Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering
The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was meas...
Saved in:
Published in | Journal of Wuhan University of Technology. Materials science edition Vol. 27; no. 1; pp. 92 - 95 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Wuhan University of Technology
01.02.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede’s principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering. |
---|---|
AbstractList | The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.[PUBLICATION ABSTRACT] The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering. |
Author | He, Fupo Qi, Xiaopeng Ye, Jiandong |
Author_xml | – sequence: 1 givenname: Xiaopeng surname: Qi fullname: Qi, Xiaopeng organization: School of Materials Science and Engineering, South China University of Technology, School of Material and Chemical Engineering, Jiangxi University of Science and Technology – sequence: 2 givenname: Fupo surname: He fullname: He, Fupo organization: School of Materials Science and Engineering, South China University of Technology – sequence: 3 givenname: Jiandong surname: Ye fullname: Ye, Jiandong email: jdye@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology |
BookMark | eNqFkc-OFCEQxolZE3dXH8AbiRcv7VYB3XQfzcZ_yRoveiYMU8yw6YYW6BgfxbeVyZhoNlFPUMXvq6Lqu2IXMUVi7DnCKwTQNwWxn_oOUHSgUHXDI3aJ0yRbJPVFuwNAJxTKJ-yqlHsABXIYLtmPj8HlVGreXN0ycRv3fCF3tDE4O_M1p5VyDVR48rxlXNgWvh5TWY-2Ene0UKw3B5ptDbHFaVlTCe2lOOt9mvf8W6hHnnJoHO35mlqT3-18ynzXJuE1lLIRp3hoZSiHeHjKHns7F3r267xmX96--Xz7vrv79O7D7eu7zslR1G6EYbcfbG-11laRtCCncadG3Y_Yq94TOKEdoCTvenCDQHTkFfRCebeTTl6zl-e6bdavG5VqllAczbONlLZiUDeN0FrC_1EhcByUFNjQFw_Q-7Tl2AYxiChAD6OYGoVn6uRByeTNmsNi83eDYE6-mrOvpvlqTr6aoWn0A40LtW0_xZptmP-pFGdlWU8LpvzHn_4q-gkWgbwA |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e37055 crossref_primary_10_3233_BME_221394 crossref_primary_10_1016_j_pmatsci_2018_01_001 |
Cites_doi | 10.1002/jbm.a.30497 10.1126/science.8493529 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0 10.1007/s10856-006-0029-6 10.1016/S0142-9612(99)00036-8 10.1016/j.biomaterials.2006.08.010 10.1002/jbm.a.10223 10.1126/science.1120937 10.1016/j.biomaterials.2004.01.041 10.1016/0142-9612(96)85561-X 10.1023/A:1008992900829 10.1002/jbm.a.31059 10.1016/j.biomaterials.2006.01.039 10.1002/jbm.10176 10.1002/jbm.a.30636 10.1016/j.matlet.2005.07.022 10.1016/S0142-9612(02)00153-9 10.1016/S0142-9612(02)00442-8 10.1016/j.biomaterials.2006.05.028 10.1016/S0142-9612(01)00401-X 10.1016/j.biomaterials.2006.03.001 |
ContentType | Journal Article |
Copyright | Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2012 |
Copyright_xml | – notice: Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2012 |
DBID | AAYXX CITATION 7SR 8AO 8BQ 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7QP 7QQ |
DOI | 10.1007/s11595-012-0414-6 |
DatabaseName | CrossRef Engineered Materials Abstracts ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Calcium & Calcified Tissue Abstracts Ceramic Abstracts |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Pharma Collection ProQuest Central China METADEX ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Calcium & Calcified Tissue Abstracts Ceramic Abstracts |
DatabaseTitleList | ProQuest Materials Science Collection Calcium & Calcified Tissue Abstracts Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1993-0437 |
EndPage | 95 |
ExternalDocumentID | 2788944481 10_1007_s11595_012_0414_6 |
