHT7MBqTNrvvWJ_xXTnG2-MpA2emewCistYRTHU4TXYMGW3-HbizSC6_D3ir3qpplgJ89W6NKIJ8shvYyAqPm8_ZkTp4rKCXqDD5MnUd9Xo_qemKbA5oSwf9e4xZX0TCKCXbmsGKF2rno0gk9rRcUpkYmgCqLsVDbrjmivKCpqOG5AFHY-tg0YDs7-nJx77ZULHoapHJO-igsT60gnSaKVDbUfZmnBm5qUuZazPsoE-ejUYeQT0EGA1hHpk8phEWK4CYsl9bgFwthQKXTECQyq1DidxVFEmy1MFRZBqHvgd_87xzYfOV-L8ZjPMykzRDlBlDNEedyDw1mTepqM46PKOx2IebsuR7zfkWx7lFkPfs6KaUWxmUSXtppQHcn3dKlQBh_UIR0SyITEYw-Ougnyopv3BvXjU7X3YfnmdJD_vrj-tQ1fZTNX2ZFmBxYJY7tLdGhc7DVT_h_AKQRi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+mechanical+properties+of+calcium+phosphate+cement%2Fgelatine+composite+scaffold+with+oriented+pore+structure+for+bone+tissue+engineering&rft.jtitle=Journal+of+Wuhan+University+of+Technology.+Materials+science+edition&rft.au=Qi%2C+Xiaopeng&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2012-02-01&rft.issn=1000-2413&rft.eissn=1993-0437&rft.volume=27&rft.issue=1&rft.spage=92&rft.epage=95&rft_id=info:doi/10.1007%2Fs11595-012-0414-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2413&client=summon