Genre | Feature |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 1N0 29L 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8AO 8FE 8FG 8RM 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCEZO CCPQU CDRFL CHBEP COF CSCUP CW9 CZ9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KB. KC. KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TUC U2A UG4 UGNYK UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z5O Z7R Z7V Z7W Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7QP 7QQ |
ID | FETCH-LOGICAL-c382t-806bd6a5a777a4e3a0398b487581545fe0c27c013efc50c6211cef40524fcb3c3 |
IEDL.DBID | U2A |
ISSN | 1000-2413 |
IngestDate | Fri Jul 11 04:45:12 EDT 2025 Fri Jul 11 16:11:46 EDT 2025 Fri Jul 25 11:15:21 EDT 2025 Tue Jul 01 01:24:17 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Fri Feb 21 02:42:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | gelatine scaffold mechanical properties calcium phosphate cement oriented pores |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-806bd6a5a777a4e3a0398b487581545fe0c27c013efc50c6211cef40524fcb3c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1112076829 |
PQPubID | 1476361 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1762127730 proquest_miscellaneous_1221864321 proquest_journals_1112076829 crossref_primary_10_1007_s11595_012_0414_6 crossref_citationtrail_10_1007_s11595_012_0414_6 springer_journals_10_1007_s11595_012_0414_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120200 2012-2-00 20120201 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 2 year: 2012 text: 20120200 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Wuhan |
PublicationSubtitle | Materials Science Edition |
PublicationTitle | Journal of Wuhan University of Technology. Materials science edition |
PublicationTitleAbbrev | J. Wuhan Univ. Technol.-Mat. Sci. Edit |
PublicationYear | 2012 |
Publisher | Wuhan University of Technology Springer Nature B.V |
Publisher_xml | – name: Wuhan University of Technology – name: Springer Nature B.V |
References | Burguera, Xu, Takagi (CR7) 2005; 75A Rezwan, Chen, Blaker (CR3) 2006; 27 Stokols, Tuszunski (CR20) 2004; 25 Gonten, Kelly, Antonucci (CR8) 2000; 11 Wang, Ye, Wang (CR16) 2008; 19 Wang, Ma, Wang (CR6) 2002; 23 Yang, Qu, Cui (CR17) 2006; 27 Langer, Vacanti (CR1) 1993; 260 Silva, Cyster, Barry (CR19) 2006; 27 Yang, Wang, Chen (CR4) 2005; 59 Kang, Tabata, Ikada (CR14) 1999; 20 Zhang, Zhang (CR11) 2002; 61 Xu, Weir, Burguera (CR9) 2006; 27 Sittinger, Bujia, Rotter (CR2) 1996; 17 Barraleta, Grovera, Gaunta (CR5) 2002; 23 Xu, Eichmiller, Giuseppetti (CR10) 2000; 52 Wang, Ye, Wang (CR15) 2007; 81 Chen, Boccaccini (CR21) 2006; 77 Mao, Zhao, Yao (CR12) 2003; 64A Deville, Saiz, Nalla (CR18) 2006; 311 Mao, Zhao, Yin (CR13) 2003; 24 H. H. K. Xu (414_CR9) 2006; 27 J. S. Mao (414_CR13) 2003; 24 S. Stokols (414_CR20) 2004; 25 A. S. V. Gonten (414_CR8) 2000; 11 H. W. Kang (414_CR14) 1999; 20 Q. Z. Chen (414_CR21) 2006; 77 R. Langer (414_CR1) 1993; 260 K. Rezwan (414_CR3) 2006; 27 C. R. Yang (414_CR4) 2005; 59 J. S. Mao (414_CR12) 2003; 64A S. Deville (414_CR18) 2006; 311 X. H. Wang (414_CR6) 2002; 23 Y. Zhang (414_CR11) 2002; 61 E. F. Burguera (414_CR7) 2005; 75A J. E. Barraleta (414_CR5) 2002; 23 M. M. C. G. Silva (414_CR19) 2006; 27 H. H. K. Xu (414_CR10) 2000; 52 X. P. Wang (414_CR15) 2007; 81 M. Sittinger (414_CR2) 1996; 17 X. P. Wang (414_CR16) 2008; 19 F. Yang (414_CR17) 2006; 27 |
References_xml | – volume: 75A start-page: 966 year: 2005 end-page: 975 ident: CR7 article-title: High Early Strength Calcium Phosphate Bone Cement: Effects of Dicalcium Phosphate Dihydrate and Absorbable Fibers[J] publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30497 – volume: 260 start-page: 920 year: 1993 end-page: 926 ident: CR1 article-title: Tissue Engineering[J] publication-title: Science doi: 10.1126/science.8493529 – volume: 59 start-page: 3 635 year: 2005 end-page: 3 640 ident: CR4 article-title: Biomimetic Fabrication of BCP/COL/HCA Scaffolds for Bone Tissue Engineering[J] publication-title: Materials Letters – volume: 52 start-page: 107 year: 2000 end-page: 114 ident: CR10 article-title: Reinforcement of a Selfsetting Calcium Phosphate Cement with Different Fibers[J] publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0 – volume: 19 start-page: 813 year: 2008 end-page: 816 ident: CR16 article-title: Hydration Mechanism of a Novel PCCP+DCPA Cement System[J] publication-title: J. Mater. Sci.: Mater. Med. doi: 10.1007/s10856-006-0029-6 – volume: 23 start-page: 4 167 year: 2002 end-page: 4 176 ident: CR6 article-title: Bone Repair in Radii and Tibias of Rabbits with Phosphorylated Chitosan Reinforced Calcium Phosphate Cements[J] publication-title: Biomaterials – volume: 20 start-page: 1 339 year: 1999 end-page: 1 44 ident: CR14 article-title: Fabrication of Porous Gelatin Scaffolds for Tissue Engineering[J] publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00036-8 – volume: 27 start-page: 5 909 year: 2006 end-page: 5 917 ident: CR19 article-title: The Effect of Anisotropic Architecture on Cell and Tissue Infiltration into Tissue Engineering Scaffolds[J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.08.010 – volume: 64A start-page: 301 issue: 2 year: 2003 end-page: 3 088 ident: CR12 article-title: Study of Novel Chitosan-Gelatin Artificial Skin [J] publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.10223 – volume: 24 start-page: 1 067 year: 2003 end-page: 1 074 ident: CR13 article-title: Structure and Properties of Bilayer Chitosan-Gelatin Scaffolds[J] publication-title: Biomaterials – volume: 311 start-page: 515 year: 2006 end-page: 518 ident: CR18 article-title: Freezing as a Path to Build Complex Composites[J] publication-title: Science doi: 10.1126/science.1120937 – volume: 23 start-page: 3 063 year: 2002 end-page: 3 072 ident: CR5 article-title: Preparation of Macroporous Calcium Phosphate Cement Tissue Engineering Scaffold[J] publication-title: Biomaterials – volume: 25 start-page: 5 839 year: 2004 end-page: 5 846 ident: CR20 article-title: The Fabrication and Characterization of Linearly Oriented Nerve Guidance Scaffolds for Spinal Cord Injury[J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.041 – volume: 17 start-page: 237 year: 1996 end-page: 242 ident: CR2 article-title: Tissue Engineering and Autologous Transplant Formation: Practical Approaches with Resorbable Biomaterials and New Cell Culture Techniques[J] publication-title: Biomaterials doi: 10.1016/0142-9612(96)85561-X – volume: 11 start-page: 95 year: 2000 end-page: 100 ident: CR8 article-title: Load-bearing Behavior of a Simulated Craniofacial Structure Fabricated From a Hydroxyapatite Cement and Bioresorbable Fiber-mesh[J] publication-title: J. Mater. Sci.: Mater. Med. doi: 10.1023/A:1008992900829 – volume: 81 start-page: 781 year: 2007 end-page: 790 ident: CR15 article-title: Control of Crystallinity of Hydrated Products in a Calcium Phosphate Bone Cement[J] publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.31059 – volume: 27 start-page: 4 923 year: 2006 end-page: 4 933 ident: CR17 article-title: Manufacturing and Morphology Structure of Polylactide-type Microtubules Orientation-Structured Scaffolds[J] publication-title: Biomaterials – volume: 27 start-page: 3 413 year: 2006 end-page: 3 431 ident: CR3 article-title: Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffold for Bone Tissue Engineering[J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.039 – volume: 61 start-page: 1 year: 2002 end-page: 8 ident: CR11 article-title: Three-dimensional Macroporous Calcium Phosphate Bioceramics with Nested Chitosan Sponges for Load-bearing Bone Implants[J] publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10176 – volume: 77 start-page: 445 year: 2006 end-page: 457 ident: CR21 article-title: Poly (D,L-lactic acid) Coated 45S5 Bioglass-based Scaffolds: Processing and Characterization[J] publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30636 – volume: 27 start-page: 4 279 year: 2006 end-page: 4 287 ident: CR9 article-title: Injectable and Macroporous Calcium Phosphate Cement Scaffold[J] publication-title: Biomaterials – volume: 11 start-page: 95 year: 2000 ident: 414_CR8 publication-title: J. Mater. Sci.: Mater. Med. doi: 10.1023/A:1008992900829 – volume: 27 start-page: 3 413 year: 2006 ident: 414_CR3 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.039 – volume: 59 start-page: 3 635 year: 2005 ident: 414_CR4 publication-title: Materials Letters doi: 10.1016/j.matlet.2005.07.022 – volume: 20 start-page: 1 339 year: 1999 ident: 414_CR14 publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00036-8 – volume: 77 start-page: 445 year: 2006 ident: 414_CR21 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30636 – volume: 17 start-page: 237 year: 1996 ident: 414_CR2 publication-title: Biomaterials doi: 10.1016/0142-9612(96)85561-X – volume: 61 start-page: 1 year: 2002 ident: 414_CR11 publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10176 – volume: 260 start-page: 920 year: 1993 ident: 414_CR1 publication-title: Science doi: 10.1126/science.8493529 – volume: 23 start-page: 4 167 year: 2002 ident: 414_CR6 publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00153-9 – volume: 311 start-page: 515 year: 2006 ident: 414_CR18 publication-title: Science doi: 10.1126/science.1120937 – volume: 64A start-page: 301 issue: 2 year: 2003 ident: 414_CR12 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.10223 – volume: 19 start-page: 813 year: 2008 ident: 414_CR16 publication-title: J. Mater. Sci.: Mater. Med. doi: 10.1007/s10856-006-0029-6 – volume: 52 start-page: 107 year: 2000 ident: 414_CR10 publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0 – volume: 24 start-page: 1 067 year: 2003 ident: 414_CR13 publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00442-8 – volume: 27 start-page: 4 923 year: 2006 ident: 414_CR17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.05.028 – volume: 75A start-page: 966 year: 2005 ident: 414_CR7 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30497 – volume: 81 start-page: 781 year: 2007 ident: 414_CR15 publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.31059 – volume: 25 start-page: 5 839 year: 2004 ident: 414_CR20 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.041 – volume: 23 start-page: 3 063 year: 2002 ident: 414_CR5 publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00401-X – volume: 27 start-page: 4 279 year: 2006 ident: 414_CR9 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.03.001 – volume: 27 start-page: 5 909 year: 2006 ident: 414_CR19 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.08.010 |
SSID | ssj0040366 |
Score | 1.8737619 |
Snippet | The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 92 |
SubjectTerms | Bones Calcium phosphate Cements Chemistry and Materials Science Fracture mechanics Materials Science Mechanical properties Porosity Reinforcement Scaffolds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-iOBJCbZp-jqJiiKCIqLgraSTRAVtq7v7Y_y3zmTbXRXc425TEvolM1_mydgBoErNZehEZqUTCoJUaKNTYcDlLjBBrH3W-81tcvWorp_ip9bg1m_DKjuZ6AW1qYFs5Md4JiV5jWR-0nwI6hpF3tW2hcYsm0cRnOHla_7s4vbuvpPFCuWzzy-i_GnyIHV-TZ88h5qcAtekCFSoRPJbM03o5h8PqVc8l8tsqWWM_HQE8QqbsdUqW_xRR3CNfd1QWN2oFOzw03JdGf5uKaeXIOANGdw_qXIqrx3Hf-B1-M6bl7rfvCDV5OBNhMfPPi6uwt8oIyiWy_I-aOfqN8PJXMtrqomMDJUjZ8dn4-mQ9_KyxhcHHkVuJ2tbZ4-XFw_nV6LtuSAgyuQAFVZSmkTHOk1TrWykgyjPSrrVZES2nA1ApkC2UwdxgEiHIViHrE8qB2UE0Qabq3DGTcaNjZQCh6TAgMqM03kSx3jbgkxBGUa6x4LuexfQFiSnvhhvxaSUMkFUIEQFQVQkPXY4fqUZVeOYNninA7FoD2a_mGyjHtsfP8YjRX4SXdl6iGMkNepSkQynjEElEsoU5WOPHXUb5Mc0_y1qa_qittmC9DuS4mV22BwiaXeR9QzKvXZrfwPwdwIS priority: 102 providerName: ProQuest |
Title | Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering |
URI | https://link.springer.com/article/10.1007/s11595-012-0414-6 https://www.proquest.com/docview/1112076829 https://www.proquest.com/docview/1221864321 https://www.proquest.com/docview/1762127730 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yuDSH0iYp2Wa7KJBTi6kty6_jtuwmNCSEkoX0ZOSR1BQSe9nHj-m_zYzW3k1LGujJ2JIsoZFmvtE8BHCKJFILGbkgt9IFCsMs0EZngUFXuNCEifZR75dX6flEfbtNbts47nnn7d6ZJD2n3gS7keRlRzMZhCpSQboNuwmr7rSIJ3LYsV9FLNmHFHHINBuNOlPmc7_4UxhtEOZfRlEva8Zv4HULEsVwRdW3sGXrfdh7kjrwAH5fsifdKvvrcmaFro14sBzGy7MupnzGPuNkqaJxgr7gr-WDmN418-kdoUuB_lTw80_vClfTO7EFdt-yYo7auebeCD6hFQ2nQSZQKgimU9m6O4K6omqo4cITTtjN2A5hMh7dfD0P2msWAoxzuSAZlVYm1YnOskwrG-swLvKKFZmc8ZWzIcoM-bjUYRIScaMIrSOgJ5XDKsb4HezU1OMRCGNjpdARDjCocuN0kSYJKViYK6yiWPcg7Oa7xDYHOV-FcV9usicziUoiUckkKtMefFw3ma4ScLxUud8RsWz34px1HMn2Rln04GRdTLuITSO6ts2S6ki-m0vFMnqhDsmNSGbEEnvwqVsgT7r516De_1ftY3gl_QJlj5k-7BBh7QfCPYtqANv5-GwAu8OzHxcjen4ZXV1_H_jV_wgmDQFH |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEE91SwEjwQUUNbGd1wEhBCxb2u2plXoLztimSG0SurtC_BT-BL-RGe9mtyCxtx6zcWJnZzzzeZ4AL5BUaikTHxVO-khjnEfGmjyy6Esf2zg1Iet9fJSNTvTn0_R0A373uTAcVtnLxCCobYtsI9-jPSnZayTLt933iLtGsXe1b6ExZ4sD9_MHHdkmb_Y_EH1fSjn8ePx-FC26CkSoCjklkZzVNjOpyfPcaKdMrMqiZtxeMJzwLkaZI1sHPaYxfUuSoPOEa6T2WCtU9N4bcFMrVfKOKoafesmvSRuEbCbO1mZ_Ve9FDal6hBs4TE5GsU50lP2tB1fg9h9_bFBzw7twZ4FPxbs5Q92DDdfch60rVQsfwK8xB_HNC8_OLp0wjRUXjjOImeCiY_P-JddpFa0X9At-m12I7qyddGcEbAUGg-Te1xCF19A1SSSOHHNigsb79twKNg6LliswEx4WdEKge8vpCGWLuqUHp4FnhFut7SGcXAstHsFmQzNug7BOaY2eIIhFXVhvyixN6WyHhcY6UWYAcf9_V7gof85dOM6rVeFmJlFFJKqYRFU2gFfLR7p57Y91g3d7IlYLMTCpVkw7gOfL27SB2StjGtfOaIzktmBayWTNGFJZicxJGg_gdc8gV6b536J21i_qGdwaHY8Pq8P9o4PHcFsG7uRInV3YJKq6J4S3pvXTwOQCvlz3rvoD0eM82g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFB7QFBAbHm5EidQtInjvI4IWAEtiENX4hY5YxuQIInY3R_Tf9uZbLJLESBxTGzHVj575rPnYYADJJWaycB5qZXOU-gnnjY68Qy6zPnGj3QT9X51HZ8P1eVtdNveczrqvN07k-Q0poGzNJXjfm1cfx74RlqYnc6k56tAefEXWCJpHPC0HsrjThQrEs9NeBGHT7MBqTNrvvWJ_xXTnG2-MpA2emewCistYRTHU4TXYMGW3-HbizSC6_D3ir3qpplgJ89W6NKIJ8shvYyAqPm8_ZkTp4rKCXqDD5MnUd9Xo_qemKbA5oSwf9e4xZX0TCKCXbmsGKF2rno0gk9rRcUpkYmgCqLsVDbrjmivKCpqOG5AFHY-tg0YDs7-nJx77ZULHoapHJO-igsT60gnSaKVDbUfZmnBm5qUuZazPsoE-ejUYeQT0EGA1hHpk8phEWK4CYsl9bgFwthQKXTECQyq1DidxVFEmy1MFRZBqHvgd_87xzYfOV-L8ZjPMykzRDlBlDNEedyDw1mTepqM46PKOx2IebsuR7zfkWx7lFkPfs6KaUWxmUSXtppQHcn3dKlQBh_UIR0SyITEYw-Ougnyopv3BvXjU7X3YfnmdJD_vrj-tQ1fZTNX2ZFmBxYJY7tLdGhc7DVT_h_AKQRi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+mechanical+properties+of+calcium+phosphate+cement%2Fgelatine+composite+scaffold+with+oriented+pore+structure+for+bone+tissue+engineering&rft.jtitle=Journal+of+Wuhan+University+of+Technology.+Materials+science+edition&rft.au=Qi%2C+Xiaopeng&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2012-02-01&rft.issn=1000-2413&rft.eissn=1993-0437&rft.volume=27&rft.issue=1&rft.spage=92&rft.epage=95&rft_id=info:doi/10.1007%2Fs11595-012-0414-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2413&client=summon |